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Local spin polarization in ballistic quantum point contacts
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Self-consistent calculations of the electronic structure and conductance of a ballistic quantum point contact
(QPQ in the one-subband limit are reported. The spin-polarized density-functional theory of Kohn-Sham is
used. The self-consistent results show that spontaneous spin polarization occurs locally in the region of the
saddle point as the electron density is lowered. As a consequence, the effective potential barriers become
different for spin up and spin down electrons. Transport associated with spin up electrons, let us say, then
suddenly takes place via tunneling, while spin down electrons still carry the current via propagating states in a
normal way. The onset of spontaneous spin polarization induces anomalies in the conductance. Our results
support the recent interpretations of experimentally observed conductance anomalies in QPCs near pinch off.
The agreement with measurements is qualitative, however, rather than quantitative. Reasons for the discrep-
ancy are proposefS0163-182628)02608-3

The number of electrons in a quantum point contact0.2(2e?/h) evolve into a plateau at 0.5€2/h) if the sample
(QPQ, i.e., a short constriction connecting two electron res4s subject to an in-plane magnetic fieldn fact, Ramvall
ervoirs, may be quite small close to pinch off. This suggest®t al. also report on a higher plateau at 1.6¢th). Since we
that electron interactions become especially important as theill be concerned with single mode events only, we will not
conductance is lowered belo®= 2e?/h, the lowest conduc- commented on it furthef Anomalous structures for conduc-
tion plateau. Recent conductance measurements by Thomtsces below (82/h) and their dependence on source-drain
et al! for low-dimensional split gate QPCs in modulation- voltage have been discussed previously by Pettel.’
doped high-mobility GaAs/AlGa;_,As heterostructures In the limit of single-mode conduction, a QPC may be
have revealed a conductance anomalyGat0.7(2e?/h). considered as a quasi-one-dimensiofl&)) system, at least
This feature, which has been recorded also in some previouscally. One candidate for modeling the low-temperature
measurements but has passed uncommented so far, wagproperties of such a system is the Tomonaga-Luttinger liquid
interpreted by Thomast al. in terms of spontaneous spin theory for locally interacting 1D electrofisThe conductance
polarization. Additional support for the idea that electron in-in the presence of mutual interactions is then renormalized as
teractions play an increasingly important role when only ak(2e?/#), whereK is the interaction-dependent parameter
few subbands are occupied comes from the observed ewharacterizing the Tomonaga-Luttinger liquid. For repulsive
hancement of the effective electrgnfactor above the bulk or attractive interactiond{ <1 andK>1, respectively;K
value for GaAs: The alternative explanation that the struc- =1 refers to noninteracting electrons. Other thedfit's
ture would be caused by, e.g., the presence of impurities ibased on the Tomonaga-Luttinger model claim that the con-
the vicinity of the QPC, as studied in detail by McEuen ductance renormalization will not occur, which would ex-
et al,* is excluded for the following reasons. The anomalyplain Tarucha’'s experimental resdftsfor long quantum
has been seen in a large number of high-mobility samplewires. As it appears, the Tomonaga-Luttinger model is not
and the effect is reproducible on cooldowns. In the case of aimmediately successful in explaining the observed conduc-
impurity, the measured structure@was found to disappear tance anomaly.To connect to real experimental systems one
on thermal cyclind. Then there is the magnetic field effect has to take into account finite-size and boundary effects. In
showing evolution of “0.7 structure” to 0.5 on increasing addition, real systems are quasi-one-dimensional in contrast
parallel magnetic field. The results were also checked foto the strictly 1D Tomonaga-Luttinger model. Here we will
possible impurity effects by shifting the position of the chan-therefore follow another way of analyzing transport in the
nel sidewise. one-mode limit of a QPC. Hence we will use methods based

Conductance anomalies supporting the idea of spontan®n the Kohn-Sham equations. Methods of this kind are well
ous spin polarization have also been observed bystablished for modeling realistic quantum structures in the
Tscheuschner and Wietkor GaAs/Al,Ga,_,As hetero- nanometer regime.
structure in-plane-gat@dPG) transistors using focused-ion- In our previous study of infinite ballistic quantum chan-
beam implantation techniques. In this case, the anomaly isels, spontaneous spin polarization driven by the exchange
found atG=0.5(e?/h) for zero bias and zero external mag- interaction between the electrons was generally found to oc-
netic field. Deviations from exact quantization of the firstcur at low subband fillings. In such situations exchange
normal plateau are, however, noted. Most recently the condominates over kinetic energy. As a consequence, the ground
ductance anomaly has been observed also for a short retate turns into a fully spin-polarized state in analogy with
grown Ga, »dno-As/InP quantum wire by Ramva#it al®  the well studied three-dimensional electron gdsSimilar
In addition, a conductance plateau is also observed aesults have been obtained for single mode cylindrical quan-
~0.2(2¢%/h). Both the structures at 0.7€%/h) and tum wires™ " Apparently these findings seem to support
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the interpretation of Thomast al! of the observed conduc- order asw, . The potentials in Eqg1) and(2) are attractive
tance, anomaly. On the other hand, it is a gross oversimplifrom a calculational point of view. The solutions to the one-
fication to model a real QPC with an idealized infinite chan-electron Schidinger equation are separable and available
nel. The purpose of the present work is therefore toanalytically, i.e., the wave function is of the form
demonstrate that spin polarization may indeed occur also in @, \(x,y) =¥ ,(y) ®,(x) for states belonging to theth sub-
QPC with a more realistic geometry. Below we will presentband.

a self-consistent calculation of the electronic structure of a Depending on the electron concentration, one or more
ballistic QPC in the limit of a single open mode and showsubbands may be occupied. When many subbands become
how spontaneous spin polarization can occur locally in thenccupied, electrostatic and exchange interactions will modify
region of the QPC itself. Once the spin polarization takeghe effective potential. Because of the Hartree potential, the
place, the potential barrier for one of the spin directions isinitially bare parabolic confinement potential will thus be-
suddenly increased and may exceed the Fermi level. Theome a “split parabola,” i.e., an essentially flat region will
transport associated with this spin then takes place via turdevelop at the bottom of the welsee, e.g., Ref. 13while
neling through an exchange-enhanced barrier. For electronke walls of the well remain parabolic with the same curva-
with opposite spin the barrier remains relatively unchangedure as the unperturbed parabola. To simulate a potential of
and the corresponding transport takes place in propagatingis kind, one may use the Kohn-Sham equatf®h3he
states above the subband threshold in a normal way. Theomputational effort for the general case is, however, quite
polarization occurs fairly abruptly over a narrow energy re-substantial. We will therefore simplify our problem by as-
gion and therefore induces an anomalous structure in thsuming that only the lowest subband is occupied. Our previ-
conductance. However, in view of the various approxima-ous work® shows that the Hartree term plays an insignificant
tions introduced in this first study of spontaneous spin polarfole in this limit of low electron concentrations and we will
ization in a QPC, our analysis is meant to be qualitativetherefore ignore this term. The effective Satlirmer there-

rather than quantitative. fore simpifies to

In the following we assume the following basic model for -
a QPC created by laterally confining a two-dimensid@al) P+ Py - - o o
electron gas residing at a semiconductor interface, say,| o T YeonfXY) Ve X.¥) | 7(X,Y) =E7@7(XY),
GaAs/Al,Ga; _,As. The electron gas is assumed to be ®)

strictly 2D, i.e., the motion perpendicular to the interface is . .
y perp whereo = + 3 refers to spin. In the Kohn-Sham local-density

neglected. To simplify the numerical work further, we let our T . 1
system consist of an infinite channel in which there is a Shoriipproxmatlon(LDA), the exchange potential energy'is

constriction defining the the actual QPC. A structure of this e?
kind may be achieved by lateral electrostatic confinement, VI X Y)=— —(n7(x,y))*2, (4
€QET

for example. Regions to the left and right of the constriction

may be regarded as reservoirs serving as source and drajgheree is the dielectric constant of the semiconductor ma-
The bare potential associated with the electrostatic confinagrial andn?(x,y) is the spatial distribution for-spin elec-
ment is qualitatively of the form trons.

1 Vv Because of the form of the exchange energy in &g,

0 : : - :
Veon(X,Y) = = m* w2y?+ ) (1 solutions to the effective Schidmger equation are no longer
eon 27 ™7 cosif(ax) separable. Considering, however, that the potential irxthe

Here the first term to the right defines a straight channeflireéction is Sg‘oomj we may make us of the adiabatic
extending in thex direction. The strength of the transverse approximatiof to write the wave function for thath mode
confinement is defined biyw,. Subband thresholds or sub- 25
levels due to the transverse motion &g=7%w,(n+1/2), . Ao p
with n=0,1,2 ... . Typical values forhw, are in the range En k(X Y)=WR06Y) Py (). ®
~1-2 meV. The second term in E@) describes a saddle of |nserting this form into Eq(3) and neglecting’¥¢/x and
heightV,. In practice,Vo may be regulated by electrostatic ,2q7//x? because we expect them to be small, we may

potentials, for example by an applied gate voltage. Thereznproximately decouple our problem as
fore, the value of the bare potential at the saddlg,may be

thought of as directly representing the influence of an applied  #2 4?2

gate voltage, i.e., the value W may be assumed to increase  ~ 5% &—yz‘P;’(x,y) [ Voo X,¥) T Vered X, Y) J¥ R (X,Y)
when the gate voltage is lowered. When considering trans-

port, the region around the maximum is the important one.  =EJ(x)¥7(X,y) (6)

Expanding for smalk we thus have ) _
for the transverse motion with “local” energl, (x) and

Vo X,Y) = Em* w2y?— Em* w2X?+V, 2 52
con 1 X o o o _
272 -2 P00+ (K7(x))*®{(x) =0 @
with w,=+2aVy/m*. This is the usual Btiker'® saddle- . _ _ i
point potential for a QPC used extensively for characterizafor the translational motion with local energy;(x)
tion of real devices from transport measuremdste, e.g., =7%2%(k’(x))?/2m*=E°—EJ(x). The transverse energy
Refs. 7 and 1P In practice,w, is found to be of the same E;(x) now acts as an effective, renormalized potential that
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n;p(X) corresponding to the bare potential in Ef). with the semi- X (nm) X (nm)

classical type of approximation, E¢L1), used in this work.
FIG. 2. Effective potential barriers along thedirection in a

the translational state®?(x) with energy eg(x) have to  QPC forn;p=2x10° cm™*. (a) V,=0.1 meV;(b) V,=0.15 meV;

penetrate. Thus we obtain the transmission through the QP®) Vo=0.18 meV;(d) V,=0.20 meV, where/, is the potential at

for a single electron with enerdy” by solving Eq.(7) once  the saddle point. Dotted and solid lines correspond to spin up and

E“(x) is known from Eq.(6). Because of the exchange po- spin down electrons, res_pgctlvely. For technical reasons we ha_ve

tential, the problem has to be solved self-consistently for al|cluded the Zeeman splitting from a very weak external magnetic

the electrons occupying the lowest subband, i.e., the |0C£|eld in order to trigger the onset of spin polarization. Therefore,

PR i . finds a minor spin splitting also in the regions away from the
electron distribution in the exchange potential in E4).is one find ) : : .
gep QPC. Since this feature is due entirely to the Zeeman effect, it may
be disregarded in present circumstances.

n7(xy) =2 [OEIPWIxy) 2. ®
. . kg 1 —209%(Xg—X)
Integrating over the normalized transverse function Nip(X)=2> ?er(l—exp oY)
PI(x,y), the total 1D electron density is obtained, 7

1
+————(1—exp 2970y | (1)
nio() =3 nfg0=3 3 [@f(0]? (9) Am(Xo+X) P
with asymptotic limits where kZ(x)={2m*/#’[Er—E7()]}*% q”(x)=[(2m*/

h2)EJ(x)]Y2 and x, is an effective width of the barrier.
Approximate and exact results for the bare barrier are shown
in Fig. 1. Evidently the semiclassical method gives fair, av-
eraged results fon,p(x) and may therefore be used to re-
Solving the Kohn-Sham equations numerically, we first sliceduce the computational effort significantly. The price is,
the channel along the direction, and then find the self- however, that the Friedel oscillations are lost. We will com-
consistent solutions of Eq6) for each slice. For a given ment on this below.
energy,E’, the solutions of Eq(7) are used to calculate the Input parameters in the calculations ar& =0.067m,
electron distribution. With new electron distribution we needand e=13.1, which are appropriate values for the
to solve Eqgs(6) and(7) once more in the same order and GaAs/Al,Ga,; ,As interface. Furthermore, we choose,
with the subsidiary constraint that the asymptotic value of=2 meV andfAw,=1 meV, which are typical values for
nip(*=) and the chemical potential of the reservoirs arenanostructures of the kind we consider here. Figure 2 shows
being held fixed. Self-consistency is reached when the Fernthe effective potential barriers for up and down spin elec-
energiesEg in successive iterations are identical within atrons for different choices of barrier heighty; when n;p
given numerical accuracy~10"% meV). As may be ex- (*®)=2x10° cm™1. With this choice of electron density,
pected,n;p(x) displays 1D Friedel oscillations. The reason only the lowest subband is occupied in the entire system, i.e.,
is that the constriction defining the QPC acts as a local poin the two “reservoirs” as well as in the QPC itself. All
tential perturbing the electron gas in the channel. cases in Fig. 2 show that spontaneous spin polarization oc-
The self-consistent calculations are somewhat cumbereurs in the saddle region, but that a swift transformation to
some because one has to include many states. As argustfong polarization takes place when the electron density is
above, we only expect smooth variations and therefore introdecreased by quite modest variations in the valueMfgr
duce an approximate form for,p(x) based on simple semi- Corresponding electron densities are displayed in Fig. 3. For
classical arguments, V(,=0.1 and 0.15 meV, casds) and (b), respectively, the

2mx* 1/2
B Ef(=)]| . (10

1
nlD(iOO):; =
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FIG. 3. One-dimensional electron densitig,(x) for the two FIG. 4. The conductanc® for a QPC versus the heigh, of

spin directions.(a@ V,=0.1 meV; (b) V,=0.15 meV; (¢) V, the saddle point.. The Fermi level i5-=0.561 meV relative.to the
=0.18 meV;(d) V,=0.20 meV. The asymptotic value of the elec- lowest ;ut_)level in the remote parts _of the c_har(ﬁmservows”).
tron density isnyp=2x10° cm~L. Dotted and solid lines corre- 'I_'he solid Ime corrgsponds to the noninteracting case and the dashed
spond to spin up and spin down electrons, respectively. A wealkin€ to the interacting case.
Zeeman splitting is included as in Fig. 2.
<0.5(2e?/h). For example, if the spontaneous spin polariza-

Fermi level is higher than the barrier for both directions oftion sets in alG=0.7(2e?/h) as observed in experiments, a
spin. Therefore, electrons conduct current via propagatingecond structure is to be expected @&+ 0.2(2e/h). If an
states in a normal way. As a consequence, the conductanceifsplane magnetic field is applied, it follows from our
unaffected by the spin polarization and one finds the usuahodel that the two structures will eventually merge on in-
value G=2e?/h. However, on further increase &, cases creasingB because of the Zeeman splitting. The additional
(c) and (d) in Fig. 2 for V;=0.18 and 0.20 meV, respec- spin polarization induced by this mechanism will become
tively, show how the barriers for up and down spins rapidlydominant at high fields implying a global polarization.
become very different in the saddle region. The barrier for In conclusion, we have shown that spin polarization in-
spin down electrons thus remains more or less unaffected byuced by exchange interactions is likely to occur in a QPC as
the exchange interactions while the barrier for spin up electhe electron density is lowered towards pinch off by, for
trons becomes much larger than the Fermi energy. Figure 8xample, an applied gate voltage. Our model is based on the
shows the corresponding 1D electron densities for increasingohn-Sham mean field approach. There is, therefore, the
Vo. usual question of to what extent one can trust the new

With the onset of strong local spin polarization, the con-symmetry-broken solution, i.e., whether it is spurious or not.
duction mechanism is, of course, altered in a profound wayit is, of course, hard to prove one way or the other. Here we
Electric transport by spin up electrons must then take placenust, therefore, be guided by experience. Our problem is, in
via tunneling, while spin down electrons still contribute to fact, similar to that of an impurity atom and the formation of
the current by normal, propagating modes above(kbeal) local moments in a metallic hogelectron gas jellium In
subband threshold. By calculating transmission coefficientshis case the spin-relaxed Kohn-Sham mean field approach
for the single-particle states and using the Landaudtit8r  yields local moments in good agreement with experiments
expression we have determined the conductance for the cas@ge, for example, Refs. 23-2%Vith such an approach it is
of noninteracting and interacting electrons as shown in Figalso seen how the local moments disappear as the strength of
4. Clearly, the onset of spontaneous spin polarization manithe impurity relative the Fermi energy of the surrounding
fests itself as an anomalous structure in the conductandgellium is diminished. Qualitatively we thus obtain the same
which drops by~0.5(2e?/h) over a narrow range. The de- mechanism and, therefore, have faith in the true nature of our
tails of the anomaly appear, however, to be dependent osolutions. In the present case the onset of spin polarization
geometry. For smaller values biw, than in our example in  manifests itself as an anomaly in the conductance. Evidently
Fig. 4, i.e., for smaller ratim, / w, , the QPC region is more our calculations give qualitative support to the interpretation
extended in the direction. The half plateau iG then be- of measured anomalies. There appears, however, to be an
comes broader and more well defined. This is consistent witimportant quantitative difference since our model predicts
the results for an infinite channElOn the other hand, if we critical values forG that are sensitive to geometry. The criti-
let 7w, take a larger value we may say that the effectivecal value observed in Refs. 1 and 6 is 0.&¢/h) or close to
length of the QPC is shorter. On increasiig the onset of this value. One may think of a number of reasons for this
spin polarization then occurs in the range 0&(h)<G discrepancy. Our theoretical results are based on quite a sim-
<(2e?h). Saturation is found in the range <0G plified model. Reservoirs, for example, are represented by
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extended channels with one occupied mode only, the direc- Note added in proof Recent self-consistent density-
tion perpendicular to the interface is neglected, and so on. Akinctional calculations predict that 3D nanowires of simple
already indicated, also the mean field approach may be togmonmagnetic metals undergo a transition to a spin-
primitive to deal in a more detailed way with interaction polarized state at critical radiN. Zabola, M. J. Puska, and
effects when only very few electrons remain in the region ofR. M. Nieminen (unpublishedl]. Also the recent work on
the QPC. At the same time, it is not yet firmly establishedSPontaneous spin polarization in circular quantum dots sup-
from experiments that the conductance anomaly is indeperROrts in a general way the mechanism proposed in this article
dent of geometry. The lower value reported in Ref. 5 may baM- Koskinen, M. Manninen, and S. M. Reimann, Phys. Rev.
related to this point, but further experimentation with high-Lett' 79, 1389(1997)].

mobility devices is needed to settle the question about geom-
etry. In summary, we suggest that spontaneous spin polariza-
tion in a QPC in the limit of low electron densities is a valid We are indebted to M. Pepper, K.J. Thomas, and J.T.
scenario that should be explored further in the ways jusNicholls of the University of Cambridge, U.K., P. Ramvall
indicated. It should also be rewarding to go beyond the semiand P. Omling of Lund University, Sweden, and R. Niem-
classical form in Eq(11) in order to include the oscillatory inen of Helsinki University of Technology, Finland, for in-
behavior in the effective, self-consistent potential as well agormative discussions. This research was supported in part
to allow for other delicate mean field effects. by the Swedish Natural Science Research Council.
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