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Localization length at the resistivity minima of the quantum Hall effect

M. M. Fogler, A. Yu. Dobin, and B. I. Shklovskii
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~Received 23 July 1997; revised manuscript received 6 October 1997!

The resistivity minima of the quantum Hall effect arise due to the localization of the electron states at the
Fermi energy, when it is positioned between adjacent Landau levels. In this paper we calculate the localization
lengthj of such states at even filling factorsn52N. The calculation is done for several models of disorder
~‘‘white-noise,’’ short-range, and long-range random potentials!. We find that the localization length has a
power-law dependence on the Landau level index,j}Na with the exponenta between one and10

3 , depending
on the model. In particular, for a ‘‘white-noise’’ random potentialj roughly coincides with theclassical
cyclotron radius. Our results are in reasonable agreement with experimental data on low and moderate mobility
samples.@S0163-1829~98!05908-6#
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I. BACKGROUND AND RESULTS

The appearance of narrow resistivity peaks separated
deep minima is a defining feature of the quantum Hall eff
~QHE!.1 The explanation of such a dependence ofrxx on the
magnetic fieldB is based on the idea of localization. Th
states at the Fermi energy are localized at almost allB except
for a few discrete valuesBN where the Fermi energy is at th
center ofNth Landau level~LL !. Near such special value
the localization lengthj is believed to diverge,

j}uB2BNu2g, ~1.1!

whereg is a critical exponent. The analytical calculation
g is a notoriously difficult problem.~Numerical methods
give g52.3560.03; see Ref. 2.! At the same time, the cal
culation of j away from the critical region turns out to b
much simpler. Such a calculation is the subject of the pres
paper. As a demonstration of the method, we calculatej at
discrete values ofB, B.(BN1BN11)/2. They correspond to
the minima ofrxx in the transport measurements.

Generally speaking, the definition ofj is not unique. In
this paper we will adopt the following one:

1

j
52 lim

r→`

1

2r
^ lnuc~r!u2&, ~1.2!

where c(r) is the wave function of the state at the Fer
level. The averaging is assumed to be done over the diso
realizations.

Our definition of the localization length is chosen to re
resent an experimentally measurable quantity. Indeed,
well known that transport at sufficiently low temperatur
proceeds via the variable-range hopping. In turn, the hopp
conduction is determined by thetypical decay rate of the
tails of the wave functions. Definition~1.2! relatesj pre-
cisely to this typical rate.

Let us further elaborate on this point. The bulk of low
temperature experimental data on the quantum H
devices3–5 can be successfully fit to the following depe
dence ofrxx on the temperatureT:

rxx}e2AT0 /T, ~1.3!
570163-1829/98/57~8!/4614~14!/$15.00
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which can be interpreted6 in terms of the variable-range hop
ping in the presence of the Coulomb gap.7 In this theoryT0
is directly related toj defined by Eq.~1.2!,

kBT05const
e2

kj
, ~1.4!

wheree is the electron charge andk is the dielectric constan
of the medium. Using Eq.~1.4!, one can extract the depen
dence ofj on B from the low-T transport measurements i
the straightforward way.~We will discuss experimentally rel
evant issues in more detail in Sec. VI.!

In this paper we calculatej using a model where the
disorder is described by a Gaussian random potentialU(r)
with the two-point correlator

^U~r1!U~r2!&5C~ ur12r2u!. ~1.5!

We will assume that the functionC(r ) becomes small atr
larger than some distanced and thatC(r ) does not have any
other characteristic lengths. The rms amplitude of the pot
tial AC(0) will be denoted byW. We will assume thatW is
much smaller thanEF , the Fermi energy. The electron
electron interaction is ignored at this stage.

To facilitate the presentation of our results we would li
to introduce the phase diagram shown in Fig. 1. The vert
axis stands for the dimensionless parameterkFd, wherekF is
the Fermi wave vector of the two-dimensional electron g
kF5A2pn, n being the electron gas density. The horizon
axis is the LL indexN.(kFl )2/2, wherel 5A\c/eB is the
magnetic length. The Fermi level is assumed to be at
midpoint between the centers ofNth andN11st LL’s. The
axes are in the logarithmic scale. The ratioW/EF is assumed
to be fixed.

Several lines drawn in Fig. 1 divide the phase plane i
the regions with different dependence ofj on B. Let us
explain the physical meaning of these lines. The lineBEGI
is the line where the densities of states of neighboring L
start to overlap asN increases (B decreases!. Thus, to the
right of this line the density of states at the Fermi level
practically equal to its zero-field value. We will refer to th
region of the parameter space as the region of overlapp
4614 © 1998 The American Physical Society
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57 4615LOCALIZATION LENGTH AT THE RESISTIVITY . . .
LL’s. To the left of the lineBEGI only the tails of the
neighboring LL’s reach the Fermi level and the density
states is much smaller than at zero field. This region will
called the region of discrete LL’s. The equation of the li
EGI is ~cf. Refs. 8–10!

kFd;
1

NS EF

W D 2

~EGI!. ~1.6!

Another line in Fig. 1,GFD, separates the regions of diffe
ent dynamic properties. To the left of this line the guidi
centers of the cyclotron orbits would perform the regu
drift along certain closed contours. This phenomenon
been dubbed ‘‘classical localization’’ in Ref. 11. To the rig
of the lineGFD ~shaded sector in Fig. 1! the motion of the
guiding center is diffusive~on not too large length scales!.
The equation for the lineGFD has been derived in Ref. 11

kFd;NS W

EF
D 2/3

~GFD!. ~1.7!

In the diffusive region the calculation ofj reduces to the
calculation of the ‘‘classical’’ conductivitysxx by means of
the ansatz~for discussion and bibliography see Refs. 2 a
11!

j}expFp2S h

e2
sxxD 2G , sxx@

e2

h
. ~1.8!

The classicalsxx is to be calculated by virtue of the Einste
relation, i.e., as a product of the quantum density of sta
and theclassicaldiffusion coefficient. The physical mecha
nism of the localization in this region is the destructive
terference of the classical diffusion paths. The calculation
the classicalsxx to the right of the lineGFD and in the
logarithmically narrow sector to its left~where sxx is still
larger thane2/h) has been done in Ref. 11 in some detail.
one can see from Eqs.~1.6! and ~1.7!, the studied region
corresponds to a rather long range of the random poten
kFd.(EF/W)2/3. However, Eq.~1.8! applies for smaller val-
ues of the parameterkFd as well. That is as long as we sta

FIG. 1. Parameter space of the problem with amonoscaleran-
dom potential@Eqs. ~1.5! and ~1.12!#. The entire phase space
divided into regions with a different dependence ofj on N andkFd.
The boot-shaped regionAHIGEB is described by Eq.~1.13!, the
shaded region to the right of the lineDFGI by Eqs.~1.8! and~1.9!,
the regionBEGFD by Eq.~1.10!, and finally, the region below the
line HI by Eq.~1.15!. The arrows show the ‘‘trajectory,’’ traced b
a ‘‘standard’’ sample~see the definition in Sec. VI! as the magnetic
field decreases.
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to the right of the lineGI. In the entire shaded sector to th
right of DFGI the motion is diffusive. The correspondin
classicalsxx is given by the usual Drude-Lorentz formula

sxx5
s0

11~vct!2
. ~1.9!

Equations~1.8! and ~1.9! enable one to calculatej up to a
pre-exponential factor. In this sectorj is exponentially large.

As N decreases and the boundaryDFGI of the diffusive
region is crossed, the classicalsxx rapidly falls off. Above
the point G this is brought about by the aforementione
‘‘classical localization;’’ below the pointG it is caused by
the rapid decrease of the density of states at the Fermi le
Already slightly to the left of the lineDFGI the classicalsxx
becomes much less thane2/h and the ansatz~1.8! loses its
domain of applicability. On the physical level, the nature
the particle motion changes: The diffusion is replaced
quantum tunneling. This paper is devoted to the calculat
of j in the tunneling regime~unshaded area in Fig. 1!.

One has to discriminate between the tunneling in the c
of overlapping LL’s and in the case of discrete LL’s. Th
former is realized in the region above the lineBEGFD. The
idea of the derivation ofj in this regime belongs to
Mil’nikov and Sokolov,12 who applied it to the lowest Lan
dau level.13 The argument goes as follows. In the describ
regime the density of states near the Fermi level is high.
the quasiclassical level such states can be thought of
collection of close yet disconnected equipotential contou
along which the particle can drift according to the classi
equations of motion. Nonzeroj appears as a result of th
quantum tunneling through the classically forbidden ar
between adjacent contours. The localization length is de
mined by the spatial extent of relevant equipotential conto
and by the characteristic tunneling amplitude.

Reference 12 has been criticized in the literature for, e
neglecting the interference effects. In our opinion this cr
cism is unjustified. The authors of Ref. 12 have clearly in
cated the domain of applicability of their theory. It can b
verified that within this domain the amplitude of tunnelin
between the pairs of contours is small; hence the probab
of returning to the initial point after at least one tunnelin
event is also small. In this case the interference phenom
can be safely ignored~cf. Ref. 2!.

The case of high Landau levels requires some modifi
tions to the original method of Mil’nikov and Sokolov. Th
details are given in Sec. V. We have found that the region
the phase space bounded by the lineBEGFD consists, in
fact, of three smaller regions~see Fig. 1! with a different
dependence ofj on N:

kFj;
N10/3

kFd S W

EF
D 7/3

~1.10a!

;
N5/2

~kFd!1/6S W

EF
D 7/3

~1.10b!

;N5/2~kFd!1/2S W

EF
D 3

~1.10c!
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4616 57M. M. FOGLER, A. YU. DOBIN, AND B. I. SHKLOVSKII
~the equation labels match the region labels in Fig. 1!. The
boundaryEC, which separates regions ‘‘a’’ and ‘‘b,’’ is
given by

kFd;N ~EC!. ~1.11!

The variety of different subregimes in the regionBEGFD
appears because of an interplay among three impor
length scales of the problem: the correlation lengthd of the
random potential, the cyclotron radiusRc5(2N11)/kF ,
and the percolation lengthjperc ~the typical diameter of the
relevant equipotential contours!. In this connection note tha
Eq. ~1.11! is simply Rc;d.

Compared to such a variety, the situation in the region
discrete LL’s (AHIGEB) is very simple: The dependence
j on N is given by a single formula. Suppose that the Four
transformC̃(q) of the correlatorC(r ) @see Eq.~1.5!# has the
form

C̃~q!5C̃~0!expF2
1

b
~qd!bG , b.1; ~1.12!

thenj is given by

j.S 2b

b21
ln

\vc

W D 2~b21!/b 2l 2

d
. ~1.13!

The logarithmic factor neglected, this can be written as

j;
Rc

kFd
. ~1.14!

Formula ~1.13! has previously appeared~for b52) in the
work of Raikh and Shahbazyan.14 These authors considere
the case of the lowest LL (N50), but suggested that it i
also valid for Rc!d, i.e., within the knife-shaped regio
AHEB. We demonstrate that Eq.~1.13! is in fact valid in a
much larger domain. The differences between this work
Ref. 14 are outlined at the end of Sec. IV.

The only part of the phase diagram we have not discus
yet is the area of ‘‘white-noise’’ potential. It is located belo
the lineHI , i.e.,kFd51. The corresponding formula forj is

j5
2Rc

L , L!2N11 ~1.15a!

5
l

AL
, L@2N11 ~1.15b!

L. lnS \vcl

Wd D , ~1.15c!

which matches Eq.~1.13! at kFd;1. Previously, formula
~1.15b! had been obtained by Shklovskii and Efros15 and also
by Li and Thouless16 for the lowest LLN50.

Neglecting the logarithmic factor, we can write E
~1.15a! in a simple form

j;Rc . ~1.16!

Remarkably, the quantum localization lengthj is determined
by a purely classical quantity: the cyclotron radius.
nt

f

r

d

ed

The basic idea used in the derivation of Eqs.~1.13! and
~1.15! is to study not the tunneling of the particle itself b
the tunneling of the guiding centerr of its cyclotron orbit.
For definiteness, consider the tunneling in they direction.
The effect of the magnetic field can be modeled by mean
the effective ‘‘magnetic’’ potential

Um~y!5
mvc

2~y2ry!2

2
~1.17!

acting on the particle. The classical turning points for th
type of potential are at the distanceRc from ry . Therefore, if
ry does not change its position, the longest distance that
particle can travel without getting under the magnetic bar
is 2Rc . Also, since the barrier increases withy, the suppres-
sion of the wave function, which starts beyond this distan
is faster than a simple exponential.

In the absence of the random potential,ry is a good quan-
tum number; however, if the external potential is presen
can scatter the particle, which would cause a change in
guiding center position. Such a ‘‘scattering-assisted’’ tunn
ing modifies the overall decay of the wave function17,15,16

from the superexponential to the plain exponential one,

c~0,y!;e2y/j.

Denote a typical displacement of the guiding center a
one scattering act byDry . The physical picture of tunneling
depends on the relation betweenDry and 2Rc .

The caseDry.2Rc , which is typically realized at the
lowest LL, has been studied previously in Refs. 15–17.
this case the tunneling involves the propagation under
magnetic barrier. Note that the barrier itself no longer
creases asy2, which would be with ry5const @see Eq.
~1.17!#. After a series of displacements of the guiding cent
the barrier acquires a sawtooth shape. In this regime
under-barrier suppression is an important factor in the ov
all decay of the wave function.

In contrast to the lowest LL, at high LL’s (N@1) where
Rc is large, the inequality of the opposite sense, i.e.,Dry
<2Rc , is typically realized. In this case the particle does n
propagate under the magnetic barrier at all. However,
tunneling distancey@Dry requires a large numberM
;y/Dry of the scattering acts. The amplitude of each ac
proportional toW and is inversely proportional to a larg
energy denominatorE5EF2\vc(N1 1

2 ). At the resistivity
minima of the QHE, which we are mainly interested in,E
5\vc/2@W ~discrete LL’s!, which implies that the typical
scattering amplitude is small and that the wave function
cays exponentially withy even though the electron neve
propagates under the magnetic barrier~this argument is sim-
ply a verbal representation of the locator expansion!.

FIG. 2. Optimal tunneling trajectory of an electron in the ra
dom potential of the ‘‘white-noise’’ type. Crosses symbolize t
scattering acts. The direction of they axis is from the left to the
right.
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57 4617LOCALIZATION LENGTH AT THE RESISTIVITY . . .
The case of the white-noise potential is quite illuminati
in this respect. The optimal tunneling path is sketched in F
2. The optimization is based roughly on the requirement t
each scattering event should displace the guiding cente
the largest possible distance without placing the particle
der the magnetic barrier. Clearly, this distance is equa
2Rc , which makes the tunneling trajectory look like a cla
sical skipping orbit near a hard wall; see Fig. 2.

Let us estimate the localization length corresponding
this optimal path. SinceDry.2Rc , the number of the scat
tering events needed to travel the distancey is M.y/2Rc .
As discussed above, after each event the wave function
creases by a factor of the order ofW/\vc . Hence the overall
suppression factor is (\vc /W)2M, which means thatj
;2Rc / ln(\vc /W), in agreement with Eq.~1.15a!. This deri-
vation will be done more carefully in Sec. III.

Formula ~1.13! can be derived in a similar way. Afte
each scattering event the wave function decreases by a f
of the order of f 5(W/E)exp@2(1/2b)(qd)b#, where q
5Dry / l 2 is the typical wave vector absorbed in the scatt
ing act. The total suppression factor after propagating
distancey is of the order off to the powery/Dry . Optimiz-
ing this suppression factor with respect toDry , one arrives
at Eq.~1.13!. A detailed derivation will be done in Sec. III

The paper is organized as follows. Section II is devoted
general considerations and qualitative derivation of E
~1.13! and ~1.15!. In Sec. III this derivation is made mor
rigorous assuming that the random potential is short ra
~or white noise!. In Sec. IV we consider the long-range p
tential in the regime of discrete LL’s. The approach is d
ferent from that of Sec. III, but the final result, Eq.~1.13!, is
the same as for the short-range case. In Sec. V we con
the case of overlapping LL’s. The variety of regimes in E
~1.10! is explained with the help of results developed in t
field of statistical topography.18 Finally, in Sec. VI we com-
pare our results with available experimental data for mod
ate mobility samples and propose a method to perform
measurements with modern high-mobility devices.

II. GENERAL CONSIDERATIONS

Following the overwhelming majority of papers in th
field, we will take advantage of the single Landau level a
proximation. In this approximation the original Hilbert spa
is truncated to the functions, which belong to the particu
(Nth! Landau level. It is conventional to choose the orth
normal set of functions

cn~x,y!5
e~ i /\!rnx

ALx

FN~y1rn!, ~2.1!

FN~y!5
1

A2Nn! lp1/2
e2y2/2l 2HNS y

l D , ~2.2!

rn5
2p l 2

Lx
n, n50,1, . . . ~2.3!

to be our basis states. HereLx is the x dimension of the
system andHN(z) is the Hermite polynomial. Such function
are the eigenfunctions of the Hamiltonian
.
at
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AD 2

2m
1U~r! ~2.4!

in the Landau gaugeA5(By,0,0), provided there is no ex
ternal potential (U[0).

The single Landau level approximation works well if th
cyclotron frequencyvc is the fastest frequency in the prob
lem. This is obviously the case for the discrete LL’s, i.e.,
the regionAHIGEB in Fig. 1. It is less trivial and it was
demonstrated in Ref. 11 that the inter-LL transitions are s
pressed in the region above the lineBEGFD as well. When
such transitions are neglected, the guiding center coordin
ry5y2(vx /vc) and rx5x1(vy /vc) become the only dy-
namical variables in the problem.

Since the random potential is assumed to be isotropic
is the ensemble-averaged decay of the wave functions. W
the above choice of the basis, however, it is convenien
study such a decay in they direction: from the point (0,0) to
the point (0,y).

At the next step we notice that the guiding center coor
nates satisfy the commutation relation

@ry ,rx#5 i l 2.

Thusry plays the role of the canonical coordinate while t
quantity (\/ l 2)rx is the canonical momentum. It is therefo
natural to use thery representation for the wave function
For example, in this representation wave functions~2.1! be-
come d functions. In general, the transformation rule b
tween the two representationsc(x,y) andf(ry) is given by
the formula

c~x,y!5E dry

A2p l 2
FN~y2ry! f~ry! e2~ i / l 2!xry. ~2.5!

The definition~1.2! of the localization length can also b
written in terms of the electron’s Green’s functionG,

1

j
52 lim

y→`

1

y
^ lnuG~0,y;E!u&. ~2.6!

On the other hand, Eq.~2.5! leads to the following Green’s
function transformation rule forG(0,y;E):

G5E dr1dr2

2p l 2
FN~r1! FN~r2! Gr~r1 ,r21y;E!, ~2.7!

whereGr(r1 ,r2 ;E) is the Green’s function in the guiding
center representation~as in Sec. I, the energyE is referenced
to the Landau level center and so we are interested most
the caseuEu5\vc /2).

The Green’s functionGr(r1 ,r2 ;E) satisfies the Schro¨-
dinger equation~with the d function as a source!
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Gr~r1 ,r2 ;E!5
d~r12r2!

E
1

1

Lx
(
qx

U0S q̃x ,r1

1
1

2
qxl

2D Gr~r11qxl
2,r2 ;E!, ~2.8!

where the tilde indicates the Fourier transform over the c
responding argument. The quantityU0 has the meaning o
the random potential averaged over the cyclotron orbit~cf.
Refs. 9 and 11!,

Ũ0~q!5Ũ~q! FN~ql2!, ~2.9!

FN~y!5LNS y2

2l 2D e2y2/4l 2, ~2.10!

LN(z) being the Laguerre polynomial~the tilde over the
symbol itself indicates the two-dimensional Fourier tran
form!.

As discussed in Sec. I, in the absence of the random
tential,ry is a good quantum number. The tunneling requi
propagation under the magnetic barrier, which leads to a
perexponential decay ofG(0,y;E). Indeed, in the absence o
the random potentialGr(r1 ,r2 ;E)5d(r12r2)/E @see Eq.
~2.8!#. Upon substitution into Eq.~2.7! one recovers the well
known expression for the Green’s function in the clean ca

G~0,y;E!5
FN~y!

2p l 2E
. ~2.11!

SinceFN(y) is the product of a polynomial and a Gaussi
@see Eq. ~2.10!#, the Green’s functionG(0,y;E) decays
faster than the exponential at largey. In view of definition
~2.6! this means thatj50. In fact, the structure of Eq.~2.7!
suggests that nonzeroj, i.e., a simple exponential decay o
G, is possible only ifGr decays no faster than a simp
exponential. In other words,j is nonzero only ifjr is non-
zero where

1

jr
52 lim

r→`

1

r
^ lnuGr~0,r;E!u& ~2.12!

@compare with the definition ofj, Eq. ~2.6!#. Unfortunately,
j andjr may differ. Only the inequality

jr>j ~2.13!

is guaranteed to be met. Indeed,Gr(r1 ,r2 ;E) typically be-
haves likeGr;e2ur22r1u/jr1 if(r1 ,r2). If the phasef(r1 ,r2)
is a smooth function of coordinates, thenuG(0,y;E)u
;uGr(0,y;E)u and j5jr . Otherwise, the integrand in Eq
~2.7! oscillates rapidly, uG(0,y;E)u!uGr(0,y;E)u and j
,jr . On a physical level,j describes the tunneling betwee
two pointlike contacts whilejr characterizes the tunnelin
between two infinite parallel leads. While the Feynman pa
contributing to the former process make up a narrow bun
nearrx50 ~Fig. 3!, the latter one gathers contributions
many such bundles. As a result, the amplitude of the la
process is much larger due to rare places~‘‘pinholes’’ ! where
the tunneling is unusually strong. Nevertheless, in ma
casesj and jr are very close to each other, for instanc
when the random potential is short-range~see Sec. III!.
r-
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Next we would like to present a simple yet very instru
tive model. This model has a great advantage of being s
able.

Suppose that the averaged random potential has the

U0~r!5U1~ry!1eirxqU2~ry!1e2 irxq U2* ~ry!,
~2.14!

where U1, ReU2, and ImU2 are mutually independen
Gaussian random variables. Similarly to the above, we w
assume that they have amplitudeW and correlation lengthd.
A simpler model with ry-independentU1, ReU2, and
Im U2 has been studied in Refs. 14 and 19. For the mo
potential ~2.14! all the points along therx axis are statisti-
cally equivalent; the pinholes we mentioned above are
sent; therefore,j5jr .

From Eq.~2.8! we see that the matrix element^r1uU0ur2&
is zero unlessr15r2 or r12r256ql2. It is convenient to
assume thatql2 is divisible into 2p l 2/Lx , the smallest dis-
tance between the centers of gravity of the basis states~2.1!.
In other words, we will assume thatLxq/2p is an integer.
Under this condition, the system can be split intoLxq/2p
independent chains~Fig. 4!. The guiding center coordinate
$rn% in each chain form an equidistant set:rn112rn5ql2.
The hopping is allowed only between the nearest neighb
of the same chain and is characterized by the hopping
plitude U2* @(rn1rn11)/2#. As for U1(rn), it plays the role
of the on-site energy.

The localization length of a disordered chain is given
the exact formula due to Thouless,20 which in our case reads

ql2

j
5E dE8D~E8!lnuE2E8u2^ lnuU2~r!u&, ~2.15!

D(E) being the disorder-averaged density of states norm
ized by the condition*dE D(E)51. It is noteworthy that

FIG. 3. Tunneling paths of the guiding center~schematically!.
The Green’s functionG(0,y;E) is a sum over the paths nearrx

50; the Green’s functionGr(0,y;E) is a sum over all the possible
paths connecting the linesry50 andry5y.

FIG. 4. Model system. Each vertical tick corresponds to one
the basis statescn . The distance between the ticks is 2p l 2/Lx . The
hopping ~symbolized by arrows! is possible at~much larger! dis-
tanceql2 and takes place between the states forming an equidis
chain. Two such chains~one marked by the dots and the other
the triangles! are shown.
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D(E) can in principle be found exactly if all the matri
elements are statistically independent,21 i.e., if ql2@d. If this
is not the case, thenD(E) can be calculated by some a
proximation scheme. At any rate,D(E) is small if uEu@W
~see e.g., Ref. 22!. In this case we can expand the logarith
in Eq. ~2.15! in the powers ofE8/E to obtain

1

j
5

1

ql2
F K lnU E

U2
U L 1OS W

E D 2G . ~2.16!

Taking the average in Eq.~2.16!, we obtain

1

j
5

1

ql2
F lnUE

WU2 ln22C

2
1OS W

E D 2G , ~2.17!

whereC50.577 . . . is theEuler constant.
It is quite remarkable thatj does not depend on whethe

or not the successive hopping termsU2* @(rn1rn11)/2# are
correlated. With the high degree of accuracy,O(W2/E2), the
localization length has the same value forql2.d ~‘‘short-
range’’ disorder! andql2,d ~‘‘long-range’’ disorder!.

The qualitative derivation of Eq.~2.17! can be done with
the help of the locator expansion~see a similar argument in
Sec. I!. The tunneling through a distancey is achieved by a
minimum of M5y/ql2 hops. Each hop is characterized b
the hopping amplitude of the order ofW/E. Thus the sup-
pression factor of the wave function over a distancey is of
the order of (W/E)M. On the other hand, this factor is equ
to e2y/j, which leads to Eq.~2.17!.

Let us now return to the original problem with the tw
dimensional random potential@Eqs.~1.5! and ~1.12!#. Leav-
ing a more rigorous calculation for Secs. III and IV, we w
present heuristic arguments leading to Eqs.~1.13! and~1.15!.

Let us divide the entire spectrum of Fourier harmonics
the random potentialU0 into bands qn2 1

2 Dq,qx,qn
1 1

2 Dq, n51,2, . . . , of width Dq;1/d. Denote byUq(r)
the combined amplitude of the harmonics, which make
the band centered atq,

Uq~r!5E
q2Dq/2

q1Dq/2 dqx

2p
U0~ q̃x ,ry! eirxqx. ~2.18!

If q@1/d, the corresponding band is very narrow andUq as
a function of rx looks very much like a plane wave,Uq
}eiqrx, exactly asU2 in the model problem. Suppose that th
scattering caused by different bands can be considered i
pendently. In this case each band generates its own d
rate 1/j(q) of the wave function. By analogy with Eq
~2.16!, we can write

1

j~q!
.

1

2ql2
K lnU E2

Wq
2U L , ~2.19!

whereWq
2 is the variance ofUq(r),

Wq
2;C0~ q̃ ,0! Dq, ~2.20!

and C̃0(q) is the correlator of the averaged potential,

C̃0~q!5C̃~q!@FN~ql2!#2. ~2.21!
f

p

e-
ay

Let q* be the wave vector corresponding to the largestj(q);
then it is natural to think thatj5j(q* ). In other words, the
localization length should be determined by the ‘‘optim
band’’ of harmonics, which we are going to find next.

In view of Eq.~2.21!, two cases have to be distinguishe
q* ,2kF and q* .2kF . The latter is realized for a suffi
ciently weak white-noise random potential, the former f
the potentials of all other types.

If q,2kF , thenC0( q̃ ,0) differs fromC( q̃ ,0) only by a
pre-exponential factor. Using Eqs.~1.12! and ~2.20! and
omitting some unimportant pre-exponential factors, we
rive at

1

j~q!
.

1

ql2
F lnUE

WU1 ~qd!b

2b G . ~2.22!

If b.1, thenj(q) given by Eq.~2.22! has the maximum a

q* ~E!5
1

dS 2b

b21
lnUE

WU D 1/b

. ~2.23!

Substituting this value into Eq.~2.22! and taking E
5\vc /2, we obtain Eq.~1.13!.

The qualitative derivation of Eq.~1.15! goes along the
same lines. The sole difference is thatq* turns out to be
close to or even larger that 2kF and at the same time smalle
than 1/d. In this caseC̃0(q* ) is determined byFN(q* l 2)
rather than byC̃(q* ). ~In this case, of course, the appropria
width Dq of the bands is much smaller than 1/d, but the
basic idea of dividing the spectrum into independent ba
stays.!

III. SHORT-RANGE RANDOM POTENTIAL

In this section we present a more detailed calculation
the localization length for the short-range random poten
d! l . As we mentioned in the preceding section, Thoules
formula~2.16! is in agreement with the locator expansion f
Gr ,

Gr~0,Mql2;E!.
Lx

2p l 2E
)
m51

M U2* @~m2 1
2 !ql2#

E
. ~3.1!

The equivalent of Eq.~3.1! in the general case is

Gr~0,y;E!.
1

E (
M50

` E dq1

2p E dq2

2p
•••E dqM

2p

3dS y2 l 2(
n51

M

qnD )
m51

M U0* ~ q̃m ,rmy!

E
,

~3.2!

wherermy stands for

rmy5 l 2~q11q21•••1qm211 1
2 qm!. ~3.3!

Combining Eqs.~2.7! and ~3.2!, we arrive at

G~M !~0,y;E!5 (
M50

`

G~M !, ~3.4!
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G~M !.E dr

2p l 2E
FN~r! FN~r1S2y!

3E •••E )
m51

M
dqm

2pE
U0* ~ q̃m ,r1rmy!, ~3.5!

whereS5(n51
M qnl 2.

Formula ~3.2! is certainly just an approximation. How
ever, the model studied in the preceding section showed
the relative error in calculatingj in this way is of the order
(W/E)2, which is quite satisfactory. The major defect of o
approximation is having all the energy denominators equa
E. Consequently, this approximation scheme does not c
ture the phenomenon of the resonant tunneling,22 which ap-
pears due to anomalously small energy denominators. N
however, that our goal is to calculate^ lnuG(0,y;E)u&. The
resonant tunneling configurations are exponentially rare
do not contribute to this quantity. In the model studied
Sec. II this can be seen explicitly: The resonant tunnel
configurations correspond toE5E8 in Eq. ~2.15! where the
integrand diverges. However, the divergence is integra
and moreover has an exponentially small weight.

We calculatê lnuG(0,y;E)u& in three steps. First, we ca
culate^uG(0,y;E)u2&nr , where the subscript ‘‘nr’’ stands fo
‘‘nonresonant,’’ i.e., with resonant tunneling configuratio
excluded. The reminder of such an exclusion is essentia
this case because even being exponentially rare, the reso
tunneling configurations yield untypically largeuG(0,y;E)u2
and totally dominate the average square modu
^uG(0,y;E)u2& for sufficiently largey ~see Refs. 15 and 23!.

As the next step, we calculate the decay rate
^uG(0,y;E)u2&nr defined similarly to Eq.~2.6!,

1

j2
52 lim

y→`

1

2y
ln^uG~0,y;E!u2&nr . ~3.6!

Finally, we show thatj25j.
The calculation of^uG(0,y;E)u2&nr can be represente

with the help of diagrams, one of which is shown in Fig.
The solid lines in this diagram correspond to the factors 1E,
each dashed line stands forC0( q̃ ,r) with appropriate argu-
ments, and the vortices at the corners bring the fac
FN( )FN( ).

The diagram shown in Fig. 5 is of the ladder type. It
easy to see that other diagrams~with crossing dashed lines!
are negligible. Indeed, consider, for instance, a diagr
where mth and m11st dashed lines of the original ladd
diagram are interchanged. This diagram will be proportio
to C0( q̃m ,Dry), whereDry5rm,y2rm11,y;qml 2. As dis-
cussed in Sec. II, the characteristic values ofqm are of the
order ofq* (E), so the distanceDry betweenrmy andrm11,y

FIG. 5. Typical ladder diagram, which describes the tunneling
the short-range random potential.
at

to
p-

te,

d

g

le

in
ant

s

f

.

rs

m

l

is of the order ofq* (E) l 2. This distance is much larger tha
d, the correlation length ofU0, becausel @d. Therefore,
C0( q̃m ,Dry), and thus the entire diagram, is small. No
also that the neglect of the resonant tunneling configurati
is ensured by omitting the diagrams with dashed lines c
necting two points of the same solid line~either the upper or
the lower one!.

The magnitude of the ladder diagram in Fig. 5 is equa

^uG~M !u2&nr5E E dr1dr2

~2p l 2E!2
@FN~r1! FN~r2!#

3@FN~r11S2y! FN~r21S2y!#

3E •••E )
m51

M
dqm

2pE2
C0~ q̃m ,r22r1!. ~3.7!

The products of functionsFN in the square brackets can b
replaced by the integrals over auxiliary variables accord
to the formula

FNS x1
y

2D FNS x2
y

2D5E dz

2p l 2
eizx/ l 2 FN~z,y!,

~3.8!

whereFN(z,y)5FN(Az21y2), which enables one to obtai
a rather simple expression

^uG~M !u2&nr5E d2r FN
2 ~r!

~2p l 2!3

C0~r!M eirxy/ l 2

E2M12
~3.9!

and finally,

^uG~0,y;E!u2&nr5E d2r FN
2 ~r!

~2p l 2!3

eirxy/ l 2

E22C0~r!
. ~3.10!

A very similar calculation gives

^uGr~0,y;E!u2&nr5LxE dr

~2p l 2!2

eiry/ l 2

E22C0~r!
. ~3.11!

Since the integrands in these formulas oscillate the more
idly the largery is, the square modulus of the two Green
functions decays withy. Furthermore, comparing Eqs.~3.10!
and ~3.11!, we see that the decay rate ofG and Gr is the
same, i.e., thatj2 would not change ifG were replaced by
Gr in Eq. ~3.6!. In both casesj2 is given by

j25 l 2/v* , ~3.12!

wherev* is the smallest positive root of the equation

C0~2iv* ,0![E dqxdqy

~2p!2
C0~ q̃x , q̃y! e2qxv* 5E2.

~3.13!

Using Eqs.~1.12! and~2.21! and also the asymptotic formul
@FN(ql2)#2.1/pqRc ~valid for N@1 andq!kF), we ob-
tain

E
0

` dq

pRc~4pqv* !1/2
e2~qd!b/b12qv* .

E2

C̃~0!
. ~3.14!

n
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If b.1, the integrand has the saddle point atq5q* @Eq.
~2.23!# with the characteristic spread ofq aroundq* being
Dq;1/d @ ln(E/W)#(b22)/2b. Using the saddle-point metho
estimate for the integral and then solving the resulting tr
scendental equation, we obtain

v* .S 2b

b21
ln

uEu
W D ~b21!/b d

2
. ~3.15!

As one can see from Eqs.~3.12! and~3.15!, the derivation of
Eq. ~1.13! will be complete if we demonstrate thatj25j,
i.e., that ln̂uG(0,y;E)u2&nr2^ lnuG(0,y;E)u2&5o(y). ~Note
that we are interested mainly in the caseuEu5\vc /2.! Since
such a calculation is not an easy task, we will only show t
this relation holds forG(M ), whereM'y/q* l 2. SuchM give
dominant contribution tôuG(0,y;E)u2&nr and presumably to
^ lnuG(0,y;E)u2& as well.

To average the logarithm, we employ the replica trick

^ lnuGu&5 lim
n→0

^uGu2n&21

2n
. ~3.16!

Under the same kind of approximations as above and
integern, ^uG(M )u2n&nr is given by

^uG~M !u2n&nr5E•••E )
m51

2n
drm

2p l 2E
FN~rm! FN~rm1Sm2y!

3E •••E )
k51

M

)
r 51

n dqk
~r !

2pE2

3(
Pk

C0@ q̃k
~r ! ,rky

~r !2sky
~r !#, ~3.17!

whereSm5(k51
Mqk

(m)l 2 and Pk labels the permutations o
the superscripts of the set$qk

(1) ,qk
(2) , . . . ,qk

(n)%. The quantity
sky

(r ) stands forl 2@q1
P1(r )

1•••1qk21
Pk21(r )

1 1
2 qk

Pk(r )
#. There are

altogethern! permutationsPk for eachk; therefore, the com-
plete expression is a rather complicated sum of (n!) M terms.
However, onlyn! terms in this sum are significant. Indee
within the adopted approximation all the terms withurky

(r )

2sky
(r )u@d for at least one ofk51,2, . . . ,M should be

dropped. It is easy to find the differencerky
(r )2sky

(r ) for the
case of identical permutationsP1 ,P2 , . . . ,PM . In this case
rky

(r )2sky
(r )5r r2rP1(r ) for all k. Therefore, a single con

straint ur r2rP1(r )u&d takes care of all theM constraints

above. If, on the other hand, some of thePk are not the same
then the integration domain is much more restricted and
value of the integral is small. Retaining only the terms c
responding to identical permutations, we immediately fi
that

^uG~M !u2n&nr.n! ^uG~M !u2&nr
n . ~3.18!

Taking the limitn→0, we obtain from here24

^ lnuG~M !u&.
ln^uG~M !u2&nr2C

2
. ~3.19!

We think that the same relation holds ifG(M ) is replaced by
the total Green’s functionG(0,y;E) and soj25j.
-

t

r

e
-
d

Finally, let us sketch the derivation ofj for the white-
noise random potentiald!kF

21 . In this limit one can replace

C̃0(q) by C̃(0)FN
2 (ql2) in Eq. ~3.13!, which leads to the

following equation onv* :

C̃~0!

2p l 2
FN

2 ~2iv* !5E2. ~3.20!

The next step is to use the asymptotic formula forFN( iy),

FN~ iy !.
l

Apys
S y1s

2Rc
D 2N11

eys/4l 2, ~3.21!

s5Ay214Rc
2, ~3.22!

valid for y@kF
21 . This way one obtains an approximate s

lution for v* . Finally, takinguEu to be\vc /2, one recovers
Eq. ~1.15!.

IV. LONG-RANGE RANDOM POTENTIAL:
DISCRETE LANDAU LEVELS

In the preceding section devoted to short-range rand
potentials, we were able to derivej by calculating the square
modulus of the Green’s function. Unfortunately, this is n
possible for a long-range random potential. The physical r
son is as follows.

As we have shown in Sec. II, the typical distanceDry
between the locations of successive scattering events i
the order of (l 2/d)L, whereL is some logarithmic factor. If
the random potential is long range,d@ l , thenDry!d and
such scattering events can no longer be considered unc
lated. One of the consequences is an enhanced probabili
pinholes discussed in Sec. II. In other words, the local de
rate of the wave functions with distance becomes very n
uniform. In turn, the Green’s functionG(0,y;E), even with
the resonant tunneling configurations excluded, exhib
large fluctuations between different disorder realizations
that zln^uG(0,y;E)u2& z@ z^ lnuG(0,y;E)u2&nrz, or j2@j.

One look at Eq.~3.17! is sufficient to predict that a dia
grammatic calculation of̂lnuG(0,y;E)u2& is bound to be very
cumbersome. The task is easier within a different appro
mation scheme, the WKB method. Some of the formu
corresponding to this approximation have been previou
worked out by Tsukada25 and by Mil’nikov and Sokolov.12

Suppose we want to find the solution of the Schro¨dinger
equationÛ0f(ry)5Ef(ry). Let us seek the solution in th
form f(ry)5exp@iS(ry)#. The actionS(ry) can be expanded
in the series of the small parameterl /d. In the lowest ap-
proximation,S(ry) must satisfy the Hamilton-Jacoby equ
tion

U0S l 2
]S

]ry
,ryD5E,

so that

f~ry!;expF i

l 2Ery
dh rx~h!G ,
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whererx(ry) is a solution~generally speaking, a comple
one! of the equation

U0~rx ,ry!5E. ~4.1!

The meaning of this equation is quite transparent. It is kno
that the motion of the guiding center in classically permitt
regions is a drift along the level lines of the averaged pot
tial U0 ~see Ref. 11!. Equation~4.1! means that the trajector
of the guiding center in classically forbidden regions is stil
level line although obtained by analytical continuation to t
three-dimensional space$(u,v,ry)% whereu5Re rx and v
52Im rx .

The WKB-type formula for the Green’s function in th
guiding center representation is

Gr~r1 ,r2 ;E!5
i

l 2(n

sgn~r22r1!

A@]U0 /]rx
~n!#ry5r1

@]U0 /]rx
~n!#ry5r2

3expF2
i

l 2Er1

r2
dryrx

~n!~ry!G , ~4.2!

where the superscriptn labels different solutionsrx
(n)5un

2 ivn of Eq. ~4.1! in the complex half space sgnvn
5sgn(r22r1). If we study the tunneling from point (0,0) t
(0,y) wherey.0, then this will typically be the upper hal
spacevn>0. Using Eqs.~2.7! and ~4.2! and neglecting all
the pre-exponential factors, we obtain the following estim
for G(0,y;E):

G;(
n

expF2
un~0!21un

2~y!

2l 2
2

i

l 2E0

y

dry rx
~n!~ry!G .

SinceU0 is a random potential, it is natural to assume th
the phase factors corresponding to differentn in this sum are
uncorrelated; therefore,

uGu2;(
n

expF2
un~0!21un

2~y!

l 2
2

2

l 2E0

y

dryvn~ry!G . ~4.3!

Consequently,j can be calculated as

1

j
5min

n
lim
y→`

1

yl2
Fun

2~y!

2
1E

0

y

dry vn~ry!G . ~4.4!

It is possible to demonstrate that the first term in the squ
brackets is typically much smaller than the second o
which leads to

j.
l 2

minn ^vn&
, ~4.5!

where^vn& is the average ‘‘height’’ of thenth level line,

^vn&5 lim
y→`

1

yE0

y

dry vn~ry!.

The problem of calculating minn ^vn& turns out to be rathe
difficult and we have not been able to solve it exactly. Ho
ever, we will give arguments that minn ^vn&.v* @v* was
introduced in Sec. II; see Eq.~3.13!#. Therefore,j is still
n

-

e

e

t

re
e,

-

given by formula~1.13!. A more accurate statement is a
follows. If the individual Landau levels are well resolved
the density of states, then for arbitrary ranged of the random
potentialj can be found from the same ‘‘master’’ equatio

C0~2i l 2/j,0!5E2. ~4.6!

Let us familiarize ourselves with the properties of t
equipotential contours~level lines! of the potentialU0 in the
half space$(u,v,ry),v>0%. An important property is the
contour densityP(v,E),

P~v,E!5K (
n

d~v2vn! d~u2un!L
~for isotropic random potentialU0 this quantity depends nei
ther onu nor onry). The functionP(v,E) proves to be the
sum of three terms

P~v,E!5P1~v,E!1P2~v,E!1P3~E! d~v !, ~4.7!

where

P1~v,E!5
E2S2

pQ2AQR
e2E2/Q, ~4.8!

P2~v,E!5
e2E2/Q

2pAQR
FT2S2S 1

Q
1

1

RD G , ~4.9!

andQ, R, S, andT are

Q5C0~2iv,0!1C0~0,0!,

R5C0~2iv,0!2C0~0,0!,

S5 1
2 dQ/dv, T5 1

2 d2Q/dv2. ~4.10!

Except for the termP3(v), our formulas are in agreemen
with Refs. 14 and 26. This term, however, does not play a
role in the subsequent calculation. The derivation of E
~4.8! and ~4.9! can be found in the Appendix.

The behavior of the functionsP1 andP2 is illustrated by
Fig. 6. The functionP1 has a sharp maximum atv5v*
whereQ.E2. Away from the maximum it is exponentially
small. The functionP2 is exponentially small atv,v* and
assumes the asymptotic formP2(v,E)}v (22b)/(b21) at v
.v* . For example, ifb52, then P2(v,E)→1/pd2 ~see
Fig. 6!. The ratioP1 /P2 evaluated at the pointv* is of the
order of lnuE/Wu@1 in the case of interest. Atv close tov*
our expression essentially coincides with Eq.~5.20! of Ref.
14. Note, however, that the latter equation is off by 4p.

Let us clarify the origin of the sharp maximum inP(v,E)
at v5v* . To this end the concept of bands of harmon
introduced in Sec. II is very helpful. So let us consider
band with qx in the interval (q2 1

2 Dq,q1 1
2 Dq) where q

@Dq.0. The amplitude of each harmonicU0( q̃x ,ry) is
enhanced by the factoreqxv upon the analytic continuation
into the upper half space. Therefore, the typical value of
combined amplitudeUq(r) of the band@see Eq.~2.18! for
the definition# grows from Wq(0);@C0( q̃ ,0)Dq#1/2 at v
50 to Wq(v);@C0( q̃ ,0)Dq#1/2 eqv at v.0. Being the
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product of the rapidly decreasing functionC0( q̃ ,0) and the
exponentially growing factoreqv, this quantity has a shar
maximum atq5q* (v),

q* ~v !5
1

dS 2v
d D 1/~b21!

, ~4.11!

providedb.1 andv@d. @In view of Eq.~3.15!, this formula
is just another parametrization ofq* originally defined by
Eq. ~2.23! as a function ofE.# Generally speaking, the width
of the maximum depends onv and b, but in a particular
example,b52, it is simply Dq;1/d. Hence, at a given
height v in our three-dimensional space, the potent
U0(rx ,ry) is typically dominated by the band of harmoni
of width Dq centered atq* (v). Consequently, the spatia
dependence ofU0 is almost plane-wave-like,U0(rx ,ry)
}eirxq

*
(v). This prompts the decomposition

U0~r!5eirxq
* ~v !V~r! ~4.12!

of U0 into the ‘‘oscillating part’’ eirxq
*

(v) and a ‘‘smooth
part’’ V(r).

The intersection points of the level linesU05E with a
vertical planery5h satisfy the system of equations

vn52
1

q* ~vn!
ln

uVu
E

, ~4.13!

un5
1

q* ~vn!
argV1

2pn

q* ~vn!
. ~4.14!

The modulusuVu of the complex Gaussian variableV has the
Maxwellian distribution with the characteristic widthW
given by

W2[^uV~r!u2&.e22vq
* ~v !Q, ~4.15!

whereQ is defined by Eq.~4.10!. In the first approximation
let us neglect the dependence ofV on rx ~which corresponds
to the limit of an infinitesimally narrow band,Dq→0); then
P(v,E) is given by

P~v,E!5
q*
2pE0

` 2uVu duVu

W2
e2uVu2/W2

dS v1
1

q*
ln

uVu
W D .

FIG. 6. FunctionsP1(v,E) andP2(v,E). The vertical axis is in
units of 1/d2. The parameters used in generating the plot areb
52 andE/W55.
l

Doing the integration, we arrive at

P~v,E!5
E2q

*
2 ~v !

pQ
e2E2/Q, ~4.16!

which, in fact, coincides withP1(v,E) provided v@d. In
this approximation theun form an equidistant setun112un
.2p/q* !1/d, while vn does not depend onn. The equi-
potential contours resemble a number of uniformly spa
parallel rods, which ‘‘soar’’ above the real planev50, stay-
ing very close to the ‘‘standard height’’v5v* for most
values ofry . Indeed, as discussed above~see also Fig. 6!,
the function P1 has a sharp maximum atv5v* . Since
dlnQ/dv.2q* , the width of the maximum is of the order o
1/q* . This, of course, can be seen directly from Eq.~4.13!:
If uVu has its typical valueW, thenvn5v* . Fluctuations of
uVu change the logarithm~typically! by a number of the orde
of unity; therefore, ordinarilyuvn2v* u.1/q* . Significant
deviations from the standard heightv* are exponentially
rare. We believe that such a description accurately portr
the behavior of therelevant equipotential contours in the
upper half space, which means that^vn&.v* for such con-
tours, and thereforej is given by the old formula~1.13!.

As one can see from Eqs.~4.7!–~4.9! and ~4.16!, our ap-
proximate treatment does not capture the termP2(v,E) in
P(v,E), which seems to be important forv.v* . Therefore,
the possibility of minn^vn& being larger thanv* cannot be
totally ignored. Although we cannot rigorously prove th
minn^vn&5v* , we managed to find theupper boundfor
minn^vn&,

min
n

^vn&,v* 1O~1! d, ~4.17!

based on the following percolation-type arguments.
Suppose that there exists a level line numberm,

U0@rx
(m) ,ry#5E, which is totally contained in a slab

$(u,v,ry),0<v<v0%. In this case minn^vn&<^vm&<v0. This
prompts considering the following percolation problem. L
us call ‘‘wet’’ all the points (u,v,ry) of the slab that satisfy
the conditions

Re U0~u2 iv,ry!<E, Im U0~u2 iv,ry!<0.

As the thicknessv0 of the slab increases from zero, it shou
eventually reach a critical valuevc , at which the percolation
through wet regions first appears. The percolation thresh
vc is at the same time the upper bound for minn^vn&.

Obviously, no percolation exists forv0,v* when the wet
regions occupy an exponentially small fraction of the v
ume. On the other hand, ifv0@v* , then ^(Re U0)2&
.^(Im U0)2&.Q/2@E2 and approximately a quarter of th
entire volume is wet. This greatly exceeds the volume fr
tion 0.17 required for the percolation in continual thre
dimensional problems;18 thus suchv0 are high above the
percolation threshold. Furthermore, the relation between
percolation thresholds of the continuum and of a film27 sug-
gests thatvc must be equal tov* 1Cd, whereC;1, which
leads to Eq.~4.17!.

Finally, let us comment on the relation of our approach
that of Raikh and Shahbazyan14 already mentioned above. I
Ref. 14 the idea of the complex trajectoriesrx

(n)(ry)
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5un(ry)2ivn(ry), which is the basis of our calculation of th
Green’s function, was introduced. However, an approxim
tion early in their analysis@dropping of the cross product i
Eq. ~2.8! of Ref. 14# led the authors of Ref. 14 to the resu
which in our notations can be written

Gr~0,y;E!5
i

l 2(n
@]U0 /]rx

~n!#21expF i

l 2
y rx

~n!~y/2!G
~the derivative is taken atry5y/2). As one cansee, in their
methodGr(0,y;E) is determined not by the entire tunnelin
trajectory, as it should@see Eq.~4.2!#, but only by its mid-
point ry5y/2. As a result, the point-to-point Green’s fun
tion G(0,y;E) obtained by their method starts to be in erro
strictly speaking, already fory*d. The only case where th
method of Raikh and Shahbazyan14 works for arbitraryy is
the case of a one-dimensional potential, e.g.,U0(x,y)
5U0(x). A potential of this type has the same magnitude
the midpointy/2 and at all other pointsy. ~From the formal
point of view, only for this type of potential does the afor
mentioned cross product vanish for anyy and can therefore
be dropped.!

The reduction of the properties of the entire trajectory
the properties of a single point destroys the self-averagin
the localization length, which is a well-established prope
of other disordered systems.22 Because of that, it become
necessary to treatj as a function ofy. As we mentioned
above, for agiven disorder realizationthe value ofG(0,y;E)
given by the formulas of Ref. 14 is in error already fory
*d. However, this is not so for the quantity^ lnuG(0,y;E)u&.
The logarithmic averagingmanages to mask the error so th
j(y) remains close to the correct asymptotic value given
Eq. ~1.13! for sufficiently short distancesy!d exp(E2/W0

2).
Indeed, if one uses the last equation above, then one ob

uGu2;(
n

expH 2
2

l 2
@un

2~y/2!1y vn~y/2!#J
instead of Eq.~4.3! and

1

j~y!
.

1

l 2
min

n
Fun

2~y/2!

y
1vn~y/2!G ~4.18!

instead of Eq.~4.4!. If y!d exp(E2/W0
2), the minimum is

typically supplied by one of the trajectories whose heightvn
is not too different from the standard value ofv* , uvn
2v* u&d. This range ofvn allows for un in the rangeuunu
&Ayd. Therefore, the optimal trajectory is typically one
about M5Ay/d trajectories closest to thex50 axis. Note
that M increases withy. Eventually, aty;d exp(E2/W0

2) it
becomes exponentially large so that there is an appreci
probability that one out of suchM trajectories hasvn(y/2)
,v* /2 anduun(y/2)u2,yd/2. The decay rate 1/j(y) in this
case is determined by such an untypical trajectory and
j(y) is significantly larger than our result, Eq.~1.13!. Fur-
thermore, aty@d exp(E2/W0

2), there is a finite probability of
finding vn(y/2) exactly equal to zero@due to the third term
in Eq. ~4.7!#. Therefore, in the asymptotic limity→` the
method of Raikh and Shahbazyan14 yields a very surprising
result 1/j(y)→0. As we explained above, this is a cons
-

,

t

of
y

t
y

ins

le

o

-

quence of an effective substitution of the original tw
dimensional random potential by a potential depending o
single coordinate.

V. OVERLAPPING LANDAU LEVELS

This section is devoted to the derivation of Eq.~1.10!. An
important difference from all the preceding calculations
that the potential energyE5EF2\vc(N1 1

2 ) is smaller than
the amplitudeW0 of the averaged potentialU0(r). In this
case the level linesU0@rx

(n) ,ry#5E introduced in Sec. IV
stay predominantly in the real planev50. @Their density is
given by P3(v,E); see Eq.~4.7!.# However, forEÞ0 the
percolation of the level lines in they direction discussed a
the end of the preceding section still requires brief exc
sions into the upper complex half space. Such excursi
link together the large closed loop contoursU05E of typical
diameterjperc(E). The localization lengthj is still given by
Eq. ~4.5!, which leads to the estimate

j;
l 2

^v&ex

jperc~E!

Dr
, ~5.1!

where the subscript ‘‘ex’’ indicates that the averaging is p
formed only over the ‘‘excursions,’’ i.e., over the parts wi
v.0, with Dr being the typical length of such parts. Sim
larly to the caseN50 discussed previously by Mil’nikov and
Sokolov,12 ^v&ex;Dr;(uEu/U09)

1/2, where U09;W0 /d2 is
the typical value of the second derivatives of the avera
potentialU0; therefore,

j;jperc~E!
W0l 2

Ed2
. ~5.2!

The calculation of the quantityjperc(E) is a subject of statis-
tical topography18 and the following results are establishe
Denote byCl the integral

Cl[E1
2,uqul,1

d2q

~2p!2
C̃0~q!.

For slowly decaying correlatorsC̃0(q), such thatCl;l2H

with H,0 and2H<3/4, jperc is given by ~in addition to
the review in Ref. 18, see the original works of Ref. 28!

jperc~E!;d uW0 /Eu21/H. ~5.3!

Otherwise, i.e., ifCl decays faster thanl23/2, then18

jperc~E!;d uW0 /Eu4/3. ~5.4!

Let us now determine the conditions under which form
las ~5.3! and ~5.4! become applicable. The issue is comp
cated by the fact thatC̃0(q) is the product of two terms
C̃0(q) and @FN(ql2)#2; see Eq.~2.21!. The former decays
exponentially starting fromq;1/d. The latter remains close
to one atq&1/Rc , then behaves according to a power la
@FN(ql2)#2;1/q for 1/Rc,q,2kF , and finally decays ex-
ponentially atq.2kF . Such a complicated behavior resul
in three different regimes~1.10a!–~1.10c!.
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The simplest is the caseRc!d, where@FN(ql2)#2.1 for
all relevantq. In this case Eq.~5.4! applies and alsoW0
.W. The localization length is given by Eq.~1.10a!, which
coincides with the result of Mil’nikov and Sokolov.12

If Rc@d, then the situation is more complicated. In th
caseCl is proportional to 1/l, i.e., H52 1

2 for d!l!Rc ,
yet decays faster than 1/l3/2 for l.Rc . As a result, both
Eqs.~5.3! and ~5.4! for jperc may apply, depending onE,

jperc~E!;5
d2

Rc
UWEU2

,
d

Rc
,

uEu
W

,A d

Rc

RcU d

Rc

W

EU4/3

, uEu,W
d

Rc
,

~5.5!

which is illustrated by Fig. 7. Combining Eq.~5.2!, where
W0;WAd/Rc, with Eq. ~5.5! and usinguEu5\vc /2, one
obtains Eqs.~1.10b! and ~1.10c!.

VI. DISCUSSION OF A MORE REALISTIC MODEL
AND ITS COMPARISON WITH THE EXPERIMENT

To make the connection with the experimental pract
we will consider the model where the random potential
created by randomly positioned ionized donors with tw
dimensional densityni set back from the electron gas by a
undoped layer of widthd. We will assume that 1/d2!ni
!n2d2. In a zero magnetic field the random potential can
considered a weak Gaussian random potential with the
relator

C̃~q!5p2ni~e2aB!2 e22qd, ~6.1!

where aB5\2k/me2 is the effective Bohr radius~see Ap-
pendix B of Ref. 11!. This formula corresponds tob51 and
d replaced by 2d in Eq. ~1.12!. In deriving Eq.~6.1! we took
into account the screening of the donors’ potential by
electron gas described by the dielectric function8

«~q!5kS 11
2

aBqD , q<2kF . ~6.2!

This model remains accurate in sufficiently weak field
where the Landau levels overlap and the density of state
almost uniform, like in the zero field. In stronger fields~the

FIG. 7. Percolation lengthjperc as a function of the energyE
~schematically!. The labels 2 and 4/3 indicate the power-law exp
nents in the corresponding intervals; see Eq.~5.5!.
e
s
-

e
r-

e

,
is

boot-shaped regionAHIGEB in Fig. 1!, the density of states
develops sharp peaks at the Landau level centers sepa
by deep minima. This strongly influences the property of
electron gas to screen the external impurity potential. Diff
ent aspects of such a screening inweakmagnetic fields have
been addressed in Refs. 29–31. The screening can be
linear and nonlinear, depending on the wave vectorq.

The concept of nonlinear screening has been develo
by Shklovskii and Efros initially for the three-dimension
case.7 Gergel and Suris32 have extended it to the two
dimensional case. The influence of a strong magnetic field
the nonlinear screening has been studied in Ref. 33 and
pecially in Ref. 34.

Nonlinear screening is realized for sufficiently smallq,
q,qnonl, and is enhanced compared to the zero-field c
@Eq. ~6.2!#. The threshold wave vectorqnonl is a complicated
function of the magnetic field.31 If qnonl is smaller than 1/Rc ,
there exists an intermediate range ofq, qnonl,q,1/Rc ,
where the screening remains in the linear regime but is s
pressed compared to Eq.~6.2!. The corresponding dielectric
function is given by29,30

«~q!.kS 11
Rc

2q

aB
D . ~6.3!

At even largerq, q.max$qnonl,1/Rc%, there is no essentia
change in the screening properties brought about by the m
netic field.

Clearly, in such magnetic fields the model of a Gauss
random potential with the correlator~6.1! becomes an over
simplification. Fortunately, the localization lengthj should
not be strongly affected by this. Indeed,j is sensitive only to
the combined amplitude of the narrow band of harmon
with wave vectorsq.q* . It can be shown that forb51,
q* .2kF ~just like for the white-noise potential!. This wave
vector belongs to the last group ofq for which there is no
change in the screening properties. In fact, at suchq the
screening is equally ineffective both in zero and in arbitra
strong magnetic fields«(2kF).k.

The parameterkFd is almost always larger than one in th
experiment; therefore, in strong fieldsj is expected to be
given by Eq.~1.13!. For b51 this formula becomes remark
ably simple,

j.
l 2

d
5

Rc

kFd
.

The simplest way to obtain this expression is to start w
Eq. ~1.13! for b.1, take the limitb→1, and then make a
replacementd→2d ~see above!. For kFd close to unity,
however, one should use a refined formula

j.
Rc

kFd1 1
2 ln~\vc /W0!

, ~6.4!

which follows from the master equation~4.6!. Formula~6.4!
should hold in the boot-shaped regionAHIGEB of Fig. 1.
The corresponding range ofN can be expressed in terms o

-
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the dimensionless parameterskFd andni /n. We will concen-
trate on the caseni;n, which we call standard. In this cas
Eq. ~6.4! is valid for N&2kFd. At largerN, the localization
length is given by Eq.~1.10! so that the dependence ofj on
n is superlinear. Note that the standard case correspond
the straight-line ‘‘trajectory’’ passing through the pointsE
and F and shown by the arrows in Fig. 1. Between the
points, Eq.~1.10! reduces to

j

Rc
;

N3/2

~kFd!5/2
, 2kFd&N&C~kFd!5/3, ~6.5!

where C is some undetermined numerical factor. At ev
largerN, j becomes exponentially large, which precludes
accurate measurement at experimentally accessible tem
tures. For this reason we do not give the explicit formula
the localization length at suchN.

Unfortunately, the published experimental data on
low-temperature magnetoresistance away from the Q
peaks is limited to the measurements done by Ebertet al.3

more than a decade ago. In most of their samplesd was
equal to 6 nm, which corresponds tokFd50.9. On the one
hand, this places the samples close to the lineHI in Fig. 1.
On the other hand, the standard case corresponds to the
EF. In fact, there is no contradiction here because in
standard caseEF /W;kFd. Therefore, the askFd tends to
unity, the boot-shaped regionAHIGEB shrinks and the lines
EF andHI become quite close.

With the help of Eq.~1.4!, we convertedT0 reported by
Ebertet al.3 into j. Only evenn were selected for this analy
sis. The constant factor in Eq.~1.4! was chosen to be 6.0
following Nguyen.35 For filling factorsn52 andn54, i.e.,
N51 andN52, there is a good agreement with Eq.~6.4! if
the logarithm in the denominator is neglected. At largern,
6<n<12, empiricalj behaves roughly like

j'2.2N3/2Rc . ~6.6!

Formally, this is in agreement with Eq.~6.5!. However, since
the parameterkFd is close to one, the random potential ca
not be treated as long range and so the percolation pic
used in the derivation of Eq.~6.5! is not quite justified. Per-
haps it is more reasonable to treat Eq.~6.6! as an approxi-
mation to the exponential dependence@Eq. ~1.8!# within a
limited range ofn.

Another comment is in order here. Formula~1.4! is based
on the assumption that the interaction energy of two qu
particles separated by a typical hopping distancer is given
by the Coulomb law. As shown in Ref. 30, with a dielectr
function given by Eq.~6.3!, the Coulomb law is realized only
at sufficiently large distancesr @Rc

2/aB . Large hopping dis-
tances r correspond to low temperaturesT5(j/4r )2T0.
Therefore, formula~1.4! is expected to hold only for

T,S aBj

4Rc
2D 2

T0 . ~6.7!

Experimentally, such low temperatures may be hard to re
especially in weak fields whereRc is large. Therefore, we
to

e

s
ra-
r

e
E

ine
e

-
re

i-

h,

think that a different type of measurement may be m
promising. One has to measure both the temperature and
current dependence of the magnetoresistance. Comparin
results of these two types of measurements, one can d
mine theeffective temperature Teff for each value of the cur-
rent densityj . As discussed in Ref. 6, the relation betwe
Teff and j is

kB Teff~ j !.0.5e jrxy j, ~6.8!

where rxy is the Hall resistivity. Equation~6.8! does not
involve the dielectric function and therefore is expected
hold even when Eq.~1.3! and the corresponding curren
dependence6 rxx}e2AT0 /Teff( j ) do not match the magnetore
sistance data exactly.
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APPENDIX: LEVEL LINE DENSITY P„v,E…

The equationU05E is equivalent to the system of tw
equationsR5E and I 50, whereR5Re U0(u2 iv,ry) and
I 52Im U0(u2 iv,ry). To calculateP(v,E) we need to
know the JacobianJ5u](R,I )/](u,v)u. With the help of the
Cauchy relations

]R/]v5]I /]u, ]R/]u52]I /]v,

the Jacobian can be written as

J5Rv
21I v

2 ,

where subscripts denote the partial derivatives. Theref
for all vÞ0,

P~v,E!5E dR dRv dI dIv

~2p!2~detK!1/2
d~R2E! d~ I ! ~Rv

21I v
2!

3expS 2
1

2
vTK21vD , ~A1!

wherev is the four-component vector (R,Rv ,I ,I v)T andK is
its autocorrelation matrix,Kmn5^vmvn&. Matrix K turns out
to be block diagonal, the blocks being 232 matrices. Matrix
elements ofK can be calculated using Eq.~1.5!. For ex-
ample, the upper diagonal block has elementsK115Q/2,
K125K215S/2, and K225R/2 @see Eq.~4.10! for defini-
tions#. The subsequent integration overRv andI v in formula
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~A1! becomes a trivial task and yields the result represen
by Eqs.~4.8! and ~4.9!.

The casev50 requires a special consideration becau
the conditionI 50 is satisfied identically. It is easy to se
that a level line would typically branch upon the intersecti
with the v50 plane. The additional branch or branches
totally contained in this plane, which gives th
d-function-like contribution to functionP(v,E). The coeffi-
cient in front of thed-function is given by
.

G

.

,

.

d

e

e

P3~E!5E dR dIv

2p~K11K44!
1/2

d~R2E! uI vu

3exp@2~R2/2K11!2~ I v
2/2K44!#

5
1

4p
A2

¹2C0~0!

C0~0!
e2E2/2W0

2
.

As expected,P3(E) is exponentially small foruEu@W0.
the
e,
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