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Long-range Coulomb interaction and frequency dependence of shot noise
in mesoscopic diffusive contacts

K. E. Nagaev
Institute of Radioengineering and Electronics, Russian Academy of Sciences, Mokhovaya ulica 11, 103907 Moscow, Russ

~Received 3 June 1997; revised manuscript received 27 October 1997!

The frequency dependence of shot noise in mesoscopic diffusive contacts is calculated with account taken of
long-range Coulomb interaction and external screening. While the low-frequency noise is 1/3 of the noise of
classical Poisson process independently of the contact shape, the high-frequency noise tends to the full clas-
sical value for long and narrow contacts because of strong screening by the surrounding medium. In this case,
the current fluctuations at opposite ends of the contact are completely independent.@S0163-1829~98!06407-8#
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I. INTRODUCTION

Recently, the shot noise in mesoscopic contacts becam
subject of extensive study.1 In particular, much attention wa
given to mesoscopic diffusive contacts. One of the princi
results was that in short contacts with a strong elastic s
tering, the low-frequency shot noise is 1/3 of the full noise
the classical Poisson process. This result was obtained
most simultaneously by different authors using differe
methods and, more importantly, different physical assum
tions. Beenakker and Bu¨ttiker2 obtained this result using th
multichannel scattering-matrix formalism and the assum
tion of quantum-coherent transport. In contrast to this,
paper3 this result was obtained using quasiclassical kine
equation with no assumption of quantum-coherent scatter
These theoretical predictions were experimentally confirm
in Refs. 4 and 5.

Since it was discovered that the shot noise does not va
in contacts much longer than the elastic mean free pat
was debated how the electron-electron Coulomb interact
affect this result. This problem was qualitatively discussed
a number of papers~see, e.g., Ref. 6!.

The effects of Coulomb interaction on the shot noise
most easily treated using the Boltzmann-Langevin approa
Basically, the electron-electron Coulomb interaction may
separated in two parts. First, there is the long-range p
which is associated with fluctuations of electron density
the contact. These fluctuations produce electrical fields
characteristic length scales on the order of the size of
contact and should be taken into account self-consisten
Second, there is the electron-electron scattering with
characteristic length scale about the screening length.

In the low-frequency limit, the long-range Coulomb inte
action does not affect the magnitude of noise,3,7 since the
coordinate-dependent charge fluctuations are ‘‘frozen’’ in
contact and the current is conserved at any point inside
Hence the only corrections to the noise result from sh
range electron-electron scattering. The latter smear out
distribution function of electrons, which would be otherwi
double-step shaped, and produce additional parti
occupied states available for impurity scattering. This res
in a slight decrease of the shot noise from 1/3 toA3/4 of
Poisson value.8,9 This increase was experimentally observ
in Ref. 5.
570163-1829/98/57~8!/4628~7!/$15.00
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Yet there still remains a question of how the long-ran
Coulomb interaction affects the noise at high frequenc
The problem of frequency-dependent shot noise was
dressed by Bu¨ttiker10 for the general case of multichann
quantum-coherent transport and by Altshuleret al.12 for the
particular case of coherent transport in diffusive contac
However, the electron-electron interactions were not ta
into account in these papers. In particular, these results w
insensitive to the contact geometry provided that the tra
mission probabilities of the quantum channels remained
changed, whereas the noise should depend on the possi
for the charge to pile up in the contact, i.e., on its exter
capacity. More recently, Bu¨ttiker extended his formalism to
the case of multiterminal contacts with allowance made
capacitive coupling between the conductors.11 However, no
explicit expression for the shot noise in any particular geo
etry was given there.

In the present paper, we consider the effects of con
geometry on the frequency dependence of shot noise wi
the semiclassical approach~this suggests that the measurin
frequency is much smaller than the voltage drop across
contact!. We consider the case where all its dimensions
much larger than the screening lengthl0. The contact of
lengthL is either a cylinder of circular section with a diam
eter 2r 0 or a plane-parallel layer of thicknessd0 consisting
of a metal with a high impurity content~see Fig. 1, upper
inset!. The electrodes are of the same section, yet the re
tivity of their material is negligible. The contact is embedd
in a perfectly conducting grounded medium, which is se
rated from its surface by a thin insulating film of thickne
d0 and the dielectric constant«d . As will be shown below,
this particular choise of contact geometry allows us to av
solving the Poisson equation in the surrounding medium
reduces the effects of environmental screening to frequen
dependent boundary conditions. The external circuit is
sumed to have a large grounding capacity, which allows
cumulation of the charge in it.

Our consideration is based on the Boltzmann-Lange
approach first proposed in Ref. 13. The nonuniform extra
ous currents caused by randomness of electron-impurity s
tering result in local charge-density fluctuations in the bu
of the contact. These fluctuations are effectively screened
the surface charge induced at the outer surface of the con
and in the surrounding medium~environmental screening!
4628 © 1998 The American Physical Society
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57 4629LONG-RANGE COULOMB INTERACTION AND . . .
and at the contact-electrode interfaces~electrode screening!.
As will be shown below, the finite-frequency noise esse
tially depends on the dominating type of screening.

II. BASIC EQUATIONS

In the Boltzmann-Langevin approach, the long-ran
Coulomb interaction is taken into account by fluctuations
charge densitydr and self-consistent fluctuations of electr
cal field dE. Consider the case of strong and purely elas
scattering. The Boltzmann-Langevin equation for fluctu
tions reads

F ]

]t
1v

]

]r
1eEv

]

]eGd f 1dI 52edEv
] f

]e
1dJext, ~1!

wheredJext is the random extraneous flux. The correlatio
function of these fluxes is given by the expression13

^dJext~p,r ,t !dJext~p8,r 8,t8!&

5d~r2r 8!d~ t2t8!S dpp8(
q

$W~p,p1q! f ~p1q!

3@12 f ~p!#1W~p1q,p! f ~p!@12 f ~p1q!#%

2$W~p8,p! f ~p!@12 f ~p8!#

1W~p,p8! f ~p8!@12 f ~p!#% D , ~2!

FIG. 1. Dependences of the normalized spectral density of n
at one of the contact endsSI

LL/2eI ~solid line! and the cross-
correlated spectral densitySI

LR/2eI ~dashed line! on the dimension-
less frequencyvL2«d /4pd0r 0 for a long narrow contact. The up
per inset shows the longitudinal cross section of the contact.
dotted rectangle is the metal with impurities, thin solid lines sh
the contact-electrode interfaces, thick lines show the dielectric
ers of thicknessd0, and the hatched areas show the grounded a
bient medium. The lower inset shows the equivalent circuit for
noise in a long and narrow contact. Each section of theR-C line
contains a generator of random current.
-

e
f

c
-

whereW(p,p8) is the probability of scattering from statep8
to statep. The fluctuation of electrical fielddE in the right
hand side of Eq.~1! is determined from the Maxwell equa
tion

¹dE54pdr. ~3!

The fluctuations of the charge and current density are gi
by the expressions

dr~r ,t !5eE d3pd f ~p,r ,t !,

d j ~r ,t !5eE d3p vd f ~p,r ,t !. ~4!

Now we proceed to the hydrodynamic approach and
tain a closed set of equations for macroscopic quantitiesd j
anddr. As the impurity scattering is strong, we can split t
fluctuation of distribution function into symmetric and an
symmetric parts in the momentum space. Then we sepa
the antisymmetric part of Eq.~1! from its symmetric part.
Note that the extraneous flux contains only the antisymm
ric part because the electron-impurity scattering does
change the total number of electrons at a given point wit
given energy. Multiply the antisymmetric part of Eq.~1! by
ev, integrate it with respect tod3p, and then multiply both its
parts by the elastic scattering timet. If the characteristic
times considered are much larger thant, one obtains

d j52D
]

]r
dr1sdE1d jext, ~5!

where D5v2t/3 is the diffusion coefficient,s5e2NFD is
the conductivity of metal, andd jext5et*d3pvdJext. Integrat-
ing the symmetric part of Eq.~1! with respect to momentum
one obtains just the current-conservation law

]

]t
dr1¹d j50. ~6!

Applying the operator¹ to both parts of Eq.~5! and mak-
ing use of Eqs.~6! and~3!, one obtains a closed equation fo
fluctuations of charge density in the form

S ]

]t
2D¹214ps D dr52¹d jext. ~7!

In the left-hand side of this equation, the second term
scribes diffusion of electrons, and the third term describ
the Coulomb screening of fluctuations. In principle, Eq.~7!
may be solved for each particular distribution ofd jext, and
then dE and d j may be determined from Eqs.~3! and ~5!,
respectively. In the static limit, Eq.~7! describes the screen
ing of an extraneous charge with the standard lengthl0
given by

l0
225

4ps

D
54pe2NF .

To complete the derivation, we must obtain the correlat
function of extraneous currentsd jext. As we are restricted to
the case of strong impurity scattering, the distribution fun
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4630 57K. E. NAGAEV
tion may be considered as isotropic in the momentum sp
and dependent only on the coordinater and energye. Mul-
tiply Eq. ~2! by etva andetvb8 , wherea andb label vector
components, and integrate it with respect tod3p and d3p8.
As a result, one obtains the spectral density of extrane
currents in the form

^d j a
ext~r !d j b

ext~r 8!&v54sdabd~r2r 8!E de f ~e,r !

3@12 f ~e,r !#. ~8!

Because of smallness ofl0, the relationship between th
extraneous currents and fluctuations of charge density in
bulk of the sample may be considered as local. Taking
Fourier transform of Eq.~7! with respect to time, integrating
it over the space, and making use of the Gauss theorem,
obtains

dr52~2 iv14ps!21¹d jext. ~9!

Note that the quasineutrality condition does not hold
fluctuations. We introduce the fluctuating potentialdf that
satisfies the Poisson equation

¹2df524pdr. ~10!

Consider the boundary conditions fordf at the outer insu-
lated surface of the contact. The normal derivatives ofdf in
the dielectric layer and inside the metal are related by
expression

«d

]df

]n U
d

2
]df

]n U
s

524pdss , ~11!

wheredss is fluctuating surface charge density induced
the extraneous currents. On the other hand, this charge
sity satisfies the charge-balance equation

2 ivdss52s
]df

]n U
s

. ~12!

As the thickness of the dielectric layer is much smaller th
the size of the contact, the electric field across it may
considered uniform so that]df/]nud52d0

21dfus . With
this condition, Eqs.~11! and ~12! give the boundary condi
tion for df in the form

F2 iv«dd0
21df1~2 iv14ps!

]df

]n GU
s

50. ~13!

It is easily seen that atv50, Eq. ~13! takes the form
]df/]nus50, while atv→`, it takes the formdfus50.

As the voltage drop across the contact is held const
fluctuations of potential are zero at the contact-electrode
terfaces:

dfu i50. ~14!

As the electrodes are perfect conductors,]f/]n50 inside
them. Equation~11! holds for contact-electrode interface
but the charge-balance equation takes now the form
ce
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2 ivdss52s
]df

]n U
i

2d j n , ~15!

whered j n is the fluctuation of current flowing into the elec
trodes from the contact. From Eqs.~11! and ~15!, it follows
that the density of outgoing current is given by

d j n5S iv

4p
2s D ]df

]n U
i

. ~16!

From the standpoint of average current, the problem
purely one dimensional, so the average distribution funct
f (e,x) obeys the one-dimensional diffusion equation,
boundary values being zero-temperature Fermi distribu
functions shifted in energy byeV with respect to each other
As the contact is much shorter than the characteristic ine
tic length,

f ~e,x!5H 0, e.eV/2

12x/L, eV/2.e.2eV/2

1, e,2eV/2.

~17!

With this distribution function, the expression for the spe
tral density of extraneous currents~8! takes the form

^d j a
ext~r !d j b

ext~r 8!&v54sdabd~r2r 8!
x

LS 12
x

L D . ~18!

III. CIRCULAR-SECTION CONTACT:
ANALYTICAL RESULTS

Consider the Poisson equation with the boundary con
tions ~13!. As the system is axially symmetric, all the qua
tities may be considered independent of the azimuthal an
and dependent only on the longitudinal coordinatex and ra-
dius r . In this case, the boundary condition~13! takes the
form

S r 0

]df

]r
1mdf D U

r 5r 0

50, m[
2 iv

2 iv14ps

«dr 0

d0
.

~19!

Suppose first thatm is real and positive. Then one ma
introduce a system of normalized eigenfunctionscn satisfy-
ing the equation

1

r

d

drS r
d

dr
cn~r ! D1kn

2cn~r !50 ~20!

with the boundary conditions~19!. These functions are given
by

cn~r !5
1

p1/2r 0

J0~knr !

AJ0
2~knr 0!1J1

2~knr 0!
, ~21!

whereJ0 andJ1 are the Bessel functions of zeroth and fir
order and the eigenvalueskn are determined from the equa
tion

knr 0

J1~knr 0!

J0~knr 0!
5m. ~22!
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57 4631LONG-RANGE COULOMB INTERACTION AND . . .
Since functionscn form an orthogonal basis, for an arbitra
charge-density fluctuationdr, the solution of Poisson equa
tion ~10! with the boundary condition~19! is given by the
expression

f~x,r !524p (
n50

`

cn~x,r !E
0

L

dx8 gn~x,x8!

3E dS8 cn~r 8!r~x8,r 8!, ~23!

wheredS852pr 8dr8 and gn(x,x8) is the Green’s function
of the equation

S d2

dx2
2kn

2D gn~x,x8!5d~x2x8! ~24!

with the boundary conditionsgn(0,x8)5gn(L,x8)50, which
is given by the expression

gn~x,x8!52
sinh~knx!sinh@kn~L2x8!#

knsinh~knL !
,

~25!

gn~x.x8!52
sinh~knx8!sinh@kn~L2x!#

knsinh~knL !
.

Equation~23! may be analytically continued to comple
values ofm given by Eq.~19!. Substituting Eq.~9! for dr
into Eq. ~23! for df and then Eq.~23! into Eq. ~16!, one
obtains the expression for the fluctuation of the current flo
ing through the left end of the contact in the form

dI ~0!5S0(
n50

`

c n̄E
0

L

dx8E dS8F ]2gn~x,x8!

]x]x8
U

x50

3cn~r 8!d j x
ext1

]gn~x,x8!

]x U
x50

]cn

]r 8
d j r

ext, ~26!

whereS05pr 0
2 andc n̄ is cn averaged over the cross sectio

of the contact:

c n̄5
1

S0
E dS cn~r !5

2J1~knr 0!

p1/2r 0
2knAJ0

2~knr 0!1J1
2~knr 0!

.

~27!

To obtain the fluctuation of the current flowing through t
right end of the contact,dI (L), one must substitutex5L for
x50 in Eq. ~26!.

At v50, all transverse modes withnÞ0 have vanishing
cross-sectional averages,c n̄50, and the corresponding lon
gitudinal factorsgn exponentially decay atux2x8u.r 0. This
is quite natural because the electrical field produced b
charge inside the contact cannot penetrate through its o
surface and is uniformly distributed over the contact cr
section at large distances from the source. Hence the
contribution to Eq.~26! will be given by the lowest trans
verse mode withk050 andc0(r )5p21/2r 0

21. In this case,
Eq. ~26! takes the form
-

a
ter
s
ly

dI ~0!5
1

LE0

L

dxE dS d j x
ext. ~28!

This is just the result obtained in Ref. 3.
Consider now the case where the contact lengthL is much

larger than its diameter 2r 0 and the frequencies are suffi
ciently low, i.e.,v!4psd0 /«dr 0. In this case, the correc
tions to the zero-frequency eigenfunctionscn , as well as the
corrections to the productsknr 0 with nÞ0, are proportional
to m and therefore small; hence the contributions todI ~26!
from the modes withnÞ0 remain insignificant. However
the lowest eigenvalue is given by

k05r 0
21~2m!1/2, ~29!

and the productk0L may be sufficiently large. Therefore, th
contribution from the lowest mode governed byg0(0,x) may
change significantly. In view of this, the expression fordI
takes the form

dI ~0!5E
0

L

dx k0

cosh@k0~L2x!#

sinh~k0L !
E dS d j x

ext, ~30!

wherek0 is given by Eq.~29!. Physically, this implies that
the contact is represented as an alternating series of resi
with generators of random current and grounding capaci
connecting the electrodes~see Fig. 1, lower inset!. Note that
dI (0) is phase shifted with respect to the extraneous cur
inducing it. Multiplying Eq.~30! by its complex conjugate
substituting the spectral density of extraneous currents~18!
into the product, and performing the integration with resp
to x, one obtains

SI
LL~v!52eIF12

1

gvL

sinh~2gvL !2sin~2gvL !

cosh~2gvL !2cos~2gvL !G ,
~31!

where

gv5
1

2
A v«d

psd0r 0
. ~32!

The frequency dependence of the shot noise is shown in
1. At zero frequency, we rederive the well-known res
SI

LL5 2
3 eI. However, at frequencies aboutsd0r 0 /«dL2, the

spectral density sharply rises and tends to the full value
classical shot noise,SI

LL52eI. This suggests that the corre
sponding correlation function is negative attÞt8. The anti-
correlation between current fluctuations is the conseque
of the Coulomb repulsion of electrons: an entrance of
electron into the contact decreases for some time the p
ability for another electron to enter it, similarly to the case
a single-electron transistor.15,14

Along with the spectral density of noise at one end of t
contact, one may also consider the cross-correlated spe
density

SI
LR[ 1

2 ^dI ~0,v!dI ~L,2v!1dI ~0,2v!dI ~L,v!&,

which describes the correlation between the currents flow
through the opposite ends of the contact. Multiplying E
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4632 57K. E. NAGAEV
~30! by its complex conjugate fordI (L) and performing the
integration with the spectral density of extraneous curre
~18!, one obtains

SI
LR~v!5

4eI

gvL

cosh~gvL !sin~gvL !2cos~gvL !sinh~gvL !

cosh~2gvL !2cos~2gvL !
.

~33!

The frequency dependence ofSI
LR is also shown in Fig. 1. At

v50, it also equals23 eI. However, in contrast toSI
LL(v), it

sharply decreases with increasing frequency and tend
zero in an oscillatory way with further increase of frequen

Consider now the high-frequency limit. In this case, t
boundary condition~13! takes the formcn(r 0)50, so that
the quantitiesknr 0 are the zeros of zero-order Bessel fun
tion. In this case, functionscn are real and form an orthogo
nal system. Owing to the orthonormality conditions, the e
pression for the spectral density of noise may be written
the form

FIG. 2. Dependences of the normalized spectral density of n
at one of the contact endsSI

LL/2eI ~solid line! and cross-correlated
spectral densitySI

LR/2eI ~dashed line! on the length-to-radius ratio
L/r 0 in the high-frequency limit.

FIG. 3. Contour plots ofSI
LL vs logarithms of normalized fre

quencyV5v«dd0/4psd0 and normalized lengthL/d0 for the pla-
nar contact.
ts

to
.

-

-
n

SI
LL~`!54S0

2eVs (
n51

`

c n̄
2E

0

L

dx8
x8

L S 12
x8

L D
3H F ]2gn~x,x8!

]x]x8
U

x50
G 2

1kn
2F]gn~x,x8!

]x U
x50

G2J .

~34!

As J0(knr 0)50, Eq.~27! reduces toc n̄52p21/2r 0
22kn

21 .
Substituting the explicit expressions forgn ~25! into Eq.
~34!, one obtains

SI
LL~`!58eI(

n51

`
1

~knr 0!2
coth~knL !Fcoth~knL !2

1

knLG ,
~35!

Similarly, one obtains for the cross-correlated spectral d
sity:

SI
LR~`!58eI(

n51

`
1

~knr 0!2

1

sinh~knL !Fcoth~knL !2
1

knLG .
~36!

In the limiting case ofr 0@L, both expressions take the form

SI
LL~`!5SI

LR~`!5
8

3
eI(

n51

`
1

~knr 0!2
5

2

3
eI. ~37!

In the opposite limiting case ofr 0!L, Eq. ~35! takes the
form

SI
LL~`!58eI(

n51

`
1

~knr 0!2
52eI, ~38!

whereasSI
LR(`) ~36! tends to zero according to the expone

tial law. TheL/r 0 dependences ofSI
LL(`) and SI

LR(`) are
shown in Fig. 2.

se

FIG. 4. Contour plots ofSI
LR vs logarithms of normalized fre-

quencyV5v«dd0/4psd0 and normalized lengthL/d0 for the pla-
nar contact.
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IV. PLANAR CONTACT: NUMERICAL RESULTS

Consider now a planar contact in the shape of a laye
thicknessd0 in the y direction (0,y,d0) and of widthW
@W@max(d0 ,L)# in the z direction, the average curren
flowing in thex direction. Because of largeW, the effects of
boundaries in thez direction may be neglected and all th
quantities may be considered as independent ofz. Introduce
an orthonormal system of functions

wn~x!5A2

L
sin~qnx!,

~39!

qn5
pn

L
,

which obey the boundary conditionswn(0)5wn(L)50. For
an arbitrary charge-density fluctuationdr, the potential fluc-
tuationdf induced by it may be presented in the form

df~x,y!524p (
n51

`

wn~x!E
0

L

dx8w~x8!
f
3E

0

d0
dy8Qn~y,y8!dr~x8,y8!,

~40!

whereQn(y,y8) satisfies the equation

S ]2

]y2
2qn

2D Qn~y,y8!5d~y2y8! ~41!

with the boundary conditions

S 2 iv«d

4psd0
Qn1

]Qn

]y D U
y5d0

50,

S iv«d

4psd0
Qn1

]Qn

]y D U
y50

50. ~42!

Explicitly, Qn for y.y8 is given by the expression
Qn~y,y8!52
1

2qn

qnd0cosh@qn~d02y!#2 iVsinh@qn~d02y!#

qnd0cosh~qnd0/2!2 iVsinh~qnd0/2!

qnd0cosh~qny8!2 iVsinh~qny8!

qnd0sinh~qnd0/2!2 iVcosh~qnd0/2!
, ~43!

whereV5v«dd0/4psd0 is the dimensionless frequency. The corresponding expression fory,y8 is obtained from Eq.~43!
by interchangingy andy8. Substituting Eq.~9! for dr into Eq. ~40! and then substituting Eq.~40! into Eq. ~16!, one obtains
the expression for the fluctuation of current flowing through the left end of the contact in the form

dI ~0!5W(
n51

`
dwn

dx U
x50

E
0

L

dx8E
0

d0
dyE

0

d0
dy8Fdwn~x8!

dx8
Qn~y,y8!d j x

ext1wn~x8!
]Qn~y,y8!

]y8
d j y

extG . ~44!

The fluctuation of current flowing through the right end of the contact may be obtained by substitutingx5L for x50 in Eq.
~44!. Using the correlator of extraneous currents~18!, one obtains the expressions for the spectral densitiesSI

LL andSI
LR in the

form

SI
LL58eId0 (

m51

`

(
n51

`

kmkn~MmnPmn9 1Mmn9 Pmn!, ~45!

SI
LR54eId0 (

m51

`

(
n51

`

@~21!m1~21!n#kmkn~MmnPmn9 1Mmn9 Pmn!. ~46!

In these expressions, we used the notation

Mmn5
1

d0
2E0

d0
dyE

0

d0
dy1E

0

d0
dy2Qm~y1 ,y!Qn* ~y2 ,y!, ~47!

Mmn9 5
1

d0
2E0

d0
dyE

0

d0
dy1E

0

d0
dy2

]Qm~y1 ,y!

]y

]Qn* ~y2 ,y!

]y
, ~48!

Pmn5E
0

L

dx wm~x!wn~x!
x

LS 12
x

L D , ~49!

Pmn9 5E
0

L

dx
]wm

]x

]wn

]x S 12
x

L D . ~50!
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Using the notationtm5tanh(kmd0/2) andDm5(km
2 d0

2tm
2 1V2)21 and performing partial summation over the internal index, o

may bring Eqs.~45! and ~46! to the form
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cts
n
ich
are

2-
Re-
where the primes by the sums overn show thatnÞm.
The contour plots ofSI

LL and SI
LR versus logarithms of

frequency and contact length are shown in Figs. 3 and
Qualitatively, their behavior is similar to that in the case o
circular-section contact. At low frequencies and small co
tact lengths, both quantities tend to2

3 eI. At high frequencies
and large contact lengths,SI

LL andSI
LR tend to 2eI and zero,

respectively. It is also clearly seen that atL/d0>2.86, the
frequency dependences ofSI

LR exhibit negative portions.

V. CONCLUSION

Both circular and planar contacts exhibit qualitative
similar noise properties. At small length-to-width ratio
when the screening of charge fluctuations by the electrode
more efficient than the screening by the ambient medium
pileup of the charge in the contact is forbidden, the effects
long-range Coulomb interaction reduce to averaging the
traneous currents over the volume of the contact at arbit
frequencies. The situation is different, however, for long a
narrow contacts, where the charge fluctuations are mo
screened by the ambient medium and pileup of charge in
,

v

4.

-

is
d
f

x-
ry
d
tly
e

contact is allowed. At sufficiently high frequencies, the co
relation length of fluctuations becomes smaller than
length of the contact. In this case, the fluctuations of curr
at the ends of the contact, which are observed in the exte
circuit, are dominated by extraneous currents in the nar
adjacent layers. The corresponding spectral densities
equal to that of the classical shot noise, 2eI, while the fluc-
tuations at different contact ends are completely indep
dent.

To the best of our knowledge, the only measurements
high-frequency shot noise in mesoscopic diffusive conta
were performed in@16#. However, the authors focused o
quantum suppression of shot noise at small voltages, wh
is beyond this quasiclassical approach. So their results
difficult to interpret in terms of Coulomb interactions.
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