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Non-Ohmic effects in hopping conduction in doped silicon and germanium between 0.05 and 1 K
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R. L. Kelley, S. H. Moseley, C. K. Stahle, and A. E. Szymkowiak
NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771

~Received 22 September 1997!

We have studied non-Ohmic effects in hopping conduction in moderately compensated ion-implanted Si:P,
B ~bothn- andp-type! and neutron-transmutation-doped Ge:Ga,As over the temperature range 0.05–0.8 K and
up to moderately strong electric fields. In the limit of small fields, where the current is proportional to applied
voltage, the resistivities of these materials are approximated over a wide temperature range by the model of
variable range hopping with a Coulomb gap:r5r0 exp(T0 /T)1/2. The samples included in this study have
characteristic temperaturesT0 in the range 1.4–60 K for silicon, and 22–60 K for germanium. We have
compared our data to exponential and ‘‘hyperbolic-sine’’ field-effect models of the electrical nonlinearity:
r(E)5r(0)e2x and r(E)5r(0)x/sinh(x), wherex[eEl/kT, and to an empirical hot-electron model. The
exponential field-effect model tends to be a good representation for the samples with highT0 at low T. The
sinh model can match the data only at low fields. The hot-electron model fits our data well over a wide range
of power in the low-T0–high-T regime. We discuss the quantitative implications of these results for the
application of these materials as thermometers for microcalorimeters optimized for high-resolution spectros-
copy. @S0163-1829~98!05208-4#
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I. INTRODUCTION

We have conducted a series of experiments to study
non-Ohmic behavior of doped silicon and germanium as p
of a program to characterize heavily doped semiconduc
operating in the hopping conduction regime for use as th
mometers in single-photon x-ray calorimeters. These c
rimeters offer much higher energy resolution for soft x ra
than conventional solid-state detectors.

The theory of operation of calorimeters with ideal res
tive thermometers has been discussed by Moseley, Ma
and McCammon.1 Taking into account only thermodynam
fluctuations and thermometer Johnson noise, the energy r
lution of a calorimeter is

DE5jAkTs
2C~Ts!, ~1!

where k is Boltzmann’s constant,Ts is the heat-sink tem-
perature,C(Ts) is the total heat capacity of the detector atTs
andj is a numerical factor that is a decreasing function of
temperature sensitivity of the thermistor. Therefore, achi
ing high-energy resolution requires low operating tempe
ture, low total heat capacity, a sensitive thermometer,
minimization of any additional noise sources.

A good thermometer for a calorimeter has hig
temperature sensitivity, a good match to a low-noise read
low heat capacity, and convenient construction. Doped
con thermistors offer several advantages as thermometer
x-ray calorimeters. There is a considerable body of exp
ence in their use in infrared bolometers,2,3 and well-
developed integrated circuit processing techniques for sili
allow one to control the thermistor volume to minimize
contribution to the total heat capacity, and to integrate
thermistor into the detector structure without use of h
570163-1829/98/57~8!/4472~10!/$15.00
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specific-heat bonding materials.4 It is also easy to construc
the thermistor with the;107 V impedance required to
match an inexpensive silicon junction field-effect transis
operated at;130 K. This provides a simple amplifier with
noise temperature below 10 mK at low audio frequencies

The temperature dependence of the electrical resistanc
our ion-implanted silicon samples in the Ohmic region c
be approximated by

r5r0 exp~T0 /T!1/2, ~2!

over a wide range in temperature as reported in Zhanget al.5

~hereafter paper I!. The resistivity shows a large electric-fiel
dependence, or non-Ohmic behavior, when the field stren
E or power per unit volumeP/V is sufficiently large. Note
that E5ArP/V, so there is no model-independent way
distinguish an electric-field effect from a power-density e
fect by scaling the dimensions of the device. Figure 1 sho
an example of this behavior. It can be seen that non-Oh
effects act to reduce the thermometer sensitivity: at su
ciently high electric fields the resistance becomes entir
independent of temperature.

Equation~1! shows that the total heat capacity should
minimized to make a calorimeter with the best possible
ergy resolution. Since doped silicon and germanium h
much higher specific heats than the pure materials, this
quires making the thermistor as small as possible. Howe
for a given calorimeter there is an optimum bias power le
that gives the best signal-to-noise ratio.1 At this bias power
level, a small thermistor volume that minimizes total he
capacity gives a largeP/V that results in serious non-Ohmi
effects, reducing the temperature sensitivity. In addition,
volume reduction also increases an excess low-freque
noise that seems to be an intrinsic characteristic of this t
4472 © 1998 The American Physical Society
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57 4473NON-OHMIC EFFECTS IN HOPPING CONDUCTION IN . . .
of thermistor.6 The non-Ohmic effects and excess no
make the thermistor a limitation on the energy resolution
these calorimeters. An understanding of the behavior of
non-Ohmic effects and excess noise is therefore necessa
optimize the detector design. We do not yet have suffici
data to quantify the behavior of the excess noise; in
paper we report the results from our study of the non-Oh
effects.

As discussed below, both theoretical and experimental
derstandings of the non-Ohmic effects in hopping conduc
are far from complete, and we did not find any adequ
description of non-Ohmic effects in the range of temperatu
power, andT0 in which we are interested. We therefo
made a series of measurements to gain sufficient empi
understanding of thermistor behavior to be able to optim
the design of detectors. We compare our data with an ex
nential field-effect model, a hyperbolic-sine field-effe
model, and an empirical hot-electron model and find fai
systematic behavior that cannot easily be related to exis
theories. Using empirical fits to the non-Ohmic behavior,
then discuss its effect on the temperature sensitivity of
thermistors.

II. MODELS

A. Field-effect models

The non-Ohmic effect in hopping conduction in dop
semiconductors has received considerable theore
study.7–10 These models assume that field-assisted tunne
dominates the non-Ohmic behavior. There are several dif
ent analytic predictions for this effect. Hill considered t
motion of charge carriers both along and against the elec
field and obtained a dependence for the current densityj on
the electrical fieldE:7

j ~T,E!}s~T,0!E sinhS C
eEl

kT D , ~3!

FIG. 1. Reduction in thermometer sensitivity at finite reado
power densities. The solid lines are from the model discusse
Sec. V.~The data points are sparse because data are actually
at constant temperature rather than constant power densities. A
data for this device are shown on the constant temperature plo
Fig. 5.!
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wheree is electron charge,E is electric field,C is a constant
on the order of unity, andl is a characteristic hopping
length. At sufficiently high fields, whereeEl.kT, the re-
verse current can be ignored. For this case, Hill derived

j ~T,E!}s~T,0!E expS C
eEl

kT D . ~4!

In the derivation of Eqs.~3! and ~4!, only the case that the
Ohmic behavior follows the Mott law,r5r0 exp(T0 /T)1/4,
was considered, but the same field dependence can be
tained if the Ohmic behavior follows the Coulomb ga
model@Eq. ~2!#. Pollak and Reiss also derived Eq.~4! using
a percolation method.8

Most of the published non-Ohmic data have been co
pared to Eq.~4! in the following form:

r~T,E!5r~T,0!exp2S C
eEl

kT D . ~5!

This equation is different from Eq.~4! only by a factor ofE,
and such nonexponential dependence can be ignored in
spirit of this derivation.7 The exponential field dependenc
fits a portion of the published experimental results to so
extent.11–18 We will say more about existing data in the di
cussion section. While other analytic predictions for the no
Ohmic behavior exist,9,10 they do not provide a good fit to
any published data nor to the data we present here. Som
the published data are not readily explained by any fie
effect model.19,20

B. Hot-electron model

Hot-electron effects are expected at low temperature
metals.21–25 The standard model assumes that the app
I 2R power is deposited in the electron system, and that
energy that electrons pick up from the electric field is tra
ferred to the heat sink only through electron-phonon inter
tions. At low temperatures, the electron-phonon coupling
comes so weak that the energy is distributed among elect
more rapidly than it can be transferred to the lattice. T
leads to an electron energy distribution characterized by
electron temperature that is higher than the lattice temp
ture. Little21 and Shklovskij22 calculated the effective ther
mal conductance,Ge-ph, between the conducting electron
and the phonon system in a metal and found thatGe-ph
}T4.

In a metal, the electrons are free to move and the ene
is distributed among the electrons via collisions, whereas
doped semiconductor hopping conduction is the domin
conduction mechanism, and the electrons are localized.
physical justification for a hot-electron model is not so ob
ous in this case, and we know of no quantitative theoret
model ~but see Ref. 26!.

We can, however, use the hot-electron model as an a
native way to parametrize our data without worrying abo
its physical validity. We make three assumptions. First,
bias (I 2R) power is initially deposited entirely in the electro
system. Second, the resistance of the thermistor dep
only on the ‘‘electron temperature’’,Te . The functional
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4474 57J. ZHANG et al.
form of R(Te) is not important, as it can be determined e
pirically from measurements at low power. In this study w
used

R5R0 exp~T0 /Te!
1/2, ~6!

whereR0 andT0 are derived from the low-field data, and a
allowed to vary with temperature if necessary. Finally, t
conductance per unit volume for energy transfer between
electron system and the phonon system is assumed to h
power-law dependence onTe :

ge-ph[d~P/V!/dTe5g0Te
b , ~7!

whereP/V is the power per unit volume transferred betwe
two systems. For a given power dissipation the electron t
perature is then given by

Te
b115

b11

g0

P

V
1Tl

b11, ~8!

whereTl is the lattice temperature. Equations~6! and~8! can
be used to predict the resistance for any given power d
pation, thermistor size, and lattice temperature. Good fit
this model have been published for doped Ge thermome
operated at very low temperatures.19,20

III. SAMPLE PREPARATION AND MEASUREMENT

Details of the preparation and characteristics of our i
implanted silicon samples and of the measurement meth
have been given in paper I~note that Table II of paper I had
incorrect data for then-type contact implants—a correcte
version is published as an Erratum!.5 The ion-implanted
Si:P,B samples used here have net doping densities in
range 2 – 531018 cm23 with 50% compensation. The im
planted regions have thicknesses of about 0.2mm and the
lengths and widths range from 40 to 400mm with a variety
of aspect ratios. The neutron-transmutation-doped~NTD! Ge
samples have a cross section of about 1003100mm2 and
lengths of;100 or;400mm. Sample preparation for NTD
Ge has been described in Ref. 27.

In order to study non-Ohmic effects, it is important
verify that the resistance drop is not due to heating of
sample relative to the thermometers monitoring the heat
temperature. For some of the doped silicon samples,
checked whether this was a significant effect by collect
data from one thermistor while using an electrically indep
dent thermistor on the same die to monitor the lattice te
perature. Since we did not make this check on all meas
ments, however, caution is necessary when considering
taken at the highest power levels.

For the NTD Ge samples, we did not monitor the latti
temperatures during the data collection, and the thermal c
tact area between the Ge samples and the TO-5 trans
headers was considerably smaller relative to the thermi
volume than for the silicon samples. Therefore, the latt
heating problem was more serious for the Ge samples
high power dissipation levels in some Ge samples, we
served a decrease in resistance that is consistent with thT3

temperature dependence expected from a finite inter
thermal resistance between the Ge chip and its mount.
measured the thermal contact resistance for a Si sample
-
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found that it was about the same per unit area as the appa
thermal resistance of the Ge samples. Using this assump
we have excluded Ge data with potential lattice heating.

IV. EXPERIMENTAL RESULTS

In this section, we compare the non-Ohmic models d
cussed above to our data. The exponential field effect mo
of Eq. ~5! provides a good fit to some but not all of the da
Figure 2 shows the best example of a good fit to this mod
The data were taken from a NTD Ge sample at 0.285 K; t
sample hasT0;63 K, whereT0 is from the fit of Eq.~2! to
the low-field data.

For the cases where this model fits well, we investiga
the temperature dependence of the parameterl, the charac-
teristic hopping length. Hill discussed this for the Mott-la
case;7 we have applied his method to the case where ther
a Coulomb gap, and derive the following temperature dep
dence:

l~T!5
a

2
AT0 /T, ~9!

wherea is the localization radius andT is the lattice tem-
perature. The combination of Eqs.~5! and ~9! gives

R~T,E!5R~T,0!expH e

k

CaAT0

2

E

T3/2J , ~10!

whereC is a constant of the order unity. According to E
~10!, plotting the data as lnR versusE/T3/2 for different heat
sink temperatures should give parallel straight lines w
slopes equal to (e/2k)T0

1/2 Ca/2. Figure 3 shows three dat
sets from a NTD Ge sample at different temperatures. Le
square fits to the data over the rangeE/T3/2

.400 V m21 K23/2 show that the slopes are nearly the sam
Some of our data from NTD Ge samples show a sharp in
decrease in resistance at very low fields that cannot be fi
the field-effect model ~see, for example, the high
temperature curves in Fig. 3!. These low-field points were
ignored in the fits.

Essentially all of our NTD Ge data and some of our io
implanted Si data can be fit reasonably well by the expon
tial field-effect model. However, it does not provide a go

FIG. 2. An exponential field-effect model fit@Eq. ~5!#. The data
are from a NTD germanium sample atT50.285 K. The value ofl
for the fit is 805 Å.
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57 4475NON-OHMIC EFFECTS IN HOPPING CONDUCTION IN . . .
description of the non-Ohmic behavior for much of the
data. For example, the data in Fig. 4 do not stay on a stra
line as would be expected from Eq.~5!. The hyperbolic-sine
field-effect model can be made to fit in the low-field regio
as shown by the solid line, but this model predicts too la
an effect at higher field strengths. In addition, ‘‘sinh’’ mod
fits do not result in the monotonic temperature depende
for l expected from Eq.~9!. The empirical ‘‘hot-electron’’
model described by Eqs.~6! and ~8!, however, gives an ex
cellent fit to the data over the entire range of power,
shown by the dashed line. In fitting this model, we obtainT0
from the measured resistance using low-field data fit to
~2!; the ‘‘electron temperature’’Te can then be obtained
from Eq. ~6!.

Since this hot-electron model makes a definite predict
of the behavior of a given sample as both the power le
and the heat sink temperature are varied, we investigated
possibility of using a single set of parameters for all the d
from this sample. The apparent electron-lattice thermal c

FIG. 3. Resistance vsE/T3/2 for a NTD Ge sample withT0

559.4 K at three different heat sink temperatures. According to
~9!, the data should follow straight lines with the same slope. T
solid lines are fits to the data forE/T3/2.400. The slopes agre
within their 1s error bars.

FIG. 4. Resistance vsE/T for an implanted silicon sample. Th
solid line is the ‘‘sinh’’ model, with the hopping lengthl adjusted
to fit the data in the low-E region. The dashed line is a hot-electro
model fit, and the dash-dot line shows the exponential field-ef
model, using a value forl extrapolated from the region where it fit
well usingl}(Ca/2)(T0 /T)1/2.
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ductivity, ge-ph[d(P/V)/dT, was determined by observin
the rate of change ofTe with applied power. The inset in Fig
5 shows the resulting values ofge-ph plotted as a function of
Te . Data taken at different heat sink temperatures are re
sented by different symbols. The data are all entirely con
tent with a single straight line, which gives both the powe
law indexb and scale factorg0 . For a direct comparison o
the model with the data, we replot the data in resistance
function of the power per unit volume in Fig. 5, along wi
the model predictions from Eqs.~6! and ~8! usingb andg0
from the inset. The hot-electron model, with only two fre
parameters, matches the data well over the entire rang
heat sink temperature and applied power.

The hot-electron model provides a good fit to much b
not all of the data from our ion-implanted Si. Figure 6 sho
R as a function ofP/V for samples with differentT0’s. The
model fits low-T0 samples well@Fig. 6~a!#, but for higherT0
@Fig. 6~b!# it underpredicts the non-Ohmic effects at lo
power levels, particularly at lower heat sink temperatur
For the sample with an even higherT0 @Fig. 6~c!#, the model
does not fit the data at any heat sink temperature until v
high power levels are reached, although again the deviat
are the largest at low temperatures.

To summarize the results of the fits to these two mod
we have plotted the quality of the fits on diagrams ofTs
versusT0 . Each point in the diagram represents a compa
son between the model and a set of data for a sample
characteristic temperatureT0 taken at a heat sink temperatu
Ts . Results for the exponential field-effect model are sho
in Fig. 7. This model fits well for samples with relativel
highT0’s taken at low temperatures. For reasons discusse
the next section, all of our data from NTD Ge samples,
only a few sets of data from silicon samples, are in t
region.

Figure 8 summarizes the status of the hot-electron mo
fits on a similar diagram. Fits that are reasonably good

.
e

ct

FIG. 5. The data from one ion-implanted silicon sample plot
asR vs P/V for various lattice temperatures. The dashed lines
from the hot-electron model fit.The volume of this sample is 3
310214 m3. The inset shows thederived effective electron-latt
thermal conductivity,ge-ph @5d(P/V)/dT#, vs the ‘‘electron tem-
perature’’Te in log-log scale. Different symbols represent the da
taken at different heat sink temperaturesTs and are the same a
those used in the main figure.
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cept at low power levels are labeled ‘‘medium,’’ while if th
fit is still poor when the resistance drops below 50% of
low-power value, it is labeled ‘‘bad.’’ The hot-electro
model fits best in the low-T0–high-Ts region.

FIG. 6. A comparison of the hot-electron model fits for io
implanted Si samples with different doping densities. The model
best for the lowestT0 ~a!. Figure ~b! shows that for higherT0

samples, the model starts to fail at lowT. For the data in~c! from
a sample with even higherT0 , the model fits the data only at ver
high power densities.

FIG. 7. A summary of the quality of the fits by the exponent
field-effect model on aTs-T0 diagram. Each point represents a fit
a data set taken at a heat sink temperatureTs for a sample with
doping density given byT0 . All of our NTD Ge data are fit well by
this model. The data of Wanget al. ~Ref. 19! for NTD Ge are also
shown in this figure as the closely spaced asterisks near the l
left.
The results shown in Figs. 7 and 8 suggest that the ex
nential field-effect model and the hot-electron model fit o
data in disjoint regions of theTs-T0 diagram. Figure 7 shows
that the exponential field-effect model provides good fits
the data in the high-T0– low-Ts region, while Fig. 8 shows
that the hot-electron model fits lowT0 samples at highTs . In
both cases the dividing line between good and poor fits
be described roughly byT0 /Ts'135.

Unfortunately, most of our Si measurements lie above t
line, and all of our Ge data fall below it. The limit on th
range of our Si data is due mainly to the large length
cross-section ratio of even the widest implanted samp
which results in resistances in the.109 V range in the re-
gion of overlap with our Ge samples. On the other hand,
volumes of the NTD Ge samples are;100 times larger than
the doped volume of our ion-implanted Si. At the hig
power densities where nonlinearities would be measurabl
the low-T0 /Ts region, the total power is so large that it
difficult to avoid lattice heating. The few Si samples in th
region of good fits of Ge data to the field-effect model a
fit this model well, however, and fits to both models beco
poorer as the boundary is approached. Wanget al.19 have
published data from an NTD Ge sample that falls just abo
the line, and they get reasonably good fits to the hot-elec
model. We therefore tentatively conclude that Si and
show very similar non-Ohmic behavior, and that its fun
tional form is determined largely byT0 /Ts .

V. DISCUSSION

In this section, we first examine the systematic behav
of the model parameters in the regions of good fits, and t
compare our results to other published data.

s

l

er

FIG. 8. As in Fig. 7, but for fits to the hot-electron model. Th
circles and squares mark good fits; triangles and diamonds ind
that the model deviates from the data at low power levels;
crosses and stars mean that the model does not fit until the r
tance drops below 50% of its zero-power limiting value. T
closely spaced diamonds at the lower left are from the data of W
et al. ~Ref. 19!.
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We have derived values ofCa/2 from the exponentia
field-effect model@Eq. ~10!# fits to our data. The results ar
shown in Table I. The localization radiusa has been deter
mined by Ionov, Shlimak, and Matveev28 from magnetore-
sistance measurements for doped Ge samples with do
densities and compensation similar to ours. Theoretical e
mates ofC range from 0.17~Ref. 8! to 0.75 ~Ref. 7!. As
shown in Table I, our values ofCa/2 are consistent with the
measurements ofa by Ionov, Shlimak, and Matveev for val
ues ofC at the upper end of this range.

The results of our hot-electron model fitting suggest t
the free parametersg0 andb depend only onT0 . Figure 9~a!
shows the best-fit values ofb as a function ofT0 , while Fig.
9~b! shows the derived electron-lattice thermal conducta
at 0.1 K~our nominal calorimeter operating temperature! as a
function of T0 . We fit straight lines to these plots to obta
empirical expressions for the parameters as functions ofT0 :

b54.271
T0

39 ~K!
, ~11!

FIG. 9. A summary of the hot-electron model fits to io
implanted silicon data: ~a! the derived power-law indexb vs T0 .
~b! The effective electron-lattice thermal conductance per unit v
ume at 0.1 K as function ofT0 . The straight lines are least-squa
fits.

TABLE I. Parameters from the exponential field-effect mod
fit.

T0 ~K! Ca/2 ~Å! a ~Å!a C

Ge 24.8 104.5 190 1.10
Ge 25.1 71.2 190 0.74
Ge 44.6 69.5 150 0.92
Ge 59.4 50.6 135 0.74
Si 32.4 47.0
Si 60.2 32.5

aFrom magnetoresistance measurements by Ionov, Shlimak,
Matveev~Ref. 28!.
ng
ti-

t

e

log10 g~0.1 K !54.2623.4931022T0 ~W m23 K21!.
~12!

We know of no well-developed theory for a hot-electron e
fect in hopping conductivity, but the ability of this simpl
functional form to give excellent fits to the data over a wi
range of temperature and power, and the smooth variatio
the parameters with doping density, argue that there is s
physical reality in this picture.

As noted in the previous section, the good fits to one
the other of these alternative physical descriptions of non
earity are rather cleanly divided by the location of the me
surement inTs ~lattice temperature! versusT0 ~doping den-
sity! space. This suggests the possibility that these
models describe two real and independent physical effe
which dominate under different conditions of temperatu
and doping density. The behavior of some samples near
boundary region supports this idea, as shown in Fig. 10.
dashed line is not fit to the data, but is the prediction of
hot-electron model for thisT0 using Eqs.~11! and~12!. The
solid line is a fit of the exponential field-effect model to on
the low-field points. We cannot predict the correlatio
lengths for silicon, but the derived value ofCa/2 is at least
reasonable~see Table I!. It is clear from the figure that the
nonlinearity of this device over the entire range of elect
fields could reasonably be described by the sum of th
effects. Data from other samples provide counter examp
where the predictions from an extrapolation of one mo
predict somewhatmorethan the observed nonlinearity. How
ever, the quality of the data and model extrapolations
these cases is not good enough that we would consider
possibility ruled out.

Most published data on non-Ohmic behavior in dop
semiconductors have been taken at temperatures above
or from samples with very low compensation levels.11–17We
know of only three reports on non-Ohmic effects in hoppi
conduction below 1.0 K for doped semiconductors with s
nificant compensation.18–20All of these are for NTD Ge. One
study is reported by Grannanet al.18 for samples withT0’s
of 42.4 and 52.5 K. Their measurements cover a tempera
range of 0.3–0.8 K but only for very low fields—below th
limit for precise measurements with our apparatus. They
good fits to the field-effect model of Eq.~5!, but the hopping

l-

FIG. 10. Data from an ion-implanted Si sample near theTs-T0

border line that separates good fits to the two models. The solid
is the fit for the exponential field-effect model, while the dash
line is for the hot-electron model.
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scalel does not show a simple dependence on tempera
The hopping lengths that they derived in this low-field regi
are longer than what we derived from the moderate fi
region for data from NTD Ge samples. However, we d
observe a sharp initial resistance drop at very low fields fr
our samples with similarT0 andTs ~see Fig. 3!. Fitting this
would give a largel, so their results may be consistent wi
ours.

Another study below 1 K, reported by Wanget al.,19 mea-
sured a NTD Ge sample withT056.8 K for heat sink tem-
peratures from 18 to 36 mK. The exponential field-effe
model did not fit their data, but the hot-electron model d
except at the low-temperature and low-power extremes
their measurements. Their data are shown in Figs. 7 an
Their sample was heated significantly above the heat
temperature, and we have plotted the points at their der
lattice temperatures. We have Si samples with similarT0 ,
but we do not have any measurements at such lowT. Look-
ing at nearby points, however, this sample seems to be c
to the transition, and we might expect a good fit to the h
electron model except perhaps at the lowest powers.
agreement between the extrapolation of the results from
ion-implanted Si and the results from Wanget al. supports
our conjecture that the non-Ohmic behaviors of doped
and Si are similar.

VI. APPLICATION TO CALORIMETERS

A. Thermometer sensitivity requirements

The effects of this non-Ohmic behavior on the perfo
mance of microcalorimeters using doped semiconductor
thermometers arise from the reduction in sensitivity p
duced by the bias power used to read out the resistance
can make a quantitative assessment of this performance
pact using the results of the analysis of Moseley, Mather,
McCammon1 for microcalorimeters with ideal resistive the
mometers. These results were given in Eq.~1!, where the
quantityAkT2C is the rms magnitude of the statistical flu
tuations in the energy content of the detector, andj is a
factor of order unity which depends primarily on the log
rithmic temperature sensitivity of the thermometer,a, as
shown in Fig. 2 of Ref. 1.

The derivation assumes the signal has zero rise time
decays exponentially with the thermal time constantC/G of
the detector~usually shortened somewhat by electrotherm
feedback from the bias power!. This gives the signal ap
proximately the same power spectrum as the statistical fl
tuations in the detector energy as shown in Fig. 11. If t
were the only noise source, the signal-to-noise ratio wo
be constant with frequency, and the signal could be m
sured with arbitrary accuracy by using an arbitrarily wi
bandwidth. The Johnson noise of the thermometer resista
also contributes to the noise, however, and the achiev
accuracy depends on the initial ratior of the fluctuation
noise to the Johnson noise below the corner frequency d
mined by the thermal time constant. It can be shown thar
5aAt, where t is the fractional temperature increase pr
duced by the bias power, anda[d log(R)/d log(T) is the
thermometer sensitivity. The value ofa is limited by the
thermometer technology, butt has an optimum: if the bias
current~andt! are very small, the transduced signal and flu
re.
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tuation noise will be small in comparison to the Johns
noise, while a large readout power will raise the temperat
significantly and greatly increase the level of the energy fl
tuations. Figure 2 of Ref. 1 also shows the optimum valu
of t for the case of an ideal thermistor~wherea is indepen-
dent oft!, and the resulting values ofj when the bias power
and measurement filter are optimized. For most caset
'0.12 whena@1.

When a is small, the thermometer Johnson noise dom
nates fluctuation noise even at low frequencies, andj goes as
a21. For largea, the signal-to-noise ratio below the corn
frequency is limited by the fluctuation noise alone, and
thermometer sensitivity determines only the crossover
quency where the fluctuation noise falls below the John
noise. This crossover is approximately the usable bandwi
so in this regimej scales asa21/2. The factorj and the net
energy resolution are independent of the thermal cond
tanceG of the link to the heat sink in this approximation, s
one could make the detector as fast or slow as desired fo
application without affecting the resolution.

B. Effects of nonlinearity

To see how this is changed by the nonideal behavior
the thermistors, we define an effectivea as the logarithmic
partial derivative of the resistance with respect to the latt
temperature. Detectors are normally biased at constant
rent, so we calculate the partial derivative for this conditio
but it can easily be calculated for other bias arrangeme
For an ideal thermistor, the resistance is a function of
lattice temperature only, so any of these effectivea’s are
equal to the normala. Figure 12 shows the effectivea’s
calculated from hot-electron model fits to ion-implanted s
con thermistors as a function of the bias power density
two operating temperatures and various doping densit
Quite similar results are obtained from the field-effect mo
in the parameter range where it also provides a reasonab
to our data. The figure shows a fairly abrupt drop in sen
tivity above some threshold power density. This thresh
drops rapidly with decreasing temperature but depends o

FIG. 11. Diagram showing the signal power spectrum, the th
modynamic fluctuation noise spectrum, and thermometer John
noise for an idealized calorimeter. The constant signal
fluctuation-noise ratio would allow arbitrarily good resolution if th
usable bandwidth were not limited by the thermometer noise.
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weakly on doping density, so that devices with different i
tial sensitivities converge to almost the same sensitivity
moderate power levels.

With these data, it is straightforward to do a numeric
optimization of thermistor volume for any given bias pow
and detector heat capacity. For a fixed coldplate tempera
DE is proportional toj C1/2, wherej}a21 for uau,2 and
j}a21/2 for uau.4. The thermistor volume can be in
creased, reducingP/V and increasinga and the resolution
until the thermistor heat capacity starts to contribute sign
cantly to the totalC. From the slope of thea versusP/V
curves, however, it is clear that if the thermistor heat cap
ity dominates the total for the detector, the slow improv
ment in resolution witha for a*4 will not make up for the
C1/2 loss due to the increasing total heat capacity, and
optimum effectivea will remain near the 2–4 range.

The ultimate consequence of this limit onP/V is a limit
on thespeedof the detector. The bias optimization requir
enough power to raise the absorber temperature by a
12%. This bias power and with it the minimum thermist
volume are therefore proportional to the conductanceG of
the thermal link. AsG is increased to make the detect
faster, the thermistor eventually becomes large enough th
dominates the total heat capacity, and from this point
heat capacity rises as fast as the thermal conductance.
thermal time constantt5C/G then reaches a minimum lim
iting value, which for doped silicon thermistors appears to
on the order of 1 ms at 100 mK, and gets longer at low
temperatures. This nonlinearity also becomes a limitation
the ultimate resolution, if there are technological limits
how small G can be made, since the minimum value
Cthermistor, and therefore the nominal detector noise, sca
with G.

In the context of the hot-electron model for thermist
nonlinearity, there is another mechanism that can limit

FIG. 12. The predicted logarithmic temperature sensitivity
constant current,aeffective[(] ln R/] ln Tlattice) I 5const, vs bias power
per unit volume (P/V) from the hot-electron model fits shown i
Fig. 9. The solid lines are for a lattice temperatureTs50.05 K, and
the dotted lines are forTs50.1 K.
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response speed of the detectors. The electrons have an
ciated heat capacity, and this together with the electr
lattice thermal conductivity should create a time const
that would represent a minimum response time for the de
tor. The Center for Particle Astrophysics group has obser
extra time dependences in their Ge devices that can b
very well by such a time constant.19,20 The electronic heat
capacities might be expected to vary linearly with tempe
ture, as has been found for the excess heat capacity of d
Si,29 but the values derived from these fits have tempera
dependences that range from much steeper than linear19 to
essentially independent of temperature.20 In any event, this
heat capacity must be part of the total measured heat cap
of the detector, as well as determining the intrinsic time co
stant of the thermometer. Numerical optimizations we ha
tried over a wide range of detector parameters show that
electron-lattice thermal conductivity should always be ma
at least three times larger than the lattice to heat sink ther
conductivity, however, so it appears that for practical det
tors, the thermal time constant from the supports will alwa
be considerably longer than the coupling time constant of
electron system.

In a real hot-electron model, one would also expect ad
tional thermodynamic fluctuations in the electron syst
temperature. These would be particularly deleterious, si
they would be transduced at the full thermometer sensitiv
rather than at the smaller effective sensitivity that determi
the electrical signal from the lattice fluctuations and the s
nal. A complete thermistor optimization should include the
fluctuations, as well as the loss of temperature sensitivity
the 1/f noise discussed in Sec. VI D below.

C. Silicon versus germanium

From the above discussion, it appears that an approp
‘‘figure of merit’’ for these nonideal thermistors is powe
handling capability per unit heat capacity~at some reason
able effectivea!. The power-density part of this can be com
pared directly for the few cases where we have data fr
both materials at the sameT and T0 . Figure 13 shows the
reduction in resistance as a function of power density

t

FIG. 13. Resistance as a function of power density at cons
lattice temperature for Si and Ge samples with similar tempera
sensitivity. The Ge data are plotted at 50 times the actual po
density of the measurements.
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NTD Ge and ion-implanted Si samples with nearly identi
T0’s. The Ge data are plotted at 50 times the actual po
density, showing that a Si thermistor has about the sa
nonlinearity as a Ge thermistor with the same sensitivity
erated at a 50 times lower power density. The doping den
of the Ge is also about 50 times lower than for the Si, so
the curves were plotted in terms of watts per impurity at
instead of watts per m3, they would lie very closely on top o
one another without shifting. If we extrapolate the ho
electron model fits for Si into the region ofT0 andT where
we have only Ge data, the comparison favors the german
more. This may indicate that the relation is complicated,
simply that the empirical model extrapolations are uncerta

The comparison in terms of heat capacity is more di
cult. At temperatures of 100 mK and below, the lattice h
capacity should be negligible compared to that of the im
rities. Our measurements of the excess specific heat of
ion-implanted silicon thermistors~after subtracting the hea
capacity of the pure silicon! give about 8.5T J m23 K22 near
0.1 K, in reasonable agreement with the data of Marko, H
rison, and Quirt.29 Unfortunately, we know of no similar dat
for doped germanium. Since the electrical conduction
these samples has the same temperature dependence,
ever, it is tempting to assume that the energy structure of
states around each cluster of impurities is the same, and
they should have essentially the same heat capacity per
purity site. More work obviously needs to be done in th
area, but at this point germanium and silicon appear to h
similar figures of merit, and the choice between them can
based on their other attributes: the NTD Ge is easy to m
and very predictable, while the ion-implanted Si offers mo
flexibility in detector construction, particularly for mono
lithic devices.

D. Excess noise

It is theoretically expected that hopping conducti
should show excess noise at some level,30,31 and we have
data over the narrow temperature range 270–350 mK
exhibit 1/f noise that scales as the square root of impl
volume, as expected for a true bulk effect in the conducto
gets worse rapidly with decreasing temperature, and is w
at higherT0’s, but is very similar for both NTD Ge and
ion-implanted Si.6,32 We do not yet have much noise data
the lower temperatures of interest, and cannot say whe
the excess noise or nonlinearity is the major restriction
how small the thermistors can be made.

E. Other thermometer types

Since the doped semiconductors seem to be intrinsic
limited to rather low effectivea’s are the alternatives mor
promising? Superconducting transition edge thermome
can havea’s exceeding 1000, and despite difficulties wi
matching to the amplifier noise impedance, promising res
have already been obtained.33 Indeed, the whole idea of us
ing a resistive thermometer to read out a calorimeter se
less than optimum: first, because the power required
read out the resistance heats the detector, and second
cause the resistance has Johnson noise. Some work has
done on both inductive and capacitive thermometers.34,35 A
simple analysis shows that these devices can be treate
l
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same as ideal resistive thermometers with an effectivea
equal toQ times d log(Z)/d log(T), whereQ21 is the frac-
tional energy loss per cycle andZ is the inductive or capaci-
tive reactance. SinceQ’s can be on the order of 106, these
thermometers could theoretically give very large improv
ments in resolution if suitable amplifiers are available and
the thermometers can be fabricated with sufficiently sm
heat capacities.

One limitation on this improvement is that having th
resolution scale likea1/2 depended on the assumption of ze
rise time for the signal. The actual rise time includes t
event thermalization time, which must be at least a f
sound-crossing times in the detector. This finite rise ti
produces another pole in the signal power spectrum, ab
which the signal will drop toward the thermodynamic nois
The signal-to-noise ratio will deteriorate rapidly above th
frequency, no matter how small the thermometer John
noise is in comparison. A simple way of summarizing this
that the usefula of the thermometer can be no larger than t
ratio of the thermal decay time constant to the rise time
the signal pulse. This means that high-a thermometers are
most useful for detectors with fairly long thermal time co
stants.~See Ref. 36 for a discussion of detector operation
this limit with a magnetic thermometer.!

Biasing a high-a detector for negative electrotherm
feedback~RLOAD@RDET for a,0, RLOAD!RDET for a.0!
can make the signal decay time much shorter than the t
mal time constant.1,37,38 Since the feedback does not affe
the signal-to-noise ratio at any frequency~in the absence of
significant amplifier noise!, the time constant ratio require
ment still applies to the thermal time constant only, and t
allows the signal decay time to be comparable to the th
malization time. In the linear regime, the same effect co
be obtained by high-pass filtering the output pulses, but it
been pointed out by Irwin38 that the negative electrotherma
feedback has the additional advantages of stabilizing the
tector responsivity, making it more linear, and, since the
posited energy is almost entirely compensated by a reduc
in bias power during the pulse instead of being conduc
down the thermal link, higher count rates can be tolera
without excessive shifts in the detector temperature and g
These benefits can be increased for a given thermometer
sitivity by over-biasing the detector and increasing the el
trothermal feedback at some cost in resolution due to
increased detector temperature and thermodynamic fluc
tion noise, but the very high sensitivities obtainable w
superconducting transition edge thermometers (a;1000)
provide a high level of feedback even when the bias is o
mized for the best small-signal resolution.39

The price of using a large negative electrothermal fe
back is the requirement for a much quieter amplifier, due
the suppressed signal level. The advent of practical dc su
conducting quantum interference devices has largely all
ated this difficulty, however, since they provide an extrem
low noise level at a reasonable impedance level for transi
edge sensors.

VII. CONCLUSIONS

No single model provides a good description of our no
Ohmic data for all devices and operating temperatures
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field-assisted tunneling model fits the data at low tempe
tures for devices with highT0’s ~lower doping densities!, and
its length scale parameterl shows the expectedT21/2 tem-
perature dependence. For higher temperatures and lo
T0’s, the data can be fit over a wide range of temperature
power density with an empirical ‘‘hot-electron’’ mode
where the apparent electron-lattice thermal conductivity a
the exponent of its assumed power-law temperature varia
depend only on the doping density. The data are gener
consistent with a picture where these models represent
physically distinct effects, which exist together but whic
dominate under different conditions of temperature andT0 .

We see little evidence for any intrinsic differences in t
non-Ohmic behavior of NTD germanium and ion-implant
silicon, although differences in the sample geometries p
vent us from reaching a definitive conclusion.~As noted in
paper I, melt-doped samples of both materials usually sh
erratic behavior that does not fit any simple pattern. This
possibly due to small-scale fluctuations in the effective do
ra-
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ing density.! The power densities required for the onset
significant nonlinearities are much higher in silicon than
germanium, but become almost identical when expresse
power per dopant atom instead of per unit volume.

This nonlinear behavior has a large impact on the perf
mance of cryogenic calorimeters employing these device
thermometers. Although standard fabrication technology
capable of making the thermometers small enough that t
heat capacity could always be negligible, non-Ohmic effe
would make such a small thermometer entirely insensitive
temperature changes. Calorimeter design therefore mus
clude a tradeoff of thermometer heat capacity for sensitiv
and this introduces fundamental limits to the speed and
ergy resolution. While we cannot claim to understand t
physical processes producing the nonlinearity, the se
empirical fits presented here are adequate for optimiz
thermometer design for cryogenic detectors with a wi
range of characteristics.
,
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