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Electron-electron interaction in disordered mesoscopic systems: Weak localization
and mesoscopic fluctuations of polarizability and capacitance
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The weak localization correction and the mesoscopic fluctuations of the polarizability and the capacitance of
a small disordered sample are studied systematically in two-dimensional and three-dimensional geometries.
While the grand canonical ensemble calculation gives the positive magnetopolarizability, in the canonical
ensemblgappropriate for isolated samp)ethe sign of the effect is reversed. The magnitude of mesoscopic
fluctuations for a single sample exceeds considerably the value of the weak localization correction.
[S0163-182608)04707-9

I. INTRODUCTION the latter one determines the charging energy that shows up

The phenomena of weak localizatigeVL) and meso- in the Coulomb blockade experlmeﬁts.

. . L . The first quantum calculation of the polarizability of a
scopic fluctuations in disordered systems have been intens i metallic particle was obtained in a seminal paper by

sively studied during the past 15 years, mainly in connections oy and Eliashber¢GE).* It relied on the following two
with transport properties of these systehfisor these phe-  asgumptions concerning statistical properties of energy levels
nomena the role of the electron-electron interaction is just iyng eigenfunctions in disordered systertis: The single-
setting the length scalk, (phase breaking lengthbelow  particle energy spectrum exhibits the same statistics as the
which the electron wave function preserves its phase cohegigenvalue spectrum of random matrices from the Gaussian
ence. Systems with a side less thanl , are called meso- ensemble of the corresponding symmetry ajiid exact
scopic systems. single-particle eigenfunctiongs(r) and ¢(r), which are

In this paper we consider quantum corrections and mescelose enough in energy, are correlated as
scopic fluctuations of the two other characteristics of a
mesoscopic system, where the electron-electron interaction is VA (DD G (M) e o=TIp(r,r"). (D)
essential: polarizability and capacitance. The former quantity
can be measured by putting a sample into a capacitor, whilelere the average is defined as

<l§| e (DY) G(r) g (r') Se— €) S(e+ w—e|)>

W OB PP (1)) e 0= , 2
<E S(e— Ek)5(5+w—6|)>
k#1
|
V is the sample volume, and the diffusion propagaiey is N AG ALY (R P
a solution to the diffusion equation
=Kkqg(r—r")+1p(r,r'), 4

—DV2Ip(r,r")=(mv) Y s(r—r)—V1], (3
wherekgy(r)=(7v) % ImGR(r))? is a short-range function
[GR(r) being the retarded Green’s functioexplicitly given
with the boundary condition¥ ,II;=0. The first of these by
conjectures was proved by Efefoand the second by the
present authorsMore precisely, it was shown in Ref. 6 that 2
for the energy difference much less than the Thouless energy Ky(r)=exp(— Jo(Per), 2b
d p—r/1)X o (5
w<E., (Per) ~2sirfpgr, 3D.
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The short-range paky(r—r’) of the correlation functiod)  the excitation spectra and to the distance between adjacent
was not taken into account by Gor’kov and Eliashberg, but itonductance peaks in the addition spectra. Statistical proper-
would give only a small correction to their restilt. ties of the Coulomb blockade V characteristics are attract-

Based on these conjectures, GE concluded that the polaing a great deal of interest, and hence research, ‘Aott,
izability for very low frequenciess<A [A=(vV) !is the  which motivated us to consider the WL correction and the
mean single-particle level spacing amdis the density of mesoscopic fluctuations of the charging energy. In addition,
states per spihis enhanced in comparison to the classicalthe capacitance determines the low-frequency behavior of
value ay~V, the enhancement factor being of ord&R)?,  the impedance of mesoscopic systeR’

where Therefore, the purpose of the present paper is to study
systematicallyhe WL effects and mesoscopic fluctuations of

(8we’r)¥2, 3D the polarizability and capacitance in 2D and 3D geometries.

K= 4me?y, 2D (6)  Where it is necessary, we refine the results of previous re-

search. We show that the polarizability and the capacitance

is the inverse screening radius. Although the original phpercan be treated on the same physical grounds. We will also
gave insight into the fieldcalled later mesoscopic physics find @ simple relation between the magnitude of the WL
and had a substantial impact on the further development dforrection and that of the mesoscopic fluctuations. The
the condensed-matter physics, this result for the polarizabil€l€ctron-electron interaction is taken into account in the
ity is incorrect for the following reason. The paper by RPA, which works fork<pg, pg being the Fermi momen-
Gorkov and Eliashberg does not take into account the efftum. We consider the case of low temperatlir€ A (thus
fects of screening: They calculate the polarizability in re-SettingT=0 in all formulag and study both grand-canonical
sponse to the local field rather than to the external’oas.  and canonical ensembles.

was found in Refs. 9 and 1Bee also Ref. )1the screening

restores the classical value of the polarizability, thus reduc- Il. WEAK LOCALIZATION CORRECTION

ing the quantum effects to a relatively small correction. ToO THE POLARIZABILITY OF SMALL PARTICLES
Evaluation of this correction was recently attempted by

Efetov? who combined the nonperturbative calculation of We consider an isolated disordered metallic partidle
the polarization functichwith the electron-electron interac- (3D or 2D) placed into a uniform external frequency-
tions taken into account in the random phase approximatiofependent electric fielf(w). We assume that the system is
(RPA). Since the value of the quantum correction dependsliffusive,I<L, wherel andL are the mean free path and the
on the presencéor absenceof the time-reversal symmetry, typical size of a particle, respectively. In the RPA the poten-
it was denoted by Efetov as a “weak localization correctiontial distribution ®(r) and the electron density(r) in the

to polarizability”; we are following this terminology in the particle obey the Poisson equatioce —|e| being the elec-
present article. However, he estimated incorrectly the contritron charge

bution of the short-range term in E¢4), which made him

conclude that the weak localization correction is dominated 1, 3D

by this term. As we show below, this is not the case if the Ad(r)= —47rep(r)99(r)><| 5(z), 2D

system size exceeds considerably the mean free path. More ’ ’
recently, Noat, Reulet, and BoucHiapresented a perturba-

tive calculation of the weak localization correction to the 6Q(r):|1’ re() )
polarizability in a particular geometry of a narrow two- 0 otherwisé
dimensional(2D) ring. They considered both the canonical o ) )

ensemble(CE) and grand-canonical ensembl&6CE) and  in combination with the equation

concluded that the correction to the polarizability is para-

metrically suppressed in the CE. While essentially confirm- , o

ing their GCE result, we disagree with the above statement p(n)= —ZeLIH(r,r Je(riydr’. ®)

concerning the CE. We show below that the effect in the CE

is of the saméup to a coefficient of order onenagnitude as  In two dimensions we use the following convention through-

the GCE one, but has opposite sign. out the paperr=(x,y) denotes the coordinates in plain and
As was realized by Berkovits and Altshuférfluctuations 7 is the transverse coordinate. The Laplaciaris always a

in the polarization function lead to mesoscopic fluctuationshree-dimensional operatak=A;=A,+ 2. Furthermore,

of the polarizability of the sample. They considered a spe{] is the polarization function(per spin, which can be

CiﬁC thin-film geometry and |dent|f|ed the four'diffusion dia' read”y expressed through the Matsubara Green’s functionsl
grams giving the leading contribution to the fluctuations. We

will follow their approach when studying the polarizability
fluctuations in 2D and 3D geometries. I(r,r',w)= —TE (G(r,r' iemtioy)
Along with the polarizability, we consider another quan- ém
tity characterizing a mesoscopic system, the capacit@nce
It determines the charging energy/C, which manifests it- XG(r',1 i €m))iv, —w+ios 9)
self in thel-V characteristics of a quantum dot in the Cou-
lomb blockade regime. In particular, the charging energyor in terms of the retarded and advanced Green’s functions
represents the main contribution to the threshold voltage iGRA(r,r’,€),
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—ij tion to the orthogonal ensembl@nbroken time-reversal
H(f-f',w)=zf de{ne(e)(GR(r,r",e+w)GR(r',1,€)) symmetry is straightforward and results in the following
modification of the factoA(w) in Eq.(14) for I1:
—Ne(e+ 0)(GA(r,r' e+ w)GA(r',r,€))

[
FINe(e+ @)~ ne(e)] A(0)= 51 [1+S(0)]-1, (19
X(GR(r,r", e+ w)GA(r',r,e))}

=TIR ’ 4 AA ’ + R ’ . . .
H R(ryr ,(1)) H (rvr ,(1)) H A(rvr ,(1)) _1+ ZIE'SSIFIS+2 d Slrs J,ooe|std 16
(10 S(w)= 2 24 T t (16
While ITRR and IT* can be calculated in the usual impurity o
perturbation theory, the evaluation HRA for low frequen- ~ @nds=mw/A. In the limit of low frequencyw <A, the fac-
cies w=<A requires a nonperturbative treatment. This wader A(@) is equal to

done in Ref. 6 in the framework of the supersymmetric
model approach and we present only the results here: Alw<A)=

where now

S

B

1 (o
IRR(r o) +TTAA(r T ) = —f de Im(GR(r,r',€))? whereg is the usual parameter equal t¢2) for the orthogo-
T~ nal (unitary) ensemble.
Now we turn to the calculation of the dipole moment. The

—1, unitary
[ 17

—2, orthogonal,

+i_[< ReGR(r,r’,0))? general expressions were obtained in Ref. 12; we present
2 here the derivation for the sake of completeness. We con-
—(IMGR(r,r",0))]; sider the frequency-dependent pHrf as a perturbation and

expand functiong(r), ®(r), and the dipole moment
14 w

IRArE w)=— v ﬁ{< ReGR(r,r',0))2+ S(w) d:ef p(rydr,

R ’ 2
X(ImG™(r,r",0)) with respect toll;. In the zeroth-order approximation we

+(mv) 1+ S(w)]Mp(r,r')}. (11)  obtain
Here S(w) is a correlation function of the zero-dimensional B , , ,
o-model, S(»)=—(QLtQ%s) (in the notation of Ref. B do=—2e Qfl_[o(r,r YDo(r')drdr’, (18)

given explicitly by

where the potentiadby(r) satisfies Eqs(7) and (8) with II
2iA? mio\ To replaced byll,.
S(w)=1+ ?ex% )SIHT- (12 Itis easy to check that the first term in the expressid)
mw for TIo(r,r') gives v after integration over one of the coor-
It is related to the two-level correlation functid®y(w) as  dinates, the integral being dominated by the distances of or-
R,(w)= R4 1+ S(w)]/2. Now we decompose the polariza- der of the Fermi wavelengthy—r’|~\g. Assuming the
tion function into frequency-independent and frequencyscreening lengthwhich sets the scale for the variation of the
dependent parts potential ®(r)] to be larger thar\g, we can thus replace

this term by aé function:

A

I(r,r" ) =Tg(r,r") + (11", @),
Ho(r,r)y=v[S(r—r" )=V 1]. (19
Io(r,r')= i Imfo de(GR(r,1",€))2— K, (13)  This approximation for the polarization functidh, leads to
™ —o \4 the simple relation between the potentia(r) and the ex-
cess densityy(r) (Thomas-Fermi approximation

w
(1,1, w)= = 5 —=[1+ S(@) [[( InGR(r,1",0)?

Do(r)=—(2ev) *po(r) (20
+ (7)o (r,r)] and consequently to the equation for the potentig(r),
KZ(Do(r) 09(r), 3D
= GA)ky(r=1)+Tp(rr)], (14) L (21)

where we definedA(w)=(iTw/2A)[1+S(w)] and intro- with « defined in Eq.(6) and the boundary condition
duced the functiorky(r—r")=( ImGR(r,r’,0))? given ex- ®o(r—)=—Er+ const. In Egs.(20) and (21) we have
plicitly by Eq. (5). Note that the formulagll), (12), and(14) chosen the arbitrary additive constant in the definitiodbgf
are written for the case of the unitary ensemibleken time-  in such a way thaf o®,(r)dr=0.

reversal symmetry due to the presence of a strong enough In the following we consider particular geometries of a
magnetic fieldl, which was considered in Ref. 6. Generaliza- 3D spherical sample of a radil (to be referred as 3Da
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e o @,\/\ function[the first term in the second set of square brackets in
Eg. (14)], and the second onex() is due to the diffusion
. . - . contributionII .
+ Do To evaluate the second term, we use the expansidhyof
-1 in the eigenfunctions of the Laplace operadiyy(r) with the
= ( 1+ ®\") boundary condition®& ¢,=0 and the corresponding eigen-

values—e,,
Py @) = AT+ - .
)-1 Mp(r,r')=(7Dv)~ 12 (N Pa(r). (24

@, ()

For the purposes of estimate, one can use the expressions
valid for I <|r—r'|<L (L is a typical size of the system

@)= (1-
P1 ( [(2#*vD)"Hn[L/|r=r']], 2D
+ - cee ) HD(rlr )% (4’7TZVD|r_r,|)7l, 3D (25)

x 1> ( 1-~—~Co Now we evaluate and compare both contributiang and
a4p in 3D and 2D systems. Since the structure of the poten-
+ Coome~Co > = e ) tial ®, is different in 3D and 2D cases, these should be

treated separately.

-1
=---- (1 +®\/‘ ) A. 3D geometry
For any 3D geometry withwL>1 the expression for

-1
x (> (1 +~~Co> ) ®(r) can be written in the form
(b)

FIG. 1. Electrostatic potential and electron density in the RPA. Dy(r)= E(p(ru)exq —kr,), (26)
The external dashed line is the bare potential of the electric field K
—Er and the loops with 0 and 1 denote the contributi6h§and Wlth be|ng some function of magn|tude umty We have
IT, to the polarization function, respectively. The wavy line is the mtroduced a transverse coordinate(r for the spherez in
Coulomb interaction. the case of a digkand the vector| of coordinates along the

surface of the sample. Note that according to &),
circle of a radiusR in the in-plane electric field2D), and a

guasi-two-dimensional sample of a thickndsq0<<z<h) @(r)=—4meoy(r)/E, (27)
and an ared in the field directed along the axis, i.e.,
transverse to the sampl@2D). The polarizability tenso;;
is generally defined asi(w)=a(w)E(w). Equations(18)
and(21) yield the classical polarizability equal in the limit or
xkR<1, kh<1 to (for all the geometries under consideration
the dipole moment is directed along the field and the tensor 262 vA( )

is reduced to a scalgr a15=? f d3rd3r @ (r)kg([r—r'|)Po(r")

whereeay(r)) is the charge density on a surface of an ideal
conductor induced by the electric fiell It can be found by
the methods of the classical electrostafitén the integral

s,

R®, 3D (28
both pointsr and r’ lie in fact in the layer of thickness
=< SHham, 2D Z .
@o g 5 Q (22 k" 1<I near the surface of the sample. One can then inte-
(4/3m)R°,  2D. grate over the transverse coordinates and reduce the remain-
ing double surface integral to the integral over one coordi-
Now we turn to the corrections due to the functidR. One  nate only. We obtain
obtains(Fig. 1)
A(w)|n(K|)J d2r”<p2(r||)

H1s=, 2 2
dlE:2e2fdrdr’(I)o(r)Hl(r,r’)(I)o(r’), 23) VpEx

1

in full accordance with Ref. 12. Note that E@3) depends - Lp? KzA(w)In(KI)' (29)

e . F
explicitly on the symmetry of the system with respect to the
time reversal and therefore constitutes the WL correction tdn Ref. 12 the kernel in Eq28) was incorrectly replaced by
the polarizability. As follows from Eq(14), this correction a & function, which led to an overestimate of the contribution
consists of two contributions. The first ofte be referred as a5 by a factor of«l[In(xl)] >1.
a1g) is due to the short-range contribution to the polarization On the other hand, for the term due to the diffusion,
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262, and the diffusion term dominates for>1In(«l). In the op-
alDz—zA(w)j drdr’'®o(r)IIp(r,r’) posite case of a thin sample the short-range contribution is
VE the leading one. In particular, fér<| we find

X Do(r'), (30) o e Ao In(xh)

. (38
we obtain, using the estima{@bs), h(pex)

As is seen from the above formulas, the relative magni-
~ g (31)  tude of the weak localization correction is rather low for both
IIn(xl) 3D and quasi-2D(with the field direction normal to the
plane geometries, so that the experimental observation of
the effect in these cases may be problematic. The effect is
much more pronounced in the 2D case, which we consider

a1p A(w)

vD k2
We see that in a diffusive system of a size-1In(«l), the
diffusion contributiona;p dominates, in contrast to the con-
clusion of Ref. 12. At the same time, if the sample dizés

. . below.
comparable to the mean free patkwhich happens, e.g., in
ballistic systems with surface scatteringhe short-range , ,
contribution is parametrically of the same ordierfact, even C. 2D geometry (in-plane field)
larger by a logarithmic factpras the diffusive one. As In contrast to the 3D case, the potentld} in the case of
expected,;*®'2the WL correction is small in comparison to a 2D sample in the in-plane electric field is a smooth func-
the classical polarizabilityy, tion of coordinates, with the characteristic scale set by the

sample sizeR. Therefore the kernel in the integré28),

1 which has a support of ordéy can be replaced by é func-
a1/a0~ WA(Q)), (32) tion,
g~2mvDL being the dimensionless conductance. The cal- (pFr)*lexp(—r/I)~2wIp;15(r).

culation of the numerical coefficient for the WL correction to

the polarizability requires the exact expansi@d). For the This gives an estimate

particular spherical geometry the potent#s) has the form a1~ (pex) " A(w)In(R/).

3ER On the other hand, for the diffusive ter(B0) the estimate

dy(r)=———exgd —«(R—r)]cos, R-r<R, (25) implies
TKI
33 _ _
| 33 1o~ R2(kg) A (w)~ e RINZLI(RIN]
and we obtain Similarly to the 3D case, the diffusion term, 5 dominates
1.36 for R>1. The relative magnitude of the quantum correction
a1=——A(w). (39 can thus be estimated as
(Prr)“l

According to Eq.(17), the WL correction to the polarizabil- aylap~1/g«R,
ity is negative. The value of the correction in the presence ofyith g=27vD =kgl/2.
a strong magnetic fiel(unitary symmetry is smaller(twice For the particular case of a circular geometry, the poten-

as small for zero frequengyhan that without the magnetic +tjg @, is given in the polar coordinates,@) by?®
field (orthogonal symmetpy The experimentally measured

magnetopolarizabilityrg , defined as ®y(r)=—2E(mk) ‘rcosh(R>—r?)~172, (39

ag=a(B)— a(0), (35) ?n exact calculation gives the value of the quantum correc-
ion
is therefore positive, in agreement with Ref. 12.
a1(w)=1.5FR?(kpel) A(w)

B. Quasi-2D geometry(transverse field and the relative magnitude of the correction is

We consider now a quasi-two-dimensional sample of a
thicknessh>«~! and an are®>h? with the electric field o] o= 3.6x 1 A(w)
directed transverse to the sample plane. Ther(Zg).for the P02 kpelR '

potential reduces to '
In a recent paper Noat, Reulet, and BoucHigNRB)

E proposed a geometry of a narrow 2D rifrgpdiusR, width
Do(r)=—(—e "“+e” «(h=2)), (36)  W<R) as more favorable for observation of the effect. In the
in-plane electric field the ring becomes polarized with the
If the sample is relatively thick>1, the same consideration one-dimensionali.e., integrated over the ring cross secjion

as for the case of a spherical shape yields charge density
A In(«l) _3A 1 3 o) ER 9
1= (w)mz, a1p=75 (w)mz (37 p(0)= en(RIW)°
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and the classical polarizability given by D. Canonical ensemble
R3 The results obtained above were derived for the grand-
ar . . . . -
=1L RIW) canonical ensemble, where the chemical potential is fixed by
n

an external reservoir. In Appendix A we present the calcula-

Calculating the quantum correction, we find again that for dions for the canonical ensemble, which is more appropriate

diffusive ring R>1, the contributiona,, dominates and for the problem in questioff. We show[Eq. (A1)] that the
gives CE magnetopolarizability differs from the GCE result by the

coefficient—2.75. This means that although the magnitude
of the CE effect is the same as in the GCE, the sign is
opposite in the CE case: The magnetic field suppresses the
polarizability.

R4
~ YDW2kInZ(R/W)

The relative magnitude of the correction is

A(w). (40)

ay

Ill. WEAK LOCALIZATION EFFECTS

alag= A(w), (41) IN THE CAPACITANCE

7gWkIn(R/W)

where g is now the quasi-one-dimensional conductance

g=vDWI/R. These results for the ring geometry are by and A natural definition of the capacitance in an open system

large in agreement with those found by NRBActually, is

NRB express the polarizability in terms of the exact eigen-

functions of electrons, conceptually similarly to the original C,=edQdu, (44

GE calculation, and then perform the impurity averaging us- ) . ]

ing the semiclassical expression for the correlation of thevhereQ is the total charge of the system. This capacitance

exact single-particle eigenfunctiorisee, e.g., Refs. 1 and determining the low-frequency transport properties of the

24). This calculation yields correct results for the following System was studied thoroughly by tker and co-workers

reasons. First, the short-ranged terms in &g, omitted in  iN Refs. 22 and 2qwhere it was ca;lle_d “electrochemical

this calculation, turn out to be unimportant for the WL cor- Capacitancey. An explicit calculatioR’ yields

rection to the polarizability. Furthermore, tlexactexpres- ) 5

sion for the long-rangetiffusive) part of the eigenfunction e _ e_+ 1 (45)

correlator(1) coincides with the semiclassical result even for C., Cy Vu(Ep)’

w<<A, where the latter generally is not expected to be true.

This has been proved and discussed previously by the althere Cy is the geometrical capacitance, determined from

thors in Ref. 6. the equations of the classical electrostafiesith corrections
Similarly, we can consider a quasi-one-dimensional strigiue to the screening effects, angEf) is the density of

of width W and lengthL>W oriented along the electric-field States at the Fermi level. The average of the second term in

direction (which we choose to be the axis). Again, the the right-hand side of E¢45) is the mean level spacing,

sample polarization is described by the one-dimensionavhich is usually much less than the average of the first term.

A. Definitions

charge density However, the fluctuations of the second term are impofant.
Being formally applied to the closed system, E¢4)
Ez yields infinite fluctuations of the charging energy. Indeed, in
p(2)= eln(L/W)’ Ref. 19, where an attempt to calculate the fluctuations of the
o _ o compressibility of a closed system has been made, the inte-
yielding the classical polarizability gral over energies diverged and the authors could get a finite

L3 result only by cutting it off at energies of orddr.
A proper generalization of the definitiqd4) for a closed

YO~ AT -
o 12In(L/W) system is its “discrete” version

The quantum correction is now equal to
a q e?/C,=u(N+1)— u(N), (46)

L3
:am:mA(w% (42)  whereu(N) is the chemipal potential of elosedsystem pf
N electrons. The quantity46) has an important physical

whereg=2mwvDWI/L is the dimensionless conductance. Wemeaning: It is equal to the spacing between two consecutive

ag

obtain peaks in the addition spectrum of a quantum dot in the Cou-
lomb blockade regime. Statistical properties of these spac-
2 1 ings were studied experimentally in Refs. 16—18 and theo-

a1/a0=? KWgIn(L/W) A(w). (43 retically in Refs. 20 and 21.

Similarly to the case of an open systdifqg. (45)], the
Thus, we have found that the WL correction to the polar-peak spacind46) can be decomposed into two parts: level
izability can be quite appreciable in 2Rircle) and espe- spacingAy and (usually much largércontribution associ-
cially in quasi-1D(ring or strip geometries, which gives a ated with Coulomb interactiofdenotedE; in Ref. 20. The
possibility of its experimental observation. These conclu-main contribution to the lattefand thus to the Coulomb
sions are in full agreement with those of NRB. blockade peak spacihgs given by the charging enerdyc
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U, = ~~ - _ e?(kR?) " 'exgd —«(R—r)], 3D
1 (1 @ CI)O(I’): COnSt_(ez(zKR)1(R2_r2)1/2, 2D,

+ oo - ) where the constant is chosen in such a way that
1- O Jdr ®y(r)=0.
X @ ( In the first order inll, we obtain(Fig. 2)

D - )

Ul(r,r’)=2f drydroUg(r,r)Il(ry,r)Ug(ra,r'),

-1
=~ ( 1+ @’\/\ ) and, taking into account that the integralldf over any of
1 the coordinates is zero, we write the corresponding contribu-
- tion to the charging energgwhich constitutes the WL cor-
X 3D (1 + D ) ~ rection in the form

FIG. 2. RPA for the two-particle potenti&él. The potentialJ e? _ _

is given by the same sequence of diagrams as the potdjiah (E) =2f dridro®o(ry)Ili(rq,r)Po(ry). (50

Fig. 1 provided the external dashed line is replaced by the Coulomb 1

interaction(the wavy ling. Due to the structure of the functioi; [Eq. (8)] there are

two contributions to the WL correction: One comes from the

short-ranged term and the other one is related to the diffu-

sion. A comparison of these contributions can be carried out

exactly in the same way as was done for the polarizability,

ECEeZ/CEVﬂf drdr’u(r,r’). (47 and it turns out that the diffusive term dominates if the
Q sample size exceeds considerably the mean free path. Thus

we obtain finally

defined® as a constant part of the effective two-particle in-
teraction potentiaU(r,r’) of the electrons in the sample:

In particular, the WL correction to the charging energy cal-
culated below is the dominating term for the WL in the Cou-
lomb blockade peak spacing and can be measured, in prin-
ciple, as the magnetic-field dependence of the peak spacing.
In contrast, fluctuations of the charging energy do not giverpe calculation for the particular geometries of a spHiam
the dominant contribution to the fluctuations of the peakynq disk(2D) gives

spacing; see Secs. IV and V and Ref. 20.

—2) —_——f (ro)Ip( )Do(rp). (51)
drdr,®o(r)IIp(ry,ro)®o(ry). (51
c/, BV 10r,®o(ry) 1 p(ry,rp)Po(rz

(52

g2 -1.328" Y YpeR)74, 3D
B. Weak localization effects e
1

C —-0.018 77 Y(pgR) "2, 2D.
The potentialJ (r,r’) can be found in the RPA (see Fig.
2). As in the case of the polarizability, it is convenient to
split the polarization function into two partd9) and (14).
Assuming the low-frequency limitv<A, we replace the
functionA(w) by its zero-frequency valu@?). In the zeroth

order inII; one should solve an equation

The small coefficient in front of the 2D expression is an
artifact of the specific circle geometry.

The weak localization correction suppresses the charging
energy, i.e., enhances the capacitance. The magnetic field
suppresses the capacitance. In both 2D and 3D cases, the WL
correction to the charging energy can be estimated as

Uo(r,r’)zvo(r—r’)—zf dr,dryVo(r—rq) e A
Q =| ~—. (53
C . 9
XTTo(ry, 1) Ug(ra,r"),  Vo(r)=e?r. The WL correction can be in principle extracted from the

(48 measurements of the magnetic-field dependence of the ca-
. . . . pacitance, though its rather small value may make such a
This equation was _solved for an arbitrary closed system i easurement problematic.
Ref. 20. The result is As for the polarizability, the CE calculation yields an ad-
— - ditional factor—2.75 in Egs.(51) and(52). Thus, in the CE
Uo(r,r) =U+do(r) + Po(r') + U (r,r"). (49 the magnetic field suppresses the charging energy, enhancing

—_— 5 . , the capacitance.
HereU=(e“/C), is a constant, corresponding to the charg-

ing energy calculated in the Thomas-Fermi approximation;
U, is the usual screened Coulomb potential, shifted by a

constant so thafdr U (r,r')=0, while & is the contribu- Mesoscopic fluctuations of the polarizability and the ca-
tion due to the excess positive charge, moved towards thpacitance can be calculated in a similar way. In addition to
boundary of the system after an extra electron is added to thitse average polarization functigh3) and(14) there is also a
system. For the sphek8D) and circle(2D) geometries this random partlI,(r,r’) with the zero average, giving rise to
potential has an explicit forff the fluctuations of these quantities. Since the integrdll pf

IV. MESOSCOPIC FLUCTUATIONS
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the potentialsb, and @, are zero, this term vanishes. For
typical geometries the main contribution is given by the term
where two of the functionB . are replaced by the zero-mode
result, while two others are represented by the diffusion
propagatofthe second term on rhs of E(r7)]. Cutting off
the logarithmically divergent integral &t from below and at
the Thouless energli, from above, we obtain

a) b) 12¢*
(a?)= 2 v?Ing
FIG. 3. Diagrams for the fluctuations of the polarization func- BE
tion. The double dashed lines denote the diffusion propagators. The

counting factors aré) 2 and(b) 4 for the unitary symmetry an@) %
4 and(b) 8 for the orthogonal one.

2 2
2 [ andrrano v 59

. . . . . and
over each coordinate is zero, we immediately arrive at the

expressions for the random parts of the stitiolarizability e?\?\ 12
c v’Ing
r

B

a, and the charging energye{/C), in precisely the same =
way as Eqgs(23) and(50) were obtained:

X

2 2
2e? -z s o
ar:E_ezf drdr’(IJO(r)Hr(r,r’)CDo(r’) (54) V,f drldr2q)0(rl)HD(rl1r2)(DO(r2):| .

(59

Comparing these results with the expression for the WL cor-
e? = = rections(30) and (51), we obtain a general formula relating
(E) :Zf drdr' @ (N IL(r,r" ) Do(r'). (55 WL corrections(calculated within the GCEto the meso-
r scopic fluctuations of the same quantit® denotes root

and

(61)

Thus the mesoscopic fluctuations of both quantities ar&"€an squane
determined by the fluctuations of the polarizability. To cal- _ 112
culate them, we perform the perturbative calculation. As we R(@)=(34Ing) ™ a| (60

will see, in the case of fluctuations the whole range of enerand

giesA<e=<E, contributes and this fact justifies the pertur- ’ )

bative calculationin contrast to the weak localization cor- R(e_) =(38Ing)*2 (e_)

rection, which is determined by low energiegollowing C C/, '

Berkovits and Altshulet? we identify the four-diffusion dia- _ _ _
grams(Fig. 3 as giving the main contribution to fluctuations NOte that in contrast to the WL corrections, the mesoscopic
of the polarization function. fluctuations are not expected to be sensitive to the GCE/CE
We obtain difference since the integréb6) is determined equally by all
energiesA<e=<E_. For particular geometries we obtain

(I (ry,ra) I (rp,r))=— (1227:[3) Refo e de D(ry,r) R _(In_g) 1’2{4.711—1(pFK)—2, 3D
D=3 |53R2(kpe)-t, 2D
XD (ry,r3)D(r3,rg)D(rq,ry). and
(56) 2 12 -1 -4
Here 12B is a combinatorial factofa number of four- R(e_ :(In_g) [2'297 (PeR)"% 3D
diffusion diagramy the functionD, is given by the expres- c B 0.017 Y(pR) "2,  2D.

ston The remaining terms in Eq56), with all the four func-
1 tions D, replaced by the diffusion propagator, can also be
Do(r,r)=—iy tmilp(rr), A=e<E;, (57) easily estimated. Their contribution is of the same order as
Egs.(60) and (61), but without the logarithmic factor in the
and decreases far=E_. If the integral overe in Eq. (56) numerator. Thus, for the rms of the charging energy in addi-
diverges, the cutoff at energies of order of the mean levetion to the term of order A(Ing)¥?/g (two zero modeswe
spacingA, where the perturbative expressi(#6) ceases to obtain a correction of order A/g (no zero modes
be valid, should be introduced. Amazingly, the relations between the weak localization
A naive estimate suggests that the leading contribution t@orrection and the amplitude of mesoscopic fluctuati¢s(,
the fluctuations of the polarizability as well as of the capaci-and (61) have a universal form, the same for 2D and 3D
tance can be found by substituting the zero-mode contribusystems. We should note, however, that these results are not
tion [the first term on the right-hand sidehs) of Eq. (57)]  applicable for the case of polarizability fluctuations of a
for all the four functiond .. However, since the integrals of quasi-two-dimensional sample of the thicknbssl and area
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S>h? in the transverse fieltsee Sec. Il Bcalculated previ- regime’®~*® However, as follows from Eqg53) and (61),
ously by Berkovits and Altshuléf In this case, the contri- the magnitude of these fluctuations is much smdller a

bution from the terms with two zero-modes, E§8), which  factor ~(Ing)*%g] than the level spacind. Therefore, the
can be easily calculated with the use of E86), yields the  contribution of the charging energy fluctuations to the fluc-

rms value of the polarizability fluctuations, tuations of the peak spacings is parametrically smaller than
the effect of electron level fluctuations, which is given by the
2 (387 %ng)*2 h random matrix theory and is of order df. The charging
R(a'?)= Ty K2 energy fluctuations represent oftaut not the only ongof

the contributions to the enhancement of the peak spacing
where g=2m7vDh. On the other hand, the contribution fluctuations as compared to the random matrix theory. This
where all the four functionB, are replaced by the diffusion problem was considered in detail in Ref. 20.

propagators ¢ Finally, we would like to mention once more that we
assumed the screening length to be much larger than the
wn 8B 1732 gl2 wavelength or, in other words, thars<1, where
R(a'™)= T F r<=e?/evg. In the opposite case,>1 (but still below the

Wigner crystallization thresholdone can roughly estimate
i.e., it is larger by a factor-SY%[h(Ing)*?], and for this the result assuming the screening length to be approximately
particular geometry represents the leading contribution to thgiven by the distance between electrons. This leads to an
fluctuations of the polarizability. enhancement of the above results for the WL correction and
the rms amplitude of fluctuations by a factor of orderrgf
V. CONCLUSIONS andr? for the polarizability and capacitance, respectively.

In this paper we have calculated the weak localization
correction to the polarizability and the capacitance of a dis- ACKNOWLEDGMENTS
ordered sample and the mesoscopic fluctuations of these
quantities' The WL Corrections Originate from t@?GA We are grateful to R. Berkovits and H. Bouchiat for dis-
term in the polarization function, which depends on the prescussions and comments. The work was supported by the
ence or absence of the time-reversal symmetry. A change ciWiss National Science Foundati¢.M.B.) and SFB 195
the polarization function influences the screening and, conder Deutschen Forschungsgemeinschafb.M.).
sequently, the polarizability and the capacitance. We find
that in the grand-canonical ensemble, switching on the mag-
netic field leads to a positive correction to the polarizability
and negative one to the capacitance. In the canonical en-

semble the magnitude of the effect is the saue to a nu- In this appendix we calculate the magnetopolarizability
merical coefficient~2.75), however, the sign is reversed. ag defined by Eq(35) in the canonical ensemble. For this
Calculating the mesoscopic fluctuations of the polarizabilpurpose we first rewrite our derivation of the Sec. Il in terms
ity, we find that for typical geometries they are related to thepf exact eigenfunctions and energy eigenvalues, in the same
value a; of the WL correction agsee Eq.(60)]: manner it was done originally by GERef. 4 and later by
o NRB.* Using the results, derived for the correlation of
R(a)=(3BIng)"ay]. eigenfunctions in Refs. 6 and Z@nitary ensembleand Ap-
The same conclusion is valid for the capacitance; see Eqendix B (orthogonal ensemblewe first obtain the weak
(61). Therefore, the magnitude of fluctuations exceeds conlocalization correction in the grand-canonical ensemble. It is
siderably the value of the WL correction. This should bein full agreement with the results obtained in Sec. IIl. Then
contrasted with the relation of the corresponding quantitieve generalize the derivation to the CE case.
for the case of the conductance: Our conclusion is that the CE magnetopolarizabit'yt&E
can be easily obtained from the GCE vaw§“F as

APPENDIX A: MAGNETOPOLARIZABILITY
IN THE CANONICAL ENSEMBLE

R(9)~1,

1, quasi-1D aSF=—AcpaS®E, Ace=2.75. (A1)
|ge|~{ In(L/l), 2D

L/l 3D We should stress here that the derivation given below uses

only the linear-response formalism and the properties of the
so that |g;/>R(g) in 2D and 3D geometries and eigenfunction and eigenvalue statistics in disordered sys-
|g1|~7R(g) in the quasi-1D geometry. As our results show,tems. It relies on the fact that that the WL correction to the
an experimental observation of the magnetopolarizability ofolarizability is determined by the energy range where the
mesoscopic samples requires an experimental setup wilkvel correlation is important. It can be repeated for the case
large number of such samples, which would reduce the flucef the capacitance, where one obtains a relation analogous to
tuations. Eqg. (Al). In contrast to this, the fluctuations of both quanti-

Mesoscopic fluctuations of the charging energy contributdies are determined by the energiéske<E., where the

to the fluctuations of the conductance peak spacings in theorrelation of levels does not play any role and the difference
addition spectra of quantum dots in the Coulomb blockaddetween CE and GCE values is not expected.



57 ELECTRON-ELECTRON INTERACTION IN DISORDERE. . . 4575

1. Magnetopolarizability in the GCE: 2. Canonical ensemble

Derivation in the manner of Gorkov and Eliashberg To realize the canonical ensemble, we apply the method

We start from Eq(23), which can be rewritten in terms of previously developed in Refs. 30 and 31. Namely, we fix the
the exact single-particle states as number of electrons to an integer in each individual sample,
but allow it to fluctuate slightly from sample to sample. This
2e? type of ensemble is realized by pinning the Fermi level to
ag(w)= ?f drydro®o(ry) 8I1(r1,r2)Po(r2). (A2)  one of the single-particle levels: ex= e, +0.
Now, instead of Eq(A5), one should split the sum over
Here we introduced the symbdi denoting the difference energy levels in Eq(A4) into two. The first contribution
between the quantities in unitary and orthogonal ensemblesonsists of the terms with=k and can be transformed to the
integral with the use of the two-level correlation functigp
6()=()eue—()coE The rest of the sum requires the three-level correlator
R5(0,e,€,), which corresponds to the probability to find
three levels with energies ©¢;, and e— €; (counted from
the Fermi surface Thus we obtain

and the polarization functiofl is expressed as

H(rl,rz)=n§n BE(r) Pn(rD) W (1) tr(r2)
> (>=A—1f de Ry(€)( )

Ne(em) —Ne(e En<EF<¢ 0
F( m) F( .n)' (A3) n m
w—€nte,+i0

] ) ] —I—A_zj def de;R3(0,61,€)( ),
m and n being the exact single-particle states. Thus, for 0 0
o<<A we obtain an expression valid in both GCE and CE, (A8)

and for the magnetopolarizability

4 2
aB(w>=E—ia< >

en<er<em €m™ €n

|(<I>o)mn|2>- (A4)

4e? =de €

In the GCE the position of the Fermi level can be arbi- ag= o — |Ry(e)A+ | de;R3(0,¢,€7)
i i - E2A% | Jo € 0

trary and we replace the sum in E&4) by an integral with

the level correlation functiolR,(e€):

w X<|(q)0)mn|2>e]- (A9)
> <)=A*2foedeR2<e><). (A5)

n=€F=€m Since the integral oves converges foe~ w, we can replace
the matrix element by its low-frequency limit. Fer<E. we

Using the sum rule for the eigenfunctions . . . -
g 9 obtain for the correlation of the wave functions witfn

[see Eq(B11) for the orthogonal symmetry and Ref. 29 for
En: (1) Yn(ra) ¥y (12) wm(r2)> =V715(r—1p), the unitary ong
we obtain for the magnetopolarizability VA1) (1) m(r2) ¥ (12)) e, e
2e? ) B Kg(r)+[1+Kkg(r)Ip(ry,rp), GOE
@0~ gag 2 Polmnl (#0) =) + o111, GUE.

The above derivation of EGAB) is essentially equivalent n the cases when the diffusion dominatésne can replace
to that of Refs. 4 and 13. Now, using E&8) for the case of this eigenfunction correlator for either symmetry Hy, . As

the orthogonal symmetry and Ref. 29 for the unitary one, wed result, taking into account E¢A7), we obtain Eq(Al),
write (r=|r;—r,|) with the coefficientAcg expressed in terms of the level cor-

relation functions
V2<|l/lm(r1)’/’m(r2)|2>e
[1+2I15(ry 1) [ 1+ 2ky(r)], GOE Acee —1-2 d;
[1+T15(r;,r2)][1+kge(r)],  GUE. 0

Separating the dominating diffusion term, we obtain for the X &

S
- e : Ra(s)+ f ds;[R3(0,51,5)—Ra(s)] |,
magnetopolarizability in the grand-canonical ensemble 0

2e? (A10)

“BzszzAf drydro®o(ry)p(ry,ra)®o(r2), (A7) \yhere we have made a change of varialsiesre/A. Note
that Eq.(A10) differs from the similar expression derived by
which coincides with Eq(30). NRB (Ref. 13 by the second term on the rhs.
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In the leading approximation the correlat_ion functiBp B=n(ry,r,€)A " 18(w)+ B(ry,ry,6,0) A" ?Ry( w)
andR; may be taken from the random matrix thedfyThe ) — R A
first integral on the rhs of EqA10) can be calculated ana- =v°+(2m%) Re[(GT(ry,11,€)G(r2,12, €+ 0))
lytically and is given by —(GR(ry,11, ) GA(. Ty, e+ )} (B2)
=ds =ds 1 = here the two-level correlation function,
1= fo ?5R2(5)— fo ?g(s)h(s)— 1 16
Rz(w)=A2<z Se—e)detw—e¢)), (B3)
=—0.367, k#1
in contrast to the statement of NRB that it is equat-ta/2. IS infroduced. . _ _
We have defined the functions The right-hand side of expressidB2) can be directly
calculated with the use of the supersymmetry technique. For
sins d 0 the case of preserved time-reversal symmétsthogonal
f(8)=—5 9(8)=g4f(s), h(s):L f(sy)ds;. ensemblgone obtains

The second term on the rhs of E(ALO) after a lengthy — B(r1.l2,€,0)=—(2m%) "Re{(Gp1p1(T1,r1) i pa(r2F2)
algebra can be expressed as follows:
g P +gt§§,b1(r1,fz)gﬁm(rz,fl)#

= fwd—sfsdslﬁ(Rg)(O,sl,s)—Rz(s)) —(Ob1p1(r1,1))E(GETpa(r2.2))e}  (BA)
o SJo

Here( )¢ denotes the averaging with the action of the super-

s - tri -model F '
j f |S]_{g(51)h(51) f(s)g(sl)h(s 1) matrix o- [Q]
0 S 0 s m

(= [ DQOexa—FiQ),
+9(s)f(sp)h(s—s;) +h(s)f(sy)g(s—sy)}.

Calculating this numerically, we finth,=—1.509 and thus v 2 .
Acg=—1-2(I,+1,)=2.753. F[Q]——? dr StfD(VQ)“+2i(w+i0)AQ],
Note that in the above derivation we neglected the contri- (B5)

bution of the so-called Debye procesdeslaxation to the
instantaneous equilibrium distribution due to coupling with
phonons or other possible inelastic procesd&® 13 These
processes do not exist in a closed sample in the limit of zer
temperature T<A) that we are considerind.

whereD is the diffusion coefficientQ=T AT is a 88
supermatrix,A = diag(1,1,1,1-1,—1,—1,—1), and T be-
longs to the supercoset space U(2)2U(2|2)xU(2|2).

%he symbol Str denotes the supertrgtace over bosonic
degrees of freedom minus that over fermionic gndhe
upper matrix indices correspond to the retarded-advanced de-

APPENDIX B: CORRELATIONS OF EIGENFUNCTIONS composition, while the lower indices denote the boson-
IN DISORDERED SYSTEMS: fermion one(here we need only the inddx., which denotes
ORTHOGONAL ENSEMBLE one of two bosonic components of a supervectdihe

In this appendix we derive the expressions for the corre&Sreen’s functiong in Eq. (B4) is the solution to the matrix
lations of the eigenfunctions in the orthogonal ensemble ifguation

the same way as these were obtained in Ref. 29 for the uni- i
tary ensemble. We restrict ourselves to the terms of order {—i e+ g_go) _ E(w+iO)A+Q/27 g(r.r’)
-1
Following Ref. 29, we define the eigenfunctions correla- ,
tors[see Eq.(2)], =o(r—r’). (B6)
Expressing these functions through the matriQeand tak-
— 2
7(ry,r2,€) ={|h(r) (1)) ing into account Eq(B2), we arrive at the following equa-
tion valid in for an arbitrary diffusive system:
<§ (1) dh(r2) 25<e—ek>>
= F1,ra, l1.72,¢€,
= ., (BY o2 7(ry,rp,€) 5(w)+ﬁ( 1,12,€,0) Ry(w)
A 2
< E o(e— ek)> A
k
) = ()°Re{1—(Qp1p1(r1) Qi pa(r2))r — 2Ky(r)
B(ry.r2,€,0)=([h(r)h(r)|Hew,  K#I,
[ e inintel QU (1) Qa0 &7
an Here the functiorky is defined in Eq.(5) andr=|r;—r,|.
V(1112 6,0) = (P (D)) TP (1)) s KEL The separation of the rhs of EB7) into the singulafpro-

portional toé(w) ] and regular parts allows one to obtain the
The quantitiesy and 8 are related as quantitiesy(ry,r;) andB(ry,rp, ).
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For the case of a metallic system in the weak V2<|¢k(f1)¢k(fz)|2)e
localization regime, theo-model correlation functions
<Qﬂ,bl(rl)Qk2):2L,bl(r2)>F and<Qﬁ,b1(r1)Qﬁ,b1(r2)>F can be =[1+2ka(N)][1+2Hp(ry.r2)], (B8)

calculated for relatively low frequencies<E_ with the use  and for the correlation of amplitudes of two different eigen-
of a general method developed in Refs. 37 and 38, whiclfiunctions k#1)

allows one to take into account spatial variations of the field 9 9 B

Q. The results are obtained in the form of an expansion in VEllr) ¢h(r2) %) e.o— 1=2kg(DIIp(ry,r2). - (BY)

g 1. Up to the terms of ordeg ™!, we obtain The result(B8) for ry=r, is the inverse participation ratio
1 - previously obtained in Ref. 38, while that for an arbitrary
(Qbipa(r)Qbipi(r2))e spatial separation was found in the zero-mode approximation
(g=<) in Ref. 39.
12D Now we turn to the correlation functior. Similarly to
1=2R(w) m(w+i0) Mp(ry.r2) Ref. 29, we obtain a relation
and [1.5,€ ., €60
b N 02 7( 1A2 )5(w)+ y(ry 22 )Rz(w)
(Qb1p1(r)Qbipi(r2))e A
iA — iA =—(mv)?Re{(QL2, ,(r))Q% . (r,) e +ky(r)
- __2[R(w)+ T (ry.ry). &{Qb1p1(r1)Qpb1p1(r2))r +Kg
m(w+i0) m(w+i0)

X[(Qp(r)Qpa(r1))e
Here the diffusion propagatdi is defined by Eq(3) and 12 21
2 + -17}.

we have introduced the functid®(w)=[ 1+ S(w)]/2, where _<Qb1vb1(_r1)Qb1‘b1(r_2)>F 11} _ (B19)
S(w) is given by Eq(16). Note that the two-level correlation Separating again the rhs into the regular and singular parts,
function R,(w) is the real part oR(w). we recover Eq(B8) and obtain

Now, separating regular and singular parts on the rhs o{;2/ r FVO
Eq. (B7), we obtain the following result for the autocorrela- (M) BP9 (1))
tions of the same eigenfunction: =kq(r)+[1+ky(r)Ip(rq,re), k#I. (B11)
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