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Electron-electron interaction in disordered mesoscopic systems: Weak localization
and mesoscopic fluctuations of polarizability and capacitance
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The weak localization correction and the mesoscopic fluctuations of the polarizability and the capacitance of
a small disordered sample are studied systematically in two-dimensional and three-dimensional geometries.
While the grand canonical ensemble calculation gives the positive magnetopolarizability, in the canonical
ensemble~appropriate for isolated samples! the sign of the effect is reversed. The magnitude of mesoscopic
fluctuations for a single sample exceeds considerably the value of the weak localization correction.
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I. INTRODUCTION

The phenomena of weak localization~WL! and meso-
scopic fluctuations in disordered systems have been in
sively studied during the past 15 years, mainly in connect
with transport properties of these systems.1,2 For these phe-
nomena the role of the electron-electron interaction is jus
setting the length scalel f ~phase breaking length!, below
which the electron wave function preserves its phase co
ence. Systems with a sizeL less thanl f are called meso-
scopic systems.

In this paper we consider quantum corrections and me
scopic fluctuations of the two other characteristics of
mesoscopic system, where the electron-electron interactio
essential: polarizability and capacitance. The former quan
can be measured by putting a sample into a capacitor, w
e
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the latter one determines the charging energy that show
in the Coulomb blockade experiments.3

The first quantum calculation of the polarizability of
small metallic particle was obtained in a seminal paper
Gor’kov and Eliashberg~GE!.4 It relied on the following two
assumptions concerning statistical properties of energy le
and eigenfunctions in disordered systems:~i! The single-
particle energy spectrum exhibits the same statistics as
eigenvalue spectrum of random matrices from the Gaus
ensemble of the corresponding symmetry and~ii ! exact
single-particle eigenfunctionsck(r) and c l(r), which are
close enough in energy, are correlated as

V2^ck* ~r!c l~r!ck~r8!c l* ~r8!&e,v5PD~r,r8!. ~1!

Here the average is defined as
^ck* ~r!c l~r!ck~r8!c l* ~r8!&e,v[
K (

kÞ l
ck* ~r!c l~r!ck~r8!c l* ~r8!d~e2ek!d~e1v2e l !L

K (
kÞ l

d~e2ek!d~e1v2e l !L , ~2!
V is the sample volume, and the diffusion propagatorPD is
a solution to the diffusion equation

2D¹2PD~r,r8!5~pn!21@d~r2r8!2V21#, ~3!

with the boundary conditions“nPD50. The first of these
conjectures was proved by Efetov5 and the second by th
present authors.6 More precisely, it was shown in Ref. 6 tha
for the energy difference much less than the Thouless en
v!Ec ,
gy

V2^ck* ~r!c l~r!ck~r8!c l* ~r8!&e,v

5kd~r2r8!1PD~r,r8!, ~4!

wherekd(r)5(pn)22^ ImGR(r)&2 is a short-range function
@GR(r) being the retarded Green’s function# explicitly given
by

kd~r!5exp~2r / l !3H J0
2~pFr !, 2D

~pFr !22sin2pFr , 3D.
~5!
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57 4567ELECTRON-ELECTRON INTERACTION IN DISORDERED . . .
The short-range partkd(r2r8) of the correlation function~4!
was not taken into account by Gor’kov and Eliashberg, bu
would give only a small correction to their result.7

Based on these conjectures, GE concluded that the p
izability for very low frequenciesv!D @D5(nV)21 is the
mean single-particle level spacing andn is the density of
states per spin# is enhanced in comparison to the classi
valuea0;V, the enhancement factor being of order (kR)2,
where

k5H ~8pe2n!1/2, 3D

4pe2n, 2D
~6!

is the inverse screening radius. Although the original pap4

gave insight into the field~called later mesoscopic physic!
and had a substantial impact on the further developmen
the condensed-matter physics, this result for the polariza
ity is incorrect for the following reason. The paper b
Gor’kov and Eliashberg does not take into account the
fects of screening: They calculate the polarizability in
sponse to the local field rather than to the external one.8 As
was found in Refs. 9 and 10~see also Ref. 11!, the screening
restores the classical value of the polarizability, thus red
ing the quantum effects to a relatively small correctio
Evaluation of this correction was recently attempted
Efetov,12 who combined the nonperturbative calculation
the polarization function6 with the electron-electron interac
tions taken into account in the random phase approxima
~RPA!. Since the value of the quantum correction depe
on the presence~or absence! of the time-reversal symmetry
it was denoted by Efetov as a ‘‘weak localization correcti
to polarizability’’; we are following this terminology in the
present article. However, he estimated incorrectly the con
bution of the short-range term in Eq.~4!, which made him
conclude that the weak localization correction is domina
by this term. As we show below, this is not the case if t
system size exceeds considerably the mean free path. M
recently, Noat, Reulet, and Bouchiat13 presented a perturba
tive calculation of the weak localization correction to t
polarizability in a particular geometry of a narrow two
dimensional~2D! ring. They considered both the canonic
ensemble~CE! and grand-canonical ensemble~GCE! and
concluded that the correction to the polarizability is pa
metrically suppressed in the CE. While essentially confir
ing their GCE result, we disagree with the above statem
concerning the CE. We show below that the effect in the
is of the same~up to a coefficient of order one! magnitude as
the GCE one, but has opposite sign.

As was realized by Berkovits and Altshuler,14 fluctuations
in the polarization function lead to mesoscopic fluctuatio
of the polarizability of the sample. They considered a s
cific thin-film geometry and identified the four-diffusion dia
grams giving the leading contribution to the fluctuations. W
will follow their approach when studying the polarizabilit
fluctuations in 2D and 3D geometries.

Along with the polarizability, we consider another qua
tity characterizing a mesoscopic system, the capacitancC.
It determines the charging energye2/C, which manifests it-
self in theI -V characteristics of a quantum dot in the Co
lomb blockade regime. In particular, the charging ene
represents the main contribution to the threshold voltage
it
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the excitation spectra and to the distance between adja
conductance peaks in the addition spectra. Statistical pro
ties of the Coulomb blockadeI -V characteristics are attrac
ing a great deal of interest, and hence research, now,15–21

which motivated us to consider the WL correction and t
mesoscopic fluctuations of the charging energy. In additi
the capacitance determines the low-frequency behavio
the impedance of mesoscopic systems.22,23

Therefore, the purpose of the present paper is to st
systematicallythe WL effects and mesoscopic fluctuations
the polarizability and capacitance in 2D and 3D geometr
Where it is necessary, we refine the results of previous
search. We show that the polarizability and the capacita
can be treated on the same physical grounds. We will a
find a simple relation between the magnitude of the W
correction and that of the mesoscopic fluctuations. T
electron-electron interaction is taken into account in
RPA, which works fork,pF , pF being the Fermi momen
tum. We consider the case of low temperatureT!D ~thus
settingT50 in all formulas! and study both grand-canonica
and canonical ensembles.

II. WEAK LOCALIZATION CORRECTION
TO THE POLARIZABILITY OF SMALL PARTICLES

We consider an isolated disordered metallic particleV
~3D or 2D! placed into a uniform external frequency
dependent electric fieldE(v). We assume that the system
diffusive, l !L, wherel andL are the mean free path and th
typical size of a particle, respectively. In the RPA the pote
tial distribution F(r) and the electron densityr(r) in the
particle obey the Poisson equation (e52ueu being the elec-
tron charge!

DF~r!524per~r!uV~r!3H 1, 3D

d~z!, 2D,

uV~r!5H 1, rPV

0 otherwise
, ~7!

in combination with the equation

r~r!522eE
V

P~r,r8!F~r8!dr8. ~8!

In two dimensions we use the following convention throug
out the paper:r5(x,y) denotes the coordinates in plain an
z is the transverse coordinate. The LaplacianD is always a
three-dimensional operatorD[D35D21]z

2 . Furthermore,
P is the polarization function~per spin!, which can be
readily expressed through the Matsubara Green’s functio

P~r,r8,v!52T(
em

^G~r,r8,i em1 ivn!

3G~r8,r,i em!&u ivn→v1 i0 , ~9!

or in terms of the retarded and advanced Green’s functi
GR,A(r,r8,e),
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P~r,r8,v!5
2 i

2pE de$nF~e!^GR~r,r8,e1v!GR~r8,r,e!&

2nF~e1v!^GA~r,r8,e1v!GA~r8,r,e!&

1@nF~e1v!2nF~e!#

3^GR~r,r8,e1v!GA~r8,r,e!&%

[PRR~r,r8,v!1PAA~r,r8,v!1PRA~r,r8,v!.

~10!

While PRR andPAA can be calculated in the usual impuri
perturbation theory, the evaluation ofPRA for low frequen-
cies v&D requires a nonperturbative treatment. This w
done in Ref. 6 in the framework of the supersymmetrics-
model approach and we present only the results here:

PRR~r,r8,v!1PAA~r,r8,v!5
1

pE2`

0

de Im^GR~r,r8,e!&2

1
v

2p i
@^ ReGR~r,r8,0!&2

2^ ImGR~r,r8,0!&2#;

PRA~r,r8,v!52
n

V
2

v

2p i
$^ ReGR~r,r8,0!&21S~v!

3^ ImGR~r,r8,0!&2

1~pn!2@11S~v!#PD~r,r8!%. ~11!

HereS(v) is a correlation function of the zero-dimension
s-model, S(v)52^Qbb

11Qbb
22& ~in the notation of Ref. 6!,

given explicitly by

S~v!511
2iD2

p2v2
expS p iv

D D sin
pv

D
. ~12!

It is related to the two-level correlation functionR2(v) as
R2(v)5 Re@11S(v)#/2. Now we decompose the polariza
tion function into frequency-independent and frequen
dependent parts

P~r,r8,v!5P0~r,r8!1P1~r,r8,v!,

P0~r,r8!5
1

p
ImE

2`

0

de^GR~r,r8,e!&22
n

V
, ~13!

P1~r,r8,v!52
v

2p i
@11S~v!#@^ ImGR~r,r8,0!&2

1~pn!2PD~r,r8!#

5
n

V
A~v!@kd~r2r8!1PD~r,r8!#, ~14!

where we definedA(v)5( ipv/2D)@11S(v)# and intro-
duced the functionkd(r2r8)5^ ImGR(r,r8,0)&2 given ex-
plicitly by Eq. ~5!. Note that the formulas~11!, ~12!, and~14!
are written for the case of the unitary ensemble~broken time-
reversal symmetry due to the presence of a strong eno
magnetic field!, which was considered in Ref. 6. Generaliz
s

-

gh
-

tion to the orthogonal ensemble~unbroken time-reversa
symmetry! is straightforward and results in the followin
modification of the factorA(v) in Eq.~14! for P1:

A~v!5
ipv

2D
@11S~v!#21, ~15!

where now

S~v!511
2ieissins

s2
12i

d

dsS sins

s D E
1

`eist

t
dt ~16!

ands5pv/D. In the limit of low frequencyv!D, the fac-
tor A(v) is equal to

A~v!D!52
2

b
[H 21, unitary

22, orthogonal,
~17!

whereb is the usual parameter equal to 1~2! for the orthogo-
nal ~unitary! ensemble.

Now we turn to the calculation of the dipole moment. T
general expressions were obtained in Ref. 12; we pre
here the derivation for the sake of completeness. We c
sider the frequency-dependent partP1 as a perturbation and
expand functionsr(r), F(r), and the dipole moment

d5eE rr~r!dr,

with respect toP1. In the zeroth-order approximation w
obtain

d0522eE
V

rP0~r,r8!F0~r8!drdr8, ~18!

where the potentialF0(r) satisfies Eqs.~7! and ~8! with P
replaced byP0.

It is easy to check that the first term in the expression~13!
for P0(r,r8) gives n after integration over one of the coo
dinates, the integral being dominated by the distances of
der of the Fermi wavelength,ur2r8u;lF . Assuming the
screening length@which sets the scale for the variation of th
potentialF(r)] to be larger thanlF , we can thus replace
this term by ad function:

P0~r,r8!5n@d~r2r8!2V21#. ~19!

This approximation for the polarization functionP0 leads to
the simple relation between the potentialF0(r) and the ex-
cess densityr0(r) ~Thomas-Fermi approximation!

F0~r!52~2en!21r0~r! ~20!

and consequently to the equation for the potentialF0(r),

DF0~r!5H k2F0~r!uV~r!, 3D

kd~z!F0~r!uV~r!, 2D,
~21!

with k defined in Eq. ~6! and the boundary condition
F0(r→`)52Er1 const. In Eqs.~20! and ~21! we have
chosen the arbitrary additive constant in the definition ofF0
in such a way that*VF0(r)dr50.

In the following we consider particular geometries of
3D spherical sample of a radiusR ~to be referred as 3D!, a
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circle of a radiusR in the in-plane electric field~2D!, and a
quasi-two-dimensional sample of a thicknessh (0,z,h)
and an areaS in the field directed along thez axis, i.e.,
transverse to the sample~Q2D!. The polarizability tensora i j

is generally defined asd(v)5â(v)E(v). Equations~18!
and~21! yield the classical polarizability25 equal in the limit
kR!1, kh!1 to ~for all the geometries under consideratio
the dipole moment is directed along the field and the ten
is reduced to a scalar!

a0.H R3, 3D

Sh/4p, Q2D

~4/3p!R3, 2D.

~22!

Now we turn to the corrections due to the functionP1. One
obtains~Fig. 1!

d1E52e2E drdr8F0~r!P1~r,r8!F0~r8!, ~23!

in full accordance with Ref. 12. Note that Eq.~23! depends
explicitly on the symmetry of the system with respect to t
time reversal and therefore constitutes the WL correction
the polarizability. As follows from Eq.~14!, this correction
consists of two contributions. The first one~to be referred as
a1S) is due to the short-range contribution to the polarizat

FIG. 1. Electrostatic potential and electron density in the RP
The external dashed line is the bare potential of the electric fi
2Er and the loops with 0 and 1 denote the contributionsP0 and
P1 to the polarization function, respectively. The wavy line is t
Coulomb interaction.
or

o

n

function@the first term in the second set of square bracket
Eq. ~14!#, and the second one (a1D) is due to the diffusion
contributionPD .

To evaluate the second term, we use the expansion ofPD
in the eigenfunctions of the Laplace operatorfa(r) with the
boundary conditions“fa50 and the corresponding eigen
values2ea ,

PD~r,r8!5~pDn!21 (
aÞ0

ea
21fa~r!fa~r8!. ~24!

For the purposes of estimate, one can use the express
valid for l !ur2r8u!L (L is a typical size of the system!,

PD~r,r8!'H ~2p2nD !21ln@L/ur2r8u#, 2D

~4p2nDur2r8u!21, 3D.
~25!

Now we evaluate and compare both contributionsa1S and
a1D in 3D and 2D systems. Since the structure of the pot
tial F0 is different in 3D and 2D cases, these should
treated separately.

A. 3D geometry

For any 3D geometry withkL@1 the expression for
F0(r) can be written in the form

F0~r!5
E

k
w~ri!exp~2kr'!, ~26!

with w being some function of magnitude unity. We ha
introduced a transverse coordinater' (r for the sphere,z in
the case of a disk! and the vectorri of coordinates along the
surface of the sample. Note that according to Eq.~20!,

w~ri!524pes0~ri!/E, ~27!

wherees0(ri) is the charge density on a surface of an ide
conductor induced by the electric fieldE. It can be found by
the methods of the classical electrostatics.25 In the integral
for a1S ,

a1S5
2e2nA~v!

VE2 E d3rd3r8F0~r!kd~ ur2r8u!F0~r8!,

~28!

both points r and r8 lie in fact in the layer of thickness
k21! l near the surface of the sample. One can then in
grate over the transverse coordinates and reduce the rem
ing double surface integral to the integral over one coor
nate only. We obtain

a1S.
1

VpF
2k2

A~v!ln~k l !E d2riw
2~ri!

;
1

LpF
2k2

A~v!ln~k l !. ~29!

In Ref. 12 the kernel in Eq.~28! was incorrectly replaced by
a d function, which led to an overestimate of the contributi
a1S by a factor ofk l @ ln(kl)#21@1.

On the other hand, for the term due to the diffusion,

.
ld
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a1D5
2e2n

VE2
A~v!E drdr8F0~r!PD~r,r8!

3F0~r8!, ~30!

we obtain, using the estimate~25!,

a1D;
1

nDk2
A~v!;a1S

L

l ln~k l !
. ~31!

We see that in a diffusive system of a sizeL@ l ln(kl), the
diffusion contributiona1D dominates, in contrast to the con
clusion of Ref. 12. At the same time, if the sample sizeL is
comparable to the mean free pathl ~which happens, e.g., in
ballistic systems with surface scattering!, the short-range
contribution is parametrically of the same order~in fact, even
larger by a logarithmic factor! as the diffusive one. As
expected,9,10,12 the WL correction is small in comparison t
the classical polarizabilitya0,

a1 /a0;
1

g~kL !2 A~v!, ~32!

g;2pnDL being the dimensionless conductance. The c
culation of the numerical coefficient for the WL correction
the polarizability requires the exact expansion~24!. For the
particular spherical geometry the potentialF0 has the form

F0~r!52
3ER

pkr
exp@2k~R2r !#cosu, R2r !R,

~33!

and we obtain

a15
1.36

~pFk!2l
A~v!. ~34!

According to Eq.~17!, the WL correction to the polarizabil
ity is negative. The value of the correction in the presence
a strong magnetic field~unitary symmetry! is smaller~twice
as small for zero frequency! than that without the magneti
field ~orthogonal symmetry!. The experimentally measure
magnetopolarizabilityaB , defined as

aB5a~B!2a~0!, ~35!

is therefore positive, in agreement with Ref. 12.

B. Quasi-2D geometry„transverse field…

We consider now a quasi-two-dimensional sample o
thicknessh@k21 and an areaS@h2 with the electric field
directed transverse to the sample plane. Then Eq.~26! for the
potential reduces to

F0~r !5
E

k
~2e2kz1e2k~h2z!!. ~36!

If the sample is relatively thickh@ l , the same consideratio
as for the case of a spherical shape yields

a1S5A~v!
ln~k l !

h~pFk!2 , a1D5
3

2
A~v!

1

l ~pFk!2 ~37!
l-

f

a

and the diffusion term dominates forh. l ln(kl). In the op-
posite case of a thin sample the short-range contributio
the leading one. In particular, forh, l we find

a1.a1S5A~v!
ln~kh!

h~pFk!2 . ~38!

As is seen from the above formulas, the relative mag
tude of the weak localization correction is rather low for bo
3D and quasi-2D~with the field direction normal to the
plane! geometries, so that the experimental observation
the effect in these cases may be problematic. The effec
much more pronounced in the 2D case, which we cons
below.

C. 2D geometry„in-plane field…

In contrast to the 3D case, the potentialF0 in the case of
a 2D sample in the in-plane electric field is a smooth fun
tion of coordinates, with the characteristic scale set by
sample sizeR. Therefore the kernel in the integral~28!,
which has a support of orderl , can be replaced by ad func-
tion,

~pFr !21exp~2r / l !'2p lpF
21d~r!.

This gives an estimate

a1S; l ~pFk!21A~v!ln~R/ l !.

On the other hand, for the diffusive term~30! the estimate
~25! implies

a1D;R2~kg!21A~v!;a1S~R/ l !2@ ln~R/ l !#21.

Similarly to the 3D case, the diffusion terma1S dominates
for R@ l . The relative magnitude of the quantum correcti
can thus be estimated as

a1 /a0;1/gkR,

with g52pnD5kFl /2.
For the particular case of a circular geometry, the pot

tial F0 is given in the polar coordinates (r ,u) by25

F0~r!522E~pk!21rcosu~R22r 2!21/2. ~39!

An exact calculation gives the value of the quantum corr
tion

a1~v!51.53R2~kpFl !21A~v!

and the relative magnitude of the correction is

a1 /a053.63
1

kpFlR
A~v!.

In a recent paper Noat, Reulet, and Bouchiat13 ~NRB!
proposed a geometry of a narrow 2D ring~radiusR, width
W!R) as more favorable for observation of the effect. In t
in-plane electric field the ring becomes polarized with t
one-dimensional~i.e., integrated over the ring cross sectio!
charge density

r~u!5
ER

eln~R/W!
cosu
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and the classical polarizability given by

a05
pR3

ln~R/W!
.

Calculating the quantum correction, we find again that fo
diffusive ring R@ l , the contributiona1D dominates and
gives

a15
R4

nDW2k ln2~R/W!
A~v!. ~40!

The relative magnitude of the correction is

a1 /a05
1

pgWk ln~R/W!
A~v!, ~41!

where g is now the quasi-one-dimensional conductan
g5nDW/R. These results for the ring geometry are by a
large in agreement with those found by NRB.13 Actually,
NRB express the polarizability in terms of the exact eige
functions of electrons, conceptually similarly to the origin
GE calculation, and then perform the impurity averaging
ing the semiclassical expression for the correlation of
exact single-particle eigenfunctions~see, e.g., Refs. 1 an
24!. This calculation yields correct results for the followin
reasons. First, the short-ranged terms in Eq.~1!, omitted in
this calculation, turn out to be unimportant for the WL co
rection to the polarizability. Furthermore, theexactexpres-
sion for the long-ranged~diffusive! part of the eigenfunction
correlator~1! coincides with the semiclassical result even
v!D, where the latter generally is not expected to be tr
This has been proved and discussed previously by the
thors in Ref. 6.

Similarly, we can consider a quasi-one-dimensional s
of width W and lengthL@W oriented along the electric-field
direction ~which we choose to be thez axis!. Again, the
sample polarization is described by the one-dimensio
charge density

r~z!5
Ez

eln~L/W!
,

yielding the classical polarizability

a05
L3

12ln~L/W!
.

The quantum correction is now equal to

a1.a1D5
pL3

30kWgln2~L/v!
A~v!, ~42!

whereg52pnDW/L is the dimensionless conductance. W
obtain

a1 /a05
2p

5

1

kWgln~L/W!
A~v!. ~43!

Thus, we have found that the WL correction to the pol
izability can be quite appreciable in 2D~circle! and espe-
cially in quasi-1D~ring or strip! geometries, which gives a
possibility of its experimental observation. These conc
sions are in full agreement with those of NRB.13
a
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D. Canonical ensemble

The results obtained above were derived for the gra
canonical ensemble, where the chemical potential is fixed
an external reservoir. In Appendix A we present the calcu
tions for the canonical ensemble, which is more appropr
for the problem in question.26 We show@Eq. ~A1!# that the
CE magnetopolarizability differs from the GCE result by t
coefficient22.75. This means that although the magnitu
of the CE effect is the same as in the GCE, the sign
opposite in the CE case: The magnetic field suppresses
polarizability.

III. WEAK LOCALIZATION EFFECTS
IN THE CAPACITANCE

A. Definitions

A natural definition of the capacitance in an open syst
is

Cm5edQ/dm, ~44!

whereQ is the total charge of the system. This capacitan
determining the low-frequency transport properties of
system was studied thoroughly by Bu¨ttiker and co-workers
in Refs. 22 and 27~where it was called ‘‘electrochemica
capacitance’’!. An explicit calculation22 yields

e2

Cm
5

e2

Cg
1

1

Vn~EF!
, ~45!

where Cg is the geometrical capacitance, determined fro
the equations of the classical electrostatics25 with corrections
due to the screening effects, andn(EF) is the density of
states at the Fermi level. The average of the second term
the right-hand side of Eq.~45! is the mean level spacingD,
which is usually much less than the average of the first te
However, the fluctuations of the second term are importan23

Being formally applied to the closed system, Eq.~44!
yields infinite fluctuations of the charging energy. Indeed,
Ref. 19, where an attempt to calculate the fluctuations of
compressibility of a closed system has been made, the i
gral over energies diverged and the authors could get a fi
result only by cutting it off at energies of orderD.

A proper generalization of the definition~44! for a closed
system is its ‘‘discrete’’ version

e2/Cm5m~N11!2m~N!, ~46!

wherem(N) is the chemical potential of aclosedsystem of
N electrons. The quantity~46! has an important physica
meaning: It is equal to the spacing between two consecu
peaks in the addition spectrum of a quantum dot in the C
lomb blockade regime. Statistical properties of these sp
ings were studied experimentally in Refs. 16–18 and th
retically in Refs. 20 and 21.

Similarly to the case of an open system@Eq. ~45!#, the
peak spacing~46! can be decomposed into two parts: lev
spacingDN and ~usually much larger! contribution associ-
ated with Coulomb interaction~denotedE1 in Ref. 20!. The
main contribution to the latter~and thus to the Coulomb
blockade peak spacing! is given by the charging energyEC
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defined20 as a constant part of the effective two-particle
teraction potentialU(r,r8) of the electrons in the sample:

EC[e2/C[V22E
V

drdr8U~r,r8!. ~47!

In particular, the WL correction to the charging energy c
culated below is the dominating term for the WL in the Co
lomb blockade peak spacing and can be measured, in p
ciple, as the magnetic-field dependence of the peak spa
In contrast, fluctuations of the charging energy do not g
the dominant contribution to the fluctuations of the pe
spacing; see Secs. IV and V and Ref. 20.

B. Weak localization effects

The potentialU(r,r8) can be found in the RPA20 ~see Fig.
2!. As in the case of the polarizability, it is convenient
split the polarization function into two parts~19! and ~14!.
Assuming the low-frequency limitv!D, we replace the
functionA(v) by its zero-frequency value~17!. In the zeroth
order inP1 one should solve an equation

U0~r,r8!5V0~r2r8!22E
V

dr1dr2V0~r2r1!

3P0~r1 ,r2!U0~r2 ,r8!, V0~r !5e2/r .
~48!

This equation was solved for an arbitrary closed system
Ref. 20. The result is

U0~r,r8!5Ū1F̃0~r!1F̃0~r8!1Uk~r,r8!. ~49!

Here Ū[(e2/C)0 is a constant, corresponding to the cha
ing energy calculated in the Thomas-Fermi approximati
Uk is the usual screened Coulomb potential, shifted b
constant so that*dr Uk(r,r8)50, while F̃0 is the contribu-
tion due to the excess positive charge, moved towards
boundary of the system after an extra electron is added to
system. For the sphere~3D! and circle~2D! geometries this
potential has an explicit form20

FIG. 2. RPA for the two-particle potentialU. The potentialU0

is given by the same sequence of diagrams as the potentialF0 in
Fig. 1 provided the external dashed line is replaced by the Coulo
interaction~the wavy line!.
-
-
in-
g.

e
k

in

-
;
a

he
he

F̃0~r!5 const2H e2~kR2!21exp@2k~R2r !#, 3D

e2~2kR!21~R22r 2!21/2, 2D,

where the constant is chosen in such a way t
*dr F̃0(r)50.

In the first order inP1 we obtain~Fig. 2!

U1~r,r8!52E dr1dr2U0~r,r1!P1~r1 ,r2!U0~r2 ,r8!,

and, taking into account that the integral ofP1 over any of
the coordinates is zero, we write the corresponding contri
tion to the charging energy~which constitutes the WL cor-
rection! in the form

S e2

C D
1

52E dr1dr2F̃0~r1!P1~r1 ,r2!F̃0~r2!. ~50!

Due to the structure of the functionP1 @Eq. ~8!# there are
two contributions to the WL correction: One comes from t
short-ranged term and the other one is related to the di
sion. A comparison of these contributions can be carried
exactly in the same way as was done for the polarizabil
and it turns out that the diffusive term dominates if t
sample size exceeds considerably the mean free path.
we obtain finally

S e2

C D
1

52
4n

bVE dr1dr2F̃0~r1!PD~r1 ,r2!F̃0~r2!. ~51!

The calculation for the particular geometries of a sphere~3D!
and disk~2D! gives

S e2

C D
1

5H 21.32b21t21~pFR!24, 3D

20.010b21t21~pFR!22, 2D.
~52!

The small coefficient in front of the 2D expression is
artifact of the specific circle geometry.

The weak localization correction suppresses the charg
energy, i.e., enhances the capacitance. The magnetic
suppresses the capacitance. In both 2D and 3D cases, the
correction to the charging energy can be estimated as

S e2

C D
1

;
D

g
. ~53!

The WL correction can be in principle extracted from t
measurements of the magnetic-field dependence of the
pacitance, though its rather small value may make suc
measurement problematic.

As for the polarizability, the CE calculation yields an a
ditional factor22.75 in Eqs.~51! and~52!. Thus, in the CE
the magnetic field suppresses the charging energy, enhan
the capacitance.

IV. MESOSCOPIC FLUCTUATIONS

Mesoscopic fluctuations of the polarizability and the c
pacitance can be calculated in a similar way. In addition
the average polarization function~13! and~14! there is also a
random partP r(r,r8) with the zero average, giving rise t
the fluctuations of these quantities. Since the integral ofP r

b
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over each coordinate is zero, we immediately arrive at
expressions for the random parts of the static28 polarizability
a r and the charging energy (e2/C) r in precisely the same
way as Eqs.~23! and ~50! were obtained:

a r5
2e2

E2 E drdr8F0~r!P r~r,r8!F0~r8! ~54!

and

S e2

C D
r

52E drdr8F̃0~r!P r~r,r8!F̃0~r8!. ~55!

Thus the mesoscopic fluctuations of both quantities
determined by the fluctuations of the polarizability. To c
culate them, we perform the perturbative calculation. As
will see, in the case of fluctuations the whole range of en
gies D&e&Ec contributes and this fact justifies the pertu
bative calculation~in contrast to the weak localization co
rection, which is determined by low energies!. Following
Berkovits and Altshuler,14 we identify the four-diffusion dia-
grams~Fig. 3! as giving the main contribution to fluctuation
of the polarization function.

We obtain

^P r~r1 ,r3!P r~r2 ,r4!&52
~12/b!

2p2
ReE

0

`

e de De~r1 ,r2!

3De~r2 ,r3!De~r3 ,r4!De~r4 ,r1!.
(56)

Here 12/b is a combinatorial factor~a number of four-
diffusion diagrams!; the functionDe is given by the expres
sion

De~r,r8!52
1

i eV
1pnPD~r,r8!, D&e&Ec , ~57!

and decreases fore>Ec . If the integral overe in Eq. ~56!
diverges, the cutoff at energies of order of the mean le
spacingD, where the perturbative expression~56! ceases to
be valid, should be introduced.

A naive estimate suggests that the leading contribution
the fluctuations of the polarizability as well as of the capa
tance can be found by substituting the zero-mode contr
tion @the first term on the right-hand side~rhs! of Eq. ~57!#
for all the four functionsDe . However, since the integrals o

FIG. 3. Diagrams for the fluctuations of the polarization fun
tion. The double dashed lines denote the diffusion propagators.
counting factors are~a! 2 and~b! 4 for the unitary symmetry and~a!
4 and~b! 8 for the orthogonal one.
e

e
-
e
r-

el

to
-
u-

the potentialsF0 and F̃0 are zero, this term vanishes. Fo
typical geometries the main contribution is given by the te
where two of the functionsDe are replaced by the zero-mod
result, while two others are represented by the diffus
propagator@the second term on rhs of Eq.~57!#. Cutting off
the logarithmically divergent integral atD from below and at
the Thouless energyEc from above, we obtain

^a r
2&5

12e4

bE4
n2lng

3F 2

VE dr1dr2F0~r1!PD~r1 ,r2!F0~r2!G2

~58!

and

K S e2

C D
r

2L 5
12

b
n2lng

3F 2

VE dr1dr2F̃0~r1!PD~r1 ,r2!F̃0~r2!G2

.

~59!

Comparing these results with the expression for the WL c
rections~30! and ~51!, we obtain a general formula relatin
WL corrections~calculated within the GCE! to the meso-
scopic fluctuations of the same quantity~R denotes root
mean square!,

R~a!5~3b lng!1/2ua1u ~60!

and

RS e2

C D5~3b lng!1/2US e2

C D
1
U. ~61!

Note that in contrast to the WL corrections, the mesosco
fluctuations are not expected to be sensitive to the GCE
difference since the integral~56! is determined equally by al
energiesD&e&Ec . For particular geometries we obtain

R~a!5S lng

b D 1/2H 4.71l 21~pFk!22, 3D

5.30R2~kpFl !21, 2D

and

RS e2

C D 5S lng

b D 1/2H 2.29t21~pFR!24, 3D

0.017t21~pFR!22, 2D.

The remaining terms in Eq.~56!, with all the four func-
tions De replaced by the diffusion propagator, can also
easily estimated. Their contribution is of the same order
Eqs.~60! and ~61!, but without the logarithmic factor in the
numerator. Thus, for the rms of the charging energy in ad
tion to the term of order;D(lng)1/2/g ~two zero modes! we
obtain a correction of order;D/g ~no zero modes!.

Amazingly, the relations between the weak localizati
correction and the amplitude of mesoscopic fluctuations,~60!
and ~61! have a universal form, the same for 2D and 3
systems. We should note, however, that these results are
applicable for the case of polarizability fluctuations of
quasi-two-dimensional sample of the thicknessh@ l and area

he
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S@h2 in the transverse field~see Sec. II B! calculated previ-
ously by Berkovits and Altshuler.14 In this case, the contri-
bution from the terms with two zero-modes, Eq.~58!, which
can be easily calculated with the use of Eq.~36!, yields the
rms value of the polarizability fluctuations,

R~a~2!!5
~3b21lng!1/2

pg

h

k2
,

where g52pnDh. On the other hand, the contributio
where all the four functionsDe are replaced by the diffusion
propagators is14

R~a~4!!5
8b21p3/2

g

S1/2

k2
,

i.e., it is larger by a factor;S1/2/@h(lng)1/2#, and for this
particular geometry represents the leading contribution to
fluctuations of the polarizability.

V. CONCLUSIONS

In this paper we have calculated the weak localizat
correction to the polarizability and the capacitance of a d
ordered sample and the mesoscopic fluctuations of th
quantities. The WL corrections originate from theGRGA
term in the polarization function, which depends on the pr
ence or absence of the time-reversal symmetry. A chang
the polarization function influences the screening and, c
sequently, the polarizability and the capacitance. We fi
that in the grand-canonical ensemble, switching on the m
netic field leads to a positive correction to the polarizabil
and negative one to the capacitance. In the canonical
semble the magnitude of the effect is the same~up to a nu-
merical coefficient;2.75), however, the sign is reversed.

Calculating the mesoscopic fluctuations of the polariza
ity, we find that for typical geometries they are related to
valuea1 of the WL correction as@see Eq.~60!#:

R~a!5~3b lng!1/2ua1u.

The same conclusion is valid for the capacitance; see
~61!. Therefore, the magnitude of fluctuations exceeds c
siderably the value of the WL correction. This should
contrasted with the relation of the corresponding quanti
for the case of the conductance:

R~g!;1,

ug1u;H 1, quasi-1D

ln~L/ l !, 2D

L/ l , 3D,

so that ug1u@R(g) in 2D and 3D geometries an
ug1u;R(g) in the quasi-1D geometry. As our results sho
an experimental observation of the magnetopolarizability
mesoscopic samples requires an experimental setup
large number of such samples, which would reduce the fl
tuations.

Mesoscopic fluctuations of the charging energy contrib
to the fluctuations of the conductance peak spacings in
addition spectra of quantum dots in the Coulomb blocka
e

n
-
se

-
of
n-
d
g-

n-

l-
e

q.
-

s

,
f
ith
c-

e
e
e

regime.15–18 However, as follows from Eqs.~53! and ~61!,
the magnitude of these fluctuations is much smaller@by a
factor ;(lng)1/2/g# than the level spacingD. Therefore, the
contribution of the charging energy fluctuations to the flu
tuations of the peak spacings is parametrically smaller t
the effect of electron level fluctuations, which is given by t
random matrix theory and is of order ofD. The charging
energy fluctuations represent one~but not the only one! of
the contributions to the enhancement of the peak spa
fluctuations as compared to the random matrix theory. T
problem was considered in detail in Ref. 20.

Finally, we would like to mention once more that w
assumed the screening length to be much larger than
wavelength or, in other words, thatr s!1, where
r s5e2/evF . In the opposite caser s.1 ~but still below the
Wigner crystallization threshold!, one can roughly estimate
the result assuming the screening length to be approxima
given by the distance between electrons. This leads to
enhancement of the above results for the WL correction
the rms amplitude of fluctuations by a factor of order ofr s

and r s
2 for the polarizability and capacitance, respectively
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APPENDIX A: MAGNETOPOLARIZABILITY
IN THE CANONICAL ENSEMBLE

In this appendix we calculate the magnetopolarizabi
aB defined by Eq.~35! in the canonical ensemble. For th
purpose we first rewrite our derivation of the Sec. II in term
of exact eigenfunctions and energy eigenvalues, in the s
manner it was done originally by GE~Ref. 4! and later by
NRB.13 Using the results, derived for the correlation
eigenfunctions in Refs. 6 and 29~unitary ensemble! and Ap-
pendix B ~orthogonal ensemble!, we first obtain the weak
localization correction in the grand-canonical ensemble. I
in full agreement with the results obtained in Sec. II. Th
we generalize the derivation to the CE case.

Our conclusion is that the CE magnetopolarizabilityaB
CE

can be easily obtained from the GCE valueaB
GCE as

aB
CE52ACEaB

GCE , ACE52.75. ~A1!

We should stress here that the derivation given below u
only the linear-response formalism and the properties of
eigenfunction and eigenvalue statistics in disordered s
tems. It relies on the fact that that the WL correction to t
polarizability is determined by the energy range where
level correlation is important. It can be repeated for the c
of the capacitance, where one obtains a relation analogou
Eq. ~A1!. In contrast to this, the fluctuations of both quan
ties are determined by the energiesD!e!Ec , where the
correlation of levels does not play any role and the differen
between CE and GCE values is not expected.
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1. Magnetopolarizability in the GCE:
Derivation in the manner of Gor’kov and Eliashberg

We start from Eq.~23!, which can be rewritten in terms o
the exact single-particle states as

aB~v!5
2e2

E2 E dr1dr2F0~r1!d P~r1 ,r2!F0~r2!. ~A2!

Here we introduced the symbold denoting the difference
between the quantities in unitary and orthogonal ensemb

d ~ !5~ !GUE2~ !GOE

and the polarization functionP is expressed as

P~r1 ,r2!5 (
mÞn

cm* ~r1!cn~r1!cn* ~r2!cm~r2!

3
nF~em!2nF~en!

v2em1en1 i0
, ~A3!

m and n being the exact single-particle states. Thus,
v!D we obtain an expression valid in both GCE and CE

aB~v!5
4e2

E2
d K (

en,eF,em

1

em2en
u~F0!mnu2L . ~A4!

In the GCE the position of the Fermi level can be ar
trary and we replace the sum in Eq.~A4! by an integral with
the level correlation functionR2(e):

(
en,eF,em

~ !5D22E
0

`

e de R2~e!~ !. ~A5!

Using the sum rule for the eigenfunctions

K (
n

cm* ~r1!cn~r1!cn* ~r2!cm~r2!L 5V21d~r12r2!,

we obtain for the magnetopolarizability

aB52
2e2

E2D
d ^u~F0!mmu2&. ~A6!

The above derivation of Eq.~A6! is essentially equivalen
to that of Refs. 4 and 13. Now, using Eq.~B8! for the case of
the orthogonal symmetry and Ref. 29 for the unitary one,
write (r 5ur12r2u)

V2^ucm~r1!cm~r2!u2&e

5H @112PD~r1 ,r2!#@112kd~r !#, GOE

@11PD~r1 ,r2!#@11kd~r !#, GUE.

Separating the dominating diffusion term, we obtain for t
magnetopolarizability in the grand-canonical ensemble

aB5
2e2

V2E2D
E dr1dr2F0~r1!PD~r1 ,r2!F0~r2!, ~A7!

which coincides with Eq.~30!.
s

r

-

e

e

2. Canonical ensemble

To realize the canonical ensemble, we apply the met
previously developed in Refs. 30 and 31. Namely, we fix
number of electrons to an integer in each individual samp
but allow it to fluctuate slightly from sample to sample. Th
type of ensemble is realized by pinning the Fermi level
one of the single-particle levelsek : eF5ek10.

Now, instead of Eq.~A5!, one should split the sum ove
energy levels in Eq.~A4! into two. The first contribution
consists of the terms withn5k and can be transformed to th
integral with the use of the two-level correlation functionR2.
The rest of the sum requires the three-level correla
R3(0,e,e1), which corresponds to the probability to fin
three levels with energies 0,2e1, ande2e1 ~counted from
the Fermi surface!. Thus we obtain

(
en,eF,em

~ !5D21E
0

`

de R2~e!~ !

1D22E
0

`

deE
0

e

de1R3~0,e1 ,e!~ !,

~A8!

and for the magnetopolarizability

aB5
4e2

E2D2
d H E

0

`de

e FR2~e!D1E
0

e

de1R3~0,e,e1!G
3^u~F0!mnu2&eJ . ~A9!

Since the integral overe converges fore;v, we can replace
the matrix element by its low-frequency limit. Fore!Ec we
obtain for the correlation of the wave functions withmÞn
@see Eq.~B11! for the orthogonal symmetry and Ref. 29 fo
the unitary one#

V2^cm* ~r1!cn~r1!cm~r2!cn* ~r2!&e0 ,e

5H kd~r !1@11kd~r !#PD~r1 ,r2!, GOE

kd~r !1PD~r1 ,r2!, GUE.

In the cases when the diffusion dominates,32 one can replace
this eigenfunction correlator for either symmetry byPD . As
a result, taking into account Eq.~A7!, we obtain Eq.~A1!,
with the coefficientACE expressed in terms of the level co
relation functions

ACE52122E
0

`ds

s

3d S R2~s!1E
0

s

ds1@R3~0,s1 ,s!2R2~s!# D ,

~A10!

where we have made a change of variabless5pe/D. Note
that Eq.~A10! differs from the similar expression derived b
NRB ~Ref. 13! by the second term on the rhs.
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In the leading approximation the correlation functionR2
andR3 may be taken from the random matrix theory.33 The
first integral on the rhs of Eq.~A10! can be calculated ana
lytically and is given by

I 15E
0

`ds

s
d R2~s!5E

0

`ds

s
g~s!h~s!5

1

4
2

p2

16

.20.367,

in contrast to the statement of NRB that it is equal to21/2.
We have defined the functions

f ~s!5
sins

s
, g~s!5

d

ds
f ~s!, h~s!5E

s

`

f ~s1!ds1 .

The second term on the rhs of Eq.~A10! after a lengthy
algebra can be expressed as follows:

I 25E
0

`ds

s E0

s

ds1d „R3~0,s1 ,s!2R2~s!…

52E
0

`ds

s E0

s

ds1$g~s1!h~s1!2 f ~s!g~s1!h~s2s1!

1g~s! f ~s1!h~s2s1!1h~s! f ~s1!g~s2s1!%.

Calculating this numerically, we findI 2521.509 and thus
ACE52122(I 11I 2)52.753.

Note that in the above derivation we neglected the con
bution of the so-called Debye processes~relaxation to the
instantaneous equilibrium distribution due to coupling w
phonons or other possible inelastic processes!.34,35,13 These
processes do not exist in a closed sample in the limit of z
temperature (T!D) that we are considering.36

APPENDIX B: CORRELATIONS OF EIGENFUNCTIONS
IN DISORDERED SYSTEMS:
ORTHOGONAL ENSEMBLE

In this appendix we derive the expressions for the co
lations of the eigenfunctions in the orthogonal ensemble
the same way as these were obtained in Ref. 29 for the
tary ensemble. We restrict ourselves to the terms of or
g21.

Following Ref. 29, we define the eigenfunctions corre
tors @see Eq.~2!#,

h~r1 ,r2 ,e!5^uck~r1!ck~r2!u2&e

[
K (

k
Uck~r1!ck~r2!U2d~e2ek!L

K (
k

d~e2ek!L , ~B1!

b~r1 ,r2 ,e,v!5^uck~r1!c l~r2!u2&e,v , kÞ l ,

and

g~r1 ,r2 ,e,v!5^ck* ~r1!c l~r1!ck~r2!c l* ~r2!&e,v , kÞ l .

The quantitiesh andb are related as
i-

ro

-
n
i-

er

-

B[h~r1 ,r2 ,e!D21d~v!1b~r1 ,r2 ,e,v!D22R2~v!

5n21~2p2!21Re$^GR~r1 ,r1 ,e!GA~r2 ,r2 ,e1v!&

2^GR~r1 ,r1 ,e!&^GA~r2 ,r2 ,e1v!&%; ~B2!

here the two-level correlation function,

R2~v!5D2K (
kÞ l

d~e2ek!d~e1v2e l !L , ~B3!

is introduced.
The right-hand side of expression~B2! can be directly

calculated with the use of the supersymmetry technique.
the case of preserved time-reversal symmetry~orthogonal
ensemble! one obtains

B~r1 ,r2 ,e,v!52~2p2!21Re$^gb1,b1
11 ~r1 ,r1!gb1,b1

22 ~r2 ,r2!

1gb1,b1
12 ~r1 ,r2!gb1,b1

21 ~r2 ,r1!&F

2^gb1,b1
11 ~r1 ,r1!&F^gb1,b1

22 ~r2 ,r2!&F%. ~B4!

Here^ &F denotes the averaging with the action of the sup
matrix s-modelF@Q#:

^ &F5E DQ~ !exp~2F@Q# !,

F@Q#52
pn

8 E dr Str@D~“Q!212i ~v1 i0!LQ#,

~B5!

whereD is the diffusion coefficient,Q5T21LT is a 838
supermatrix,L5 diag(1,1,1,1,21,21,21,21), and T be-
longs to the supercoset space U(2,2u4)/U(2u2)3U(2u2).
The symbol Str denotes the supertrace~trace over bosonic
degrees of freedom minus that over fermionic ones!. The
upper matrix indices correspond to the retarded-advanced
composition, while the lower indices denote the boso
fermion one~here we need only the indexb1, which denotes
one of two bosonic components of a supervector!. The
Green’s functiong in Eq. ~B4! is the solution to the matrix
equation

F2 i S e1
v

2
2Ĥ0D2

i

2
~v1 i0!L1Q/2tGg~r,r8!

5d~r2r8!. ~B6!

Expressing these functions through the matricesQ and tak-
ing into account Eq.~B2!, we arrive at the following equa
tion valid in for an arbitrary diffusive system:

2p2Fh~r1 ,r2 ,e!

D
d~v!1

b~r1 ,r2 ,e,v!

D2
R2~v!G

5~pn!2Re$12^Qb1,b1
11 ~r1!Qb1,b1

22 ~r2!&F22kd~r !

3^Qb1,b1
12 ~r1!Qb1,b1

21 ~r1!&F%, ~B7!

Here the functionkd is defined in Eq.~5! and r 5ur12r2u.
The separation of the rhs of Eq.~B7! into the singular@pro-
portional tod(v)# and regular parts allows one to obtain th
quantitiesh(r1 ,r2) andb(r1 ,r2 ,v).
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For the case of a metallic system in the we
localization regime, thes-model correlation functions
^Qb1,b1

11 (r1)Qb1,b1
22 (r2)&F and ^Qb1,b1

12 (r1)Qb1,b1
21 (r2)&F can be

calculated for relatively low frequenciesv!Ec with the use
of a general method developed in Refs. 37 and 38, wh
allows one to take into account spatial variations of the fi
Q. The results are obtained in the form of an expansion
g21. Up to the terms of orderg21, we obtain

^Qb1,b1
11 ~r1!Qb1,b1

22 ~r2!&F

5122R̃~v!2
4iD

p~v1 i0!
PD~r1 ,r2!

and

^Qb1,b1
12 ~r1!Qb1,b1

21 ~r2!&F

522
iD

p~v1 i0!
22S R̃~v!1

iD

p~v1 i0! DPD~r1 ,r2!.

Here the diffusion propagatorPD is defined by Eq.~3! and
we have introduced the functionR̃(v)5@11S(v)#/2, where
S(v) is given by Eq.~16!. Note that the two-level correlation
function R2(v) is the real part ofR̃(v).

Now, separating regular and singular parts on the rhs
Eq. ~B7!, we obtain the following result for the autocorrel
tions of the same eigenfunction:
al
l

m
a

h
d
n

of

V2^uck~r1!ck~r2!u2&e

5@112kd~r !#@112PD~r1 ,r2!#, ~B8!

and for the correlation of amplitudes of two different eige
functions (kÞ l )

V2^uck~r1!c l~r2!u2&e,v2152kd~r !PD~r1 ,r2!. ~B9!

The result~B8! for r15r2 is the inverse participation ratio
previously obtained in Ref. 38, while that for an arbitra
spatial separation was found in the zero-mode approxima
(g5`) in Ref. 39.

Now we turn to the correlation functiong. Similarly to
Ref. 29, we obtain a relation

2p2Fh~r1 ,r2 ,e!

D
d~v!1

g~r1 ,r2 ,e,v!

D2
R2~v!G

52~pn!2Re$^Qb1,b1
12 ~r1!Qb1,b1

21 ~r2!&F1kd~r !

3@^Qbb
11~r1!Qbb

22~r1!&F

1^Qb1,b1
12 ~r1!Qb1,b1

21 ~r2!&F21#%. ~B10!

Separating again the rhs into the regular and singular pa
we recover Eq.~B8! and obtain

V2^ck* ~r1!c l~r1!ck~r2!c l* ~r2!&e,v

5kd~r !1@11kd~r !#PD~r1,r2!, kÞ l . ~B11!
n-
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22M. Büttiker, H. Thomas, and A. Preˆtre, Phys. Lett. A180, 364
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