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Full nonlinear closure for a hydrodynamic model of transport in silicon

M. Trovato and P. Falsaperla
Dipartimento di Fisica, Universita` di Catania, Corso Italia 57, 95129 Catania, Italy

~Received 8 September 1997!

We derive, using the entropy maximum principle, an expression for the distribution function of carriers as a
function of a set of macroscopic quantities~density, velocity, energy, deviatoric stress, heat flux!. Given the
distribution function, we can obtain a hydrodynamic model in which all the constitutive functions~fluxes and
collisional productions! are explicitly computed starting from their kinetic expressions. We have applied our
model to the simulation of the thermodynamic properties of bulk silicon and of somen1nn1 submicrometer
Si devices~with several doping profiles and applied biases!, obtaining results comparable with Monte Carlo
simulations. Computation times are of order of few seconds for a picosecond of simulation.
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I. INTRODUCTION

The increasing miniaturization of modern electronic d
vices requires an accurate modelization of transport in se
conductors. This is of great importance for describing p
nomena such those due to hot electrons, i.e., the condit
very far from thermodynamic equilibrium caused by stro
electric fields and field gradients.

The most general approach to the simulation of cha
transport in semiconductors employes the semiclassical B
zmann transport equation~BTE! coupled with Poisson equa
tion. A numerical solution of such system of equations w
traditional techniques is extremely complex, and then
proximate methods based on kinetic and fluid dynamic~FD!
models are often preferred.

The most accurate kinetic description is given by Mon
Carlo ~MC! methods, which can take into account explicit
both the band structure and the various scatter
phenomena.1,2 This method permits us to compute direct
all the quantities relative to transport~such as the distribution
function, density of carriers, velocity, mean energy, and
on! but at a cost of long computation times and stocha
noise in data. The results obtained from MC simulations p
mit us also to calculatetransport coefficients, which are used
as an input to more simplified FD models. Other kinetic a
proaches are based on the choice of particular forms of
nonequilibrium distribution function of carriers. Commo
examples are the simple shifted Maxwellian3 or an expansion
of the distribution in spherical harmonics.4 The cylindrical
symmetry constraint in momentum space and the redu
number of terms of the expansion that can be practic
used do not permit, however, to describe transport prope
of carriers in conditions very far from equilibrium.5

The FD models are obtained considering a set of mom
of the BTE. Such models clearly need the knowledge
constitutive functions~fluxes and collisional productions!
present in the hierarchy of equations. For instance, the m
common hydrodynamic models6,8–13 use the dynamic vari-
ables:numerical density n, velocityvW , andenergy density W
with somead hocconstitutive equations for theheat fluxand
thestress tensorof type Navier-Stokes-Fourier and a mode
ization for the collisional productions through relaxatio
570163-1829/98/57~8!/4456~16!/$15.00
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times, which, for small departures from equilibrium, co
trasts with the Onsager reciprocity relations.14 The main de-
fects of these FD models depend, then, on the constitu
equations, which are usually fixed on a phenomenolog
basis, introducing free parameters, such as relaxation ti
and transport coefficients, which have an unknown dep
dence on the geometry and working conditions of the sim
lated devices. The presence of thesefree parameters6 has
always been a limit to a practical use of FD models, becau
in general, such parameters are determined in each cas
the basis of MC simulations or experimental data.

We have developed a hydrodynamic~HD! model7 for the
simulation of transport phenomena in semiconductors, ba
on extended thermodynamics and on the entropy maxim
principle ~EMP!. In this model, besides the usual quantiti
$n,nv i ,W%, also theenergy flux density Si and thetraceless
part of momentum flux densityS^ i j &

15 are considered dy-
namic variables and they satisfy further balance equatio
We have then, as independent variables, the first thirt
moments of the distribution function FA
5$n,nv i ,W,S^ i j & ,Si%. Following the EMP we express th
distribution function through the set of momentsFA as
F(kW ,rW,t)5F@FA(rW,t),kW #. This distribution turns out to be a
strongly nonlinear function of the moments. Given the d
tribution, we can determine the unknown constitutive fun
tions appearing in the hierarchy of the equations that
scribes the time evolution of the moments. We point out t
the computation of collisional productions is then based
the sole knowledge of the scattering kernels and the phys
quantities they contain. Our HD model is then fully close
and, contrarily to other HD models, does not contain anyfree
parameter. On the other hand, the distribution function w
obtain has no particular symmetry restrictions and is fu
suitable for three-dimensional models. Its strong nonlinea
is capable of describing transport phenomena even in co
tions far from thermodynamic equilibrium, as those pres
in submicron devices with very high electric fields and fie
gradients@E'105V/cm, E/(dE/dx).100 Å#.

We remark that in our paper the EMP is used in a diff
ent way with respect to most of the previous applicatio
~see Ref. 16!, in that our method leads to a dynamical d
scription of the physical system. The EMP, by itself, do
4456 © 1998 The American Physical Society
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57 4457FULL NONLINEAR CLOSURE FOR A HYDRODYNAMIC . . .
not provide any information about the dynamic evolution
a system, but gives only a criterion to express the none
librium distribution function as function of a set of macr
scopic quantities, used as constraints. In this paper both
distribution function and the macroscopic quantities are
garded as local quantities, functions of position and time.
obtain a dynamic model it is necessary to know a set
evolution equations for the constraints, which include an
curate description of the microscopic collisional process
So, in our application of the EMP, we can see two steps:~a!
determine a general andanalytic expression for the distribu
tion function, as function of the macroscopic quantities us
as constraints;~b! starting from the Boltzmann transpo
equation, obtain a set of equations for the constraints
represents a completelyclosed hydrodynamic model in
which all the constitutive functions are completely det
mined starting from their kinetic expressions.

Then we can say that our use of the EMP depends bot
the choice of a set of constraints~moments of the distribution
function! and on the determination of a set of evolutio
equations for these constraints that takes explicitly into
count the underlying physical processes~the various scatter
ing phenomena, in this case!. Only by knowing the dynamic
evolution of the macroscopic quantities used as constrain
it possible to determine the correct dynamic evolution of
distribution function in phase space.

The plan of this paper is the following. In Sec. II w
introduce the balance equations for the charged carriers
describe the physical characteristics of the model. In Sec
we exploit the EMP in order to obtain an analytic express
for the distribution function. In Sec. IV we analyze the r
striction of the model to the one-dimensional case giv
explicitly both the set of balance equations for the mome
FA and the expression of the constitutive functions~fluxes
and collisional productions!. In Sec. V we discuss the resul
of the simulations of bulk silicon and unipolarn1nn1 de-
vices with different doping profiles, size of the active r
gions, and applied bias. In Sec. VI we analyze the system
equations and its hyperbolicity domain. In Sec. VII we d
cuss briefly a generalization of the Nessyahu-Tadmor
merical scheme to nonhomogeneous systems and its app
bility to our case.

II. PHYSICAL CHARACTERISTICS OF THE MODEL

We consider here a HD model for transport phenomen
silicon. Our main purpose in the development of this mod
has been to test how accurately our distribution function
scribes strong nonequilibrium conditions. Therefore we h
used a simplified band structure. As is well known, electro
contributing to transport are mainly those belonging to
six equivalentX valleys which, up to an energy of about 0
eV, can be considered approximately parabolic. Electr
can then be described by a density of states effective m
m* 50.32me and a band energy«(kW )5\2k2/2m* . In the
same energy range, the main scattering phenomena are
to electron-phonon interactions, which produce interval
and intravalley transitions.2

We will consider intervalley transitions caused both
f -type andg-type phonons. The scattering probability p
unit time for intervalley transitions of an electron from sta
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kW to statek8W can be expressed as

Sh~kW ,k8W !5Zh

pDh
2

Vrvh
F Nh

Nh11Gd@«~k8W !2«~kW !7\vh#,

with h5g1 ,g2 ,g3 , f 1 , f 2 , f 3 . ~1!

Here Zh is the number of possible final equivalent valle
(Zh51 for h5g1 ,g2 ,g3 andZh54 for h5 f 1 , f 2 , f 3), Dh is
the coupling constant,V is the crystal volume,r is the Si
density, vh is the phonon angular frequency,Nh
51/@exp(\vh /KBT0)21# is the phonon occupation numbe
~with T0 the lattice temperature!, while the upper and the
lower option in the expression corresponds to absorption
emission, respectively.

For intravalley transitions we will consider scattering wi
acoustic phonons, which will be regarded as approxima
elastic. Since in this approximation there is no distincti
between final states obtained by absorption or emission
cesses, we can express the sum of the intravalley transit
probabilities as

Sac~kW ,k8W !5
2pKBT0El

V\rUl
2

d@«~k8W !2«~kW !#, ~2!

beingKB the Boltzmann constant,Ul the longitudinal sound
velocity, El the deformation potential for longitudinal acou
tic phonons. For the values of all the costants appearing
the scattering terms~1!,~2! we have used the parameters r
ported in Ref. 2.

We consider the BTE for an electron gas

]F~kW ,rW,t !

]t
1

dxi

dt

]F~kW ,rW,t !

]xi
2

e

\
Ei

]F~kW ,rW,t !

]ki
5Q~F!,

~3!

whereF5F(kW ,rW,t) is the single-particle Boltzmann distribu
tion function,dxi /dt5\ki /m* is the electron group velocity
andQ(F):

Q~F!5
V

~2p!3E dk8WS~k8W ,kW !F~k8W ,rW,t !

2
V

~2p!3E dk8WS~kW ,k8W !F~kW ,rW,t ! ~4!

is the collisional production due to the different scatteri
processes@Qh(F) for the intervalley transitions andQac(F)
for the intravalley transitions#.

We can pass from the Boltzmann equation~3! to the hy-
drodynamic equations of the first thirteen moments cons
ering the followingkinetic quantities~see Ref. 15!

cA~kW !5H 1,
\

m*
ki ,

\2

2m*
k2,

\2

m*
k^ ikj & ,

\3

2~m* !2
k2kiJ .

Multiplying Eq. ~3! by cA(kW ) and integrating inkW space we
obtain the balance equations for the followingmoments of
the distribution functionor macroscopic fields: density of
carriersn, flux of carriersnv i , total energy densityW, trace-
less part of momentum flux densityS^ i j & , energy flux den-
sity Si , being
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4458 57M. TROVATO AND P. FALSAPERLA
W5 3
2 p1 1

2 nm* v2, S^ i j &5s^ i j &1nm* v ^ iv j & ,

Si5qi1s^ i j &v j1
5
2 pv i1

1
2 nm* v2v i ,

wherev i is the mean velocity,p5nKBT is the pressure,s^ i j &
is the nonconvective part of tensorS^ i j & and qi is the heat
flux. If we denote this set of moments byFA
5$n,nv i ,W,S^ i j & ,Si%, we can write

FA5E cA~kW !F~kW ,rW,t !dkW ~5!

and the generic balance equation is then

]FA

]t
1

]FAk

]xk
5RA1PA1 P̃A . ~6!

HereRA denotes the production term due to the electric fie
while the fluxes and collisional productions$PA ,P̃A% caused
by intravalley and intervalley transitions are, respectively

FAk5
\

m* E cA~kW !kkF~kW ,rW,t !dkW ,

PA5(
h

E cA~kW !Qh~F!dkW ,

P̃A5E cA~kW !Qac~F!dkW . ~7!

The set of balance equations~6! contains several unknow
functions, i.e., the fluxes of the equations forS^ i j & and Si ,
and the collisional productions$PA ,P̃A%. The system can
then beclosed if the unknown constitutive functionsHA

5$PA ,P̃A ,FAk% can be expressed by means of the fieldsFA .
This problem can be solved with the help the variatio
method known asentropy maximum principle,18–23 which
allows the determination of the non-equilibrium distributio
function of hot carriers and consequently permits to find
closure for theconstitutive functions. We will show ~by a
comparison with MC simulations performed under the sa
physical approximations! that in this way it is possible to
describe accurately some simple Si devices even in co
tions very far from thermodynamic equilibrium.

III. MAXIMIZATION OF ENTROPY

We start from the known expression of entropy dens
h52C*Flog(F)dkW ~whereC is a constant! assuming that
F(kW ,rW,t) depends onrW andt only through the fieldsFA(rW,t)
and then we determine the distribution function, of the fo
F(rW,kW ,t)5F@FA(rW,t),kW # that maximizesh under the con-
straints that the momentsFA are expressed by the relation
~5!. Following this procedure, we maximize the functiona

h85h2 (
A51

13

LAF E cA~kW !F~rW,kW ,t !dkW2FAG , ~8!

imposingdh850. The quantitiesLA are theLagrange mul-
tipliers associated with the constraint equations~5!. As is
well known, the distribution function obtained with th
procedure16–23 assumes the following form
,

l

a

e

i-

y

F5exp~2S!, S5 (
A51

13

cALA . ~9!

To obtain an explicit expression ofF we have yet to expres
the multipliersLA as function of the constraints, i.e., th
momentsFA . By inserting Eq.~9! into the definition of
fields ~5! we haveFA5FA(LB), and so, to determineF, we
must invert this latter relations obtainingLA5LA(FB). This
inversion is extremely difficult and can be obtained only
numerical integration or by a series expansion ofF.24 We
have followed the latter approach, expandingF to third order
in $v i ,s^ i j & ,qi% around an equilibrium configuration define
by a local MaxwellianFM . The choice of a local Maxwell-
ian is justified by the following observation. It is known14

that energyW reaches its equilibrium value much mo
slowly than other moments such as$v,s,q%, because many
collision processes~mainly with acoustic phonons involve
in intravalley transitions! are almost elastic. This fact implie
that during the relaxation process that leads to a global t
modynamic equilibrium ~in which v5s5q50, and T
5T0) the carriers will reach a partial thermodynamic eq
librium ~in which v5s5q50, butTÞT0) corresponding to
the local Maxwellian~around which we have computed th
expansion!

FM5nS \2

2pm* KBTD 3/2

expS 2«~kW !

KBT
D ,

which contains the quantitiesn5n(rW,t), and T5T(rW,t) as
functions of position and time. Introducing the series exp
sion ofF into Eq. ~5! all the quadratures can be done an
lytically, and the resulting relations can be inverted. In th
way we can expressF as a strongly nonlinear function o
mA5$n,p,v i ,s^ i j & ,qi%.

In the specific case of semiconductors we will show th
by using this distribution function we can obtain results co
parable with the results of MC simulations with a remarka
reduction of the computation times.

IV. ONE-DIMENSIONAL HYDRODYNAMIC MODEL

The model resulting from the procedure described in
previous sections is fully three dimensional, but we sh
here one-dimensional results. The only independent varia
are in this caseFA5$n,nvx5nv, W,S^xx&5S, Sx5S%,
~analogouslymA5$n,p,v5vx , s5s^xx& , q5qx% and E
5Ex) satisfying the following balance equations

]n

]t
1

]nv
]x

50,

]nv
]t

1
1

m*

]~S1 2
3 W!

]x
52

neE

m*
1Pnv1 P̃nv , ~10!

]W

]t
1

]S

]x
52nveE1Pw ,
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]S

]t
1

]

]x
~ 2

3 nm* v31 4
3 pv1 7

3 sv1 8
15q1GS!

52
4

3
nveE1PS1 P̃S ,

]S

]t
1

]

]x
~ 1

2 nm* v41 16
5 qv14pv21 5

2 sv21GS!

52eES 3

2
nv21

5p

2m*
1

s

m*
D 1PS1 P̃S ,

being PA5$Pnv ,Pw ,PS ,PS% and P̃A5$P̃nv ,0,P̃S ,P̃S% the
collisional production terms due, respectively, to interval
and intravalley transitions whileGA5$GS,GS% are the con-
stitutive functions present in fluxes. Considering the exp
sion ~to third order in the fields$v,q,s%) of F(mA ,kW )
around equilibrium configuration~in which v5s5q50)
defined by a local Maxwellian distribution, we find for func
tions GS ,GS the relations

GS5S 36

25

1

p
qs D1S 272

625

nm*

p3 q32
99

125

1

p2 qs2D ,

GS5
5

2

p2

nm*
1

7

2

p

nm*
s1S 1

nm*
s21

74

25

1

p
q2D

1S 158

125

1

p2q2s1
36

25

1

p
vqs D . ~11!

Analogously, starting from expressions for scattering pr
abilities ~1!,~2! and using relations (7) we find, for the intra
valley transitions,

P̃nv52
4

15
j

n2

p2Ã, P̃S52
16

25
j

nm*

p2 C̃, P̃S52
12

5
jD̃,

~12!

with

j5
El

2KT0

\4rUl
2S 2m*

p D 3/2S p

nD 1/2

,

and, for intervalley transitions,

Pnv5
4

3(h Ah(
i 51

5

A2i 11@~Nh11!H2i 11
1 1NhH2i 11

2 #,

Pw5(
h
AhXh(

i 50

4

B2i 11@~Nh11!H2i 11
1 2NhH2i 11

2 #,

PS5
4

15(h Ah(
i 52

5

C2i 11@~Nh11!H2i 11
1 1NhH2i 11

2 #,

~13!

PS5
4

3(h Ah(
i 52

6

D2i 11@~Nh11!H2i 11
1 1NhH2i 11

2 #,

with
-

-

Ah52
n

\3S m* n

2ppD 3/2 Dh
2

rvh
ZhXh , Xh5

\vh

2

n

p
,

where all the physical constants are those previously defi
for the scattering probabilitiesSac(kW ,k8W ),Sh(kW ,k8W ). The di-
mensionless quantitiesH2i 11

6 can be expressed by means
the modified Bessel functionsK1 and K2. Defining G6

5Xhexp(7Xh)K2(Xh) we have

H1
65exp~7Xh!K1~Xh!, H3

656H1
61G6,

H2i 11
6 562H2i 21

6 6~ i 11!! F (
n51

i 22 3H2n11
6

~n13!!
6

G6

2 G ,

i 52, . . . ,6,

while all the coefficients $Ã,C̃,D̃% and
$A2i 11 ,B2i 11 ,C2i 11 ,D2i 11% present in the production term
~12! and ~13! turn out to be very complex polynomial func
tions of the momentsmA . We report integrally the coeffi-
cients in Appendix A, notwithstanding their complexity, b
cause the resulting closure is of general value in
simulation of unipolar devices. Analyzing these coefficien
we observe that, as we should expect, at local thermo
namic equilibrium (v5s5q50) all collisional productions
vanish, except forPw , which vanishes only at global equ
librium (T5T0).

V. DEVICE SIMULATIONS

As test cases, we have considered bulk Si and five un
lar and one-dimensional devicesn1nn1 ~labeled
A,B,C,D,E) at different doping and applied biases, as su
marized in Table I. The samplen1nn1 devices have regions
n1 of length 0.1mm and a channeln, respectively, of length
0.2 mm ~deviceA), 0.3mm ~deviceB) and 0.4mm ~devices
C, D, andE). The lattice temperatureT0 is 300 K and the
doping profileN(x) has been smoothed at junction poin
x150.1 mm andx250.3 mm, 0.4 mm, and 0.5mm ~for the
different devices! with a properly scaled erfc function, i.e.,

N~x!5N1 1
2 ~N12N!H 21erfcFx2x1

xs
G2erfcFx2x2

xs
G J ,

wherexs50.01 mm, 0.04mm, and 0.06mm as reported in
Table I. Boundary conditions are obtained by imposing n
gradient to all moments at boundary points.25 These condi-
tions seem compatible with the effective configuration
moments, both in transient and in the final stationary st
For all the device simulations reported in this paper we h

TABLE I. Devices parameters.

N1 N Channel xs bias
Device ~cm23) ~cm23) (mm! (mm! ~V!

A 1018 1016 0.2 0.01 1
B 1018 1016 0.3 0.01 1
C 5•1017 2•1015 0.4 0.01 1-2
D 5•1017 2•1015 0.4 0.04 2
E 5•1017 2•1015 0.4 0.06 2
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4460 57M. TROVATO AND P. FALSAPERLA
used the finite differences numerical scheme describe
Sec. VII, with Nc5130 cells and a time stepk50.0016 ps
for a total time of 5 ps. In these conditions our code requi
about two seconds for a picosecond of simulation on a
phaStation 600, 333 MHz. MC device simulations have b
performed with theDAMOCLES code,26 using 15 000 particles
and under the same physical approximations of our
model @parabolic isotropic bands and same values~see Ref.
2! of the collisional kernels parameters#.

Figure 1 shows the values, for bulk silicon, of velocit

FIG. 1. HD simulation of bulk silicon. Velocity, energy, trace
less momentum flux, and heat flux~with sign changed! as functions
of the applied electric field at temperatures of 300 K~solid lines!
and 77 K ~dashed lines!. For the mean energy and velocity w
report also MC data~from Ref. 27! of full-band simulations with
electric fields directed along thê100& ~triangles! and the^111&
~circles! crystallographic directions.
in

s
l-
n

energy, the traceless part of the momentum flux density,
heat flux, as functions of the applied electric field~at lattice
temperaturesT05300 K andT0577 K!. We report also a
comparison with MC simulations27 for velocity and mean
energy. These MC simulations have been performed usin
full band model and for two orientations of the electric fie
~along the^100& and ^111& directions!. We note some dis-
crepancy, for low values of the electric field, in the curve
mean energy atT0577 K. This is probably imputable to the

FIG. 2. Field values as a function of position for deviceA.
Points are MC data. Lines are from the present HD model w
closures for collisional productions at, respectively, first~dash-
dotted lines!, second~dashed lines!, and third~solid lines! order.
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57 4461FULL NONLINEAR CLOSURE FOR A HYDRODYNAMIC . . .
simplified description of acoustic scattering, that we ha
considered, for intravalley transitions, as an elastic proc
This approximation can be effectively used at high fie
and/or high temperatures but will fail at low fields and te
peratures in that the maximum transferred energy will be
longer a small fraction of the kinetic energy of electron2

We observe also that for high values of the electric field
results differ from MC because of the different model us
for the band structure.

Figures 2, 3, and 4 show velocity, energy, the tracel
part of the momentum flux density, and heat flux for devic
A, B, andC ~with a bias of 1 V!. In Figs. 2 and 3 we repor

FIG. 3. Same quantities as for Fig. 2 for deviceB.
e
s.

s
-
o

r
d

s
s

the results of a series of simulations for devicesA andB with
three different closures, in which the collisional productio
are evaluated, respectively, with a first-, second-, and th
order expansion. We see that for devices with such h
fields and field gradients a strongly nonlinear description
necessary to obtain a good agreement with MC simulatio

In Figs. 5 and 6 we report velocity, energy, the tracele
part of the momentum flux density, heat flux, doping pr
files, and electric fields for devicesC ~with a bias of 2 V!, D
andE.

As an overall comment to Figs. 2–6, we observe t

FIG. 4. Field values as function of position for deviceC with a
1 V bias. Points are MC data. Lines are from the present HD mo
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FIG. 5. Velocity and energy for devicesC, D, andE with a 2 V bias. Solid lines are from HD simulation, points are from MC. T
devices differ only in the smoothing parameter used for the doping profile~see Table I!. These simulations show, near the second juncti
the strong influence of the electric field gradients~see Fig. 6! on the HD simulation.
im
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overshoot velocity pick, presented by the devices in prox
ity to the second junction, tends to decrease both wit
better description of collisional productions~higher-order ex-
pansion in devicesA andB) and with lower gradients of the
electric field~devicesD andE).

In Fig. 7 we show thecurrent density-biascharacteristic
curves for devicesC, D, andE.

Figure 8 shows the time evolution of velocity, energy, t
traceless part of the momentum flux density, and heat flux
functions of position for deviceC with a 1 V bias. We see
that all the fields are nearly relaxed after 4 ps of evolutio

In the case of one-dimensional devices the distribut
function presents a cylindrical symmetry inkW space, and then
can be conveniently represented as function ofkx and
kt5(ky

21kz
2)1/2 ~see Appendix B!. We show in Figs. 9 and

10 the function

f ~kx ,kt ,x,t !52pktF~kx ,kt ,mA!, ~14!

normalized such that

E f ~kx ,kt ,x,t !dkxdkt51

at different locations in deviceC. Note that because of col
lisional processes a fraction of the electron population se
to relax toward an equilibrium condition~i.e., a Maxwellian
distribution centered atkx5kt50). This phenomenon is
more evident in the simulation with an applied bias of 2
@Fig. ~10!#. In this case the electric field has the highest v
ues and then the nonrelaxed fraction of electrons has a hi
mean value ofkW .

Integrating the maximum entropy distribution function
kW space with respect to the solid angledV, we obtain the
electron energy distribution~see Appendix B! in the form
-
a

as

.
n

s

-
er

f „«~k!,mA~x,t !…, such thatE f „«,mA~x,t !…d«51.

~15!

Figures 11, 12, and 13 show the electron energy distribu
as a function of position and energy for devicesA, B, andC
~with an applied bias of 1 V! from MC simulations and from
our HD model.

Figure 14 shows the electron energy distribution in log
rithmic scale as function of energy at some positions in
vices A, B, andC ~with a bias of 1 V!. We note that MC
data show, near the second junction, aballistic tail which is
partially reproduced by the HD simulation. This is partic
larly evident for deviceA, for which we show four points in
proximity to the second junction.

We have verified that system~10! with closure~11!, ow-
ing to the elevate values of moments~around the second
junction!, loses its hyperbolic character. For this reason,
our simulation we used expressions ofGS andGS limited to
second order, which make the hyperbolicity zone of the s
tem much wider. In next section we will analyze the hype
bolic structure of system~10!.

VI. ANALYSIS OF THE HYPERBOLICITY ZONE

In the one-dimensional case, by definingFA the vector of
independent variables,FAx the vector of the fluxes, andSA

5RA1PA1 P̃A the source term, system~10! can be com-
pactly written as

]FA

]t
1JAB

]FB

]x
5SA , ~16!

whereJAB5]FAx /]FB is the Jacobian matrix of fluxes.
In the framework of extended thermodynamics, by us

the entropy principle@which can be shown to be equivale
to the EMP~Ref. 28!# and theconcavityof the entropy den-
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FIG. 6. Traceless momentum flux, heat flux, doping profil
and electric field for devicesC ~solid line!, D ~dashed line!, andE
~dash-dotted line! with a 2 V bias.

FIG. 7. Characteristic curves current density-bias for devi
C, D, and E from the HD model and sample points from M
simulations.
sity h, it can be proved22 that the system~6! may be written
in a symmetric hyperbolic form~in the sense of Friedrichs
and Lax29! inside a given neighborhood of the local equili
rium configuration. This property assures regular solutio
with finite speeds of propagation and ensures also the ap
cability of the numerical scheme we have used. Since all
constitutive functions of system~10! ~and the associated en
tropy density! have been obtained through a series expans
around local equilibrium, even the hyperbolicity zone do
depend on this expansion. In this paragraph we intend to
the limits of hyperbolicity of the system, starting from a
analysis of its characteristic speeds.

,

s

FIG. 8. Field values as function of position and time for devi
C with a 1 V bias.
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FIG. 9. Normalized distribution functionf @see Eq.~14!# at different positions of deviceC with a 1 V bias. Wave vectorskx andkt are
in units of 109 m21, f is in units of 10218 m2.
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The system is hyperbolic if the jacobian matrix of fluxesJ
has only real eigenvalues and a complete set of eigenvec
so we should study the characteristic polynomial ofJ, that
we write as

l51g1l41g2l31g3l21g4l1g550.

Here the gi coefficents are function of the variable
$n,v,p,s,q%. In order to simplify our analysis, it is conve
nient to define a speedc5Ap/nm* and the dimensionles
quantities

l̃5
~l2v !

c
, ṽ 5

v
c

, s̃5
s

p
, q̃5

q

c3nm*
. ~17!

In so doing the polynomial assumes the simplified form

l̃51 g̃1l̃41 g̃2l̃31 g̃3l̃21 g̃4l̃1 g̃550, ~18!

where the new coefficientsg̃ i depend only on the three d
mensionless variables$ ṽ ,s̃ , q̃% ~see Appendix C for the ex
plicit expressions! and they have a form that depends on t
order of the series expansion of constitutive functionsGA .
At local thermodynamic equilibrium we havev5s5q50
and Eq.~18! simplifies to

l̃52 26
5 l̃313l̃50

with the following ~real! roots:

l̃150, l̃2,356
A6515A94

5
, l̃4,556

A6525A94

5
.

rs,
We see then, that the system will be hyperbolic in a nei
borhood of the equilibrium configuration in the thre
dimensional space spanned by axes$ ṽ ,s̃ , q̃%.

At first order the closure for functionsGA coincides with
the usual gasdynamics one, so we will skip this case, alre
covered in the literature.30 We have studied the hyperbolicit
zone at second and third order through a numerical com
tation of the roots of the characteristic polynomial~18!, by
fixing values ofs̃ and representing in plane$ ṽ , q̃% the re-
gions with zero, two, or four complex conjugate roots. A
shown in Figs. 15 and 16 the hyperbolicity zone is mu
wider for a second-order expansion of theGA . For this rea-
son we have used, for the simulations shown in this pa
the second-order closure, since we have noted that in sev
cases the strong nonequilibrium conditions lead the sys
outside the third-order hyperbolicity zone. In Fig. 17 we r
port, as an example, the dimensionless quantities$ ṽ ,s̃ , q̃%
for deviceA as function of the position. We can observe th
while s̃ changes by a little amount inside the device~in a
range between20.3 and 0.2) this is not the case of$ ṽ , q̃%.
We see also@from the graphics of Fig. 16 corresponding
s̃520.4,0.0,0.4# that the hyperbolicity zone does not va
much for values ofs̃ close to zero. If we represent~see Fig.
16! the parametric curve$ ṽ (x), q̃(x)% in the graphic corre-
sponding tos̃50, we can then observe, as we said at the e
of the previous section, that the system, for some value

$ ṽ , q̃% loses its hyperbolic character. This phenomenon
even more evident for devices in which the electric fie
reaches higher values.
n of
FIG. 10. Same quantities as for Fig. 9 with a 2 V bias. We observe that in nonequilibrium conditions the usual approximatio
‘‘displaced Maxwellian’’ ~Ref. 3! cannot be considered effective.
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VII. NUMERICAL METHOD

System~10! is of the quasilinear hyperbolic type, and it
known that such systems can develop discontinuities of v
ous kinds even if initial conditions are regular.31 This pecu-
liarity requires us to use numerical methods capable of
scribing both the continuous and discontinuous regions
the solutions. In our case it is impossible to determine
analytic expression for the eigenvalues and eigenvector
the Jacobian matrix of fluxes. This fact makes difficult t
usage of common methods for hyperbolic equations, wh
require a knowledge of the characteristic structure of
system.32 For this reason we have used a generalization~for
nonhomogeneous systems! of theshock capturingnumerical
procedure proposed by Nessyahu and Tadmor.33 This
method is based on a staggered Lax-Friedrichs scheme
rected by MUSCL-like interpolations.

The effect of source terms@right-hand side of Eqs.~10!#
has been included in the algorithm through the followi
scheme. System~10! can be written, omitting for the sake o
simplicity the indexA, as

]F

]t
1

]G~F !

]x
5S~F !,

whereF5FA , G5FAx , S5SA are the vectors of, respec
tively, the macroscopic fields, their fluxes, and their prod
tion terms. Consider an equally spaced grid ofNc cells of
width h and a constant time stepk. Let F j

n be the mean
values of fields in cellj at time stepn. Consider also a
staggered grid, whose mean values are denoted byF j 11/2.
Starting from field values at time stepn, we can first com-
puteF and thenG,S at an intermediate time stepn11/2, and

FIG. 11. Electron energy distribution normalized to unit@see Eq.
~15!# as a function of positionx for deviceA, from MC simulation
and from the present HD model.
i-

e-
f

n
of

h
e

or-

-

then obtain the fields at time stepn11 considering time-
centered derivatives. The resulting algorithm is globally
second order in time. The main steps of the algorithm are
following:

~a! F j
n1~1/2!5F j

n2
k

2

G8~F j
n!

h
1

k

2
S~F j

n!,

FIG. 12. Same quantities as for Fig. 11 for deviceB.

FIG. 13. Same quantities as for Fig. 11 for deviceC with a 1 V
bias.
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~b! Gj
n1~1/2!5G~F j

n1~1/2!!, Sj
n1~1/2!5S~F j

n1~1/2!!,

~c! F j 1~1/2!
n11 5 1

2 ~F j
n1F j 11

n !1 1
8 ~F j8

n2F j 118n !

1
k

2
~Sj

n1~1/2!1Sj 11
n1~1/2!!

1
k

h
~Gj

n1~1/2!2Gj 11
n1~1/2!!,

whereF8/h, G8/h are approximation of the gradients ofF
and G evaluated with a UNO scheme.33 Electric field has

FIG. 14. MC ~crosses! and HD ~solid lines! electron energy
distributions normalized to unit at various positions of devic
A, B, andC ~1 V!.
been self-consistentely computed solving Poisson equa
for the total spatial chargee(ND2n)5«nf, with «
511.7«0, at each time step.

VIII. CONCLUSIONS

We have shown that the entropy maximum principle
lows us to create a closed hydrodynamic model contain
no free parametersto describe transport phenomena in Si
strong nonequilibrium conditions. Our approach permits
determine a strongly nonlinear distribution function of car
ers and, consequently, to calculate all the unknown cons
tive functions by integrations of their kinetic expression
The physical quantities of our model are then only tho
appearing in the scattering kernels, as happens for all kin
models ~MC, spherical harmonics, etc.!. Our model, how-
ever, requires much smaller computational times. We th
that this approach, based on the EMP and extended the
dynamics, opens the road to a series of hydrodynamic m
els that can show real advantages in the simulation of se
conductor devices. The power and generality of the met
resides in the possibility of finding valid equations for th
macroscopic quantities relative to a fluid, or a mixture
fluids, on the sole basis of the knowledge of the element
microscopic interactions.

We underline that with the equations reported in this wo
and the quantities contained in the appendixes, it is poss
to reproduce all our results, and also to perform other dev

s

FIG. 15. Hyperbolicity zone for system~10! with a second-order
closure for the fluxes. In the light gray and dark gray regions,
characteristic polynomial~18! of the Jacobian matrix has, respe
tively, two and four complex conjugate roots.
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simulations with different doping profiles, biases, and latt
temperatures.

Regarding to the simulations shown in this paper,
make clear that, even if for this work we have develop
only an one-dimensional code, our model is fully three
mensional, and a two-dimensional code is in progress.

By means of the entropy maximum principle our mod
can be extended both by taking into account further mome
of the distribution function and by including a more detail
physical description~holes, realistic band structures, an
other scattering processes!. Many of these extensions hav
been already developed and they will be the subject of fu
papers.
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APPENDIX A

Coefficients$Ã,C̃,D̃%, appearing in intravalley production
terms~12!, obtained starting from a third-order expansion
the nonequilibrium variables$v,s,q%:

Ã5S 5p2v
n

1
pq

n D1S psv
n

2
sq

5n D1S pm* v3

2
2

2m* vq2

5p

2
59m* q3

125p2
2

11s2v
56n

2
3m* v2q

10
2

51s2q

1400pnD ,

C̃5S 5p2s

2m* n
D 1S 5p2v2

3
1

7q2

15
1

2pqv
3

1
5ps2

28m* n
D

1S 101q2s

175p
1

53vsq

210
1

55pv2s

84
2

5s3

112m* n
D ,

D̃5S q1
5pv

3 D1S sv1
sq

5p D1S 13m* nvq2

25p2
1

82m* nq3

125p3

1
m* v3n

2
1

11s2v
56p

1
3m* v2qn

10p
1

23s2q

200p2 D .

Coefficients $Ai ,Bi ,Ci ,Di%, appearing in intervalley pro-
duction terms~13!, obtained starting from a third-order ex
pansion in the nonequilibrium variables$v,s,q%. Coeffi-
cients Di can be expressed throughAi by means of the
relation D2i 115(p/n)A2i 21 , i 52, . . . ,6,while for the re-
maining coefficients we have

FIG. 17. Scaled fields~17! as function of position for deviceA.

e

A35S 2p2v

n2
2

2pq

n2 D 1S 14sq

5n2
2

2psv

n2 D 1S 14m* vq2

25pn
1

11s2v

4n2
1

21m* v2q

5n
2

279s2q

100pn2
1

196m* q3

125p2n
2

pm* v3

n D ,

A55S 4pq

5n2 D 1S 4psv

5n2
2

56sq

25n2 D 1S 1053s2q

250pn2
2

11s2v

5n2
1

98m* q3

625p2n
1

322m* vq2

125pn
2

84m* v2q

25n
1

2pm* v3

5n D ,
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A75S 8sq

25n2D 1S 4m* q3

625p2n
2

1269s2q

875pn2
2

208m* vq2

125pn
1

12m* v2q

25n
1

11s2v

35n2 D ,

A95S 24m* vq2

125pn
2

24m* q3

125p2n
1

22s2q

175pn2D ,

A115S 16m* q3

625p2n
D ,

B15S 8p3

n3 D 1S 8pm* qv

n2
2

4p2m* v2

n2
1

3ps2

n3
1

16m* q2

5n2 D 1S 4pm* v2s

n2
2

s3

n3
2

144m* q2s

25pn2
2

56m* vsq

5n2 D ,

B35S 8p2m* v2

3n2
2

8m* q2

15n2
2

4ps2

n3
2

32pm* qv

3n2 D 1S 2s3

n3
1

16m* q2s

75pn2
1

112m* vsq

5n2
2

16pm* v2s

3n2 D ,

B55S 32pm* qv

15n2
2

32m* q2

15n2
1

4ps2

5n3 D 1S 2672m* q2s

375pn2
2

224m* vsq

25n2
2

4s3

5n3
1

16pm* v2s

15n2 D ,

B75S 32m* q2

75n2 D 1S 64m* vsq

75n2
2

896m* q2s

375pn2
1

8s3

105n3D ,

B95S 64m* q2s

375pn2 D ,

C55S 4p2s

n3 D 1S 8p2m* v2

3n2
1

56m* q2

75n2
2

112pm* qv

15n2
2

2ps2

n3 D 1S 516m* vsq

25n2
2

808m* q2s

375pn2
2

22pm* v2s

3n2
1

9s3

2n3 D ,

C75S 32pm* qv

15n2
2

32m* q2

15n2
1

4ps2

7n3 D 1S 508m* q2s

75pn2
2

18s3

7n3
2

336m* vsq

25n2
1

44pm* v2s

21n2 D ,

C95S 32m* q2

75n2 D 1S 176m* vsq

105n2
2

8432m* q2s

2625pn2
1

2s3

7n3 D ,

C115S 176m* q2s

525pn2 D .

APPENDIX B

Analytic expression of the distribution functionf „kx ,kt ,mA(x,t)… ~14!, normalized to unit:

f ~kx ,kt ,mA!52pktS \2

2pm*

n

pD 3/2

expS 2
\2

2m*

n

p
~kx

21kt
2!D $11R11R2kx1R3kx

21R4kx
31R5~kx

21kt
2!1R6~kx

21kt
2!kx

1R7~kx
21kt

2!kx
21R8~kx

21kt
2!kx

31R9~kx
21kt

2!2kx1R10~kx
21kt

2!2kx
21R11~kx

21kt
2!2kx

31R12~kx
21kt

2!2

3~2kx
22kt

2!kx
21R13~2kx

22kt
2!1R14~2kx

22kt
2!kx1R15~2kx

22kt
2!kx

21R16~kx
21kt

2!~2kx
22kt

2!

1R17~kx
21kt

2!~2kx
22kt

2!kx1R18~kx
21kt

2!~2kx
22kt

2!kx
21R19~2kx

22kt
2!21R20~2kx

22kt
2!2kx

1R21~kx
21kt

2!~2kx
22kt

2!2kx1R22~2kx
22kt

2!31R23~kx
21kt

2!3kx
3%,

where the coefficientsRi have the following expressions:

R15
m* n

p2
qv2

1

2

m* n

p
v21

3

8

1

p2 s21
2

5

m* n

p3
q22

1

8

1

p3 s32
18

25

m* n

p4
q2s2

7

5

m* n

p3
vqs1

1

2

m* n

p2
v2s,
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R25
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m* H m* n

p
v2

m* n

p2
q1

7

5

m* n

p3
sq2

m* n

p2
sv1

7

25

m* 2n2

p4
vq21
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8

m* n

p3
vs21

21
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m* 2n2

p3
v2q2
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m* n

p4
s2q

1
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q32
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p2
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q22
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Analytic expression of the electron energy distributionf „«(k),mA(x,t)… ~15!, normalized to unit:
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APPENDIX C

We report in the following the coefficients of the characteristic polynomial~18! of the Jacobian matrix of fluxes, with
closures for the constitutive functions$GS ,GS% of second and third order.

For a second-order closure we have

g̃15 36
25 ṽ s̃2 184

25 q̃ ,

g̃25 96
125 q̃ ṽ 2 36

25 s̃22 166
25 s̃1 19 684

1875 q̃22 24
25 ṽ q̃s̃2 26

5 ,

g̃352 1776
625 q̃31 48

25 q̃s̃21 2484
125 q̃s̃2 108

25 ṽ s̃2 108
25 s̃2ṽ 1 468

25 q̃ ,

g̃45 216
125 ṽ q̃s̃22 1776

625 q̃2s̃22 8292
625 s̃ q̃22 1392

125 q̃21 216
125 ṽ q̃s̃13s̃216s̃13,

g̃552 24
25 q̃s̃32 108

25 q̃s̃22 144
25 q̃s̃2 12

5 q̃ .

For the third-order closure we have

g̃152 184
25 q̃2 118

125 q̃s̃1 816
625 ṽ q̃22 99

125 ṽ s̃2,
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g̃252 264
3125 ṽ q̃s̃22 128 928

78 125 q̃42 528
625 ṽ q̃s̃1 5324

625 q̃21 99
125s̃32 42 976

15 625ṽ q̃32 67 288
9375 q̃2s̃2 81

125s̃22 46 926
15 625q̃2s̃22 166

25 s̃2 26
5 ,

g̃35 1608
625 q̃s̃22 2448

625 ṽ q̃21 20 856
15 625q̃3s̃21 19 584

15 625ṽ q̃41 85 952
78 125q̃51 27 704

15 625q̃3s̃1 297
125s̃3ṽ 1 297

125 ṽ s̃22 3036
3125 q̃s̃32 13 776

3125 q̃32 2448
625 ṽ q̃2s̃

1 2556
125 q̃s̃1 468

25 q̃ ,

g̃45 26 112
15 625q̃41 2376

3125 q̃ ṽ s̃31 53 856
15 625q̃3ṽ s̃1 38 664

3125 q̃2s̃22 1392
125 q̃21 11 424

3125 ṽ q̃31 20 856
15 625q̃2s̃41 132 924

15 625 q̃2s̃32 2616
625 q̃2s̃1 68 544

78 125q̃4s̃

1 2376
3125 q̃s̃4ṽ 13s̃216s̃13,

g̃552 95 744
78 125q̃52 6528

15 625q̃4ṽ s̃2 171 904
234 375q̃

5s̃1 252
125 q̃s̃21 132

125 q̃s̃42 544
625 q̃3s̃22 1088

625 q̃32 1632
625 q̃3s̃2 6528

15 625ṽ q̃41 474
125 q̃s̃32 78

25 q̃s̃

2 12
5 q̃ ,
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