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Electron interaction with confined acoustic phonons in quantum wires
subjected to a magnetic field

A. Svizhenko, A. Balandin, and S. Bandyopadhyay
Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588

M. A. Stroscio
U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709

~Received 17 July 1997!

We have studied the effect of an external magnetic field on electron-acoustic phonon scattering in rectan-
gular quantum wires taking into account both electron and phonon confinement. A magnetic field has two
major effects:~i! it dramatically quenches~by several orders of magnitude! intrasubband scattering due to
acoustic phonons in hybrid ‘‘width’’ and ‘‘thickness’’ modes, and~ii ! it increases electron interaction with
evanescent hybrid surface modes that peak at the wire edges. A simple intuitive picture to elucidate the origin
of these effects is presented.
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I. INTRODUCTION

Electron-phonon interaction in quantum wires has be
studied by a number of researchers in the past.1–13 Refer-
ences 4–10 studied the effect of an external magnetic fi
on electron scattering rates assuming bulk~unconfined!
acoustic phonons, while Refs. 11–13 accounted for the c
fined nature of acoustic phonons but omitted any effects
magnetic field. In this paper, we report the first study
electron-phonon interaction taking into account both the
fects of an external magnetic field and phonon confinem

Phonon confinement is expected to be important wh
ever the transverse dimensions of a quantum wire are sm
than the phonon coherence length. It increases elect
phonon scattering rates by several orders of magnitude,11–13

and in the presence of a magnetic field, it assumes an a
importance. The scattering rate depends primarily on
quantities; the joint electron-phonon density of states,
the interaction matrix element, which is determined by
overlap between three scalars: the wave function of the e
tron’s initial state, the wave function of the final state, a
the phonon’s normal mode. Both quantities are influen
strongly by a magnetic field when phonon confinement
fects are present. First, confinement causes significant
linearities in the dispersion relations of acoustic-phon
modes and modifies the phonon density of states. The e
tron density of states~in magnetoelectric subbands! is also
strongly influenced by the magnetic field.14 As a result, the
joint density of electron-phonon states, which determines
scattering rate, can be modulated by the magnetic field. S
ond, and perhaps more importantly, a magnetic field sk
the wave functions of a traveling electron state towards
edge of the wire~‘‘edge states’’!. This significantly alters the
overlap between the electron’s initial and final states’ wa
function and the phonon mode. Obviously, the overlap w
surface phonon modes is increased and this increases
surface phonon mediated scattering. Additionally, the w
function of an electron in themth subband is no longer or
thogonal to thenth phonon mode formÞn. As a result
570163-1829/98/57~8!/4687~7!/$15.00
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many new scattering channels are opened correspondin
mÞn, which were previously forbidden. Third, and mo
important, there is an effect that strongly influences electr
phonon scattering in relatively wide wires. If the wire wid
is much larger than the magnetic lengthA\/qB ~q is elec-
tronic charge andB is the magnetic flux density!, then op-
positely traveling electron states in a quantum wire
skewed towards opposite edges of the wire by a magn
field. As a result, the overlap between their wave functio
decreases and the probability of ‘‘backscattering’’~scattering
between oppositely traveling states! is reduced. This was
predicted before6 in the context of electron interaction wit
bulk acoustic modes. We found that intrasubband ba
scattering rates can be suppressed by four orders of ma
tude in GaAs wires with widths;400 Å at a magnetic flux
density of 10 T. Since backscattering is usually the domin
interaction with acoustic phonons, its suppression decre
the total electron-phonon scattering rate at low temperatu
This is an important result since the quenching of ba
scattering in a magnetic field is an important ingredient
the Büttiker picture of the integral quantum Hall effect.15

The paper is organized as follows. In the next section
describe the calculation of electron eigenstates in a quan
wire subjected to an external magnetic field. We compute
wave functions, the dispersion relations and the density
states~at a given energy! in various magnetoelectric sub
bands. This is an exact and rigorous treatment. In Sec. III,
derive the acoustic-phonon eigenmodes in a quantum w
assuming that a magnetic field does not affect phonons.
normal modes of acoustic phonons are dilatational~or com-
pressional!, flexural, torsional and shear.13 These modes have
been calculated recently13 using a so-calledxyz algorithm.16

To simplify the calculation, we have employed Morse
ansatz,17,18 which allows us to combine approximately a
these modes into two hybrid modes: ‘‘width’’ modes an
‘‘thickness’’ modes corresponding to the width and t
thickness of the quantum wire~these are not true ‘‘norma
modes’’ of the system, however!. Even though this approac
4687 © 1998 The American Physical Society
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4688 57SVIZHENKO, BALANDIN, BANDYOPADHYAY, AND STROSCIO
misses the edge modes of Ref. 13, it is not a serious d
ciency since edge modes are not very important for elect
phonon interaction. Since the electron wave function alw
decays at the edges of the quantum wire, the matrix elem
for electron interaction with edge phonon modes is negl
bly small. We point out that in spite of using Morse’s ansa
which was used by Refs. 11 and 12, we have found m
new branches in the phonon spectra that Refs. 11 and
missed because they assumed particular forms of the s
tions for the lattice displacements. We make noa priori as-
sumption about the forms and solve the secular equation
the displacements exactly. This reveals the existence of
branches in the dispersion relations. Finally, in Sec. IV,

FIG. 1. A rectangular electron waveguide~quantum wire! sub-
jected to a magnetic field alongx axis. The width of the wire is
much larger than the thickness.
fi-
n-
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consider electron-phonon interaction in a magnetic field a
calculate the relevant scattering rates. Conclusions are
sented in Sec. V.

II. ELECTRON EIGENSTATES
IN MAGNETOELECTRONIC SUBBANDS

We consider a quantum wire as shown in Fig. 1 with
constant magnetic field directed along thex direction. The
thickness along thisx direction is so small that only the
lowest transverse subband in this direction will be occup
under all circumstances. This restriction, coupled with
fact that thex-directed magnetic field does not affect thex
component of the electron wave function, allows us to dr
thex component from further consideration~we assume tha
thex component of the electron wave function is always t
lowest particle-in-a-box state!. The time-independent Schro¨-
dinger equation describing our system is given by

@~p2eA!#2

2m*
c~z,y!1V~y!c~z,y!5Ec~z,y!, ~1!

whereV(y) is the confining potential in they direction and
A is the magnetic vector potential. We neglect spin effe
and assume hard-wall boundary conditions onV(y). For a
Landau gauge

A5~0,0,2By!, ~2!

where B is the magnetic flux density, the solution for th
wave function is
FIG. 2. Electron wave functions and dispersion relations in a GaAs quantum wire subjected to a magnetic field of 10 T.~a! Wave
functions of electrons in the first and the third subbands with wave vectorkz573106 cm21 skewed by a magnetic field.~b! Dispersion
relations for the first and the third subbands.~c! Wave functions of oppositely moving electrons in the first subband withkz567
3106 cm21. ~d! Dispersion relation for the first subband and schematic elastic scattering process between two states.
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57 4689ELECTRON INTERACTION WITH CONFINED ACOUSTIC . . .
c~z,y!5eikzzfn~y!, ~3!

wherekz is the electron wave vector along the wire’s leng
andfn(y) is they component of the wave function for th
state with wave vectorkz in thenth magnetoelectric subband
It obeys the equation

]2f~y!

]y2 1
2m*

\2 Ef~y!2S y

l 2D 2

f~y!

12
y

l 2 kf~y!2k2f~y!50 ~4!

with boundary conditions

f~2d!5f~d!50. ~5!

Here l is the magnetic length. This equation is solved n
merically following the prescription of Ref. 14 to yield th
wave functions, energy dispersion relations, and density
states in hybrid magnetoelectric subbands. Some exam
are shown in Fig. 2.

III. CONFINED ACOUSTIC PHONON EIGENMODES

The derivation of confined acoustic phonon eigenmo
was reported in Refs. 11–13, 17, and 18. In this paper
employ the approximate technique of Refs. 11, 12, 17
18, but unlike them, do not assumea priori any particular
form of the solutions for the ionic displacements.

The elasticity equation can be written as11,12,17,18

]2u

]t2 5st
2
“

2u1~sl
22sdt

2!“~“–u!, ~6!

where u is the displacement vector, andsl and st are the
speeds of longitudinal and transverse acoustic waves in
media. For GaAs, sl54.783105 cm/s and st53.35
3105 cm/s in the@001# direction.

We assume that the width of the wire is 2d and the thick-
ness is 2a. The origin of the coordinates is located at t
geometric center of the cross section. The normal com
nents of the stress tensors on free-standing surfaces
vanish; consequently, the boundary conditions for free sta
ing quantum wires aresx,x5sy,x5sz,x50 at x56a and
sx,y5sy,y5sz,y50 at y56d. To find the eigenmodes fo
acoustic vibrations defined by Eqs.~6!, we follow Morse’s
assumption of separation of variables,17,18which allows us to
decompose the modes into ‘‘thickness’’ modes and ‘‘widt
modes. For the former, the solutions can be expressed in
form
,

-

of
les

e
e
d

lk

o-
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ux
t 5Atut~g,x!cos~hy!eig~z2ct!, ~7!

uy
t 5Atv t~g,x!sin~hy!eixg~z2ct!, ~8!

uz
t 5Atwt~g,x!cos~hy!eig~z2ct!, ~9!

whereg is the z-directed longitudinal-phonon wave vecto
along the length of the wire,c is the phase velocity of sound
andh5(n11/2)p/d ~n is an integer!. We will choose only
the principal mode corresponding ton50 based on Morse’s
experimental observation that this mode is dominant.17 Ac-
cordingly,h5p/2d. For ‘‘width’’ modes, the displacement
are

ux
w5Awuw~g,y!sin~kx!eig~z2ct!, ~10!

uy
w5Awvw~g,y!cos~kx!eig~z2ct!, ~11!

uz
w5Awww~g,y!cos~kx!eig~z2ct! ~12!

with k50 for the principal modes. To complete the sol
tions, we need to findut(g,x), uw(g,y), v t(g,x), vw(g,y),
wt(g,x), and ww(g,y). These are found from the secula
equations

DtS ut~g,x!

v t~g,x!

wt~g,x!
D 52vn

2S ut~g,x!

v t~g,x!

wt~g,x!
D , ~13!

]ut

]x
50,

]v t

]x
5hut ,

]wt

]x
52 igut , ~14!

and

DwS vw~g,y!

ww~g,y! D52vn
2S vw~g,y!

ww~g,y! D , ~15!

]vw

]y
50,

]ww

]y
52 igvw ~16!

for thickness and width modes, respectively. Herevn is the
angular frequency of thenth phonon branch for a phono
longitudinal wave vectorg. The differential matrix operators
are given by
Dt5S sl
2]xx2st

2~h21g2! h~sl
22st

2!]x ig~sl
22st

2!]x

2h~sl
22st

2!]x st
2]xx2st

2g22sl
2h2 2 igh~sl

22st
2!

ig~sl
22st

2!]x igh~sl
22st

2! st
2]xx2st

2h22sl
2g2

D ~17!
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and

Dw5S sl
2]yy2st

2g2 ig~sl
22st

2!]y

ig~sl
22st

2!]y st
2]yy2sl

2g2 D . ~18!

We make no further assumptions about the form of d
placements and solve the one-dimensional eigenvalue pr
lems ~13! and ~14! and ~15! and ~16! exactly, using the nu-
merical finite difference scheme. The solutions yield th
dispersion relationsvn versusg for the 1...n phonon modes.
In Fig. 3~a! and 3~b!, we show the dispersion relations o
thickness and width modes for a GaAs quantum wire w
width5500 Å and thickness540 Å. The dashed straight
lines are the dispersion relations for bulk longitudinal an
transverse acoustic phonons. In Figs. 4~a! and 4~b! we also
show the dispersion relations for a quantum wire with cros

FIG. 3. Dispersion relations for the seven lowest width~a! and
thickness~b! modes of a 403500 Å GaAs quantum wire. The
dashed lines are the dispersion curves of the bulk LA and TA wa
along the@001# direction. Branches that are below the LA curv
correspond to surface waves.
-
b-

e

h

-

sectional dimensions 28.3356.6 Å for comparison with
Refs. 11 and 12, which used these dimensions. The comp
son reveals many new branches that were not found in R
11 and 12. They were obviously lost when certain form
were assumed in Refs. 11 and 12 for the solutions
ut(g,x), uw(g,y), v t(g,x), vw(g,y), wt(g,x), and
ww(g,y). One should note thatut(g,x), uw(g,y), v t(g,x),
vw(g,y), wt(g,x), andww(y) combine the characters of th
normal modes: dilatational~compressional!, flexural, tor-
sional, and shear. That is why the thickness and width mo
are hybrid modes and not true normal modes of the syst

Finally, the amplitudesAt andAw for thickness and width
modes are found from the energy quantization condition:

A2

4ad E
2a

1a

dxE
2d

1d

dy@uu* 1vv* 1ww* #5
\

2Mvg
,

~19!

s

FIG. 4. Dispersion relations for the seven lowest width~a! and
thickness~b! modes of a 28.3356.6 Å GaAs quantum wire. The
dashed lines are the dispersion curves of the bulk LA and TA wa
along the @001# direction. Again, branches below the LA curv
correspond to surface waves.
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57 4691ELECTRON INTERACTION WITH CONFINED ACOUSTIC . . .
where vg is the radial frequency of the mode with wav
vectorg andM is the mass of an ion.

An important insight can be gained from the gene
wave-vector relations,

kd
21h21g25~v/cd!2,

ks
21h21g25~v/cs!

2, ~20!

wherekd,s is the transverse wave-vector component of d
tional ~longitudinal! and shear waves, respectively. They a
related to the Lame´ constantsl8 andm as

cd
25~l812m!/r, ~21!

cs
25m/r, ~22!

wherer is the mass density.
If a branch in the phonon spectra~see Figs. 3 and 4!, or a

portion thereof, falls below the longitudinal-acoustic~LA !
branch~the slope of which iscd!, thenkd becomes imaginary
for that branch. This is an evanescent mode that is local
near the edges of the wire and is termed a ‘‘surface mod
Similarly, if a branch falls below the transverse-acous
~TA! branch,ks is imaginary and it is also an evanesce
surface mode.

IV. CONFINED ELECTRON-CONFINED
ACOUSTIC-PHONON INTERACTION

AND SCATTERING RATES
IN A MAGNETIC FIELD

The deformation-potential interaction of an electron w
an acoustic phonon at a certain wave vectorg is described by
the HamiltonianHdef(g) given by11,12
ab
r
c

te
d
ia
in
-

d
.’’
c
t

Hdef~g!5Ea“–u~r !

5Ea(
n,m

@cn,m~g!1cn,m
1 ~2g!#

3F]u

]x
1

]v
]y

1 igwGeigz, ~23!

wherecn,m(g) and cn,m
1 (2g) are annihilation and creation

operators and

u~r !5 (
g,n,m

@cn,m~g!1cn,m
1 ~2g!#u~x,y,g!eigz. ~24!

The summation is taken over all acoustic-phonon mod
The Fermi golden rule scattering rate for an electron scat
ing from an energy stateEn in subbandn to an energy state
En8

8 is subbandn8 by absorbing or emitting a phonon o
longitudinal wave vectorg and energyvg is given by

S~En ,En8
8 ,6g,6vg!5

2p

\
uM ~En ,E8n8

!u2~N11/271/2!

3d~En2E8n86\vg!dk82k,6g ,

~25!

where the upper sign refers to absorption and the lowe
emission. The firstd function represents the usual ener
conservation and the second Kro¨nickerd represents momen
tum conservation along the wire axis. Here,k andk8 are the
initial and final wave vectors of the electron along the w
axis,N is the Bose-Einstein occupation number for acous
phonons, andM (En ,En8

8 ) is the matrix element of Hamil-
tonian ~23! taken between electron envelope wave functio
A1/af(y,kz

0)cos(px/2a) andA1/af(y,kz
06g)cos(px/2a) of

initial and final states:
~26!
cal-

e-

an

nal
Depending on the sign ofg and \vg we distinguish
among four types of scattering: forward and backward
sorption and forward and backward emission. In forwa
scattering, the electron momentum increases, while in ba
ward scattering it decreases. Typically, in backward scat
ing, the direction of an electron’s motion will be turne
around. Therefore, this will involve scattering between init
and final states that have opposite directions of motion. S
-
d
k-
r-

l
ce

a magnetic field spatially separates these two states by lo
izing them along opposite edges of a wire@see Fig. 2~c!#, the
matrix element for backscattering will be dramatically r
duced. This can be clearly seen from Eq.~26! in the case of
thickness modes.

For each type of scattering, the total scattering rate for
electron initially at an energyE in the nth magnetoelectric
subband can be obtained by integrating over all possible fi
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states and phonon wave vectors,

S~En!5E
0

`E
0

gmax
dE8n8dgS~En ,E8n8 ,6g,6vg!

5
1

\ (
En2E8n86\vg50

D~E8n8 ,vg!uM ~En ,E8n8!u
2

3~N11/271/2!, ~27!

where D(E8n8 ,vg) is the joint electron-phonon density o
states andgmax is the maximum phonon wave vector~which
will be the Debye wave vector if we neglect Umklapp pr
cesses!. In the equation above, we changed the double in
gration over all possible final states and the energy cons
ing d function by the summation over all zeros of th
function f 5En2E8n86\vg . Its inverse derivative
D(E8n8 ,vg) plays the role of the one-dimensional joi
electron-phonon density of states, which is defined as

D~E8n8 ,vg!5(
n

2p

]~En2E8n86\vg!/]g

3u~En2En8
8 6\vg!, ~28!

where u is the Heaviside~unit step! function andn is the
number of phonon branches at a frequencyvg . Therefore,
the behavior of the scattering rate reflects the features of
the electron and phonon densities of states.

The same procedure can be applied for polar acou
phonons ~piezo-electric scattering!. The piezoelectric-
potential interaction19 depends on the displacement alo
wire axis only and is described by

HPZ5
qePZ

ee0
(

g,n,m
@cn,m~g!1cn,m

1 ~2g!#w~x,y,g!eigz,

~29!

whereePZ is the piezoelectric constant and for GaAs, it
0.16 C/m2 along the@100# axis.

V. RESULTS AND CONCLUSION

In Figs. 5 and 6, we plot the total scattering rate~intra-
subband plus intersubband!—associated with deformatio
potential and piezoelectric interactions—versus electron
ergy. All scattering rates are calculated for GaAs wires w
the z axis along the@100# direction and at a lattice tempera
ture of 77 K. In other words, we are plotting the quant
1/t(E)5SnS(En) versusE after summing over all subband
at energyE. These rates are plotted for two cases: there is
magnetic field, and a magnetic flux density of 10 T
present. Two features stand out. First, in Fig. 5~a!, the energy
dependence of the scattering rates is fairly constant if
neglect the fine structures associated with peaks and va
in the joint density of electron-phonon states. Howev
when a magnetic field of 10 T is turned on, we can eas
resolve the scattering rates associated with intrasubband
sitions within the lowest magnetoelectric subband and
intersubband transitions to the next higher subband, wh
becomes accessible in energy past 25 meV. As expected
intrasubband transition rate decrease monotonically with
ergy because the joint density of states has this depend
-
v-

th

ic

n-
h
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e
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,
y
an-
e
h

the
n-
ce

within any magnetoelectric subband. This resolution betw
subbands is lost without a magnetic field because the s
band spacing is too small for a 500 Å wire. In Fig. 5~b!, as
soon as the second subband becomes accessible in en
the scattering rate increases rapidly and shows a diverg
associated with the singularity in the density of states at
second subband bottom. Comparing Figs. 5~a! and 5~b!, one
can see that the magnetic field decreases the scattering
by four orders of magnitudejust before the second subban
becomes accessible. It happens because of the previo
mentioned suppression of backscattering in a magnetic fi
This suppression becomes progressively larger at higher
ergies within a subband because of the following reason.
spatial separation between the wave functions of opposi
travelling states—which is responsible for the quenching
backscattering—can be viewed as being caused by the
entz force pushing oppositely traveling electrons in oppo
directions. Since the Lorentz force is proportional to t
electron velocity, the degree of spatial separation the w

FIG. 5. Scattering rates vs energy for deformation-potent
interaction in a 403500 Å GaAs quantum wire at magnetic field~a!
0 T and ~b! 10 T. Energy is measured from the bulk conducti
band edge. The lattice temperature is 77 K.
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57 4693ELECTRON INTERACTION WITH CONFINED ACOUSTIC . . .
functions and the degree of suppression of backscatte
will increase at higher electron energies. That is why
degree of ‘‘quenching’’ increases with increasing ener
within any subband.

The same magnetic-field-induced quenching is eviden
the case of piezoelectric scattering the rates of which
plotted in Fig. 6. Here one should note that the scattering
at energies above the second subband bottom actually
creases slightly when a magnetic field is applied. It happ
because this rate is dominated by intersubband scatte
from the first subband to the second subband. Unlike in
case of intrasubband scattering, backscattering isnot the
dominant mechanism forintersubbandscattering. Conse

FIG. 6. Scattering rates vs energy dependence for piezoelec
potential interaction in a 403500 Å GaAs quantum wire at mag
netic field 0 and 10 T. The lattice temperature is 77 K.
.

l-
ng
e
y

in
re
te
in-
s

ng
e

quently, the other two effects that we mentioned in Sec
play a significant role. These are~i! the opening of new
scattering channels~electrons in thenth subband along the
width interacting with phonons in themth width mode even
when mÞn! and ~ii ! the increased interaction with surfac
phonons when the electron wave functions are skewed by
magnetic field towards the edges of the wire. Both of the
effects tend to increase the scattering rate and this is wha
observe in Fig. 6 past an energy of 25 meV.

In conclusion, we have calculated the scattering rates
confined electrons with confined acoustic phonons in a qu
tum wire subjected to a magnetic field. We find that a ma
netic field can drastically quench intrasubband scatter
Obviously, this has an important bearing on the Buttiker p
ture of the integral quantum Hall effect, which invokes t
suppression of backscattering between edge states in a
bar to explain the vanishing of longitudinal resistance a
the quantization of the Hall resistance. Furthermore, it w
result in strong negative magnetoresistance in quantum w
whenever acoustic phonon interactions determine the re
tance~namely, at low temperatures!. Unexplained negative
magnetoresistance has recently been observed in ex
ments with GaAs quantum wells~the same phenomenon ca
be observed in both wires and wells! which could not be
ascribed to weak localization effects.20 These and other re
lated phenomena21 may be associated with suppression
acoustic-phonon scattering. Finally, such effects can find
plications in magnetic-field sensors and they can be use
enhance the mobility of electrons in quantum wires.
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