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Local spin polarization in ballistic quantum point contacts

Chuan-Kui Wang and K.-F. Berggren
Department of Physics and Measurement Technology, Linko¨ping University, S-58183 Linko¨ping, Sweden

~Received 13 May 1997!

Self-consistent calculations of the electronic structure and conductance of a ballistic quantum point contact
~QPC! in the one-subband limit are reported. The spin-polarized density-functional theory of Kohn-Sham is
used. The self-consistent results show that spontaneous spin polarization occurs locally in the region of the
saddle point as the electron density is lowered. As a consequence, the effective potential barriers become
different for spin up and spin down electrons. Transport associated with spin up electrons, let us say, then
suddenly takes place via tunneling, while spin down electrons still carry the current via propagating states in a
normal way. The onset of spontaneous spin polarization induces anomalies in the conductance. Our results
support the recent interpretations of experimentally observed conductance anomalies in QPCs near pinch off.
The agreement with measurements is qualitative, however, rather than quantitative. Reasons for the discrep-
ancy are proposed.@S0163-1829~98!02608-3#
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The number of electrons in a quantum point cont
~QPC!, i.e., a short constriction connecting two electron r
ervoirs, may be quite small close to pinch off. This sugge
that electron interactions become especially important as
conductance is lowered belowG52e2/h, the lowest conduc-
tion plateau. Recent conductance measurements by Tho
et al.1 for low-dimensional split gate QPCs in modulatio
doped high-mobility GaAs/AlxGa12xAs heterostructures
have revealed a conductance anomaly atG.0.7(2e2/h).
This feature, which has been recorded also in some prev
measurements2,3 but has passed uncommented so far, w
interpreted by Thomaset al. in terms of spontaneous spi
polarization. Additional support for the idea that electron
teractions play an increasingly important role when only
few subbands are occupied comes from the observed
hancement of the effective electrong factor above the bulk
value for GaAs.1 The alternative explanation that the stru
ture would be caused by, e.g., the presence of impuritie
the vicinity of the QPC, as studied in detail by McEue
et al.,4 is excluded for the following reasons. The anoma
has been seen in a large number of high-mobility samp
and the effect is reproducible on cooldowns. In the case o
impurity, the measured structure inG was found to disappea
on thermal cycling.4 Then there is the magnetic field effe
showing evolution of ‘‘0.7 structure’’ to 0.5 on increasin
parallel magnetic field. The results were also checked
possible impurity effects by shifting the position of the cha
nel sidewise.

Conductance anomalies supporting the idea of spont
ous spin polarization have also been observed
Tscheuschner and Wieck5 for GaAs/AlxGa12xAs hetero-
structure in-plane-gate~IPG! transistors using focused-ion
beam implantation techniques. In this case, the anomal
found atG.0.5(e2/h) for zero bias and zero external ma
netic field. Deviations from exact quantization of the fir
normal plateau are, however, noted. Most recently the c
ductance anomaly has been observed also for a shor
grown Ga0.25In 0.75As/InP quantum wire by Ramvallet al.6

In addition, a conductance plateau is also observed
;0.2(2e2/h). Both the structures at 0.7(2e2/h) and
570163-1829/98/57~8!/4552~5!/$15.00
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0.2(2e2/h) evolve into a plateau at 0.5(2e2/h) if the sample
is subject to an in-plane magnetic field.@In fact, Ramvall
et al.also report on a higher plateau at 1.5(2e2/h). Since we
will be concerned with single mode events only, we will n
commented on it further.# Anomalous structures for conduc
tances below (2e2/h) and their dependence on source-dra
voltage have been discussed previously by Patelet al.7

In the limit of single-mode conduction, a QPC may b
considered as a quasi-one-dimensional~1D! system, at least
locally. One candidate for modeling the low-temperatu
properties of such a system is the Tomonaga-Luttinger liq
theory for locally interacting 1D electrons.8 The conductance
in the presence of mutual interactions is then renormalize
K(2e2/\), whereK is the interaction-dependent parame
characterizing the Tomonaga-Luttinger liquid. For repuls
or attractive interactions,K,1 and K.1, respectively;K
51 refers to noninteracting electrons. Other theories9–11

based on the Tomonaga-Luttinger model claim that the c
ductance renormalization will not occur, which would e
plain Tarucha’s experimental results12 for long quantum
wires. As it appears, the Tomonaga-Luttinger model is
immediately successful in explaining the observed cond
tance anomaly.1 To connect to real experimental systems o
has to take into account finite-size and boundary effects
addition, real systems are quasi-one-dimensional in cont
to the strictly 1D Tomonaga-Luttinger model. Here we w
therefore follow another way of analyzing transport in t
one-mode limit of a QPC. Hence we will use methods ba
on the Kohn-Sham equations. Methods of this kind are w
established for modeling realistic quantum structures in
nanometer regime.

In our previous study13 of infinite ballistic quantum chan-
nels, spontaneous spin polarization driven by the excha
interaction between the electrons was generally found to
cur at low subband fillings. In such situations exchan
dominates over kinetic energy. As a consequence, the gro
state turns into a fully spin-polarized state in analogy w
the well studied three-dimensional electron gas.14 Similar
results have been obtained for single mode cylindrical qu
tum wires.15–17 Apparently these findings seem to suppo
4552 © 1998 The American Physical Society
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57 4553LOCAL SPIN POLARIZATION IN BALLISTIC . . .
the interpretation of Thomaset al.1 of the observed conduc
tance, anomaly. On the other hand, it is a gross oversim
fication to model a real QPC with an idealized infinite cha
nel. The purpose of the present work is therefore
demonstrate that spin polarization may indeed occur also
QPC with a more realistic geometry. Below we will prese
a self-consistent calculation of the electronic structure o
ballistic QPC in the limit of a single open mode and sho
how spontaneous spin polarization can occur locally in
region of the QPC itself. Once the spin polarization tak
place, the potential barrier for one of the spin directions
suddenly increased and may exceed the Fermi level.
transport associated with this spin then takes place via
neling through an exchange-enhanced barrier. For elect
with opposite spin the barrier remains relatively unchang
and the corresponding transport takes place in propaga
states above the subband threshold in a normal way.
polarization occurs fairly abruptly over a narrow energy
gion and therefore induces an anomalous structure in
conductance. However, in view of the various approxim
tions introduced in this first study of spontaneous spin po
ization in a QPC, our analysis is meant to be qualitat
rather than quantitative.

In the following we assume the following basic model f
a QPC created by laterally confining a two-dimensional~2D!
electron gas residing at a semiconductor interface,
GaAs/AlxGa12xAs. The electron gas is assumed to
strictly 2D, i.e., the motion perpendicular to the interface
neglected. To simplify the numerical work further, we let o
system consist of an infinite channel in which there is a sh
constriction defining the the actual QPC. A structure of t
kind may be achieved by lateral electrostatic confineme
for example. Regions to the left and right of the constricti
may be regarded as reservoirs serving as source and d
The bare potential associated with the electrostatic confi
ment is qualitatively of the form

Vconf~x,y!5
1

2
m* vy

2y21
V0

cosh2~ax!
. ~1!

Here the first term to the right defines a straight chan
extending in thex direction. The strength of the transver
confinement is defined by\vy . Subband thresholds or sub
levels due to the transverse motion areEn5\vy(n11/2),
with n50,1,2, . . . . Typical values for\vy are in the range
;1 –2 meV. The second term in Eq.~1! describes a saddle o
heightV0. In practice,V0 may be regulated by electrostat
potentials, for example by an applied gate voltage. The
fore, the value of the bare potential at the saddle,V0, may be
thought of as directly representing the influence of an app
gate voltage, i.e., the value ofV0 may be assumed to increas
when the gate voltage is lowered. When considering tra
port, the region around the maximum is the important o
Expanding for smallx we thus have

Vconf~x,y!.
1

2
m* vy

2y22
1

2
m* vx

2x21V0 ~2!

with vx5A2aV0 /m* . This is the usual Bu¨ttiker18 saddle-
point potential for a QPC used extensively for characteri
tion of real devices from transport measurements~see, e.g.,
Refs. 7 and 19!. In practice,vx is found to be of the same
li-
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order asvy . The potentials in Eqs.~1! and~2! are attractive
from a calculational point of view. The solutions to the on
electron Schro¨dinger equation are separable and availa
analytically, i.e., the wave function is of the form
wn,k(x,y)5Cn(y)Fk(x) for states belonging to thenth sub-
band.

Depending on the electron concentration, one or m
subbands may be occupied. When many subbands bec
occupied, electrostatic and exchange interactions will mod
the effective potential. Because of the Hartree potential,
initially bare parabolic confinement potential will thus b
come a ‘‘split parabola,’’ i.e., an essentially flat region w
develop at the bottom of the well~see, e.g., Ref. 13! while
the walls of the well remain parabolic with the same curv
ture as the unperturbed parabola. To simulate a potentia
this kind, one may use the Kohn-Sham equations.20 The
computational effort for the general case is, however, qu
substantial. We will therefore simplify our problem by a
suming that only the lowest subband is occupied. Our pre
ous work13 shows that the Hartree term plays an insignifica
role in this limit of low electron concentrations and we w
therefore ignore this term. The effective Schro¨dinger there-
fore simpifies to

Fpx
21py

2

2m*
1Vconf~x,y!1Vexch

s ~x,y!Gws~x,y!5Esws~x,y!,

~3!

wheres56 1
2 refers to spin. In the Kohn-Sham local-densi

approximation~LDA !, the exchange potential energy is21

Vexch
s ~x,y!52

e2

e0ep3/2„ns~x,y!…1/2, ~4!

wheree is the dielectric constant of the semiconductor m
terial andns(x,y) is the spatial distribution fors-spin elec-
trons.

Because of the form of the exchange energy in Eq.~4!,
solutions to the effective Schro¨dinger equation are no longe
separable. Considering, however, that the potential in thx
direction is smooth, we may make us of the adiaba
approximation22 to write the wave function for thenth mode
as

wn,k
s ~x,y!.Cn

s~x,y!Fk
s~x!. ~5!

Inserting this form into Eq.~3! and neglecting]Cn
s/]x and

]2Cn
s/]x2 because we expect them to be small, we m

approximately decouple our problem as

2
\2

2m*
]2

]y2 Cn
s~x,y!1@Vconf~x,y!1Vexch

s ~x,y!#Cn
s~x,y!

5En
s~x!Cn

s~x,y! ~6!

for the transverse motion with ‘‘local’’ energyEn
s(x) and

]2

]x2 Fk
s~x!1„ks~x!…2Fk

s~x!50 ~7!

for the translational motion with local energyek
s(x)

5\2
„ks(x)…2/2m* 5Es2En

s(x). The transverse energ
En

s(x) now acts as an effective, renormalized potential t
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4554 57CHUAN-KUI WANG AND K.-F. BERGGREN
the translational statesFs(x) with energy ek
s(x) have to

penetrate. Thus we obtain the transmission through the Q
for a single electron with energyEs by solving Eq.~7! once
En

s(x) is known from Eq.~6!. Because of the exchange p
tential, the problem has to be solved self-consistently for
the electrons occupying the lowest subband, i.e., the lo
electron distribution in the exchange potential in Eq.~4! is

ns~x,y!5(
k

uFk
s~x!u2uC1

s~x,y!u2. ~8!

Integrating over the normalized transverse funct
C1

s(x,y), the total 1D electron density is obtained,

n1D~x!5(
s

n1D
s ~x!5(

s
(

k
uFk

s~x!u2 ~9!

with asymptotic limits

n1D~6`!5(
s

1

pS 2m*
\

@EF2E1
s~6`!# D 1/2

. ~10!

Solving the Kohn-Sham equations numerically, we first sl
the channel along thex direction, and then find the self
consistent solutions of Eq.~6! for each slice. For a given
energy,Es, the solutions of Eq.~7! are used to calculate th
electron distribution. With new electron distribution we ne
to solve Eqs.~6! and ~7! once more in the same order an
with the subsidiary constraint that the asymptotic value
n1D(6`) and the chemical potential of the reservoirs a
being held fixed. Self-consistency is reached when the Fe
energiesEF in successive iterations are identical within
given numerical accuracy (;1024 meV!. As may be ex-
pected,n1D(x) displays 1D Friedel oscillations. The reaso
is that the constriction defining the QPC acts as a local
tential perturbing the electron gas in the channel.

The self-consistent calculations are somewhat cum
some because one has to include many states. As ar
above, we only expect smooth variations and therefore in
duce an approximate form forn1D(x) based on simple semi
classical arguments,

FIG. 1. Comparison of the exact, oscillatory electron dens
n1D(x) corresponding to the bare potential in Eq.~1! with the semi-
classical type of approximation, Eq.~11!, used in this work.
C

ll
al

e

f

i

-

r-
ed

o-

n1D~x!5(
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FkF
s

p
1

1

4p~x02x!
~12exp22qs~x02x!!

1
1

4p~x01x!
~12exp22qs~x01x!!G , ~11!

where kF
s(x)5$2m* /\2@EF2E1

s(x)#%1/2, qs(x)5@(2m* /
\2)E1

s(x)] 1/2, and x0 is an effective width of the barrier
Approximate and exact results for the bare barrier are sho
in Fig. 1. Evidently the semiclassical method gives fair, a
eraged results forn1D(x) and may therefore be used to r
duce the computational effort significantly. The price
however, that the Friedel oscillations are lost. We will co
ment on this below.

Input parameters in the calculations arem* 50.067me
and e513.1, which are appropriate values for th
GaAs/AlxGa12xAs interface. Furthermore, we choose\vy
52 meV and\vx51 meV, which are typical values fo
nanostructures of the kind we consider here. Figure 2 sh
the effective potential barriers for up and down spin ele
trons for different choices of barrier heightV0 when n1D
(6`)523105 cm21. With this choice of electron density
only the lowest subband is occupied in the entire system,
in the two ‘‘reservoirs’’ as well as in the QPC itself. Al
cases in Fig. 2 show that spontaneous spin polarization
curs in the saddle region, but that a swift transformation
strong polarization takes place when the electron densit
decreased by quite modest variations in the value forV0.
Corresponding electron densities are displayed in Fig. 3.
V050.1 and 0.15 meV, cases~a! and ~b!, respectively, the

y

FIG. 2. Effective potential barriers along thex direction in a
QPC forn1D523105 cm21. ~a! V050.1 meV;~b! V050.15 meV;
~c! V050.18 meV;~d! V050.20 meV, whereV0 is the potential at
the saddle point. Dotted and solid lines correspond to spin up
spin down electrons, respectively. For technical reasons we h
included the Zeeman splitting from a very weak external magn
field in order to trigger the onset of spin polarization. Therefo
one finds a minor spin splitting also in the regions away from
QPC. Since this feature is due entirely to the Zeeman effect, it m
be disregarded in present circumstances.
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57 4555LOCAL SPIN POLARIZATION IN BALLISTIC . . .
Fermi level is higher than the barrier for both directions
spin. Therefore, electrons conduct current via propaga
states in a normal way. As a consequence, the conductan
unaffected by the spin polarization and one finds the us
valueG52e2/h. However, on further increase ofV0, cases
~c! and ~d! in Fig. 2 for V050.18 and 0.20 meV, respec
tively, show how the barriers for up and down spins rapid
become very different in the saddle region. The barrier
spin down electrons thus remains more or less unaffecte
the exchange interactions while the barrier for spin up e
trons becomes much larger than the Fermi energy. Figu
shows the corresponding 1D electron densities for increa
V0.

With the onset of strong local spin polarization, the co
duction mechanism is, of course, altered in a profound w
Electric transport by spin up electrons must then take pl
via tunneling, while spin down electrons still contribute
the current by normal, propagating modes above the~local!
subband threshold. By calculating transmission coefficie
for the single-particle states and using the Landauer-Bu¨ttiker
expression we have determined the conductance for the c
of noninteracting and interacting electrons as shown in F
4. Clearly, the onset of spontaneous spin polarization m
fests itself as an anomalous structure in the conducta
which drops by;0.5(2e2/h) over a narrow range. The de
tails of the anomaly appear, however, to be dependen
geometry. For smaller values of\vx than in our example in
Fig. 4, i.e., for smaller ratiovx /vy , the QPC region is more
extended in thex direction. The half plateau inG then be-
comes broader and more well defined. This is consistent w
the results for an infinite channel.13 On the other hand, if we
let \vx take a larger value we may say that the effect
length of the QPC is shorter. On increasingV0 the onset of
spin polarization then occurs in the range 0.5(2e2/h)<G
<(2e2/h). Saturation is found in the range 0<G

FIG. 3. One-dimensional electron densitiesn1D
s (x) for the two

spin directions.~a! V050.1 meV; ~b! V050.15 meV; ~c! V0

50.18 meV;~d! V050.20 meV. The asymptotic value of the ele
tron density isn1D523105 cm21. Dotted and solid lines corre
spond to spin up and spin down electrons, respectively. A w
Zeeman splitting is included as in Fig. 2.
f
g

e is
al

r
by
-
3
g

-
y.
e

ts

ses
.
i-
ce

n

th

<0.5(2e2/h). For example, if the spontaneous spin polariz
tion sets in atG50.7(2e2/h) as observed in experiments,
second structure is to be expected forG50.2(2e2/h). If an
in-plane magnetic fieldB is applied, it follows from our
model that the two structures will eventually merge on
creasingB because of the Zeeman splitting. The addition
spin polarization induced by this mechanism will becom
dominant at high fields implying a global polarization.

In conclusion, we have shown that spin polarization
duced by exchange interactions is likely to occur in a QPC
the electron density is lowered towards pinch off by, f
example, an applied gate voltage. Our model is based on
Kohn-Sham mean field approach. There is, therefore,
usual question of to what extent one can trust the n
symmetry-broken solution, i.e., whether it is spurious or n
It is, of course, hard to prove one way or the other. Here
must, therefore, be guided by experience. Our problem is
fact, similar to that of an impurity atom and the formation
local moments in a metallic host~electron gas jellium!. In
this case the spin-relaxed Kohn-Sham mean field appro
yields local moments in good agreement with experime
~see, for example, Refs. 23–25!. With such an approach it is
also seen how the local moments disappear as the streng
the impurity relative the Fermi energy of the surroundi
jellium is diminished. Qualitatively we thus obtain the sam
mechanism and, therefore, have faith in the true nature of
solutions. In the present case the onset of spin polariza
manifests itself as an anomaly in the conductance. Evide
our calculations give qualitative support to the interpretat
of measured anomalies. There appears, however, to b
important quantitative difference since our model predi
critical values forG that are sensitive to geometry. The crit
cal value observed in Refs. 1 and 6 is 0.7(2e2/h) or close to
this value. One may think of a number of reasons for t
discrepancy. Our theoretical results are based on quite a
plified model. Reservoirs, for example, are represented

k

FIG. 4. The conductanceG for a QPC versus the heightV0 of
the saddle point. The Fermi level isEF50.561 meV relative to the
lowest sublevel in the remote parts of the channel~‘‘reservoirs’’!.
The solid line corresponds to the noninteracting case and the da
line to the interacting case.
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4556 57CHUAN-KUI WANG AND K.-F. BERGGREN
extended channels with one occupied mode only, the di
tion perpendicular to the interface is neglected, and so on
already indicated, also the mean field approach may be
primitive to deal in a more detailed way with interactio
effects when only very few electrons remain in the region
the QPC. At the same time, it is not yet firmly establish
from experiments that the conductance anomaly is indep
dent of geometry. The lower value reported in Ref. 5 may
related to this point, but further experimentation with hig
mobility devices is needed to settle the question about ge
etry. In summary, we suggest that spontaneous spin pola
tion in a QPC in the limit of low electron densities is a val
scenario that should be explored further in the ways
indicated. It should also be rewarding to go beyond the se
classical form in Eq.~11! in order to include the oscillatory
behavior in the effective, self-consistent potential as well
to allow for other delicate mean field effects.
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Note added in proof. Recent self-consistent density
functional calculations predict that 3D nanowires of simp
~nonmagnetic! metals undergo a transition to a spi
polarized state at critical radii@N. Zabola, M. J. Puska, and
R. M. Nieminen ~unpublished!#. Also the recent work on
spontaneous spin polarization in circular quantum dots s
ports in a general way the mechanism proposed in this ar
@M. Koskinen, M. Manninen, and S. M. Reimann, Phys. Re
Lett. 79, 1389~1997!#.
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18M. Büttiker, Phys. Rev. B41, 7906~1990!.
19L. Martı́n-Moreno, J.T. Nicholls, N.K. Patel, and M. Pepper,

Phys.: Condens. Matter4, 1323~1992!.
20See, for example, R. G. Parr and W. Yang,Density-Functional

Theory of Atoms and Molecules~Oxford University Press, New
York, 1989!.

21F. Stern, Phys. Rev. Lett.30, 278 ~1973!.
22L.I. Glazman and M. Jonson, J. Phys.: Condens. Matter1, 5547

~1989!.
23R.M. Nieminen and M. Puska, J. Phys. F10, L123 ~1980!.
24N. Stefanou and N. Papanikolaou, J. Phys.: Condens. Matte3,

3777 ~1991!.
25N. Papanikolaou, N. Stefanou, R. Zeller, and P.H. Dederic

Phys. Rev. Lett.71, 629 ~1993!.


