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Long-range Coulomb interaction and frequency dependence of shot noise
in mesoscopic diffusive contacts
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The frequency dependence of shot noise in mesoscopic diffusive contacts is calculated with account taken of
long-range Coulomb interaction and external screening. While the low-frequency noise is 1/3 of the noise of
classical Poisson process independently of the contact shape, the high-frequency noise tends to the full clas-
sical value for long and narrow contacts because of strong screening by the surrounding medium. In this case,
the current fluctuations at opposite ends of the contact are completely indepéS@d:63-18208)06407-9

[. INTRODUCTION Yet there still remains a question of how the long-range
Coulomb interaction affects the noise at high frequencies.

Recently, the shot noise in mesoscopic contacts becameTde problem of frequency-dependent shot noise was ad-
subject of extensive studyin particular, much attention was dressed by Biiiker'® for the general case of multichannel
given to mesoscopic diffusive contacts. One of the principauantum-coherent transport and by Altshudél}? for the
results was that in short contacts with a strong elastic scaparticular case of coherent transport in diffusive contacts.
tering, the low-frequency shot noise is 1/3 of the full noise ofHowever, the electron-electron interactions were not taken
the classical Poisson process. This result was obtained ahto account in these papers. In particular, these results were
most simultaneously by different authors using differentinsensitive to the contact geometry provided that the trans-
methods and, more importantly, different physical assumpmission probabilities of the quantum channels remained un-
tions. Beenakker and Biiker® obtained this result using the changed, whereas the noise should depend on the possibility
multichannel scattering-matrix formalism and the assumpfor the charge to pile up in the contact, i.e., on its external
tion of quantum-coherent transport. In contrast to this, incapacity. More recently, Btiker extended his formalism to
paperf this result was obtained using quasiclassical kinetithe case of multiterminal contacts with allowance made for
equation with no assumption of quantum-coherent scattering:apacitive coupling between the conductbrsiowever, no
These theoretical predictions were experimentally confirmeeaxplicit expression for the shot noise in any particular geom-
in Refs. 4 and 5. etry was given there.

Since it was discovered that the shot noise does not vanish In the present paper, we consider the effects of contact
in contacts much longer than the elastic mean free path, jeometry on the frequency dependence of shot noise within
was debated how the electron-electron Coulomb interactionthe semiclassical approacthis suggests that the measuring
affect this result. This problem was qualitatively discussed ifrequency is much smaller than the voltage drop across the
a number of paperésee, e.g., Ref.)6 contacj. We consider the case where all its dimensions are

The effects of Coulomb interaction on the shot noise aranuch larger than the screening length. The contact of
most easily treated using the Boltzmann-Langevin approachengthL is either a cylinder of circular section with a diam-
Basically, the electron-electron Coulomb interaction may beeter 2, or a plane-parallel layer of thicknesly consisting
separated in two parts. First, there is the long-range parbf a metal with a high impurity conter(see Fig. 1, upper
which is associated with fluctuations of electron density ininse). The electrodes are of the same section, yet the resis-
the contact. These fluctuations produce electrical fields aivity of their material is negligible. The contact is embedded
characteristic length scales on the order of the size of thin a perfectly conducting grounded medium, which is sepa-
contact and should be taken into account self-consistentlyated from its surface by a thin insulating film of thickness
Second, there is the electron-electron scattering with the, and the dielectric constamt;. As will be shown below,
characteristic length scale about the screening length. this particular choise of contact geometry allows us to avoid

In the low-frequency limit, the long-range Coulomb inter- solving the Poisson equation in the surrounding medium and
action does not affect the magnitude of nolesince the reduces the effects of environmental screening to frequency-
coordinate-dependent charge fluctuations are “frozen” in thedependent boundary conditions. The external circuit is as-
contact and the current is conserved at any point inside itsumed to have a large grounding capacity, which allows ac-
Hence the only corrections to the noise result from shortcumulation of the charge in it.
range electron-electron scattering. The latter smear out the Our consideration is based on the Boltzmann-Langevin
distribution function of electrons, which would be otherwise approach first proposed in Ref. 13. The nonuniform extrane-
double-step shaped, and produce additional partiallyous currents caused by randomness of electron-impurity scat-
occupied states available for impurity scattering. This resultsering result in local charge-density fluctuations in the bulk
in a slight decrease of the shot noise from 1/3\@/4 of of the contact. These fluctuations are effectively screened by
Poisson valu&?® This increase was experimentally observedthe surface charge induced at the outer surface of the contact
in Ref. 5. and in the surrounding mediurtenvironmental screenifg
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whereW(p,p’) is the probability of scattering from stapg
to statep. The fluctuation of electrical fieldE in the right
hand side of Eq(1) is determined from the Maxwell equa-
tion

VSE=476p. 3)

The fluctuations of the charge and current density are given
by the expressions

5p(r,t)=eJ d®pst(p,r,t),

normalized noise power

5j(r,t)=ef d3p véf(p,r,t). (4)

Now we proceed to the hydrodynamic approach and ob-
tain a closed set of equations for macroscopic quantijes
T . . T anddp. As the impurity scattering is strong, we can split the

fluctuation of distribution function into symmetric and anti-
normalized frequency symmetric parts in the momentum space. Then we separate
he antisymmetric part of Eql) from its symmetric part.
ote that the extraneous flux contains only the antisymmet-

correlated spectral densigf®/2el (dashed lingon the dimension- "¢ part because the electron-impurity scattering does not
less frequencysL 2 /45, for a long narrow contact. The up- change the total nL_meer of el_ectrons a_t a given point with a
per inset shows the longitudinal cross section of the contact. Th§Ven energy. Multiply the antisymmetric part of Ed) by
dotted rectangle is the metal with impurities, thin solid lines show€V integrate it with respect td°p, and then multiply both its
the contact-electrode interfaces, thick lines show the dielectric layParts by the elastic scattering time If the characteristic
ers of thickness,, and the hatched areas show the grounded amtimes considered are much larger thgrone obtains

bient medium. The lower inset shows the equivalent circuit for the
noise in a long and narrow contact. Each section ofRhR€ line
contains a generator of random current.

FIG. 1. Dependences of the normalized spectral density of nois
at one of the contact endS{/2el (solid line and the cross-

d
5j=—D55p+05E+ 5% (5)

- . here D=v27/3 is the diffusion coefficientg=e?N:D is
and at the contact-electrode interfadekectrode screeni W L . F
¢ ng the conductivity of metal, andj®'=erfd3pvsI® Integrat-

As will be shown below, the finite-frequency noise essen- : .
tially depends on the dominating type of screening. ing the symmetric part of Eq1) with respect to momentum,
one obtains just the current-conservation law

II. BASIC EQUATIONS J .

—8p+V8j=0. (6)
In the Boltzmann-Langevin approach, the long-range at
Coulomb interaction is taken into account by fluctuations of .
charge densitypp and self-consistent fluctuations of electri- . Applying the operatoF to both parts of Eq(5) and mak-

cal field SE. Consider the case of strong and purely eIastic:c?gctuS;.g:}fg?(g)];ni(?éﬁgf qr?t{ar:gsfgrgosed equation for
scattering. The Boltzmann-Langevin equation for fluctua- uctuatl 9 iy

tions reads

3
E—DV2+4TFU) Sp=—V 5 (7

of
5+ 61 =—eSEv_—+53%, (1

AN
at Vo T Voe

In the left-hand side of this equation, the second term de-
scribes diffusion of electrons, and the third term describes
where 6J®¢ is the random extraneous flux. The correlationthe Coulomb screening of fluctuations. In principle, ED.

function of these fluxes is given by the expressfon may be solved for each particular distribution &f*, and
then SE and 6] may be determined from Eq§3) and (5),
(83%(p,r,1) 83%(p’,r',t")) respectively. In the static limit, Eq7) describes the screen-

ing of an extraneous charge with the standard lengih
:5(r—r’)6(t—t’)( Sppr 2 {W(p,p+a)f(p+0) given by
q

_, 4mo )
X[1-f(p)]+W(p+aq,p)f(p)[1-f(p+a)]} N "= =4meNe.
—{W(p".p)f(pI1-F(p")] To complete the derivation, we must obtain the correlation

function of extraneous curreng®’. As we are restricted to
+W(p,p’)f(p’)[1—f(p)]}), (2)  the case of strong impurity scattering, the distribution func-
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tion may be considered as isotropic in the momentum space . EEY) _
and dependent only on the coordinatand energye. Mul- —lwdos=—0o—-| = djn, (19
tiply Eq. (2) by eTv,, anderv;;, wherea and g8 label vector i
components, and integrate it with respectdftp andd®p’.  wheredj,, is the fluctuation of current flowing into the elec-
As a result, one obtains the spectral density of extraneousodes from the contact. From Eg4d.1) and(15), it follows
currents in the form that the density of outgoing current is given by
s ex ext . ’ | = iw 075¢
(18I g (")) w=408,58(r=r") | de f(e,r) 0= 2270 (16)
X[1=f(er)]. (8) From the standpoint of average current, the problem is

i i purely one dimensional, so the average distribution function
Because of smallness af), the relationship between the f(e,x) obeys the one-dimensional diffusion equation, its

extraneous currents and fluctuations of charge density in thﬁoundary values being zero-temperature Fermi distribution

bulk of the sample may be considered as local. Taking thenctions shifted in energy by with respect to each other.
Fourler transform of Eq(7) W'th respect to time, Integrating  ag the contact is much shorter than the characteristic inelas-
it over the space, and making use of the Gauss theorem, ope length

obtains
5 _ A 1y giext o 0, e>eV/2
=—(—iw+ - :
p=-(Zlotdmo) "V © flex)={ 1—xIL, eVi2>e>—eVI2 (17
Note that the quasineutrality condition does not hold for 1, e<—eV/2

fluctuations. We introduce the fluctuating potentsa that

satisfies the Poisson equation With this distribution function, the expression for the spec-

tral density of extraneous curreni®) takes the form
V28p=—4mép. (10

X X
5-ext 5-ex ' =408 .8(r—r’ _(1_ _)_ 18
Consider the boundary conditions fég at the outer insu- (SN FHr ) )0 =40 S0pd(r =1 ' r) (19

lated surface of the contact. The normal derivativeg 6fin

the dielectric layer and inside the metal are related by the IIl. CIRCULAR-SECTION CONTACT:
expression ANALYTICAL RESULTS
Adp| 98P Consider the Poisson equation with the boundary condi-

Jn
s

=—4mbos, (11)  tions(13). As the system is axially symmetric, all the quan-

d tities may be considered independent of the azimuthal angle
where do is fluctuating surface charge density induced bya@nd dependent only on the longitudinal coordinatend ra-

the extraneous currents. On the other hand, this charge defilus I In this case, the boundary conditi¢h3) takes the

g 0®
4 on

sity satisfies the charge-balance equation form
d6¢ —iw eyl
_ 6 e - —_ T Zdgo
—IwéO'S:—O'—an (12 (I’O or +M5¢) oy 0. wu —ilwtdmo &y
-0

(19
As the thickness of the dielectric layer is much smaller than _ _ -
the size of the contact, the electric field across it may be Suppose first that is real and positive. Then one may
considered uniform so thatd¢/dn|q=— 5515¢|S_ With introduce a system of normalized eigenfunctiafssatisfy-
this condition, Eqs(11) and (12) give the boundary condi- Ing the equation
tion for 6¢ in the form 1d ( d
r

Tar alﬂn(f)
‘ =0. (13

+k2n(r)=0 (20)

LX)
—iweydy 6+ (—iw+amo)——
abo 0P ) an with the boundary conditiondl9). These functions are given

It is easily seen that ato=0, Eq. (13) takes the form

d8¢ln|s=0, while atw— o, it takes the formd¢|s=0. 1 Jo(kyr)
As the voltage drop across the contact is held constant, Pn(r)= 7 . . , (21
fluctuations of potential are zero at the contact-electrode in- 7% o JI5(Knl o) +I5(Knl o)
terfaces: whereJ, andJ; are the Bessel functions of zeroth and first
order and the eigenvalués are determined from the equa-
5¢,=0. 14 oo g & q
As the electrodes are perfect conductarg/dn=0 inside (Kot o)
them. Equation(11) holds for contact-electrode interfaces, REAShI A (22)

r =
but the charge-balance equation takes now the form "% Jo(Knl o)
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Since functions),, form an orthogonal basis, for an arbitrary oxt

charge-density fluctuatiofp, the solution of Poisson equa- ol(0)=+ J de dS dj,. (28)
tion (10) with the boundary conditiori19) is given by the

expression This is just the result obtained in Ref. 3.

Consider now the case where the contact lelhgifimuch
_ , , larger than its diameterrg and the frequencies are suffi-
¢(X’r)__477n§0 z,/;n(x,r)fo dx’” gn(x,X") ciently low, i.e.,w<k4maédyleyry. In this case, the correc-
tions to the zero-frequency eigenfunctions, as well as the
corrections to the products,r with n#0, are proportional
to u and therefore small; hence the contributionssto(26)

) ) from the modes witm#0 remain insignificant. However,
wheredS'=2mr"dr’ andgy(x,x") is the Green’s function  the |owest eigenvalue is given by

of the equation

xf dS gu(t)p(X' 1), 23

ko=ro *(2u)*?, (29

d2
(ﬁ - k2> gn(X,X")=8(x—=x") (24)  and the produck,L may be sufficiently large. Therefore, the
contribution from the lowest mode governeddp/(0,x) may

with the boundary conditions,,(0x')=g,(L,x')=0, which ~ change significantly. In view of this, the expression fir

is given by the expression takes the form
. sinh(kpx)sinH k(L —x")] S1(0)= deX coshko(L —X )]f 4S5 (30
gn(X<X')=— Kysinh(k,L) ' 25 ©) 0 o sinftkoL) sinh(koL ) Ix (30
. A _ wherek, is given by Eq.(29). Physically, this implies that
gn(Xx>x')=— sinhCknX")sinfka(L =) the contact is represented as an alternating series of resistors

kqsinh(k,L) ' with generators of random current and grounding capacities
. ) . connecting the electrodégsee Fig. 1, lower insgtNote that
Equation(23) may be analytically continued to complex s)(0) is phase shifted with respect to the extraneous current
values ofu given by Eq.(19). Substituting Eq(9) for 6p  inducing it. Multiplying Eq.(30) by its complex conjugate,
into Eq. (23) for 6¢ and then Eq(23) into Eq. (16), one  gybstituting the spectral density of extraneous curréts
obtains the eXpreSSIOn for the fluctuation of the current ﬂOW'"th the product and perform|ng the |ntegrat|on with respect

ing through the left end of the contact in the form to X, one obtains
, gn (x,x") T B 1 sinh2y,L)—sin(2y,L)
A= 502 ] o [ as x| STle)=2el 17T Costizy, L)~ cos 2y, |
- (39
X, X'
X l/fn(r )51 ext gn( ) lp 5 ext (26) Where
JX or'
x=0 1 wey
2 T . Yo~ 75 . (32)
whereSy= 7ry and ¢, is ¢, averaged over the cross section 2 N madplg

of the contact: . -
The frequency dependence of the shot noise is shown in Fig.

1. At zero frequency, we rederive the well-known result
U= fds U (r 2J1(knl o) Sr-=Z2el. However, at frequencies aboutsyro/s4L2, the
So Y2 2Kk I (KT o) +I3(Knl o) | spectral density sharply rises and tends to the full value of
(27)  classical shot noiseg "= 2el. This suggests that the corre-
sponding correlation function is negativetatt’. The anti-
correlation between current fluctuations is the consequence
. of the Coulomb repulsion of electrons: an entrance of an
x=0in Eq.(26). . I electron into the contact decreases for some time the prob-
At =0, all transverse modes witi=0 have vanishing ability for another electron to enter it, similarly to the case of
cross-sectional average,s,,, 0, and the correspondlng lon- 3 single-electron transistor
gitudinal factorsg,, exponentially decay dk—x'|>r,. This Along with the spectral density of noise at one end of the

is quite natural because the electrical field produced by @&ontact, one may also consider the cross-correlated spectral
charge inside the contact cannot penetrate through its outglensity

surface and is uniformly distributed over the contact cross

section at large distances from the source. Hence the only  g-R=1(5(0,0)8I(L,— w)+ 81(0,— )l (L,w)),
contribution to Eq.(26) will be given by the lowest trans-

verse mode wittkg=0 and ¢y(r)= w‘l’zral. In this case, which describes the correlation between the currents flowing
Eq. (26) takes the form through the opposite ends of the contact. Multiplying Eg.

To obtain the fluctuation of the current flowing through the
right end of the contact§l (L), one must substitute=L for
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“ _ rL X’ X’
St () =4S%eVo D, l/,nzf dx’ — 1——)
n=1 0 L L
2
Fgn(X,x’ agn(X, X’ 2
; o 79 ’ ) +kﬁ[ gn(x,x") } _
: axox" | _, X o
: (34
—E | o, 12,2 -1
2 As Jo(Knro)=0, EQ.(27) reduces tay,=27 T, “k,, .
0k | Substituting the explicit expressions fop, (25 into Eq.
(34), one obtains
0.1F
% EN 4 6 8 10 12 oL 8 |§ 1 L kL 1
o0 )= _—
normalized length | ( ) e = (knrO)ZCO r( n )| co I’( n ) knL !
FIG. 2. Dependences of the normalized spectral density of noise (39

at one of the contact endgy*/2e (solid ling) and cross-correlated Similarly, one obtains for the cross-correlated spectral den-
spectral densit)SlLR/Zel (dashed lingon the length-to-radius ratio . y: P

L/rq in the high-frequency limit. sity:

(30) by its complex conjugate fofl (L) and performing the
integration with the spectral density of extraneous currents
(18), one obtains

§R() =8el S, —

L et
n=1 (K,ro)? sinl"(knL){CO itk ’

KoL

(36)
SR ()= 4el cosHy,L)sin(y,L)—cogy,L)sinh(y,L) In the limiting case of o>L, both expressions take the form
Yol cosh2y,L)—cog2y,L) g8 * 1 2
33
33 St () =SR(=)=2el Y, ~el. (37

| - 3751 (k)2 3
The frequency dependence&}f® is also shown in Fig. 1. At

»=0, it also equalgel. However, in contrast t§ (o), it In the opposite limiting case af,<L, Eq. (35) takes the
sharply decreases with increasing frequency and tends f@rm
zero in an oscillatory way with further increase of frequency.

Consider now the high-frequency limit. In this case, the o
boundary condition13) takes the formy,(ro)=0, so that St()=8el Y,
the quantitiesk,ry are the zeros of zero-order Bessel func- n=1 (kpro)?
tion. In this case, functiong,, are real and form an orthogo-
nal system. Owing to the orthonormality conditions, the ex-whereasS; (=) (36) tends to zero according to the exponen-
pression for the spectral density of noise may be written irtial law. TheL/r, dependences d& (=) and SR(x) are

=2el, (38

the form shown in Fig. 2.

3 3

£ £

s K

£ £

£ £

& &
2k 2
73 2 -1 0 1 2 3 33 2 1 0 1 2 3

logarithm of frequency logarithm of frequency
FIG. 3. Contour plots oS|LL vs logarithms of normalized fre- FIG. 4. Contour plots oS|LR vs logarithms of normalized fre-

quency() = weydo/dmady and normalized length/d, for the pla-  quencyQ = weydo/4ma S, and normalized length/d, for the pla-
nar contact. nar contact.
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IV. PLANAR CONTACT: NUMERICAL RESULTS

do
Consider now a planar contact in the shape of a layer of % fo dY'Qu(y.y)op(X".y"),
thicknessdy in they direction (0<y<dy) and of widthW (40
[W>max(dy,L)] in the z direction, the average current
flowing in thex direction. Because of larg#, the effects of WhereQu(y,y’) satisfies the equation
boundaries in the direction may be neglected and all the

guantities may be considered as independerzt dritroduce 52
an orthonormal system of functions (—— )Q (y,y)=68(y—y") (41
ay?
_ \F |
en(X) =\ SiN(anX), with the boundary conditions
(39
mn —iwey aQ
q :_1 n =
"L 477050Qn+ ﬁy) 0.
which obey the boundary conditionrs,(0)= ¢,(L)=0. For °
an arbitrary charge-density fluctuatiop, the potential fluc- )
tuation 8¢ induced by it may be presented in the form lweg Q +‘9_Qn -0 (42
4mady <" ay '

* L
Sp(x,y)=—4 X f dx’ (X . o :
$xy) Wr;l en(X) 0 o Explicitly, Q,, for y>y' is given by the expression

Qu(y.y') = — 1 gndocostign(do—y)]—iQsinan(do—y)] gndocoshgny’) —iQsini(gny”) 43
ntY,Y 20, qndocosta,do/2)—iQsinhq,dg/2)  qndesinh(q,do/2) —i Qcosha,do/2)’
whereQ) = weydp/dmo 5, is the dimensionless frequency. The corresponding expressign<fgf is obtained from Eq(43)
by interchanging/ andy’. Substituting Eq(9) for Sp into Eq. (40) and then substituting E¢40) into Eq. (16), one obtains
the expression for the fluctuation of current flowing through the left end of the contact in the form

51(0)= WZ —‘ jdxf J

The fluctuation of current flowing through the right end of the contact may be obtained by substitatingpor x=0 in Eq.
(44). Using the correlator of extraneous curretit8), one obtains the expressions for the spectral den:Sh'eandS{‘R in the
form

son( Q(yy)

Q (¥,Y") 81+ n(X ) ——— 5} (44

St= 8e|d02 Z KK (M Pl it M2 P, (45)
=1 n=1
SF= 4eldom§ nZ [(=1)™+ (= 1)"KKn(M Pt MimoPonn) - (46)

In these expressions, we used the notation

d d
Mmn=—5 °dy f "dy, J dY,Qum(Y1,Y) Q% (¥2.Y), (47)
” _i do do do an(ylay) aQ:(yZvy)
an_dgfo deO dY1f0 dy, ay 3y , (48)
L X X
Pmn= fo dx ‘Pm(x)(Pn(X)E< 1- E)! (49

"o L dem den X
Pmn—fodx X ﬂx(l L)' (50



4634 K. E. NAGAEV 57

Using the notation,,=tanh,dy2) andD,,= (kﬁwdgtﬁpL 0?)~1 and performing partial summation over the internal index, one
may bring Egs(45) and(46) to the form

2 - 2 1+(-1)™\Dyty, Dp D.Dh
LL —_ 2 - _ m+ny___ —m=n
S (w)=zel+4el0 m§=}l (3 8 g )kmdo ksz(l 2) ;}1 [1+(—1) ] do(—I2)?
X (5Kt mKntn + Q%) (Kt + kntn>] , (51)
2 = 2 1+(-1)™\ Dyt Dpm
LR _% 2 _ym) [ £ m
() =5el+4el0) mzl( 1) {(3 R s k2|_2(1 t2)
o m+ny___ "% 2
n})l [1+(-1) ]do(k2 kz)z(d SkmtmKntn+ Q%) (Kot + Kato) 1 4 (52
[
where the primes by the sums oveshow thatn#m. contact is allowed. At sufficiently high frequencies, the cor-

The contour plots ofSr and S-R versus logarithms of relation length of fluctuations becomes smaller than the
frequency and contact length are shown in Figs. 3 and 4ength of the contact. In this case, the fluctuations of current
Qualitatively, their behavior is similar to that in the case of aat the ends of the contact, which are observed in the external
circular-section contact. At low frequencies and small con<ircuit, are dominated by extraneous currents in the narrow
tact lengths, both quantities tend3el. At high frequencies adjacent layers. The corresponding spectral densities are
and large contact lengthSt- andS-R tend to 21 and zero, equal to that of the classical shot noise| 2while the fluc-
respectively. It is also clearly seen thatlatd,=2.86, the tuations at different contact ends are completely indepen-

frequency dependences 8f? exhibit negative portions. dent.
To the best of our knowledge, the only measurements of
V. CONCLUSION high-frequency shot noise in mesoscopic diffusive contacts

were performed inf16]. However, the authors focused on

Both circular and planar contacts exhibit qualitatively quantum suppression of shot noise at small voltages, which
similar noise properties. At small length-to-width ratios, is beyond this quasiclassical approach. So their results are
when the screening of charge fluctuations by the electrodes difficult to interpret in terms of Coulomb interactions.
more efficient than the screening by the ambient medium and
pileup of the charge in the contact is forbidden, the effects of
long-range Coulomb interaction reduce to averaging the ex-
traneous currents over the volume of the contact at arbitrary This work was supported by DOE Grant No. DE-FGO02-
frequencies. The situation is different, however, for long and®5ER14575 and by the Russian Foundation for Basic Re-
narrow contacts, where the charge fluctuations are mostlgearch(Project No. 96-02-16663}aThe author acknowl-
screened by the ambient medium and pileup of charge in thedges a fruitful discussion with G. B. Lesovik.
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