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Theory of terahertz/near-infrared optical mixing in quantum wells in strong magnetic fields

Takeshi Inoshita, Junichiro Kono,* and Hiroyuki Sakaki
Quantum Transition Project, JST, 4-7-6-4F Komaba, Meguro-ku, Tokyo 153, Japan

and RCAST, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan
~Received 14 October 1997!

Recently, strong near-band-gap emission lines, or sidebands, were discovered in undoped GaAs quantum
wells illuminated simultaneously by near-infrared and terahertz~THz! radiation in strong magnetic fields@J.
Kono et al., Phys. Rev. Lett.79, 1758~1997! and references therein#. We have developed a perturbation theory
for this phenomenon. Assuming that the THz radiation induces transitions between magnetoexciton levels, we
modeled the sideband generation as a third-order optical process and obtained the susceptibility. Our theory
successfully explains all the observed features of the sidebands. Moreover, we have shown that the magnetic-
field dependence of the sideband intensities exhibits a rich spectrum of resonances that originate from intraex-
citon transitions, demonstrating the power and usefulness of sideband generation in relation to magnetoexciton
spectroscopy.@S0163-1829~98!08708-6#
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I. INTRODUCTION

Electromagnetic radiation in the THz regime~0.1–10
THz! is unique in that it lies between photons and ac elec
fields, sharing the characteristics of both. Moreover, it cov
the important energy range of intersubband transitions
quantum-confined semiconductor structures, which is
tremely important for infrared detector/emitter application
Despite these interests, however, the interaction of str
THz radiation with matter has long remained unexplored
least experimentally, due to the lack of a tunable coher
source of THz radiation. The advent of free-electron lase1

that are continuously tunable in the THz range filled this g
and aroused keen interest in the THz physics of conden
matter, in particular, mesoscopic semiconductor structu
Striking discoveries have already been reported concer
the transport2–8 as well as optical properties of such TH
driven systems.9–15

The present paper concerns the resonant THz sideb
generation discovered recently in undop
GaAs/AlxGa12xAs multiple quantum wells~MQW’s!.11–15

In these experiments, when the sample is illuminated sim
taneously by THz~frequencyvT) and near-infrared~fre-
quencyvN) radiation, strong and sharp sidebands with f
quenciesvN62vT are observed.~Higher-order sideband
with frequenciesvN64vT are also observed, but we will no
consider them in the present paper.! The experimental find-
ings can be summarized as follows:~1! The sidebands are
observable only whenvN is tuned to an interband@e.g., 1s
heavy-hole~HH!# exciton absorption peak. No sidebands a
observed whenvN is below the band gap or between tw
exciton absorption peaks~e.g., v1s,vN,v2s). ~2! When
vN is tuned to the lowest (1s) HH exciton peak (v1s), the
lower (vN22vT) sideband is absent, and only the upp
(vN12vT) sideband is observed. IfvN is tuned to higher
(2s or 3s) exciton peaks, both the upper and lower sid
bands are observable.~3! The sideband intensitiesI exhibit
pronounced resonances as functions of magnetic fieldB. ~4!
I is maximum~minimum! for linearly ~circularly! polarized
THz radiation.
570163-1829/98/57~8!/4604~10!/$15.00
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These experiments were mostly done in the regimI
}I T

2 I N , whereI T and I N are the intensities of the THz an
near-infrared~NIR! radiation, respectively. This sugges
that the sideband generation can be described as a third-o
nonlinear optical process.

In this paper, we present a perturbation theory for the T
sideband generation based on a magnetoexciton mode
will be shown that the theory gives a semiquantitative exp
nation to all the experimental findings mentioned above. F
thermore, we will demonstrate that the resonances in theI -B
curve provide valuable information on thes-p and s-s in-
traexciton transition energies, rendering sideband genera
a new class of magnetoexciton spectroscopy.

The outline of our paper is as follows. Section II is d
voted to the formalism and general conclusions drawn fr
it. In Sec. II A, we define the perturbation processes resp
sible for the sideband generation. It is followed by Sec. II
where we discuss our magnetoexciton model and desc
how its eigenstates are calculated. This section is ra
sketchy, more details being given in Appendixes A and
The results of these two subsections are combined in S
II C to obtain the expression for the third-order susceptibil
x. This expression is then analyzed in terms of resonan
~Sec. II D! and polarization dependence~Sec. II E!. The re-
sults of numerical calculations are presented and comp
with experiment in Sec. III~and also in Appendix C!. A
summary of conclusions is given in Sec. IV. Throughout t
paper we will use the unit\51.

II. FORMULATION AND GENERAL CONSIDERATIONS

A. Perturbation processes

We consider a nondope MQW placed in a perpendicu
magnetic field and calculate third-order optical susceptibi
tensorsx for the sidebands defined by16

Pi
~1 !~vN12vT!5(

jkl
x i jkl Ej

~1 !~vT!Ek
~1 !~vT!El

~1 !~vN!

~upper sideband!, ~1a!
4604 © 1998 The American Physical Society
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Pi
~1 !~vN22vT!5(

jkl
x i jkl Ej

~2 !~vT!Ek
~2 !~vT!El

~1 !~vN!

~ lower sideband!, ~1b!

wherei , j ,k,l denote the in-layer Cartesian coordinatesx and
y, and P(1)(v) is defined through the Fourier expa
sion of the polarization:P(t)5(m$P(1)(vm)exp(2ivmt)
1P(2)(vm)exp(ivmt)% (vm.0). Namely, P(6)(v) are the
positive (1) and negative (2) frequency components. T
ensure thatP(t) is real,P(1)(v)5@P(2)(v)#* must be sat-
isfied. A similar decomposition is carried out for the elect
field E(t) as well. We assume that the propagation directio
of the THz and NIR beams~plane waves! are normal to the
MQW. Because of this and because the wavelengths of
beams are much larger than the well width, we can neg
the coordinate dependence ofP(t) andE(t).

Let us study the time evolution of the electrons in a we
At zero temperature and in a strong magnetic field, the s
tem is initially in its ground stateug& with all the valence-
band Landau levels~LL’s ! filled and all the conduction-ban
LL’s empty. In the electron-hole picture, this is the vacuu
state with no electron or hole. We can safely assume tha
NIR and THz beams induce only interband and intraba
transitions, respectively. Then, the THz radiation cannot p
turb this ground state. The first possible transition is a N
photon absorption that produces ans exciton. This exciton is
excited to ap state by absorbing a THz photon, then into
s state by absorbing another THz photon, and finally reco
bines to produce an up-converted (vN12vT) photon.~The
first and the seconds states may or may not be the sam!
This gives rise to the upper sideband. The correspond
Feynman diagrams for the density matrix are illustrated
Figs. 1~a! and 1~b!. On the other hand, if the two THz pho
tons areemitted~stimulated emission! rather than absorbe
as shown in Figs. 1(a8) and 1(b8), we have lower sideband
generation (vN22vT).

The expectation value of the polarization can be
pressed, using the density operatorr, as

P5tr~2err!5
2 ie

m0
(
a,b

rabpba

vab
, ~2!

wherev i j 5Ei2Ej with Ei denoting thei th eigenenergy of
the unperturbed Hamiltonian, andr andp52 i ]/]r the po-
iv-

r
T
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sition and momentum, respectively, of the electron~bare
massm0 and charge2e). Furthermore, the matrix elemen
of an operatorO between the unperturbed eigenstatesu i & and
u j & is denoted asOi j 5^ i uOu j &. The second equality of Eq
~2! holds for interband polarization.

Let HN}E(vN) andHT}E(vT) be the interaction Hamil-
tonians describing the interaction of the electron system w
the NIR and THz fields, respectively, and separateHN,T into
positive and negative frequency parts asHN,T(t)
5HN,T

(1) exp(2ivN,T t)1HN,T
(2) exp(ivN,T t). Applying the Feyn-

man rule16 to Fig. 1~a!, and inserting the resulting expressio
of rab into Eq. ~2!, we obtain

FIG. 1. Feynman diagrams for the density matrix describing
generation of the upper (vN12vT) sideband@~a! and ~b!# and the
lower (vN22vT) sideband@(a8) and (b8)#. While the diagrams~a!
and (a8) have resonances,~b! and (b8) are nonresonant and ar
neglected in our calculations.
P~1 !~vN62vT!52
ie

m0
(

a,b,g

pgg@HT
~6 !#gb@HT

~6 !#ba@HN
~1 !#ag

vgg~vN62vT2vgg1 iG!~vN6vT2vbg1 iG!~vN2vag1 iG!
, ~3!
tal

-

whereG.0 is a phenomenological damping factor. In der
ing Eq. ~3!, the contribution of Fig. 1~b!, which has no reso-
nance, is neglected.

B. Magnetoexciton states

To obtainx from Eq. ~3!, we first introduce a model fo
the unperturbed exciton and determine its eigenstates.
 he

system we study is a MQW with GaAs wells~width L) sepa-
rated by infinitely high potential barriers. Since the orbi
degeneracy of the valence band~VB! at theG point is lifted
by the confinement potential, both the conduction band~CB!
and the valence band are assumed to be nondegenerate~aside
from spin degeneracy! and parabolic with massmc andmh ,
respectively (mc ,mh.0).17 Thus, in considering the elec
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4606 57INOSHITA, KONO, AND SAKAKI
tronic structure of the system in the effective-mass appro
mation, we need the following band-edge (G point!
Bloch functions: uS&u↑& and uS&u↓& for the CB and
2(uX&1 i uY&)u↑&/A2 and (uX&2 i uY&)u↓&/A2 for the VB.18

HereuS& and$uX&,uY&,uZ&% are cell-periodic functions trans
forming like atomics and p functions under the tetrahedra
group at theG point, andu↑& and u↓& denote spin-up and
-down functions of spin 1/2. We represent these Bloch fu
tions asFCB,s(r) andFVB,s(r) with s51 (21) for spin up
~down!.

In a quantum well, confinement quantizes electronic m
tion iz into subbands, and a magnetic field quantizes th
subbands into discrete LL’s. We neglect the spin Zeem
effect for simplicity: therefore, the LL’s are spin degenera
In the effective-mass approximation, we can take accoun
the confinement, and the magnetic field, and also of thee-h
Coulomb attraction in terms of envelope functions that m
tiply the Bloch functions. Below, we outline the procedur
followed to obtain these envelope functions, leaving the
tails to Appendix A.

The ground stateug& is simply thee-h vacuum with all
VB ~CB! LL’s occupied~empty!. As for the excited states
we only need to consider states with a singlee-h pair with
zero center-of-mass momentum and relative angular mom
tum l z50,1,21. If we neglect thee-h Coulomb interaction
Hc for the moment, the wave functions of these states can
written as

1

AS
^ r̄ uN21,N21&z~ze!z~zh!FCB,s~re!@KFVB,s~rh!#

~ l z50!, ~4a!

1

AS
^ r̄ uN21,N&z~ze!z~zh!FCB,s~re!@KFVB,s~rh!#

~ l z51!, ~4b!

1

AS
^ r̄ uN,N21&z~ze!z~zh!FCB,s~re!@KFVB,s~rh!#

~ l z521!, ~4c!

where K is the time-reversal operator,re5(xe ,ye ,ze) and
rh5(xh ,yh ,zh) are the coordinates of the electron and ho
respectively, andS is the area of the well. Furthermore
r5re2rh is the e-h relative coordinate, and a bar over
vector signifies its projection onto thex-y ~well! plane, i.e.,
r̄ 5(x,y,0). The^ r̄ uNN8& is the envelope function describ
ing the relative motion of the uncorrelatede-h pair with the
electron~hole! occupying Landau levelN (N8). Equations
~4! are based on the assumption thatL&e/me2 @5 exciton
Bohr radius;100 Å in GaAs;m5(1/me11/mh)21 is the
reduced mass#, so that the envelope functions are separa
into z-dependent parts and in-layer parts~depending onx,y
only! and further that only the ground subband@wave func-
tion z(z)# needs to be considered.
i-
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The inclusion of thee-h Coulomb attraction~exciton ef-
fect! leads to the mixing of the functions of Eqs.~4! with
differentN but the samel z . Equations~4! are now replaced
by

uas&5
1

AS
Ga~ r̄ !z~ze!z~zh!FCB,s~re!@KFVB,s~rh!#,

~5!

with

Gs,i~ r̄ !5 (
n51

`

cn
s,i^ r̄ un21,n21&, ~6a!

Gp~2 !,i~ r̄ !5 (
n51

`

cn
p~2 !,i^ r̄ un21,n&, ~6b!

Gp~1 !,i~ r̄ !5 (
n51

`

cn
p~1 !,i^ r̄ un,n21&. ~6c!

Here, (c1
. . . ,i ,c2

. . . ,i , . . . ) is thei th eigenvector of the matrix
of the unperturbed exciton HamiltonianH0 @Eq. ~A10!# in
the basis of Eqs.~4a!, ~4b!, or ~4c!, and the low-field hydro-
genic notation@1s,2s,3s, . . . , 2p(6),3p(6),4p(6), . . . ,
etc.# is used to label magnetoexciton states.

Having specified the unperturbed eigenstates, we
evaluate the transition matrix elements that appear in
numerator of Eq.~3!. In the effective-mass approximation
HN andHT operate, respectively, on the Bloch part and t
envelope function part of the electron wave function an
therefore, need separate treatments. Using the vector po
tial AN52c*ENdt in HN5(e/cm0)AN•p, one obtains

HN52~ ie/m0vN!~EN
~1 !e2 ivNt2EN

~2 !eivNt!•p. ~7!

The matrix element ofp betweenuas& as given by Eq.~5!
and the vacuumug& can be obtained by a standa
procedure.19 The result reads

pg,as5
1

A2
Ga~0!Rhs , ~8!

FIG. 2. Possible intermediate statesa, b, andg when thee-h
Coulomb interaction is included~‘‘exciton’’ picture! and neglected
~‘‘Landau level’’ picture!.
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where R52 i ^XupxuS&52 i ^YupyuS& is the interband ma-
trix element, andhs5(hxs ,hys) is a spin-dependent facto
defined byhxs52 is andhys521. Inserting this into Eq.
~7!, we get

@HN
~6 !#as,g5

7 ieR

A2m0vN

Ga~0!* EN
~6 !

•hs* . ~9!

The derivation of the matrix elements ofHT needs a more
elaborate treatment and is discussed in Appendix A. T
final result is

@HT
~6 !#gs,bs856

ie

mvT
~Ex

~6 !Agb
x 1Ey

~6 !Agb
y !dss8,

~10!
he
e

with

Agb
x 5 i E d2 r̄ Gg~ r̄ !* S ]/]x2

im

2jl 2
yD Gb~ r̄ !,

~11a!

Agb
y 5 i E d2 r̄ Gg~ r̄ !* S ]/]y1

im

2jl 2
xD Gb~ r̄ !,

~11b!

wherel 5Ac/Be andj5(1/me21/mh)21.

C. Expression for susceptibility x i jkl

Inserting Eqs.~7!–~10! into Eq. ~3! and using the defini-
tion of x @Eq. ~1!#, we get
picture is
x i jkl 5
Ne4R2J i l

2m0
2m2vT

2vN
(
abg

Agb
j Aba

k @Ga~0!#* Gg~0!

vgg~vN62vT2vgg1 iG!~vN6vT2vbg1 iG!~vN2vag1 iG!
, ~12!

where the upper~lower! sign corresponds to the upper~lower! sideband, andJ i l 5(s561h is(h ls)* . In Eq. ~12!, the number
of well layers per unit thicknessN is included. Throughout this paper, we setN21 ~MQW period! to be 250 Å.11–15

In the B→` limit, the Coulomb interaction becomes negligible andcn
...,i5dni . Thus thee-h pair statea, b, or g in Eq.

~12! becomes a product of electron and hole Landau wave functions. The possible perturbation processes in this LL
depicted also in Fig. 2. After some algebra~Appendix B!, Eq. ~12! reduces to

x i jkl 5
NB2e6R2J i l

8pc2m0
2vT

2vN
(
n50

`

( 8
n85n61

F max~n,n8!bnn8
j bn8n

k

me
2vnn~vN62vT2vnn1 iG!~vN6vT2vn8n1 iG!~vN2vnn1 iG!

1
max~n,n8!bn8n

j bnn8
k

mh
2vnn~vN62vT2vnn1 iG!~vN6vT2vnn81 iG!~vN2vnn1 iG!

2
max~n,n8!bnn8

j bn8n
k

memhvn8n8~vN62vT2vn8n81 iG!~vN6vT2vn8n1 iG!~vN2vnn1 iG!

2
max~n,n8!bn8n

j bnn8
k

memhvn8n8~vN62vT2vn8n81 iG!~vN6vT2vnn81 iG!~vN2vnn1 iG!
G , ~13!
ta-
ur-

ob-
where bn,n61
x 57 i , bn,n61

y 51 and vnn85Eg1vce(n
11/2)1vch(n811/2) with n,n850,1,2, . . . . ~The prime
over then8 summation indicatesn8>0.!

It can be shown thatx i jkl as given by Eq.~12! or ~13!
vanishes if iÞ l and the nonvanishing elements obey t
symmetry relations: xxxxx5xxyyx5xyxxy5xyyyy, xxxyx
52xxyxx5xyxyy52xyyxy.

D. Resonance structure ofx i jkl

The zeroes of the denominator of Eq.~12! determine reso-
nances. For the upper sideband, these resonances are

vN5v1s ,v2s , . . . , ~14a!

vN1vT5v2p~6 ! ,v3p~6 ! , . . . , ~14b!

vN12vT5v1s ,v2s , . . . . ~14c!
Note that the left-hand side of Eq.~14c! is equal to the side-
band frequency. If two of the above conditions are simul
neously satisfied, we have a double resonance. Limiting o
selves to the case that the first condition@Eq. ~14a!# is
satisfied, a double resonance occurs when

vN5vns , ~15a!

vT5vn8p~6 !2vns , ~15b!

or

vN5vns , ~16a!

vT5~vn9p~6 !2vns!/2 ~16b!

with n>1 andn8,n9>2.
The resonance conditions for the lower sideband are

tained by simply replacingvT by 2vT in Eqs.~14!–~16!.
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4608 57INOSHITA, KONO, AND SAKAKI
E. THz polarization dependence of sideband intensity

Suppose the THz radiation is circularly polarize
(Ey56 iEx). Then the sideband intensity vanishes beca
( jkx i jkl EjEk50 due to the symmetriesx ixxl5x iyyl and
x ixyl52x iyxl mentioned in Sec. II C.

This is more readily understood from Fig. 2. The gene
tion of the upper sideband, for example, involves the abso
tion of two THz photons. Assuming that these photons
right circularly polarized, their absorption can onlyincrease
the exciton angular momentum, i.e., s→p(1) andp(2)→s
transitions are allowed buts→p(2) and p(1)→s are for-
bidden. As a result, one of the two THz transitions is forb
den, leading to vanishing sideband intensity. The same c
clusion holds also for left circular polarization. If, howeve
the THz photons are linearly polarized~50%–50% mixture
of right and left curcular polarizations!, both of the two THz
transitions are allowed. Obviously, the sideband intensity
maximum for linear polarization. This result is fully sup
ported by experiment.15

III. NUMERICAL RESULTS

A. Magnetoexciton spectrum

We diagonalize numerically the unperturbed excit
Hamiltonian@Eq. ~A10!#. The material parameters used a
me50.067, mh51/(g11g2) with g156.85 and g252.1,
e512.5, andR51.294310219 g cm/s. Figure 3 presents th
calculated exciton eigenenergies forL5100 Å ~dashed
curves! and L50 ~solid curves!. For L5100 Å, 40 basis
functions were found to be sufficient forB.2 T. The two-
dimensional limit (L50), which requires a much larger ba
sis set,20 was calculated using up to 300 basis functions. F
comparison, the energies obtained withoute-h Coulomb at-
traction ~Landau levels! are plotted by dash-dotted curves

The energies and wave functions thus obtained are use
Eqs.~12! or ~13! to getx i jkl . Hereafter, we limit our discus
sion to its diagonal elementx[xxxxx.

B. Magnetic-field dependence ofx

The upper panel of Fig. 4 presents the modulus ofx for

FIG. 3. Calculated magnetoexciton energies forL5100
Å ~dashed curves! and L50 ~solid curves!. For comparison, the
energies calculated without the Coulomb interaction are plotted
dash-dotted curves.
e

-
p-
e

-
n-

is

r

in

the upper sideband calculated as a function ofB with vN set
equal tov1s at each value of B. Here vT is fixed at 115
cm21 and L5100 Å. The solid and dashed lines are plo
with and without thee-h attraction, respectively. Both curve
exhibit three main peaks, in qualitative agreement with
periment ~lower panel of Fig. 4!, but the curve withe-h
attraction gives much better overall agreement. It, howev
fails to reproduce the precise resonance positionsBres. This
discrepancy, we believe, is mainly due to our neglect of
valence-band complexity. The resonant magnetic fieldsBres
deduced by using in Eq.~12! the exciton energies calculate
by Bauer and Ando,21 who took into account the valence
band nonparabolicity, are indicated in Fig. 4 by arrows at
top. Agreement with experiment is indeed better compare
our parabolic approximation.

Since the first resonance condition Eq.~14a! is satisfied
(vN5v1s) at each magnetic field, the peaks in Fig. 4 rep
sent double resonances as given by Eqs.~15b! and~16b!, and
are attributed to intraexciton transitions 1s-2p(6) and 1s-
2s.

In Fig. 4, the peak heights increase withB. This reflects
the B dependence of the numerator of Eq.~12!, which is
governed by the factorsAaa8 and Ga(0). In the limit
of vanishing Coulomb interaction~or B→`), Aaa8 ;AB
and Ga(0);AB @Eqs. ~B1! and ~B2!#. Therefore,
AgbAba@Ga(0)#* Gg(0);B2, which accounts for the pref
actor B2 in Eq. ~13!. Even in the presence of the Coulom
interaction,AgbAba@Ga(0)#* Gg(0) is roughly proportional
to B2 for B.2 T. This ;B2 variation of the numerator o
Eq. ~12! explains the increasing peak height asB increases.
However,x at double resonance is also affected by the
nominator, i.e., how far away the third resonance is. This
cause significant deviation from the simple;B2 depen-
dence.

y

FIG. 4. The upper panel presentsuxu5uxxxxxu for the upper side-
band calculated as a function ofB with vN tuned tov1s at each
value ofB. The parameters used arevT5115 cm21, L5100 Å, and
G50.2 meV. The solid line denotes the result which takes i
account thee-h Coulomb attraction~exciton model!, while the
dashed line neglects it. Experimental sideband intensity is prese
in the lower panel.
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The bottom panel of Fig. 5 plots the intensities of both t
upper and lower sidebands~solid and dashed curves, respe
tively! with vN tuned, as before, tov1s . ~The other param-
eters arevT5144 cm21 andL5100 Å. Here and afterwards
all the numerical results include thee-h attraction.! Unlike
the upper sideband, the lower sideband has no resonanc
is smaller by three orders of magnitude than the upper. T
is readily explained by Eqs.~15! and ~16!, with the sign of
vT reversed. Sincevns5v1s , the right-hand sides of Eqs
~15b! and ~16b! are positive, while the left-hand sides a
negative, leaving no chance for equalities to hold.

This is no longer the case ifvN is tuned to a higher
exciton absorption peak. This is exemplified in the midd
and upper panels of Fig. 5, illustrating the casesvN5v2s
andv3s , respectively. The many peaks originate from va
ous s-p and s-s intraexciton transitions, demonstrating th
usefulness of the sideband generation as a new magne
citon spectroscopy.

C. Radiation frequency dependence ofx

x also exhibits resonances as a function ofvN . The re-
sults of the calculation forvT5115 cm21 andL5100 Å are
presented in Fig. 6 for both the upper and lower sideban
together with corresponding experiments. To improve agr
ment with experiment, we have broadened thex(vN) ob-
tained from Eq.~12! by convoluting it with a Gaussian o
half-width 3 meV. The overall agreement with experiment
satisfactory.

In Fig. 6, the peaks for the upper sideband can be roug
ascribed, from left to right, to 1s, 2s, and 3s exciton reso-

FIG. 5. Calculateduxu for the upper~solid line! and the lower
~dashed line! sideband forvN tuned to 1s, 2s, and 3s exciton
absorption energies. The parameters used arevT5144 cm21,
L5100 Å, andG50.2 meV.
e
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and
is
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ex-
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e-

ly

nances. As for the lower sideband, the lowest peak is thes
resonance, because there is no 1s resonance for the reaso
stated previously.~This is a rough interpretation, becaus
each of the broadened peaks actually consists of many r
nant peaks.!

Figure 7 plots the resonant magnetic fields versusvT with
vN tuned tov1s . As vT changes, the 1s-2p(2) and 1s-2s
peaks are seen to switch. This indicates that the order of
peaks is a subtle issue and may only be determined fro
sophisticated magnetoexciton theory taking fully into a
count the valence-band nonparabolicity.

FIG. 6. Calculateduxu vs vN for both the upper sideband~top
panel! and the lower sideband~second panel from the bottom!. The
parameters used arevT5115 cm21, L5100 Å,G50.2 meV, andB
is chosen to be 6.705 T, which corresponds to the middle pea
the upper panel of Fig. 4. Presented immediately below the theo
ical results are the corresponding experiments.

FIG. 7. Resonant magnetic fields for the upper sideband, ca
lated for variousvT , are plotted vsvT . HerevN5v1s , L5100 Å,
andG50.2 meV.
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D. Well width dependence ofx

Figure 8 comparesuxu versusB for L580 Å and 0~two-
dimensional limit! for vN5v1s and vT5144 cm21. Al-
though all the peaks move towards largerB asL increases,
the s-p peaks move faster than thes-s peaks. ForL580 Å,
the dominant resonances result from transitions between
jacent symmetry-allowed states@1s-2p(6) and 1s-2s#. As
L decreases, transitions to more distant levels~e.g., 1s-3s)
become stronger as seen in the larger 1s-3s and 1s-4s peaks
for L50. This is understood from the fact that the Coulom
interaction becomes more important asL→0. If the Cou-
lomb interaction is negligible, transitions take place only b
tween adjacent exciton levels~i.e., starting from 1s, only
transitions to 2p(6) and 2s are allowed!. This is a conse-
quence of the well-known selection rule between Land
levelsDn561. Thus transitions to more distant states su
as 1s-3s contribute only when the Coulomb interaction
sufficiently strong, i.e., ifL or B is small.

IV. CONCLUDING REMARKS

Our simple perturbation theory based on a magnetoe
ton model provides semiquantitative explanations to all
main characteristics of the sidebands observed experim
tally. Although some qualitative features of the experime
may be explained without considering thee-h Coulomb at-
traction, we found it essential to include the exciton effec

Our magnetoexciton calculation was based on a sim
parabolic approximation. One can improve the results by
ing in Eq. ~12! the wave functions and energies obtain
from a more sophisticated exciton theory. Thus Eq.~12! will
serve as a useful test of magnetoexciton theories.

We have shown how the resonance structure of the s
bands can be related, with the aid of our theory, to exci
internal transitions. This demonstrates the usefulness of
sideband generation phenomenon as a new magnetoex

FIG. 8. uxu for the upper sideband calculated as a function ofB.
The results forL580 Å and 0~2D limit! are compared.
d-

-

u
h
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le
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spectroscopy. Obviously this sideband spectroscopy sh
have a wide range of applications. Especially interesting
get systems are semiconductor nanostructures such as q
tum dots.

In this paper, we have focused our discussion on
vN62vT sidebands for which experiment has already g
erated much knowledge. As for the weakervN64vT
sidebands,14 we believe that they can also be described b
straightforward generalization of our theory.
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APPENDIX A: DETAILS OF THE MAGNETOEXCITON
CALCULATION

Taking the symmetric gauge for the magnetic fieldBiz,
the effective-mass Hamiltonian of a magnetoexciton intera
ing with THz radiation~vector potentialAT'z) reads

H85 (
i 5e,h

1

2mi
S p̄i2

ei

2c
B3 r̄ i2

ei

c
ATD 2

1 (
i 5e,h

S piz
2

2mi
1V~zi ! D 2

e2

er
, ~A1!

where re5(xe ,ye ,ze) and rh5(xh ,yh ,zh) denote the elec-
tron and hole coordinates, respectively,pe,h52 i ]/]re,h ,
r5re2rh , e.0 the elementary charge, and the projection
a vector onto the well plane is indicated by an overbar. F
thermore,e is the static dielectric constant,mi and ei the
effective mass and the charge, respectively, of the elec
( i 5e) and hole (i 5h), and c the velocity of light in
vacuum. In Eq.~A1!, the spin Zeeman effect is neglecte
and therefore spin indices are suppressed throughout this
pendix.

Performing a unitary transformation

U5exp@~2 ie/2c!B•~ r̄ e3 r̄ h!#

on H8 and assuming the exciton center-of-mass momen
along the well to vanish, we obtain

H5UH8U†5H01HT , ~A2a!

H05H2D1H'1Hc , ~A2b!

with

H2D5 (
i 5e,h

1

2mi
S p̄2

ei

2c
B3 r̄ D 2

, ~A3a!

H'5 (
i 5e,h

S piz
2

2mi
1V~zi ! D , ~A3b!

Hc52
e2

er
, ~A3c!

HT5
e

mc
AT• p̄1

e2

2jc2
AT•~B3 r̄ !. ~A3d!
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Herep52 i ]/]r, m215me
211mh

21 , andj215me
212mh

21 .
The term quadratic inAT is irrelevant and therefore ignored
As for the confinement, we assume a simple hard-wall
tential:

V~z!5H 0, 2L/2,z,L/2

`, otherwise.
~A4!

Now we introduce creation and annihilation operators
describe the dynamics in thex-y plane:20,22

x5
l

A2
~a1a†1b1b†!, ~A5a!

y5
i l

A2
~a2a†2b1b†!, ~A5b!

]/]x5
1

2A2l
~a2a†1b2b†!, ~A5c!

]/]y5
i

2A2l
~a1a†2b2b†!, ~A5d!

where l 5Ac/Be is the magnetic length. The operatorsa
and b satisfy Bose commutation relations, anda and a†

commute withb andb†. This transformsH2D into

H2D5vce~a†a1 1
2 !1vch~b†b1 1

2 !, ~A6!

wherevce5eB/mec andvch5eB/mhc are the electron and
hole cyclotron frequencies, respectively. Equation~A6!
shows thata†a andb†b are the Landau indices for the ele
tron and hole, respectively. Denoting the eigenfunctions
H2D asun(5a†a),m(5b†b)& (n,m50,1,2, . . . ) andassum-
ing that the barrier confinement is comparable or stron
than thee-h Coulomb confinement, i.e.,L&e/me2 ~exciton
Bohr radius!, we construct the following approximate bas
functions:

un,m&&5un,m&z~ze!z~zh!, ~A7!

wherez(z) is the lowest eigenfunction ofH' (uzu,L/2),

z~z!5A2

L
cos

pz

L
. ~A8!

Now we diagonalize the quasi-2D exciton Hamiltoni
H05H2D1H'1Hc using $un,m&&% as the basis. SinceH0
conserves thez component of the exciton angular mome
tum l z5a†a2b†b,22 diagonalization can be carried ou
separately in thel z50,21,1 subspaces@or s, p(2) and
p(1) subspaces in the low-B hydrogenic notation#. These
subspaces are spanned by the following functio
(n51,2,3, . . . ):

cn
s5un21,n21&&, ~A9a!

cn
p~2 !5un21,n&&, ~A9b!

cn
p~1 !5un,n21&&. ~A9c!
-

o

f

r

s

The matrix elements ofH0 are

^^n8,n81suH0un,n1s&&

5dnn8@E0z1vce~n11/2!1vch~n1s11/2!#

2
e2

e K K n8,n81sU 1

A r̄ 21z2Un,n1sL L , ~A10!

with z-quantization energy:

E0z5
p2

2mL2
. ~A11!

Using

1

A r̄ 21z2
5

1

l
E d2q

2pq
e2quzu/l eiq• r̄ /l , ~A12!

the Coulomb matrix elements in Eq.~A10! can be trans-
formed into

K K n8,n81sU 1

A r̄ 21z2Un,n1sL L
5

1

l
E d2q

2pq
^n8,n81sueiq• r̄ /l un,n1s&I ~q/l !,

~A13!

with

I ~q!5E
2L/2

L/2

dzeE
2L/2

L/2

dzhz~ze!
2z~zh!2e2quze2zhu.

~A14!

Integration of Eq.~A14! with Eq. ~A8! is straightforward.
The resulting formula, which is quite lengthy, is found to
well approximated by

I ~q!5
3

qL
2

9

2q2L2
1

9

2q2L2
e22qL/3. ~A15!

On the other hand, by transforming the first factor in t
integrand of Eq.~A13! using Eqs.~A5!, Eq. ~A13! can be
reduced to20,22

K K n8,n81sU 1

A r̄ 21z2Un,n1sL L
5

1

A2l
A N! ~N1s!!

N8! ~N81s!!
E

0

`

dxe2xxN82N21/2

3LN
N82N~x!LN1s

N82N~x!I ~A2x/l !, ~A16!

whereN5min(n,n8), N85max(n,n8), andLm
m8(x) is a gen-

eralized Laguerre polynomial. In the 2D limit (L→0),
I (q)51 and Eq. ~A16! can be further simplified by the
Gauss formula.23

Diagonalization of the matrix of Eq.~A10! gives the
eigenfunctions ofH0 in the form of the following linear
combination:
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(
n

cn
. . . ,icn

. . . ~ r̄ !5G . . . ,i~ r̄ !z~ze!z~zh!, ~A17!

with

Gs,i~ r̄ !5(
n

cn
s,i^ r̄ un21,n21&, ~A18a!

Gp~2 !,i~ r̄ !5(
n

cn
p~2 !,i^ r̄ un21,n&, ~A18b!

Gp~1 !,i~ r̄ !5(
n

cn
p~1 !,i^ r̄ un,n21&. ~A18c!

Here (c1
. . . ,i ,c2

. . . ,i , . . . ) denotes thei th eigenvector of Eq.
~A10!, which we normalize to 1, i.e.,(nucn

. . . ,i u251. This

ensures that, ifcn
. . . ( r̄ )’s are normalized to 1 in the whol

~2D! space, so do the exciton envelope functionsG . . . ,n( r̄ ).
To obtain Gs,i( r̄ 50), which we need to calculate th

matrix elements of HN @Eq. ~9!#, we note that

^ r̄ un21,n21& is an l z50 eigenfunction ofH2D @Eq.
~A3a!#.22 Solving the corresponding Schro¨dinger equation in
the coordinate representation, we get the normalized s
tions:

^ r̄ un21,n21&5
1

A2pl
expS 2 r̄ 2

4l 2 D Ln21
~0! ~ r̄ 2/2l 2!.

~A19!

Therefore

Gs,i~ r̄ 50!5(
n

cn
s,i^ r̄ 50un21,n21&5

1

A2pl
(

n
cn

s,i .

~A20!

Finally, the full envelope function, including the trivia
center-of-mass part (51/AS; S is the area of the well!, reads

Fa~ r̄ , R̄,ze ,zh!5
1

AS
Ga~ r̄ !z~ze!z~zh!, ~A21!

wherea is shorthand for$s,i %, $p(2),i %, or $p(1),i %, and
R is the center-of-mass coordinate. This function is norm
ized to unity according to* uFau2d2 r̄ d2R̄dzedzh51, where
the R̄ integration cancels theS in the denominator.

Now we proceed to the calculation of the matrix eleme
of HT . Inserting AT5(2 ic/vT)(ET

(1)e2 ivTt2ET
(2)eivTt)

into HT and taking its matrix element betweenFg andFb ,
we get

@HT
~6 !#gb56

ie

mvT
~ETx

~6 !Agb
x 1ETy

~6 !Agb
y !, ~A22!

with
u-

l-

s

Agb
x 5 i E d2 r̄ Gg* ~ r̄ !S ]/]x2

im

2jl 2
yD Gb~ r̄ !,

~A23a!

Agb
y 5 i E d2 r̄ Gg* ~ r̄ !S ]/]y1

im

2jl 2
xD Gb~ r̄ !.

~A23b!

Using Eqs.~A18! and ~A5!, Eqs.~A23! can be reduced to

Agb
x 5@Abg

x #* 5
i

2A2l
(
n51

`

An@cn
g#* ~lecn11

b 2lhcn
b!,

~A24a!

Agb
y 5@Abg

y #* 52 iAgb
x , ~A24b!

if g is a p(1) state andb is ans state, and

Agb
x 5@Abg

x #* 5
i

2A2l
(
n51

`

An@cn
g#* ~lhcn11

b 2lecn
b!,

~A25a!

Agb
y 5@Abg

y #* 5 iAgb
x , ~A25b!

if g is a p(2) state and b is an s state. Here
le52me /(mh1mc) andlh52mh /(mh1mc).

APPENDIX B: B˜` LIMIT

In this limit, cn
. . . ,i5dni . Inserting this into Eq.~A20!, we

get

Gs,i~ r̄ 50!5
1

A2pl
. ~B1!

Transforming Eqs.~A24! and ~A25! in the similar way, and
using the LL representations for the statesa, etc., as ex-
plained in the text, we get

An8n,nn
i

52
m

A2mel
Amax~n,n8!bn8n

i , ~B2a!

Ann8,nn
i

5
m

A2mhl
Amax~n,n8!bn8n

i , ~B2b!

Ann,n8n
i

52
m

A2mel
Amax~n,n8!bnn8

i , ~B2c!

Ann,nn8
i

5
m

A2mhl
Amax~n,n8!bn8n

i , ~B2d!

wheren85n61; i 5x,y; bn,n61
x 57 i , andbn,n61

y 51. Us-
ing Eqs.~B2! in Eq. ~12!, we arrive at Eq.~13!.
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