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Localization length at the resistivity minima of the quantum Hall effect
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The resistivity minima of the quantum Hall effect arise due to the localization of the electron states at the
Fermi energy, when it is positioned between adjacent Landau levels. In this paper we calculate the localization
length ¢ of such states at even filling factors=2N. The calculation is done for several models of disorder
(“white-noise,” short-range, and long-range random potentidlge find that the localization length has a
power-law dependence on the Landau level indexN® with the exponentr between one ané, depending
on the model. In particular, for a “white-noise” random potentéalroughly coincides with theclassical
cyclotron radius. Our results are in reasonable agreement with experimental data on low and moderate mobility
samples[S0163-18208)05908-4

I. BACKGROUND AND RESULTS which can be interpret&dn terms of the variable-range hop-
ping in the presence of the Coulomb dajm this theoryT,
The appearance of narrow resistivity peaks separated kg directly related tc¢ defined by Eq(1.2),

deep minima is a defining feature of the quantum Hall effect
(QHE).! The explanation of such a dependencggfon the
magnetic fieldB is based on the idea of localization. The kBTozconstK—g, 1.4
states at the Fermi energy are localized at almo® atkcept
for a few discrete valueBy where the Fermi energy is at the wheree is the electron charge andis the dielectric constant
center ofNth Landau level(LL). Near such special values of the medium. Using Eq(1.4), one can extract the depen-

e2

the localization lengtl is believed to diverge, dence of¢ on B from the lowT transport measurements in
- the straightforward wayWe will discuss experimentally rel-
éx|B—By| 7, (1.)  evant issues in more detail in Sec. VI.

wherey is a critical exponent. The analytical calculation of " this paper we calculat¢ using a model where the
y is a notoriously difficult problem(Numerical methods disorder is described by a Gaussian random potebk{a)
give y=2.35+0.03; see Ref. 2.At the same time, the cal- Wit the two-point correlator

culation of ¢ away from the critical region turns out to be _

much simpler. Such a calculation is the subject of the present (U(r)U(r2))=C(|ri=raf). (1.5
paper. As a demonstration of the method, we calcufast

d|scre_te_ values (E B=(By+By.1)/2. They correspond to larger than some distanckand thatC(r) does not have any
the minima ofp, |n.the transpo.rtl r.neasu-rements.. other characteristic lengths. The rms amplitude of the poten-
thifege;?lges\?v(?l?lgdng’ tﬂt]r?edfi?lgi/t\llionn %frl]se.not unique. In tial VC(0) will be denoted byw. We will assume thatV is
pap P 9 : much smaller tharEg, the Fermi energy. The electron-
1 1 electron interaction is ignored at this stage.
—=—lim == (In|y(r)|?), (1.2 To facilitate the presentation of our results we would like
3 - 21 to introduce the phase diagram shown in Fig. 1. The vertical
where ¢(r) is the wave function of the state at the Fermj2XiS stands for the dimensionless paramkjef, wherek. is

level. The averaging is assumed to be done over the disorddt€ Fermi wave vector of the two-dimensional electron gas,
realizations. ke=+2mn, n being the electron gas density. The horizontal

Our definition of the localization length is chosen to rep-axis is the LL indexN=(kgl)?/2, wherel = yic/eB is the
resent an experimentally measurable quantity. Indeed, it ig1agnetic length. The Fermi level is assumed to be at the
well known that transport at sufficiently low temperaturesMidpoint between the centers bith andN+1st LL's. The
proceeds via the variable-range hopping. In turn, the hoppingXes are in the logarithmic scale. The raidEr is assumed
conduction is determined by thigpical decay rate of the 1o be fixed. o N .
tails of the wave functions. Definitiofl.2) relates¢ pre- Several lines drawn in Fig. 1 divide the phase plane into
cisely to this typical rate. the regions with different dependence éfon B. Let us

Let us further elaborate on this point. The bulk of low- €xplain the physical meaning of these lines. The BEGI
temperature experimental data on the quantum Halis the line where the densities of states of neighboring LL'’s
devices™ can be successfully fit to the following depen- start to overlap af increases B decreasgs Thus, to the

We will assume that the functio@(r) becomes small at

dence ofp,, on the temperature: right of this line the density of states at the Fermi level is
practically equal to its zero-field value. We will refer to this
pyxce VTolT, (1.3)  region of the parameter space as the region of overlapping
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57 LOCALIZATION LENGTH AT THE RESISTIVITY ... 4615

to the right of the lineGl. In the entire shaded sector to the
right of DFGI the motion is diffusive. The corresponding
classicalo, is given by the usual Drude-Lorentz formula

krd

EJW 2]

(o’ 19

Oxx

Equations(1.8) and (1.9) enable one to calculaté up to a
pre-exponential factor. In this sectgiis exponentially large.
1 As N decreases and the bound®@¥Gl1 of the diffusive
region is crossed, the classiaa}, rapidly falls off. Above

FIG. 1. Parameter space of the problem wittanoscalean-  the point G this is brought about by the aforementioned
dom potential[Egs. (1.5 and (1.12]. The entire phase space is “classical localization;” below the poinG it is caused by
divided into regions with a different dependenc&an N andked.  the rapid decrease of the density of states at the Fermi level.
The boot-shaped regioAHIGEB is described by Eq(1.13, the  a|ready slightly to the left of the lin@F G the classicabr,,
shaded region to the right of the lifeFG1 by Egs.(1.8) and(1.9,  pecomes much less tha’/h and the ansattl.8) loses its
the regionBEGFD by Eq.(1.10, and finally, the region below the  4omain of applicability. On the physical level, the nature of
line HI by Eq.(1.15. The arrows show the “trajectory,” traced by the particle motion changes: The diffusion is replaced by
a standard” sampldsee the definition in Sec. Vs the magnetic o, nvm tunneling. This paper is devoted to the calculation
field decreases. of ¢ in the tunneling regiméunshaded area in Fig).1
One has to discriminate between the tunneling in the case

LL's. To the left of the lineBEGI only the tails of the of overlapping LL's and in the case of discrete LL's. The
neighboring LL's reach the Fermi level and the density Offormer is realized in the region above the lIBEGFD. The

states is much smaller than at zero field. This region will be

; : ) ; . _idea of the derivation of¢ in this regime belongs to
Eaélle?st?cef r;glfgn 80_fldq|)screte LL's. The equation of the IIneMil’nikov and Sokolov!? who applied it to the lowest Lan-

dau level*® The argument goes as follows. In the described
Ep\2 regime the density of states near the Fermi level is high. On
de~N( W) (EGI). (1.9 the quasiclassical level such states can be thought of as a
collection of close yet disconnected equipotential contours,
Another line in Fig. 1GFD, separates the regions of differ- along which the particle can drift according to the classical
ent dynamic properties. To the left of this line the guiding equations of motion. Nonzeré appears as a result of the
centers of the cyclotron orbits would perform the regularquantum tunneling through the classically forbidden areas
drift along certain closed contours. This phenomenon habetween adjacent contours. The localization length is deter-
been dubbed “classical localization” in Ref. 11. To the right mined by the spatial extent of relevant equipotential contours
of the line GFD (shaded sector in Fig.) the motion of the and by the characteristic tunneling amplitude.
guiding center is diffusivéon not too large length scales Reference 12 has been criticized in the literature for, e.g.,
The equation for the lin& FD has been derived in Ref. 11, neglecting the interference effects. In our opinion this criti-
cism is unjustified. The authors of Ref. 12 have clearly indi-
cated the domain of applicability of their theory. It can be
verified that within this domain the amplitude of tunneling
between the pairs of contours is small; hence the probability
In the diffusive region the calculation @freduces to the of returning to the initial point after at least one tunneling
calculation of the “classical” conductivityr,, by means of event is also small. In this case the interference phenomena
the ansat4for discussion and bibliography see Refs. 2 andcan be safely ignorettf. Ref. 2.
11 The case of high Landau levels requires some modifica-
details are given in Sec. V. We have found that the region of
' Uxx>ﬁ- 18 the phase space bounded by the IBEGFD consists, in
The classicab,, is to be calculated by virtue of the Einstein dependence of on N:
relation, i.e., as a product of the quantum density of states

2/3
de~N(E—> (GFD). (1.7
F

2

5 tions to the original method of Mil'nikov and Sokolov. The
h
§ocexp{ 772( ;O’xx)
fact, of three smaller regionsee Fig. 1 with a different

and theclassicaldiffusion coefficient. The physical mecha- K N3 w773 110
nism of the localization in this region is the destructive in- FE~ ked | Ep (1.103
terference of the classical diffusion paths. The calculation of

the classicalo,, to the right of the lineGFD and in the N5/2 W\ 7/3

logarithmically narrow sector to its lefwhere o, is still ~ —MS(E_) (1.10b
larger thare?/h) has been done in Ref. 11 in some detail. As (ked) F

one can see from Eq$1.6) and (1.7), the studied region

corresponds to a rather long range of the random potential, ~NS2(kd) 12 ﬂ
ked> (E-/W)?/3. However, Eq(1.8) applies for smaller val- F Er
ues of the parametds-d as well. That is as long as we stay (1.100

3
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(the equation labels match the region labels in Fig.The

boundaryEC, which separates regions “a” and “b,” is

given by

ked~N (EC). (1.1

The variety of different subregimes in the regiBiE GFD
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FIG. 2. Optimal tunneling trajectory of an electron in the ran-
dom potential of the “white-noise” type. Crosses symbolize the
scattering acts. The direction of tlyeaxis is from the left to the

appears because of an interplay among three importamight.

length scales of the problem: the correlation lengjtbf the
random potential, the cyclotron radilR.=(2N+1)/kg,

The basic idea used in the derivation of E¢s13 and

and the percolation length,. (the typical diameter of the (1.15 is to study not the tunneling of the particle itself but
relevant equipotential contoyrdn this connection note that the tunneling of the guiding center of its cyclotron orbit.

Eqg. (1.11) is simply R.~d.

For definiteness, consider the tunneling in thalirection.

Compared to such a variety, the situation in the region offhe effect of the magnetic field can be modeled by means of
discrete LL's AHIGEB) is very simple: The dependence of the effective “magnetic” potential
£ onN is given by a single formula. Suppose that the Fourier

transformC(q) of the correlatoiC(r) [see Eq(1.5)] has the
form

1

B(qd)ﬁ}, p>1; (112

E(q)za(O)exp{

then ¢ is given by

28 ﬁwc) ~(B-DIB 2

g:
The logarithmic factor neglected, this can be written as

Rc

o (1.14

Formula (1.13 has previously appearedor 8=2) in the

work of Raikh and Shahbazyaf These authors considered
the case of the lowest LLN=0), but suggested that it is
also valid for R.<d, i.e., within the knife-shaped region

AHEB. We demonstrate that E¢L.13 is in fact valid in a

me - 2
Uply)= e 117
acting on the particle. The classical turning points for this
type of potential are at the distanRg from p, . Therefore, if
py does not change its position, the longest distance that the
particle can travel without getting under the magnetic barrier
is 2R, . Also, since the barrier increases withthe suppres-
sion of the wave function, which starts beyond this distance,
is faster than a simple exponential.

In the absence of the random potentjgl,is a good quan-
tum number; however, if the external potential is present, it
can scatter the particle, which would cause a change in the
guiding center position. Such a “scattering-assisted” tunnel-
ing modifies the overall decay of the wave functibt®
from the superexponential to the plain exponential one,

P(0y)~e V¢,

Denote a typical displacement of the guiding center after

much larger domain. The differences between this work an@ne scattering act b p, . The physical picture of tunneling

Ref. 14 are outlined at the end of Sec. IV.

depends on the relation betweap, and R..

The only part of the phase diagram we have not discussed The caseAp,>2R., which is typically realized at the
yetis the area of “white-noise™ potential. It is located below |owest LL, has been studied previously in Refs. 15-17. In

the lineHl, i.e.,ked=1. The corresponding formula f@ris

Rc
&= 7 L<2N+1 (1.153
! L3>2N+1 (1.15b
VL' '
min| el 1.15
_n Wd 1 ( . o

which matches Eq(1.13 at ked~1. Previously, formula
(1.15b had been obtained by Shklovskii and Efrband also
by Li and Thoules¥ for the lowest LLN=0.

Neglecting the logarithmic factor, we can write Eq.

(1.153 in a simple form

E~R.. (1.16

Remarkably, the quantum localization lengtfs determined
by a purely classical quantity: the cyclotron radius.

this case the tunneling involves the propagation under the
magnetic barrier. Note that the barrier itself no longer in-
creases ag?, which would be with p, = const [see Eq.
(1.17)]. After a series of displacements of the guiding center,
the barrier acquires a sawtooth shape. In this regime the
under-barrier suppression is an important factor in the over-
all decay of the wave function.

In contrast to the lowest LL, at high LL'SN>>1) where
R. is large, the inequality of the opposite sense, ip,
<2R., is typically realized. In this case the particle does not
propagate under the magnetic barrier at all. However, the
tunneling distancey>Ap, requires a large numbeM
~Yy/Apy of the scattering acts. The amplitude of each act is
proportional toW and is inversely proportional to a large
energy denominatoE=Eg—%w.(N+ 3). At the resistivity
minima of the QHE, which we are mainly interested I,
=hwJ2>W (discrete LL'9, which implies that the typical
scattering amplitude is small and that the wave function de-
cays exponentially withy even though the electron never
propagates under the magnetic barfibis argument is sim-
ply a verbal representation of the locator expanksion
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The case of the white-noise potential is quite illuminating
in this respect. The optimal tunneling path is sketched in Fig.
2. The optimization is based roughly on the requirement that H=———"—+U(n (2.9
each scattering event should displace the guiding center by
the largest possible distance without placing the particle un-
der the magnetic barrier. Clearly, this distance is equal tén the Landau gaugé&=(By,0,0), provided there is no ex-
2R., which makes the tunneling trajectory look like a clas-ternal potential (=0).
sical skipping orbit near a hard wall; see Fig. 2. The single Landau level approximation works well if the

Let us estimate the localization length corresponding tacyclotron frequencyw.. is the fastest frequency in the prob-
this optimal path. Sincé p,=2R., the number of the scat- lem. This is obviously the case for the discrete LL’s, i.e., in
tering events needed to travel the distagcis M =y/2R. . the regionAHIGEB in Fig. 1. It is less trivial and it was
As discussed above, after each event the wave function delemonstrated in Ref. 11 that the inter-LL transitions are sup-
creases by a factor of the orderWf7 w. . Hence the overall pressed in the region above the IBEGFD as well. When
suppression factor is#w./W) M, which means thatt  such transitions are neglected, the guiding center coordinates
~2R;/In(fiw./W), in agreement with Eq1.159. This deri-  p,=y—(v4/w;) and p,=x+(v,/w;) become the only dy-
vation will be done more carefully in Sec. Ill. namical variables in the problem.

Formula (1.13 can be derived in a similar way. After Since the random potential is assumed to be isotropic, so
each scattering event the wave function decreases by a factisrthe ensemble-averaged decay of the wave functions. With
of the order of f=(W/E)exd—(1/28)(qd)?], where q the above choice of the basis, however, it is convenient to
=Apy/|2 is the typical wave vector absorbed in the scatterstudy such a decay in thedirection: from the point (0,0) to
ing act. The total suppression factor after propagating théhe point (Oy).
distancey is of the order off to the powelry/Ap, . Optimiz- At the next step we notice that the guiding center coordi-
ing this suppression factor with respectAp,, one arrives nates satisfy the commutation relation
at Eq.(1.13. A detailed derivation will be done in Sec. Ill.

The paper is organized as follows. Section Il is devoted to 2
general considerations and qualitative derivation of Egs. Loy px] =117
(1.13 and (1.19. In Sec. lll this derivation is made more
rigorous assuming that the random potential is short rang&husp, plays the role of the canonical coordinate while the
(or white noisé. In Sec. IV we consider the long-range po- quantity ¢/12)p, is the canonical momentum. It is therefore
tential in the regime of discrete LL's. The approach is dif- natural to use the, representation for the wave functions.
ferent from that of Sec. lll, but the final result, E4.13, is  For example, in this representation wave functi¢h4) be-
the same as for the short-range case. In Sec. V we consideome § functions. In general, the transformation rule be-
the case of overlapping LL's. The variety of regimes in Eq.tween the two representatiogigx,y) and ¢(p,) is given by
(1.10 is explained with the help of results developed in thethe formula
field of statistical topographdf Finally, in Sec. VI we com-
pare our results with available experimental data for moder-

ate mobility samples and propose a method to perform the _ dpy _ —(in2)x
measurements with modern high-mobility devices. P(x,y)= B2 Py =py) dlpy) € oo (29

Il. GENERAL CONSIDERATIONS L L
The definition(1.2) of the localization length can also be

Following the overwhelming majority of papers in the written in terms of the electron’s Green'’s functi@
field, we will take advantage of the single Landau level ap-
proximation. In this approximation the original Hilbert space

is truncated to the functions, which belong to the particular }: —i } InlG(ov-E 26
(Nth) Landau level. It is conventional to choose the ortho- 3 ylfl (InG(OY;E)]). (2.6
normal set of functions
Qlil1)pyx On the other hand, Eq2.5) leads to the following Green'’s-
Pa(X,y)= Dn(Y+pn), (2.1)  function transformation rule fo&(0.y;E):
Vi
dp1dp;
® (y):;e*yZ/ZIZH y (2.2) G:f > Pnlpr) Onlp2) Gy(p1.p2tyiE), (2.7)
N PNAL | 72 NU ) . 2l
2?2 where G, (p1,p2;E) is the Green’s function in the guiding
p B - .
po=— M n=01,... (2.3 center representatidas in Sec. I, the enerdy is referenced
X

to the Landau level center and so we are interested mostly in
to be our basis states. Helg is the x dimension of the the casdE|=%w./2).
system andH (2) is the Hermite polynomial. Such functions ~ The Green’s functiorG,(p,,p,;E) satisfies the Schro
are the eigenfunctions of the Hamiltonian dinger equatior(with the § function as a sourge
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. dp1—pa) 1 ~ Ps
Cplprip2B)=—F—+ L_quX Uo| Ox.P1 y
1 2 2

+§qxl Gp(P1+qx| ,pZ;E), (28)
where the tilde indicates the Fourier transform over the cor-
responding argument. The quantityy has the meaning of
the random potential averaged over the cyclotron odfit
Refs. 9 and 1}, 0 p:

Uo(q)ZU(q) Fn(al?), (2.9 FIG. 3. Tunneling paths of the guiding centachematically.

The Green’s functiorG(0y;E) is a sum over the paths nepg

y? - =0, the Green’s functioiG,(0,y;E) is a sum over all the possible
Fn(y) =Ly o2 e VA", (2.10  paths connecting the lingg,=0 andp,=Yy.
Ln(2) being the Laguerre polynomidthe tilde over the  Nextwe wquld like to present a simple yet very ipstruc-
symbol itself indicates the two-dimensional Fourier trans,-'“‘t’)T3 model. This model has a great advantage of being solv-
form). aple.

As discussed in Sec. I, in the absence of the random po- Suppose that the averaged random potential has the form
tential, p, is a good quantum number. The tunneling requires _ i i *
Dropagaytion under the magnetic barrier, which leads to a su- Uo(p)=U1(py) +€U5(py) +€77 Uz (py), 21
perexponential decay @&(0,y;E). Indeed, in the absence of (2.14
the random potentiaG ,(p1,p2;E)=8(p1—p,)/E [see Eq. where U;, ReU,, and ImU, are mutually independent
(2.8)]. Upon substitution into E2.7) one recovers the well- Gaussian random variables. Similarly to the above, we will
known expression for the Green'’s function in the clean caseassume that they have amplitudéand correlation length.
A simpler model with py-independentU,, ReU,, and
Fn(y) Im U, has been studied in Refs. 14 and 19. For the model
2712E " (2.1 potential (2.14) all the points along the, axis are statisti-
cally equivalent; the pinholes we mentioned above are ab-
SinceF\(y) is the product of a polynomial and a Gaussiansent; thereforeé= £,.
[see Eq.(2.10], the Green's functionG(0y;E) decays From Eq.(2.8) we see that the matrix elemefpt; |U|p,)
faster than the exponential at large In view of definition  is zero unlesg;=p, or p;—p,= +ql?. It is convenient to
(2.6) this means thag=0. In fact, the structure of Eq2.7)  assume thatj|? is divisible into 21?/L,, the smallest dis-
suggests that nonzeg i.e., a simple exponential decay of tance between the centers of gravity of the basis statés
G, is possible only ifG, decays no faster than a simple |n other words, we will assume thatqg/27 is an integer.
exponential. In other words; is nonzero only ifé, is non-  Under this condition, the system can be split ihtgy/27

G(0y;E)=

zero where independent chain@=ig. 4). The guiding center coordinates
{pn} in each chain form an equidistant sgt;, ;— p,=ql.
iz — lim 1<In|G (0,0;E)|) (2.12 The hopping is allowed only between the nearest neighbors
& p—oc P g of the same chain and is characterized by the hopping am-

plitude U3 [ (pn+ pn+1)/2]. As for U,(py), it plays the role
of the on-site energy.

The localization length of a disordered chain is given by
£,=¢ 2.13 the exact formula due to Thoule€swhich in our case reads

[compare with the definition of, Eq. (2.6)]. Unfortunately,
¢ and ¢, may differ. Only the inequality

is guaranteed to be met. Indedsl,(p;,p,;E) typically be-
haves likeG,~ e~ lP27P1llé,+1¢(p1r2) if the phasep(p; ,po)
is a smooth function of coordinates, theiG(0y;E)]
~|G,(0y;E)| and ¢é=¢,. Otherwise, the integrand in Eq.
(2.7) oscillates rapidly,|G(0,y;E)|<|G,(0y;E)| and ¢
<¢,. On a physical level describes the tunneling between

ql?
?=fdE'D(E')InlE—E’|—<In|u2<p>|>, (2.15

D(E) being the disorder-averaged density of states normal-
ized by the conditionfdE D(E)=1. It is noteworthy that

two pointlike contacts while&, characterizes the tunneling =(\(_\(—\= -
between two infinite parallel leads. While the Feynman paths 0 ql? y Py
contributing to the former process make up a narrow bundle < >

nearp,=0 (Fig. 3), the latter one gathers contributions of g 4. Model system. Each vertical tick corresponds to one of
many such bundles. As a result, the amplitude of the lattefhe pasis states, . The distance between the ticks is?/L, . The
process is much larger due to rare placgsnholes”) where  hopping (symbolized by arrowsis possible atmuch largey dis-

the tunneling is unusually strong. Nevertheless, in manyanceql? and takes place between the states forming an equidistant
casesé and £, are very close to each other, for instance,chain. Two such chaingone marked by the dots and the other by
when the random potential is short-ran@ee Sec. I\ the triangles are shown.
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D(E) can in principle be found exactly if all the matrix Letq, be the wave vector corresponding to the larggs;

elements are statistically independéhite., if ql?>d. If this  then it is natural to think thag=£(q, ). In other words, the

is not the case, theB(E) can be calculated by some ap- localization length should be determined by the “optimal

proximation scheme. At any rat®,(E) is small if [E[>W  band” of harmonics, which we are going to find next.

(see e.g., Ref. 22In this case we can expand the logarithm In view of Eq.(2.21), two cases have to be distinguished:

in Eq. (2.15 in the powers ofE’/E to obtain g, <2kg and g, >2kg. The latter is realized for a suffi-
ciently weak white-noise random potential, the former for

1 1 E 2 the potentials of all other types.
i ql? <In U, >+O E (2.16 If q<2kg, thenCy(q,0) differs fromC(q,0) only by a
pre-exponential factor. Using Eq$1.12 and (2.20 and
Taking the average in E¢2.16), we obtain omitting some unimportant pre-exponential factors, we ar-
rive at
1 In2—C 2
E_q_l \w o2 } 21 Lw_[ \ 9o 2.22
&a) ql? w " '
whereC=0.577 . .. is theEuler constant.

It is quite remarkable thag does not depend on whether If 5>1, then§(q) given by Eq.(2.22 has the maximum at
or not the successive hopping tertd3 [ (p,+ pn+1)/2] are
correlated. With the high degree of accura®(W?/E?), the Q. (E)= 1( 2P In
localization length has the same value tdf>d (“short- * dig-1

range” disorder andql?<d (“long-range” disordey. _— : . .
The qualitative derivation of Eq2.17) can be done with it;ibas)t%tlnvge E)hl;fair\llaléﬁl T;)O Eq(2.22 and taking E
12, A3.

?e h;'ﬂ_ﬁf t{]i:‘o?ﬁtortﬁrxpar;]smézei:et an5|m|larkzliir%und1ebnt n The qualitative derivation of Eq(1.15 goes along the
€c. ). The tunneling through a distanges achieved by @ o, q jines. The sole difference is thgt turns out to be

minimum of M=y/ql? hops. Each hop is characterized by .
the hopping amplitude of the order W/E. Thus the sup- close to or eve-n IargeLthakz z?md at the.same time smaller
pression factor of the wave function over a distagcs of ~ than 14. In this caseCo(q,) is determined byFn(q | ’)

the order of (W/E)M. On the other hand, this factor is equal rather than byc(a, ). (In this case, of course, the appropriate
to e ¥’¢, which leads to Eq(2.17. width Aqg of the bands is much smaller thandl/but the

Let us now return to the original problem with the two- basic idea of dividing the spectrum into independent bands
dimensional random potentifEgs. (1.5 and(1.12]. Leav-  stays)
ing a more rigorous calculation for Secs. Ill and 1V, we will
present heuristic arguments leading to E4sl3 and(1.15. Ill. SHORT-RANGE RANDOM POTENTIAL

Let us divide the entire spectrum of Fourier harmonics of
the random potentiall, into bands q,—3Aq<0,<d,

E

1B
) . (2.23

In this section we present a more detailed calculation of

+1Aq, n=12, ..., ofwidth Aq~1/d. Denote byUq(p) the localization length for the short-range random potential
the combined amplitude of the harmonics, which make upd<| As we mentioned in the preceding section, Thouless’s
the band centered a formula(2.16 is in agreement with the locator expansion for
G
pl
Uilp) qurAQ/quXU G ) elp 2.18 MUE( e
P 27 Jolpy) €55 (2. Ly U3[(m— })q
q-Agi2 £7 G,(0Mql%E)= . (3.1
ol a ) 271%E m=1 E @3

If g>1/d, the corresponding band is very narrow digas
a function of p, looks very much like a plane wavé),  The equivalent of Eq(3.1) in the general case is
xeldrx, exactly adJ, in the model problem. Suppose that the

scattering caused by different bands can be considered inde- . do; dCIz day
pendently. In this case each band generates its own decay o0y E)= f f ' f

rate 1£(q) of the wave function. By analogy with Eg.
(2.16), we can write

—|22 qn) [T —qm’pmy),
>, (2.19 (3.2

wherep,, stands for

E 2
w2
Wq

1 1
?q)z ﬁ< In
whereW; is the variance ofJ4(p),
N pmy=1%(A1+ 02+ + -1+ 30m)- 3.3
~Co(0.,0) Aq, (2.29 Combining Egs(2.7) and(3.2), we arrive at
andC,(q) is the correlator of the averaged potential,

- - GM(0y:E)= GcM), 3.4
Co(a)=C(a)[Fn(ql?]% (2.2 (0:E) ME:O 34
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: - is of the order ofy, (E) |12. This distance is much larger than
P2 o ! pitZ d, the correlation length otJ,, becausd>d. Therefore,
0 ya RTE y4u y Co(dm,Apy), and thus the entire diagram, is small. Note
P i pitE also that the neglect of the resonant tunneling configurations

is ensured by omitting the diagrams with dashed lines con-
necting two points of the same solid lifeither the upper or
the lower ong

The magnitude of the ladder diagram in Fig. 5 is equal to

FIG. 5. Typical ladder diagram, which describes the tunneling in
the short-range random potential.

dp dp,d
G<M>:f L Ou(p) Pu(p+E-y) <|G<M>|2>m=f jﬁ[wm ®(po)]
M
Ao, ~ X[®n(pr+2—y) Dn(prt2—Y)]
Xf ...Jnglﬁuo(qm,p+pmy), (3.5 NP1 NP2

x| fﬁ O Col@mpa—py). (3.7

where=3M q,I2. m=1 27E2

Formula (3.2) is certainly just an approximation. How- ) )
ever, the model studied in the preceding section showed thd'€ Products of function®y in the square brackets can be

the relative error in calculating in this way is of the order replaced by the integrals over auxiliary variables according
(W/E)?2, which is quite satisfactory. The major defect of our [ the formula

approximation is having all the energy denominators equal to
E. Consequently, this approximation scheme_z do_es not cap- i (DN(X_ X) = j E elzX1? Fo(Z2y),
ture the phenomenon of the resonant tunnelfnghich ap- 2 2712

pears due to anomalously small energy denominators. Note, (3.8
however, that our goal is to_calcula(m|G(0,y;E_)|). The hereFy(z2,y) = Fr(VZZ+y2), which enables one to obtain
resonant tunneling configurations are exponentially rare an rather simple expression

do not contribute to this quantity. In the model studied in
Sec. Il this can be seen explicitly: The resonant tunneling

y
X+§

) M aipyy/I?
configurations correspond ®©=E’ in Eq. (2.15 where the <|G<M>|2>m:f d° Filp) Co(p)” € (3.9
integrand diverges. However, the divergence is integrable (2ml?)® E2M*2
and moreover has an exponentially small weight. and finally
We calculate(In|G(0,y;E)|) in three steps. First, we cal- '
culate(|G(0,y;E)|?), Where the subscript “nr” stands for d%p F2(p) e’
“nonresonant,” i.e., with resonant tunneling configurations (|G(o,y;E)|2>m=j N . (3.10
excluded. The reminder of such an exclusion is essential in (2ml?%)® E?-Col(p)
this case because even being exponentially rare, the resonamg,ery similar calculation gives
tunneling configurations yield untypically larg&(0.,y;E)|?
and totally dominate the average square modulus dp glpy/1?
{|G(0y;E)|?) for sufficiently largey (see Refs. 15 and 23 (1G,(0Y;E)[?) = fo 55 . (3.1)
As the next step, we calculate the decay rate of (271%)= E*=Co(p)
(IG(0;E)[?)n defined similarly to Eq(2.6), Since the integrands in these formulas oscillate the more rap-
1 1 idly the largery is, the square modulus of the two Green’'s
I T =2 functions decays witly. Furthermore, comparing Eq&.10
& lel 2y|n(|G(0,y,E)| Jor- 3.6 and (3.11), we see that the decay rate 6f and G, is the
same, i.e., that, would not change ifG were replaced by
Finally, we show that,=&. G, in Eq. (3.6). In both caseg, is given by
The calculation of{|G(0,y;E)|?), can be represented )
with the help of diagrams, one of which is shown in Fig. 5. E=1"Tv,, 312

each dashed line stands 6g(q,p) with appropriate argu-

ments, and the vortices at the corners bring the factors ) dodoy  ~ ~ L. ,
DN )Pn()- Co(2iv, ,0)= 22 Co(Uyx,0y) €°%*=E2,
The diagram shown in Fig. 5 is of the ladder type. It is . (313

easy to see that other diagrafwath crossing dashed lings

are negligible. Indeed, consider, for instance, a diagran¥sing Eqs(1.12) and(2.21) and also the asymptotic formula
where mth andm+ 1st dashed lines of the original ladder [Fn(a1?)]1?=1/mgR; (valid for N>1 andq<kg), we ob-
diagram are interchanged. This diagram will be proportionafain

to Co(Um.Apy), WhereAp,=pmy—Pms 1y~ 0ml>. As dis- B q 2

cussed in Sec. Il, the characteristic valuegjgfare of the f L B e (adPIB+2av, - _— (3.14
order ofq, (E), so the distanca p, betweerp,y andpp. 1, 0 mRy(4mqu, )2 C(0)
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If B>1, the integrand has the saddle pointgatq, [EQ. Finally, let us sketch the derivation @f for the white-
(2.23] with the characteristic spread gfaroundq, being  noise random potential< k;l. In this limit one can replace
Ag~1/d [In(E/W)]#~?%. Using the saddle-point method & (q) by T(0)F2(ql?) in Eq. (3.13, which leads to the
estimate for the integral and then solving the resulting trano|iowing equation orv, :

scendental equation, we obtain

~(2_/3 &
ve=| 57 vy

As one can see from Eq.12 and(3.15), the derivation of  The next step is to use the asymptotic formulaFgy(iy),
Eqg. (1.13 will be complete if we demonstrate thgp= ¢,

(B-118 g C(0)
E. (3.15) 277_|2

F2(2iv,)=E>2 (3.20

ie., that IIG(0Y;E)|?)n—(IN|G(0y;E)|?)=0(y). (Note , | (y+s\NL
that we are interested mainly in the cdB¢é=7%w./2.) Since Fn(iy)= \/: R eysa” (3.2)
such a calculation is not an easy task, we will only show that mYyS\ £

this relation holds foGM), whereM ~y/q, 1%. SuchM give
dominant contribution t4|G(0,y;E)|?), and presumably to s=\y?+4R?, (3.22
(In|G(0y;E)|?) as well.

To average the logarithm, we employ the replica trick valid for y> k;l. This way one obtains an approximate so-

, lution for v, . Finally, taking|E| to beAw./2, one recovers

n

(In|Gly= Iimd(i#. a1 O

n—0

] ] ) IV. LONG-RANGE RANDOM POTENTIAL:

Under the same kind of approximations as above and for DISCRETE LANDAU LEVELS

integern, (|GM)|2" is given by

In the preceding section devoted to short-range random

2n dpm potentials, we were able to deriéeby calculating the square

(IGM[2M) = ff [l —=Pn(pm) Pnlpm+En—Y)  modulus of the Green's function. Unfortunately, this is not
m=127l°E possible for a long-range random potential. The physical rea-

M n dq.” son is as follows.
xf f H k As we have shown in Sec. Il, the typical distankp,
k=1r=1 27E? between the locations of successive scattering events is of
the order of (%/d) £, whereL is some logarithmic factor. If
X D Col gy ,pf(ry)_a(kry)], (3.177  the random potential is long range>1, thenAp,<d and
Pk such scattering events can no longer be considered uncorre-

lated. One of the consequences is an enhanced probability of
pinholes discussed in Sec. Il. In other words, the local decay
" o Py(r) Ko TR rate of the wave functions with distance becomes very non-
ok stands fol“[q, '+ --- +q, "' +30, 7]. Thereare  ynjform. In turn, the Green’s functio®(0,y;E), even with
altogethem! permutationsP, for eachk; therefore, the com- the resonant tunneling configurations excluded, exhibits
plete expression is a rather complicated summdj ¥ terms.  large fluctuations between different disorder realizations so
However, onlyn! terms in this sum are significant. Indeed, that|In(|G(0,y;E)|?)|>(In|G(0,y;E)|?)n], or &> &.
within the adopted approximation all the terms Wlﬂiw One look at Eq(3.17 is sufficient to predict that a dia-
_(,(kry)|>d for at least one ofk=1,2,... M should be grammatic calculation ofin|G(0,y;E)|?) is bound to be very
dropped. It is easy to find the differen@ry)—o-(kry) for the Cumbersome. The task is easier within a different approxi-
case of identical permutatior;,P,, ... Py, . In'this case Mation scheme, the WKB method. Some of the formulas
corresponding to this approximation have been previously
worked out by Tsukada and by Mil'nikov and SokoloV?
Suppose we want to find the solution of the Sclinger
equation00¢(py)= E#(py). Let us seek the solution in the
_?orm qﬁ(py) =exfdiS(py)]. The actionS(p,) can be expanded
in the series of the small parametéd. In the lowest ap-
proximation,S(p,) must satisfy the Hamilton-Jacoby equa-

where3 ,=3,_,"q{™I? and P, labels the permutations of
the superscripts of the s> ,q{?, . .. .q{"}. The quantity

iy — o) =pr—ppr for all k. Therefore, a single con-
straint|pr—ppl(,)|sd takes care of all thevl constraints
above. If, on the other hand, some of fgare not the same,
then the integration domain is much more restricted and th
value of the integral is small. Retaining only the terms cor-
responding to identical permutations, we immediately find

that tion
IGM[=nt G, (318 s
Taking the limitn—0, we obtain from her& UO( '2,9_,)ylpy) =E,
In(|G™)|%),—C
<|n|G(M)|>2 <| 2| >nr . (319 so that
We think that the same relation holdsGf™ is replaced by B(p,)~ex '_prd,] odm |,
the total Green’s functios(0,y; E) and soé,= &. Y 12
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where p,(py) is a solution(generally speaking, a complex given by formula(1.13. A more accurate statement is as

one of the equation follows. If the individual Landau levels are well resolved in
the density of states, then for arbitrary rambef the random

Uo(px.py) =E. (4.9 potential¢ can be found from the same “master” equation

The meaning of this equation is quite transparent. It is known
that the motion of the guiding center in classically permitted

r_egions s a drift along the_ level lines of the average_,-d POteN- | ot ys familiarize ourselves with the properties of the
tial U, (see Ref. 11 Equation(4.1) means that the trajectory equipotential contourdevel line9 of the potentialg in the

of the guiding center in classically forbidden regions is still analf s ; ;
. . X i ; pace{(u,v,p,),v=0}. An important property is the
level line although obtained by analytical continuation to theContour densityP(v,E),

three-dimensional spadgu,v,p,)} whereu=Re p, andv
=—1Im py.

The WKB-type formula for the Green’s function in the P(v,E)={ X 8(v—v,) d(u—uy)
guiding center representation is "

Co(2il?/&,0)=E2. (4.6)

(for isotropic random potentidl ; this quantity depends nei-

G (p1.psiE) = [ D sgn(p2—p1) ther onu nor onp,). The functionP(v,E) proves to be the
1:M2 -
P 124 \/[r?Uo/r?P;n)]py:pl[ﬁUo/5P§<n)]py:p2 sum of three terms
i oo P(v,E)=Py(v,E)+Py(v,E)+P3(E) 6(v), (4.7
) exr{ - |_2J'P1 dpyps"(py) . 42 \where
where the superscript labels different solutiong{”=u, S
—iv, of Eq. (4.1) in the complex half space sgn, Pi(v,E)= W e : (4.9
=sgn(p,— p4). If we study the tunneling from point (0,0) to
(0y) wherey>0, then this will typically be the upper half _E%Q
spacev,=0. Using Egs.(2.7) and (4.2 and neglecting all P,(v,E)= e T— z(iJrE) 4.9
the pre-exponential factors, we obtain the following estimate 20 2mJOQR Q R/ '

for G(0,y;E):
(O¥:E) andQ, R, S, andT are

G~ ex

n

2 2 i
F{_un(owun(y) LYy | Q=Co(2iv,0)+Co(0,0),

o Y Odpy px (py)

SinceU, is a random potential, it is natural to assume that R=Co(2iv,0)=C(0,0),

the phase factors corresponding to diffenernn this sum are N Lo )
uncorrelated; therefore, S=3 dQ/dv, T=3 d°Q/dv”. (4.10

Except for the termP;(v), our formulas are in agreement

Un(0)*+ui(y) 2 (v : )
|G|2~2 exd — n\yJ) _J dpywi(py)|. (43 with Refs. 14 and 26. This term, however, does not play any
n |2 [2)o TYIMEYIT T role in the subsequent calculation. The derivation of Egs.
(4.8 and(4.9) can be found in the Appendix.
Consequently¢ can be calculated as The behavior of the functionB; andP, is illustrated by

Fig. 6. The functionP, has a sharp maximum at=v,
(4.4) whereQ=E2. Away from the maximum it is exponentially
' ' small. The functionP, is exponentially small at <v, and

, _ . _ assumes the asymptotic for@,(v,E)xv@ A/(B~1) at ¢
Itis possible to demonstrate that the first term in the square.,, . For example, if3=2, then P,(v,E)— 1/md? (see

brackets is typically much smaller than the second ONeFig. 6). The ratioP, /P, evaluated at the point, is of the

2
un(y) y
o + jo dpy Un(Py)

which leads to order of INE/W>1 in the case of interest. At close tov,
12 our expression essentially coincides with E§.20 of Ref.

=, (4.5  14. Note, however, that the latter equation is off by.4
ming, (vn) Let us clarify the origin of the sharp maximum k(v ,E)

atv=v, . To this end the concept of bands of harmonics
introduced in Sec. Il is very helpful. So let us consider a
1y band with g, in the interval §—3Aq,q+3Aq) whereq
(vp)=lim yfo dpy vn(py). >Aq>0. The amplitude of each harmonldy(qy,py) is
yoe enhanced by the fact@®” upon the analytic continuation
- : into the upper half space. Therefore, the typical value of the
The problem of calculating mj{v,,) turns out to be rather into 1 )
difficult and we have not been able to solve it exactly. How-cOMPined amplituddJq(p) of the bandsee Eq.(Zl./%B) for
ever, we will give arguments that mjfv)=v, [v, was the definitio grows from Wy(0)~[Co(q,0)Aq]™* at v
introduced in Sec. II; see Eq3.13]. Therefore,¢ is still =0 to W,(v)~[Co(q,0)Aq]"?e® at v>0. Being the

where(v,,) is the average “height” of thenth level line,



57 LOCALIZATION LENGTH AT THE RESISTIVITY ... 4623

Doing the integration, we arrive at

2~2
P(v,E)= E9 ) euq (4.16

mQ
which, in fact, coincides withP,(v,E) providedv>d. In
this approximation thel,, form an equidistant sat,, ;—up,
=2mlq, <1/d, while v, does not depend on. The equi-
potential contours resemble a number of uniformly spaced
parallel rods, which “soar” above the real plane=0, stay-
ing very close to the “standard heightt =v, for most
values ofp, . Indeed, as discussed aboigee also Fig. §
the function P; has a sharp maximum at=v, . Since
FIG. 6. Functions;(v,E) andP,(v,E). The vertical axis is in dinQ/dv=2q, , the width of the maximum is of the order of

units of 142 The parameters used in generating the plotare L/dx - This, of course, can be seen directly from E413:
=2 andE/W=5. If |V| has its typical valuéV, thenv,=v, . Fluctuations of

|V| change the logarithritypically) by a number of the order
of unity; therefore, ordinarilyjv,—v,|=1/q, . Significant
deviations from the standard height are exponentially
rare. We believe that such a description accurately portrays
the behavior of therelevant equipotential contours in the
1/ 2y |\ UB-D) upper half space, which means tifat,)=v, for such con-
Oy (v)= a( F) , (4.1)  tours, and thereforé is given by the old formuld1.13).

As one can see from Eg&t.7)—(4.9) and (4.16), our ap-
providedB>1 andv>d. [In view of Eq.(3.15), this formula  Proximate treatment does not capture the td?pfv,E) in
is just another parametrization of. originally defined by P(v,E), which seems to be important for>v . . Therefore,
Eq.(2.23 as a function of.] Generally speaking, the width the possibility of mip(v,) being larger tharv, cannot be
of the maximum depends om and 3, but in a particular totally ignored. Although we cannot rigorously prove that
example, 3=2, it is simply Aq~1/d. Hence, at a given Min(vy=v,, we managed to find thepper boundfor
height v in our three-dimensional space, the potentialm'nn<vn>,
Uo(px,py) is typically dominated by the band of harmonics

05

0.0

product of the rapidly decreasing functi@y(q,0) and the
exponentially growing factoe, this quantity has a sharp
maximum atq=q, (v),

of width Aq centered ag, (v). Consequently, the spatial min(u,)<v, +0(1) d, (4.17)
dependence o), is almost plane-wave-likeUy(py,py) 3
«e!Pdx () This prompts the decomposition based on the following percolation-type arguments.
) Suppose that there exists a level line number
Uo(p)=€'"%)V(p) (412 yg[p{™,p,]=E, which is totally contained in a slab
of U, into the “oscillating part” €'”x% () and a “smooth {(U,v,py),0=v=vo}. In this case Migv,)<(vm<vo. This
part” V(p). prompts considering the following percolation problem. Let

us call “wet” all the points (,v,p,) of the slab that satisfy

The intersection points of the level lingé$,=E with a i
P & the conditions

vertical planep,= 7 satisfy the system of equations

1 V| ReUg(u—iv,py)<E, ImUy(u—iv,p,)=<0.
Un= U4 (V) Inf’ (4.13 As the thickness o of the slab increases from zero, it should
eventually reach a critical valug., at which the percolation
27 through wet regions first appears. The percolation threshold
un=q*(vn)arg\/+ RCAE (4149 4_is at the same time the upper bound for giR).

Obviously, no percolation exists foly<v, when the wet
The modulugV/| of the complex Gaussian variablehas the  regions occupy an exponentially small fraction of the vol-
Maxwellian distribution with the characteristic widthy ~ ume. On the other hand, ib;>v,, then ((ReUgy)?)
given by ={(Im Uy)?)=Q/2>E? and approximately a quarter of the
entire volume is wet. This greatly exceeds the volume frac-
WP=(|V(p)|?)=e 2%)Q, (419  tion 0.17 required for the percolation in continual three-
dimensional problem¥ thus suchv, are high above the
percolation threshold. Furthermore, the relation between the
percolation thresholds of the continuum and of a #isug-
gests thav . must be equal to, + Cd, whereC~1, which
leads to Eq(4.17).
Finally, let us comment on the relation of our approach to
v+ i InM). that of Raikh and Shahbazy4ralready mentioned above. In
e W Ref. 14 the idea of the complex trajectorigg”(p,)

whereQ is defined by Eq(4.10. In the first approximation
let us neglect the dependence\bbn p, (which corresponds
to the limit of an infinitesimally narrow bandyg—0); then
P(v,E) is given by

= 2\V| d|V
P(v,E)=g—;J’O 2vidivi 1'/\}2' | e VW5
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=Un(py) —ivn(py), Which is the basis of our calculation of the quence of an effective substitution of the original two-
Green’s function, was introduced. However, an approximadimensional random potential by a potential depending on a
tion early in their analysigdropping of the cross product in single coordinate.

Eq. (2.8 of Ref. 14 led the authors of Ref. 14 to the result,

which in our notations can be written
V. OVERLAPPING LANDAU LEVELS

This section is devoted to the derivation of Ef.10. An
important difference from all the preceding calculations is
that the potential energy=Er— A w.(N+ 3) is smaller than

i i
G,(0y;E)= I—QE [07Uo/9P§<n)]leXF{l—2 y pi(y/2)
n

(the derivative is taken at,=y/2). As one carsee, in their : g ;
methodG,(0,y;E) is deterT”nined not by the entire tunneling the amphtudeW(_) of the (it)verag_ed pOtem'MO(p.)' In this
trajectory, as it shoulfisee Eq.(4.2)], but only by its mid- case the level lineso[ p, ™, py]=E introduced in Sec. IV
point p,=y/2. As a result, the point-to-point Green’s func- stay predominantly in the real plame=0. [Their density is
tion G(0y:E) obtained by their method starts to be in error, 9IVeN by Ps(v,E); see Eq.(4.7).] However, forE+0 the
strictly speaking, already for=d. The only case where the percolation of the IeveI. lines in the dllrectlon' dlscussed at
method of Raikh and Shahbazymvorks for arbitraryy is the en_d of the preceding section still requires brief excur-
the case of a one-dimensional potential, elgq(X,y) sions into the upper complex half space. Such excursions
=U((X). A potential of this type has the same magnitude a{'nk together the large cIOS(_ad Ic_)op contow_§=l_5 of_typ|cal
the midpointy/2 and at all other pointg. (From the formal  diameteré,e(E). The localization lengtl is still given by
point of view, only for this type of potential does the afore- Ed- (4.9, which leads to the estimate
mentioned cross product vanish for ayyand can therefore |2 E
be dropped. ~ Eperd E)
The reduction of the properties of the entire trajectory to (V)ex Ap
the properties of a single point destroys the self-averaging
the localization length, which is a well-established propert
of other disordered systerisBecause of that, it becomes
necessary to treaf as a function ofy. As we mentioned
above, for agiven disorder realizatiotthe value ofG(0,y;E)
given by the formulas of Ref. 14 is in error already fpr
=d. However, this is not so for the quanti¢in|G(0,y;E)|).
Thelogarithmic averagingnanages to mask the error so that
&(y) remains close to the correct asymptotic value given by W2
Eq. (1.13 for sufficiently short distanceg<d expE/W2). £~ £rerd E) ——-. (5.2
Indeed, if one uses the last equation above, then one obtains Ed?

(5.9

cU\/here the subscript “ex” indicates that the averaging is per-
Yformed only over the “excursions,” i.e., over the parts with
v>0, with Ap being the typical length of such parts. Simi-
larly to the casé =0 discussed previously by Mil’nikov and
Sokolov? (v)e~Ap~(|E|/UJ)Y? where Uj~W,/d? is

the typical value of the second derivatives of the averaged
potentialU,; therefore,

The calculation of the quantit§,.{ E) is a subject of statis-

|G|2~> expl — E[uﬁ(y/2)+y va(y/2)] tical topography? and the following results are established.
n 12 Denote byC, the integral

instead of Eq(4.3) and

C f 4 Co(q)
1 1 [uiyr2) . %<‘q|)\<1(277)2 0
) )z—zmln +v,a(y/2) (4.18 N
) 1% For slowly decaying correlator€,(q), such thatC, ~ 2"

with H<0 and —H=3/4, §,. is given by (in addition to

. < 2 .. .
instead of Eq.(4.4). If y<d expE /WCZ’)’ the minimum is the review in Ref. 18, see the original works of Ref) 28

typically supplied by one of the trajectories whose height
is not too d!fferent from the standard. value of , |v, Eperd E)~d |Wo/E| =M. (5.3
—v,|=d. This range ofv, allows foru, in the rangeu,|

< \Jyd. Therefore, the optimal trajectory is typically one of Otherwise, i.e., ifC, decays faster than %2, thert®
aboutM =/y/d trajectories closest to the=0 axis. Note

that M increases withy. Eventually, aty~d expE%/WS) it Eperd E)~d [Wo/E[*. (5.9
becomes exponentially large so that there is an appreciable ) . ,
probability that one out of sucM trajectories has ,(y/2) Let us now determine the conditions under which formu-

<v, 12 and|u,(y/2)|2<yd/2. The decay rate E(y) in this las (5.3) and (5.4 becgme applicable. The issue is compli-
case is determined by such an untypical trajectory and seated by the fact thaCy(q) is the product of two terms
&(y) is significantly larger than our result, E€L.13. Fur-  C,(q) and[Fy(ql?)]?; see Eq.(2.21). The former decays
thermore, ay>d expCEZIVVS), there is a finite probability of exponentially starting frongq~1/d. The latter remains close
finding v,(y/2) exactly equal to zerfdue to the third term to one atgs1/R., then behaves according to a power law
in Eq. (4.7)]. Therefore, in the asymptotic limig— the [Fy(ql?)]?~1/q for 1/R,<q<2kg, and finally decays ex-
method of Raikh and ShahbazyArields a very surprising ponentially atg>2kg. Such a complicated behavior results
result 1£(y)—0. As we explained above, this is a conse-in three different regime&l.109—(1.109.
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Eoere boot-shaped regioAHIGEB in Fig. 1), the density of states
4/3 develops sharp peaks at the Landau level centers separated
R by deep minima. This strongly influences the property of the

electron gas to screen the external impurity potential. Differ-
2 ent aspects of such a screeningrieakmagnetic fields have
been addressed in Refs. 29-31. The screening can be both
linear and nonlinear, depending on the wave veqgtor

d The concept of nonlinear screening has been developed
by Shklovskii and Efros initially for the three-dimensional
case’ Gergel and Sur® have extended it to the two-

0 (R/d)" R./d WIE dimensional case. The influence of a strong magnetic field on
the nonlinear screening has been studied in Ref. 33 and es-
pecially in Ref. 34.

Nonlinear screening is realized for sufficiently small
d<dnon» @nd is enhanced compared to the zero-field case
[Eq. (6.2)]. The threshold wave vectar,,,, is a complicated
function of the magnetic field! If g, is smaller than 1R,
there exists an intermediate range @f 4,on<q<1/R.,
where the screening remains in the linear regime but is sup-
pressed compared to E@.2). The corresponding dielectric
function is given by>*°

FIG. 7. Percolation lengtig,.c as a function of the energy
(schematically. The labels 2 and 4/3 indicate the power-law expo-
nents in the corresponding intervals; see &5).

The simplest is the cage,<d, where[ Fy(ql?)]?=1 for
all relevantq. In this case Eq(5.4) applies and alsi,
=W. The localization length is given by E¢L.10g, which
coincides with the result of Mil'nikov and Sokold¥.

If R.>d, then the situation is more complicated. In this
caseC, is proportional to 1X, i.e., H=—13 for d<A<R,,
yet decays faster than 192 for A>R;. As a result, both

2
Egs. (5.9 and(5.4) for &, may apply, depending oB, () =x| 1+ ? . 6.3
d?| W2 d |E] [d °
RJE| R.-wW™ VR,
£ {E)~ ¢ ¢ ¢ (5.5 At even largerq, q>maxdsen, 1/R¢}, there is no essential
per d 4/3 d ' change in the screening properties brought about by the mag-
Rl=——= , |El<W=, netic field.
R E Re Clearly, in such magnetic fields the model of a Gaussian

which is illustrated by Fig. 7. Combining E@5.2), where ~random potential with the correlat¢.1) becomes an over-

Wo~Wd/R,, with Eq. (5.5 and using|E|=%w./2, one simplification. Fortunately, the localization lengéhshould
obtains Eqs(ci.lot) and (1.100. o not be strongly affected by this. Indeeflis sensitive only to
the combined amplitude of the narrow band of harmonics

with wave vectorsg=q, . It can be shown that foB=1,

VI. DISCUSSION OF A MORE REALISTIC MODEL o} 22k|: (jUSt like for the white-noise pOtentblThlS wave

AND ITS COMPARISON WITH THE EXPERIMENT vector belongs to the last group qffor which there is no
change in the screening properties. In fact, at sqcthe

To make the connection with the experimental practicescreening is equally ineffective both in zero and in arbitrary
we will consider the model where the random potential isstrong magnetic fields(2kg)= .
created by randomly positioned ionized donors with two-  The parametekd is almost always larger than one in the
dimensional density; set back from the electron gas by an experiment; therefore, in strong fieldsis expected to be

undoped layer of widthd. We will assume that °<n;  given by Eq.(1.13. For 8=1 this formula becomes remark-
<n?d?. In a zero magnetic field the random potential can beably simple,

considered a weak Gaussian random potential with the cor-
relator 12 R,

N =g
C(q)=n?n,(e%ap)? e 2, 6.0 d ked

whereag=#%2k/mé’ is the effective Bohr radiugsee Ap- The simplest way to obtain this expression is to start with
pendix B of Ref. 11 This formula corresponds =1 and  Eq. (1.13 for g>1, take the limit3—1, and then make a
d replaced by & in Eq.(1.12. In deriving Eq.(6.1) we took  replacementd—2d (see above For ked close to unity,
into account the screening of the donors’ potential by théhowever, one should use a refined formula

electron gas described by the dielectric function

R
3

2 = : (6.4)
1+ 220" q=2kKg. (6.2 ked+ 2In(A wc /W)
B

e(q)=«

This model remains accurate in sufficiently weak fields,which follows from the master equatids.6). Formula(6.4)
where the Landau levels overlap and the density of states ghould hold in the boot-shaped regi&HIGEB of Fig. 1.
almost uniform, like in the zero field. In stronger fieldlke = The corresponding range df can be expressed in terms of



4626 M. M. FOGLER, A. YU. DOBIN, AND B. I. SHKLOVSKII 57

the dimensionless parametégsd andn; /n. We will concen-  think that a different type of measurement may be more
trate on the case;~n, which we call standard. In this case promising. One has to measure both the temperature and the
Eq. (6.4) is valid for N=<2kgd. At largerN, the localization current dependence of the magnetoresistance. Comparing the
length is given by Eq(1.10 so that the dependence §fon  results of these two types of measurements, one can deter-
v is superlinear. Note that the standard case corresponds toine theeffective temperaturef for each value of the cur-

the straight-line “trajectory” passing through the poirfls  rent densityj. As discussed in Ref. 6, the relation between
and F and shown by the arrows in Fig. 1. Between thesel ¢ andj is

points, Eq.(1.10 reduces to

Kg Ter(j)=0.5€]jpyy &, (6.9
g N3/2
R e 2ked<N=C(kgd)®3, (6.5  where p,, is the Hall resistivity. Equatior(6.8) does not
¢ (kgd) involve the dielectric function and therefore is expected to

) _ ) hold even when Eq(1.3) and the corresponding current
where C is some undetermined numerical factor. At eve”dependenéepxxoce‘ VToTTei® do not match the magnetore-
largerN, & becomes exponentially large, which precludes itSgistance data exactly.
accurate measurement at experimentally accessible tempera-
tures. For this reason we do not give the explicit formula for
the localization length at sudN.
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EF andHI become quite close.
With the help of Eq.(1.4), we convertedl, reported by
Ebertet al? into £. Only evenv were selected for this analy-

sis. The constant factor in Eq1.4) was chosen to be 6.0 APPENDIX: LEVEL LINE DENSITY  P(v.E)

following Nguyen®® For filling factorsyv=2 andv=4, i.e., The equationU,=E is equivalent to the system of two
N=1 andN=2, there is a good agreement with E§.4) if equationsR=E and|=0, whereR=Re Uy(u—iv,p,) and
the logarithm in the denominator is neglected. At larger |=—1Im Uy(u—iv,py). To calculateP(v,E) we need to
6<v=<12, empirical¢ behaves roughly like know the Jacobiad=|d(R,1)/d(u,v)|. With the help of the

Cauchy relations
E~2.2N%R, . (6.6)
JRIdv=29lldu, JIRIJu=—3lldv,

Formally, this is in agreement with E¢(6.5). However, since
the parametekgd is close to one, the random potential can-the Jacobian can be written as
not be treated as long range and so the percolation picture
used in the derivation of Eq6.5) is not quite justified. Per- J=R%+12,
haps it is more reasonable to treat E6.6) as an approxi- o
mation to the exponential dependeri&&y. (1.8)] within a  \where subscripts denote the partial derivatives. Therefore,
limited range ofv. for all v#0,

Another comment is in order here. Formulad) is based
on the assumption that the interaction energy of two quasi-
particles separated by a typical hopping distands given P(v,E)= f dR dR didl, S(R—E) 8(1) (R2+1?)
by the Coulomb law. As shown in Ref. 30, with a dielectric (27)?%(deK)? v
function given by Eq(6.3), the Coulomb law is realized only
at sufficiently large distances> RglaB. Large hopping dis- Xexp( _ EVTK%V
tancesr correspond to low temperatur€B= (£/4r)2T,. 2
Therefore, formulg1.4) is expected to hold only for

, (A1)

wherev is the four-component vectoR(R, ,I,1,) T andK is

2 its autocorrelation matrix,,,=(vwn). Matrix K turns out
T< aig To. (6.7) to be block diagonal, the blocks being2 matrices. Matrix
4R§ elements ofK can be calculated using E@l.5. For ex-

ample, the upper diagonal block has elemeiis=Q/2,
Experimentally, such low temperatures may be hard to reach;,=K,;=5/2, andK,,=R/2 [see Eq.(4.10 for defini-
especially in weak fields wherg, is large. Therefore, we tions]. The subsequent integration ovRy andl, in formula



57

(A1) becomes a trivial task and yields the result represente
by Eqgs.(4.8) and (4.9).

The casev =0 requires a special consideration because

the conditionl =0 is satisfied identically. It is easy to see
that a level line would typically branch upon the intersection

with thev =0 plane. The additional branch or branches are

totally contained in this plane, which gives the
S-function-like contribution to functioP(v,E). The coeffi-
cient in front of thed-function is given by
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d

IU

27 (Ky1Kgg) 2 AR-E) LI

P3(E):f

X exf — (R%/2Ky1) — (12/2K )]

| VCo(0) o EU2W2,
Co(0)

As expectedP5(E) is exponentially small fotE|>W,,.
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