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Theory of terahertz/near-infrared optical mixing in quantum wells in strong magnetic fields
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Recently, strong near-band-gap emission lines, or sidebands, were discovered in undoped GaAs quantum
wells illuminated simultaneously by near-infrared and terah@rttz) radiation in strong magnetic fields.
Konoet al, Phys. Rev. Lett79, 1758(1997 and references therdinNe have developed a perturbation theory
for this phenomenon. Assuming that the THz radiation induces transitions between magnetoexciton levels, we
modeled the sideband generation as a third-order optical process and obtained the susceptibility. Our theory
successfully explains all the observed features of the sidebands. Moreover, we have shown that the magnetic-
field dependence of the sideband intensities exhibits a rich spectrum of resonances that originate from intraex-
citon transitions, demonstrating the power and usefulness of sideband generation in relation to magnetoexciton
spectroscopy.S0163-182@8)08708-9

I. INTRODUCTION These experiments were mostly done in the regime
f><|$ In, Wherel; andly are the intensities of the THz and

Electromagnetic radiation in the THz regim@®.1-10 near-infrared(NIR) radiation, respectively. This suggests
THz) is unique in that it lies between photons and ac electrichat the sideband generation can be described as a third-order
fields, sharing the characteristics of both. Moreover, it coversionlinear optical process.
the important energy range of intersubband transitions in In this paper, we present a perturbation theory for the THz
quantum-confined semiconductor structures, which is exsideband generation based on a magnetoexciton model. It
tremely important for infrared detector/emitter applications.will be shown that the theory gives a semiguantitative expla-
Despite these interests, however, the interaction of strongation to all the experimental findings mentioned above. Fur-
THz radiation with matter has long remained unexplored, athermore, we will demonstrate that the resonances in-fBe
least experimentally, due to the lack of a tunable coherenturve provide valuable information on ttsep and s-s in-
source of THz radiation. The advent of free-electron ldserstraexciton transition energies, rendering sideband generation
that are continuously tunable in the THz range filled this gap new class of magnetoexciton spectroscopy.
and aroused keen interest in the THz physics of condensed The outline of our paper is as follows. Section Il is de-
matter, in particular, mesoscopic semiconductor structures:oted to the formalism and general conclusions drawn from
Striking discoveries have already been reported concerning. In Sec. Il A, we define the perturbation processes respon-
the transpofi® as well as optical properties of such THz- sible for the sideband generation. It is followed by Sec. Il B

driven system&-1° where we discuss our magnetoexciton model and describe
The present paper concerns the resonant THz sidebambw its eigenstates are calculated. This section is rather
generation discovered recently in undopedsketchy, more details being given in Appendixes A and B.

GaAs/ALGa,_As multiple quantum wellsMQW’s).1*"®  The results of these two subsections are combined in Sec.
In these experiments, when the sample is illuminated simult C to obtain the expression for the third-order susceptibility
taneously by THz(frequency wt) and near-infraredfre- . This expression is then analyzed in terms of resonances
guencywy) radiation, strong and sharp sidebands with fre-(Sec. Il D) and polarization dependen¢8ec. Il B. The re-
guencieswy* 2wy are observed(Higher-order sidebands sults of numerical calculations are presented and compared
with frequenciesoy* 4wy are also observed, but we will not with experiment in Sec. lli(and also in Appendix £ A
consider them in the present papéefrhe experimental find- summary of conclusions is given in Sec. IV. Throughout the
ings can be summarized as followd) The sidebands are paper we will use the unit=1.

observable only whewy is tuned to an interbank.g., Is

heavy-hole(HH)] exciton absorption peak. No sidebands are ||, FORMULATION AND GENERAL CONSIDERATIONS
observed whenwy is below the band gap or between two )

exciton absorption peak&.g., w1<wn<w,s). (2) When A. Perturbation processes

wy is tuned to the lowest (§ HH exciton peak ), the We consider a nondope MQW placed in a perpendicular
lower (wy—2wt) sideband is absent, and only the uppermagnetic field and calculate third-order optical susceptibility
(wn+2w7) sideband is observed. By is tuned to higher tensorsy for the sidebands defined 1y

(2s or 3s) exciton peaks, both the upper and lower side-
bands are observabl€3) The sideband intensitids exhibit
pronounced resonances as functions of magnetic Held)

I is maximum(minimum) for linearly (circularly) polarized
THz radiation. (upper sideband (1a)

P (on+20m)= 24 xij B (0B (0n) Bl (on)
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B B Upper Sideband
P§+><wN—2wT>=% Xii Ej (@D E[(0n)E{ (o) o> <al lg> <gl
® ®
(lower sidebany (1b) ‘I%L‘Y YN
wherei,j,k,| denote the in-layer Cartesian coordinatesnd /,\N\"[i B\%k
y, and P(")(w) is defined through the Fourier expan- “’T/N@'a oy, O
sion of the polarization:P(t) == ,{P")(w,)exp(—iwmt) "’T/N\N' ”bu,,kwT
+PO) (o) expliont)! (om>0). Namely, P*)(w) are the oy @y
positive (+) and negative {) frequency components. To Ig> <gl| 9> <g|
ensure thaP(t) is real, P (w)=[P()(w)]* must be sat- @ o)

isfied. A similar decomposition is carried out for the electric
field E(t) as well. We assume that the propagation directions
of the THz and NIR beam&lane wavesare normal to the
MQW. Because of this and because the wavelengths of the
beams are much larger than the well width, we can neglect

Lower Sideband

9> <4g| lg> <gl

the coordinate dependenceft) andE(t). © \% A@/ @
Let us study the time evolution of the electrons in a well. v v

At zero temperature and in a strong magnetic field, the sys- NB B

tem is initially in its ground statég) with all the valence- ® a‘%\ or

band Landau leveld._L’s) filled and all the conduction-band T)‘N\Y/ o ‘%L\

LL's empty. In the electron-hole picture, this is the vacuum (’)T/N\N’ \7”’1/\(07

state with no electron or hole. We can safely assume that the Oy On

NIR and THz beams induce only interband and intraband Ig> <gl 19> <g|

transitions, respectively. Then, the THz radiation cannot per- @) (®)

turb this ground state. The first possible transition is a NIR
photon absorption that produces saxciton. This exciton is FIG. 1. Feynman diagrams for the density matrix describing the
excited to ap state by absorbing a THz photon, then into angeneration of the upperwy+ 2wy) sideband(a) and(b)] and the
s state by absorbing another THz photon, and finally recomlower (oy—2w+) sideband(a’) and (B)]. While the diagramsa)
bines to produce an up-converte@d\+2w7) photon.(The  and (d) have resonancesb) and (B) are nonresonant and are
first and the second states may or may not be the same. neglected in our calculations.
This gives rise to the upper sideband. The corresponding
Feynman diagrams for the density matrix are illustrated insition and momentum, respectively, of the electrdare
Figs. @) and Xb). On the other hand, if the two THz pho- massm, and charge-e). Furthermore, the matrix element
tons areemnte_d(sumulated emissionrather than apsorbed of an operato© between the unperturbed eigenstdtésnd
as shovyn in Figs. 1(a and 1(B), we have lower sideband lj) is denoted a0 —(i|0|j). The second equality of Eq.
generation ("N_.z“’T)' L (2) holds for interband polarization.

The expectation vaIL!e of the polarization can be ex- Let HyxE(wy) andH=E(w-) be the interaction Hamil-
pressed, using the density operatoras tonians describing the interaction of the electron system with

the NIR and THz fields, respectively, and sepatdfgr into

(20 positive and negative frequency parts ay 1(t)
=H{? exp(—iwy 1 ) +H explwy t). Applying the Feyn-
man rulé® to Fig. 1(a), and inserting the resulting expression
of p,p into Eg. (2), we obtain

—ie PabTha
P=tr(—epr)=—2, ———,

(—epr) Mo 2t ou
where wj; = E;— E; with E; denoting theith eigenenergy of
the unperturbed Hamiltonian, amdand zr= —id/dr the po-

P (wy+2 )——i_e 71, HY 1l HE gl HY g
NI Mg By @yg(onE 207 @y T (0nT o1 0 tiT) (@n— @ugtil)

3

wherel'>0 is a phenomenological damping factor. In deriv- system we study is a MQW with GaAs wellsidth L) sepa-
ing Eq.(3), the contribution of Fig. (b), which has no reso- rated by infinitely high potential barriers. Since the orbital
nance, is neglected. degeneracy of the valence batuB) at thel” point is lifted
by the confinement potential, both the conduction be2i8)
and the valence band are assumed to be nondegefasate

To obtainy from Eq. (3), we first introduce a model for TOM SPIn degeneraayan%paraboli.c with massi. andmy,
the unperturbed exciton and determine its eigenstates. THESPectively t.,m,>0).*" Thus, in considering the elec-

B. Magnetoexciton states
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tronic structure of the system in the effective-mass approxi- The inclusion of thee-h Coulomb attractior{exciton ef-
mation, we need the following band-edgd’ (point)  fect) leads to the mixing of the functions of Eq&l) with
Bloch functions: |S)|1) and |S)||) for the CB and differentN but the same’,. Equationg4) are now replaced
—(IX)+i|Y)[1)/2 and (X)—i|Y))|1)/\2 for the VB® by
Here|S) and{|X),|Y),|Z)} are cell-periodic functions trans-
forming like atomics andp functions under the tetrahedral 1 L
group at thel' point, and|1) and||) denote spin-up and lao)=—=G,(r ){(2e) {(Zh) P o (T [KPyg o(1h)],
-down functions of spin 1/2. We represent these Bloch func- '
tions as® g ,(r) and®g ,(r) with =1 (—1) for spin up )
(down). .
) . . with
In a quantum well, confinement quantizes electronic mo-
tion ||z into subbands, and a magnetic field quantizes these
subbands into discrete LL's. We neglect the spin Zeeman — s/
effect for simplicity: therefore, the LL’s are spin degenerate. Gsi(1 )= Z‘l ci{r [n=1n-1), (6a)
In the effective-mass approximation, we can take account of
the confinement, and the magnetic field, and also ofethe
Coulomb attraction in terms of envelope functions that mul- T P(= )i/ T
tiply the Bloch functions. Below, we outline the procedures poi(1)= 2, e r In—1n) (6b)
followed to obtain these envelope functions, leaving the de-
tails to Appendix A. o
The ground stat¢g> is simply thee-h vacuum with all ) (= cﬁ(+)'i(r_|n,n—1>. (60)
VB (CB) LL's occupied(empty). As for the excited states, n=1
we only need to consider states with a singla pair with _ _
zero center-of-mass momentum and relative angular momerdere, €; ""',c; ", .. .) is theith eigenvector of the matrix
tum/,=0,1-1. If we neglect thee-h Coulomb interaction of the unperturbed exciton Hamiltonian, [Eq. (A10)] in
H. for the moment, the wave functions of these states can bne basis of Eqg4a), (4b), or (4c), and the low-field hydro-
written as genic notation[1s,2s,3s, ..., 2p(*),3p(*).4p(x), ...,
etcl] is used to label magnetoexciton states.
1 _ Having specified the unperturbed eigenstates, we can
—=(r IN=1N=1){(26) {(2) P cp o (Te) [KPyg, o(Th)] evaluate the transition matrix elements that appear in the
\E numerator of Eq(3). In the effective-mass approximation,
Hy andH+ operate, respectively, on the Bloch part and the
(/,=0), (48  envelope function part of the electron wave function and,
therefore, need separate treatments. Using the vector poten-
tial Ay=—cJEydt in Hy=(e/cmy)Ay- 77, one obtains

[

1
—(r IN=1N)(z:)(zp) P (re) [KPyg o(h) _ )
\/§< | )£(2e){(2p) P o(Te) [KPyg 4(1h)] Hiy= — (ie/mpan) (E5 e ont— EC o) o (7)

(/,=1), (4b)  The matrix element ofr between/ao) as given by Eq(5)
and the vacuum|g) can be obtained by a standard
procedure?® The result reads

1
TS< rIN,N=1)(26) {(zh) P o (re) [KPyp o(Th)]

1
wg,m;:EGa(O)Rm, ®
(/,=-1), (40)

1
where K is the time-reversal operatory=(Xe,Ye,Zs) and w%w EXCITON LANDAU LEVEL
rn=(Xn,Yn,Z,) are the coordinates of the electron and hole,
respectively, andS is the area of the well. Furthermore, Y n"s (n=1,n£1)
r=r.—r, is the e-h relative coordinate, and a bar over a T \‘><'/
vector signifies its projection onto they (well) plane, i.e., /\Y\;Q\( B | o) (n+1.n) (nn1)
r=(x,y,0). The(r NN’} is the envelope function describ- o7 T \ /
ing the relative motion of the uncorrelateeh pair with the /J@‘( o ns
electron(hole) occupying Landau leveN (N’). Equations or
(4) are based on the assumption that e/ ue’ [= exciton /\&\X\S\f
Bohr radius~100 A in GaAs; u=(1/m+1/m,) ! is the lg>

reduced magsso that the envelope functions are separable
into z-dependent parts and in-layer paftepending orx,y FIG. 2. Possible intermediate states 8, andy when thee-h
only) and further that only the ground subbavdave func-  Coulomb interaction is includetfexciton” picture) and neglected
tion £(z)] needs to be considered. (“Landau level” picture.
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where R= —i(X|my|S)=—i(Y|m,|S) is the interband ma- with
trix element, andp,= (7, ,7y,) iS a spin-dependent factor

defined by»,,= —io and 5,,=—1. Inserting this into Eq. X :.f T Tk _ yZ —
(7), we get Alg=1] dorG,(r )*| dlox 2§/zy Gg(r),
R (11a
T
[HN larg=5——Gu(O*EV - #5. (9 o i _
\/EmowN AB;B:if d?r G,(r )*(a/ay+ 5 /2X Gg(r),
The derivation of the matrix elements ldf; needs a more & (11b)
elaborate treatment and is discussed in Appendix A. The ‘ .
final result is where/ = \c/Be and é=(1/me— 1/my) .

C. Expression for susceptibility x;jx

ie
(*) _ (*) pAX (F)pY
[HT Jyo 0 i,uwT(EX Arst By AYR) oo Inserting Eqs(7)—(10) into Eqg. (3) and using the defini-

(100  tion of y [Eq. (1)], we get

Ne'R’E; AL pAEl Gal0)]* G,(0)

2m2ulwiwy aBy @yg(ONF207— wgHil) (onE o1~ g+ i) (on— wag+iT) '

Xijkl = (12
where the uppeflower) sign corresponds to the uppgower) sideband, an@&; =X ,— +17i,(7,)*. In Eq.(12), the number
of well layers per unit thicknesN is included. Throughout this paper, we $t! (MQW period to be 250 A~
In the B— oo limit, the Coulomb interaction becomes negligible and'= 8,;. Thus thee-h pair statea, 8, or y in Eq.
(12) becomes a product of electron and hole Landau wave functions. The possible perturbation processes in this LL picture is
depicted also in Fig. 2. After some algelifsppendix B, Eq. (12) reduces to

©

— i k
NB2e’R?E, , max(n,n") B, Bon

87TC2m(2)w$wN n=0 n/—p+1 mgwnn(wNi 20— oy til) (onyTor— opptil) (o= opn i)

Xijkl =

k

" ol
max(n,n") B, .Bnn
MEonn(Wn* 207— 0pnt+iT) (On* 07— 0py +iT) (0= 0pntiT)
" ol k
max(n,n") B, Bnry

memhwn,n,(wNiZwT— wn,n,+ir)(wNi [OF e wn,n-l—iF)(wN—wnn-i-iF)

M) B (13)
MeMh@n i (ONE207— @pry D) (0nE 01— ony D) (0y— g +il) |

where Bh..1=Fi, Bh,:1=1 and w,y=Egt+w.(n Note that the left-hand side of E(L40 is equal to the side-
+1/2)+ wcp(n’+1/2) with n,n’=0,1,2.... (The prime band frequency. If two of the above conditions are simulta-
over then’ summation indicates’=0.) neously satisfied, we have a double resonance. Limiting our-

It can be shown thag;;, as given by Eq(12) or (13) selves to the case that the first conditipg. (14a)] is
vanishes ifi#| and the nonvanishing elements obey thesatisfied, a double resonance occurs when

symmetry relations: xyyxx= Xxyyx— Xyxxy— Xyyyyr  Xxxyx

= , 15
= 7 Xxyxx— Xyxyy— — Xyyxy: “NT Pns (153
WT= Wprp(+)— Wngs 15b
D. Resonance structure ofyijy T n'ReE) ns (15b)
The zeroes of the denominator of Efj2) determine reso-
nances. For the upper sideband, these resonances are ON= Ops, (163
= c. 14

wN (1)13,(1)23, ! ( a wT:(wan(i)_ wns)/Z (16b)

ONF OT= Wop(+),W3p(+)s - - - (14b  with n=1 andn’,n"=2.

The resonance conditions for the lower sideband are ob-
ONT20T=W1g, W5, -+« - . (140  tained by simply replacing by — wy in Egs.(14)—(16).
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FIG. 3. Calculated magnetoexciton energies fbr=100
A (dashed curvésand L=0 (solid curve$. For comparison, the

energies calculated without the Coulomb interaction are plotted by

dash-dotted curves.

E. THz polarization dependence of sideband intensity

Suppose the THz radiation is circularly polarized
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FIG. 4. The upper panel presenig = xyxxd for the upper side-
band calculated as a function Bf with wy tuned tow;s at each

value ofB. The parameters used ang=115 cm %, L=100 A, and

I'=0.2 meV. The solid line denotes the result which takes into

(Ey=*iEy). Then the sideband intensity vanishes becausaccount thee-h Coulomb attraction(exciton model, while the

EijijkIEjEkZO due to the Symmetrie&ix)d:)(iyw and
Xixyl= — Xiyxi mentioned in Sec. Il C.

dashed line neglects it. Experimental sideband intensity is presented
in the lower panel.

This is more readily understood from Fig. 2. The genera-

t!on of the upper sideband, for exgmple, involves the absorpg,e upper sideband calculated as a functioB afith w, set
tion of two THz photons. Assuming that these photons A'@qual tow,, at each value of BHere o7 is fixed at 115

right circularly polarized, their absorption can orifcrease
the exciton angular momentum, i.e»®(+) andp(—)—s
transitions are allowed bw— p(—) andp(+)—s are for-
bidden. As a result, one of the two THz transitions is forbid-
den, leading to vanishing sideband intensity. The same co
clusion holds also for left circular polarization. If, however,
the THz photons are linearly polariz€80%—50% mixture
of right and left curcular polarizationsboth of the two THz

cm ! andL=100 A. The solid and dashed lines are plots

with and without thee-h attraction, respectively. Both curves

exhibit three main peaks, in qualitative agreement with ex-
eriment (lower panel of Fig. 4 but the curve withe-h
jttraction gives much better overall agreement. It, however,
fails to reproduce the precise resonance posit®pns This
discrepancy, we believe, is mainly due to our neglect of the
valence-band complexity. The resonant magnetic fiBlds

transitions are allowed. Obviously, the sideband intensity i$yoq,,ced by using in E412) the exciton energies calculated

maximum for linear polarization. This result is fully sup-
ported by experimerit

Ill. NUMERICAL RESULTS

A. Magnetoexciton spectrum

We diagonalize numerically the unperturbed exciton(

Hamiltonian[Eg. (A10)]. The material parameters used are
m,=0.067, m,=1/(y,+ v,) with y;,=6.85 andy,=2.1,
€=12.5, andR=1.294x 10" '° g cm/s. Figure 3 presents the
calculated exciton eigenenergies far=100 A (dashed
curved and L=0 (solid curve$. For L=100 A, 40 basis
functions were found to be sufficient f&>2 T. The two-
dimensional limit L =0), which requires a much larger ba-
sis sef® was calculated using up to 300 basis functions. Fo
comparison, the energies obtained withett Coulomb at-
traction (Landau levelsare plotted by dash-dotted curves.

The energies and wave functions thus obtained are used
Egs.(12) or (13) to gety;jy - Hereafter, we limit our discus-
sion to its diagonal element= xyyxx-

B. Magnetic-field dependence ofy
The upper panel of Fig. 4 presents the modulug dbr

r

by Bauer and Andé! who took into account the valence-
band nonparabolicity, are indicated in Fig. 4 by arrows at the
top. Agreement with experiment is indeed better compared to
our parabolic approximation.

Since the first resonance condition Ed4a is satisfied
wn= wys) at each magnetic field, the peaks in Fig. 4 repre-
sent double resonances as given by EfSb) and(16b), and
are attributed to intraexciton transitions-2p(#) and 1s-

In Fig. 4, the peak heights increase wih This reflects
the B dependence of the numerator of HE42), which is
governed by the factord\,,, and G_(0). In the limit
of vanishing Coulomb interactiofor B—x), A, ~B
and G,(0)~+B [Egs. (Bl) and (B2)]. Therefore,
A, Az, G,(0)]* G,(0)~B?, which accounts for the pref-
actorB? in Eq. (13). Even in the presence of the Coulomb

theraction,AyﬁABa[Ga(O)]*GY(O) is roughly proportional
{8 B2 for B>2 T. This ~ B2 variation of the numerator of

Eq. (12) explains the increasing peak heightBsgncreases.
However, y at double resonance is also affected by the de-
nominator, i.e., how far away the third resonance is. This can
cause significant deviation from the simpteB? depen-
dence.
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FIG. 5. Calculatedy| for the upper(solid line) and the lower .
(dashed ling sideband forwy tuned to 5, 2s, and 3 exciton FIG. 6. Calculated_x| vs wy for both the upper sidebaritop
absorption energies. The parameters used afe 144 cm ?, pane) and the lower sideban@econd panel from the bottonThe
L=100 A andl'=0.2 meV. parameters used asgr=115 cm L, L=100 A,'=0.2 meV, andB

is chosen to be 6.705 T, which corresponds to the middle peak in
The bottom panel of Fig. 5 plots the intensities of both thethe upper panel of Fig. 4. Presented immediately below the theoret-
upper and lower sidebandsolid and dashed curves, respec-ical results are the corresponding experiments.
tively) with wy tuned, as before, t@,5. (The other param- . )
eters araoy= 144 cr * andL =100 A. Here and afterwards, "ances. As for the lower sideband, the lowest peak is the 2
all the numerical results include theeh attraction) Unlike ~ résonance, because there is rorésonance for the reason
the upper sideband, the lower sideband has no resonance a#dted previously(This is a rough interpretation, because
is smaller by three orders of magnitude than the upper. Thi§ach of the broadened peaks actually consists of many reso-
is readily explained by Eqg15) and (16), with the sign of ~nant peaks. o _
w7 reversed. Sinces,.=w,, the right-hand sides of Egs. Figure 7 plots the resonant magnetic fields veksysvith
(15b) and (16b) are positive, while the left-hand sides are @~ tuned towys. As wr changes, the &2p(—) and Is-2s
negative, leaving no chance for equalities to hold. peaks are seen to switch. This indicates that the order of the
This i:s no longer the case iy is tuned to a higher peaks is a subtle issue and may only be determined from a
exciton absorption peak. This is exemplified in the middieSOPhisticated magnetoexciton theory taking fully into ac-
and upper panels of Fig. 5, illustrating the casgg=w,, Ccount the valence-band nonparabolicity.

and wg, respectively. The many peaks originate from vari- 2 T
ous s-p and s-s intraexciton transitions, demonstrating the . 15-2p() -
usefulness of the sideband generation as a new magnetoex- 20F A 3
citon spectroscopy. . ’ ]
15F ]

C. Radiation frequency dependence of e ]

x also exhibits resonances as a functionegf. The re- ®10F 1s2s ]
sults of the calculation fowt=115 cn ! andL =100 A are sk ]
presented in Fig. 6 for both the upper and lower sidebands, b e ]
together with corresponding experiments. To improve agree- obin. ../. M

ment with experiment, we have broadened jHevy) ob-
tained from Eq.(12) by convoluting it with a Gaussian of
half-width 3 meV. The overall agreement with experiment is
satisfactory. FIG. 7. Resonant magnetic fields for the upper sideband, calcu-

In Fig. 6, the peaks for the upper sideband can be roughliated for variousoy, are plotted vsor. Herewy=w;5, L=100 A,
ascribed, from left to right, to 4, 2s, and 3 exciton reso- andI'=0.2 meV.
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20 spectroscopy. Obviously this sideband spectroscopy should

have a wide range of applications. Especially interesting tar-
- get systems are semiconductor nanostructures such as quan-
tum dots.

In this paper, we have focused our discussion on the
wn* 2wt sidebands for which experiment has already gen-
erated much knowledge. As for the weaken*4wt
sidebands? we believe that they can also be described by a
. straightforward generalization of our theory.

15

10

(10° esu)
(9]
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APPENDIX A: DETAILS OF THE MAGNETOEXCITON
CALCULATION

N W 00 O

Taking the symmetric gauge for the magnetic figlk,
the effective-mass Hamiltonian of a magnetoexciton interact-

2 4 6 8 10 12 14 ing with THz radiation(vector potentialArL z) reads
B(T)

1/(— ¢ — ¢ \?

FIG. 8. | x| for the upper sideband calculated as a functioB of H' = E, —| pi— —BX ri— —'AT
L iZeh2m; 2c C

The results fol.=80 A and 0(2D limit) are compared. ' !

2

e
o (A1)

D. Well width dependence ofy + >

i=eh

Figure 8 comparely| versusB for L=80 A and O(two- 2m,
dimensional limii for wy=w.s and wr=144 cm . Al- wherero.=(Xe,Ye,Ze) andr,=(Xy,Yn,2zn) denote the elec-
though all the peaks move towards largemsL increases, tron and hole coordinates, respectively, ,=—id/drep,

the s-p peaks move faster than tises peaks. Fol.=80 A,  r=re—r,, €>0 the elementary charge, and the projection of
the dominant resonances result from transitions between a@-vector onto the well plane is indicated by an overbar. Fur-
jacent symmetry-allowed statgds-2p(=) and 1s-2s]. As  thermore,e is the static dielectric constanty, and e; the

L decreases, transitions to more distant levelg., 1s-3s) effective mass and the charge, respectively, of the electron
become stronger as seen in the large3% and 1s-4s peaks (i=e€) and hole {=h), and c the velocity of light in

for L=0. This is understood from the fact that the Coulombvacuum. In Eq.(Al), the spin Zeeman effect is neglected,
interaction becomes more important las-0. If the Cou- and therefore spin indices are suppressed throughout this ap-
lomb interaction is negligible, transitions take place only be-pendix.

tween adjacent exciton levelge., starting from %, only Performing a unitary transformation
transitions to (=) and X are allowed. This is a conse- ) -
quence of the well-known selection rule between Landau U=exd(—ie/2c)B-(reXrp)]

levelsAn=*1. Thus transitions to more distant states suchy, 4’ and assuming the exciton center-of-mass momentum
as 1s-3s contribute only when the Coulomb interaction is 5iong the well to vanish, we obtain

sufficiently strong, i.e., ilL or B is small.
H=UH'UT=Hy+Hq, (A2a)
IV. CONCLUDING REMARKS
Ho=H,p+H, +H, (A2Db)
Our simple perturbation theory based on a magnetoexci- .
ton model provides semiquantitative explanations to all theVith
main characteristics of the sidebands observed experimen-
tally. Although some qualitative features of the experiment Hop= (
may be explained without considering teenh Coulomb at- iZeh 2m;
traction, we found it essential to include the exciton effect.
Our magnetoexciton calculation was based on a simple _

! AN . H = >
parabolic approximation. One can improve the results by us- iZen
ing in Eq. (12) the wave functions and energies obtained
from a more sophisticated exciton theory. Thus @¢) will e?
serve as a useful test of magnetoexciton theories. He=——, (A30)

We have shown how the resonance structure of the side-
bands can be related, with the aid of our theory, to exciton
internal transitions. This demonstrates the usefulness of the Hi=—As p+
sideband generation phenomenon as a new magnetoexciton me

, (A3a)

2
( Piz +V(zi)), (A3b)

e —
2§CZAT-(B><r ). (A3d)



57

Herep=—idglor, w *=m;*+m, !, andé t=m;1—m; .

The term quadratic i\ is irrelevant and therefore ignored.
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The matrix elements dfl, are

As for the confinement, we assume a simple hard-wall p0{<n’,n’+s|H0|n,n+s))

tential:

0, —L/2<z<L/2
V(z)= o, otherwise. (A4)

Now we introduce creation and annihilation operators t

describe the dynamics in they plane2%%2

= (ata'+b+bh) (A5a)
\E H
i/( T—b+b") (A5b)
=—=(a—a — s
2
alax= ! (a—a'+b—b") (A5c)
2\2/ ’
i
alay= +at—b-b"), A5d
y 2ﬁ/(a a ) (A5d)

where /= \/c/Be is the magnetic length. The operatas
and b satisfy Bose commutation relations, aadand a'
commute withb andb™. This transformsH ,p into

Hop= wce(aTa+ %)"_ wch(bTb_" %), (A6)

wherew..=eB/m.,c andw.,=eB/mc are the electron and
hole cyclotron frequencies, respectively. Equatiohe)

shows thaiTa andbb are the Landau indices for the elec-

= 8o [Eog+ wee(N+1/2) + wen(N+5+1/2)]

2

e 1
_:<<n ,n +S\/ﬁ n,n+s>>, (AlO)

Qwith z-quantization energy:

2
Eo,= 2al? (Al1)
Using
1 1(d’q =
— e q|z\//elq~r// (AlZ)
Jriezz /) 2mq ’

the Coulomb matrix elements in EGA10) can be trans-

formed into
2

<<n’,n’+s

1 d2q I At iq-rl/ 7
=7f m(n ,n'+sle'% " |n,n+s)l(qg//),

1

r2+z

(A13)
with

L/2 L/2
I(a)= f dz f d20{(26) ¢ (25) %€ 1% %,
—L/2 —L/2
(A14)

tron and hole, respectively. Denoting the eigenfunctions of

H,p as|n(=a'a),m(=b'b)) (n,m=0,1,2 . ..) andassum-

Integration of Eq.(A14) with Eq. (A8) is straightforward.

ing that the barrier confinement is comparable or strongef he resulting formula, which is quite lengthy, is found to be

than thee-h Coulomb confinement, i.eL,< e/ ue? (exciton

Bohr radiug, we construct the following approximate basis

functions:

[nm))=In.m){(ze){(zn), (A7)

where{(2) is the lowest eigenfunction dfi, (|z|<L/2),

2 @z
{(z2)= \[Ecosr.

(A8)

Now we diagonalize the quasi-2D exciton Hamiltonian

Ho=H,p+H, +H. using{

n,m))} as the basis. Sinckl,

conserves the component of the exciton angular momen-
tum /,=a'a—b'b,?* diagonalization can be carried out

separately in the,=0,—1,1 subspace§or s, p(—) and
p(+) subspaces in the loB- hydrogenic notatioh These

well approximated by

—2qL/3

+

3 9
I(q)= e

L 2q2L2

On the other hand, by transforming the first factor in the
integrand of Eq.(A13) using Egs.(A5), Eq. (A13) can be

reduced t8>??
n,n+ s> >

1
<<n ,n +S\/ﬁ
1 NI(N+s)! F
V27 VN'I(N' +5)!
XLN TNOOLN MO0 (V2x1 ),

whereN=min(n,n’), N’=max(n,n’), andLm'(x) is a gen-
eralized Laguerre polynomial. In the 2D limitL{0),

A15
22 (A15)

efoN'follz

0

(Al16)

I(g)=1 and Eq.(A16) can be further simplified by the
Gauss formuld®

Diagonalization of the matrix of Eq(A10) gives the
eigenfunctions ofH; in the form of the following linear

subspaces are spanned by the following functions
(n=1,23...):

Yp=In—1n-1)), (A9a)

yh ' =In—1n)), (A9b)

yh ' =Inn—1)). (A9c)

combination:
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2 ey i (1)=6i(Nizd(z),  (AL7) A= f dzr—G;(r—)(ﬁ,ﬁx_Z;I;Zy%ﬁ(r—),
with (A233)
Gei(r )=2> c3(r [n-1n—1),  (Al83 A =i f dzﬁs’;(r_)( G4(1).
(A23h)
Using Eqgs.(A18) and (A5), Egs.(A23) can be reduced to
Gp(—y,i(1)=2 ch7(r [n—1n),  (A18b)
A);B:[Azy]* \/— E \/—[Cy] ()\ecn+1 hcﬁ),
Gpii(r Z cPH(r |n,n—1).  (A180) (A243)
. ) AY =[AL ]*=—iA%,, (A24b)
Here c; ',c; ', ...) denotes theth eigenvector of Eq. 8 Ay 7B

(A10), which we normalize to 1, i.eSc, '[2=1. This If v isap(+) state ang3 is ans state, and
ensures that, iy, *(r )’s are normalized to 1 in the whole
(2D) space, so do the exciton envelope functi@ns (r ).

To obtain G,;(r=0), which we need to calculate the  A)p=[Ag,]*= \/— 2 N ONTIRE W)
matrix elements of Hy [Eq. (9)], we note that

— ) ) . (A253)
(r In=1n-1) is an /,=0 eigenfunction ofH,y [Eq.
(A3a)].22 Solving the corresponding Sclfiager equation in
the coordinate representation, we get the normalized solu- AyB:[A = 'AXB (A25h)
tions: ¥B°
if y is a p(—) state andB is an s state. Here
Ne=2mg/(My+me) andhp=2my/(m,+m.).
— —r?
rln—1n—1)= L. (r22/2 - Bsw
(r| )= \/—/ Ve a( ). APPENDIX B: B—o LIMIT
(A19) In this limit, ¢, ' = &,; . Inserting this into Eq(A20), we
Therefore get
Gsi(r=0)=2, c(r=0/n-1n—1)= ! S 1
S T ’ NP G i(r=0)= (B1)
(A20) vam/

Transforming Eqs(A24) and (A25) in the similar way, and
using the LL representations for the statesetc., as ex-
plained in the text, we get

Finally, the full envelope function, including the trivial
center-of-mass part{1/\/S; Sis the area of the well reads

_ 1 _
F.(r, Rzs,z,)=—=G,(r){(z Zh), A21 i . M
ol eZn) 7 (r)8(ze)¢(zp) (A21) A= o /mﬁn . (B2a)
o/
where « is shorthand fofs,i}, {p(—),i}, or {p(+),i}, and
R is the center-of-mass coordinate. This function is normal- i M
ized to unity according t¢|F,|?d?r d’Rdzdz,=1, where Annt n™= 2my/ maxn.n’) By, (B2b)
the R integration cancels th8 in the denominator.
Now we proceed to the calculation of the matrix elements i w
of Hy. Inserting Ar=(—ic/w)(E{e Tett—E{elet) Annnn=" 5 /\/max(n n) B s (B2¢)
into Hy and taking its matrix element betweén, andF g, Me”
we get

Ao = \/_ \/ma>(n n )Bn . (B2d)
[H1,= +T(E( N HES A, (A22) My
H wheren’=n=*1;i=x,y; B} ,.1=Fi, and B} ,.,=1. Us-
with ing Egs.(B2) in Eq. (12), we arrive at Eq(13)
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