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Full nonlinear closure for a hydrodynamic model of transport in silicon
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We derive, using the entropy maximum principle, an expression for the distribution function of carriers as a
function of a set of macroscopic quantitiedensity, velocity, energy, deviatoric stress, heat)fl&ven the
distribution function, we can obtain a hydrodynamic model in which all the constitutive fundfiomes and
collisional productionsare explicitly computed starting from their kinetic expressions. We have applied our
model to the simulation of the thermodynamic properties of bulk silicon and of soma™* submicrometer
Si devices(with several doping profiles and applied bigsexbtaining results comparable with Monte Carlo
simulations. Computation times are of order of few seconds for a picosecond of simulation.
[S0163-182698)01607-3

[. INTRODUCTION times, which, for small departures from equilibrium, con-
trasts with the Onsager reciprocity relatidisthe main de-
The increasing miniaturization of modern electronic de-fects of these FD models depend, then, on the constitutive
vices requires an accurate modelization of transport in semiequations, which are usually fixed on a phenomenological
conductors. This is of great importance for describing phebasis, introducing free parameters, such as relaxation times
nomena such those due to hot electrons, i.e., the conditiorsnd transport coefficients, which have an unknown depen-
very far from thermodynamic equilibrium caused by strongdence on the geometry and working conditions of the simu-
electric fields and field gradients. lated devices. The presence of thdese parameter’s has
The most general approach to the simulation of charg@lways been a limit to a practical use of FD models, because,
transport in semiconductors employes the semiclassical Bolth general, such parameters are determined in each case on
zmann transport equatidBTE) coupled with Poisson equa- the basis of MC simulations or experimental data.
tion. A numerical solution of such system of equations with We have developed a hydrodynantidD) model for the
traditional techniques is extremely complex, and then apsimulation of transport phenomena in semiconductors, based
proximate methods based on kinetic and fluid dynafRio) on extended thermodynamics and on the entropy maximum
models are often preferred. principle (EMP). In this model, besides the usual quantities
The most accurate kinetic description is given by Monte{n,nv; ,W}, also theenergy flux density;Snd thetraceless
Carlo (MC) methods, which can take into account explicitly part of momentum flux densit§2<iJ>15 are considered dy-
both the band structure and the various scatteringnamic variables and they satisfy further balance equations.
phenomend? This method permits us to compute directly We have then, as independent variables, the first thirteen
all the quantities relative to transpdstuch as the distribution moments of the distribution function Fj,
function, density of carriers, velocity, mean energy, and so={n,nv; ,W,%;,,S}. Following the EMP we express the
on) but at a cost of long computation times and stochastidistribution function through the set of momenks, as
noise in data. The results obtained from MC simulations perr(k r t)= 7 F o(r,t),k]. This distribution turns out to be a
mit us also to calculatransport coefficientswhich are used  strongly nonlinear function of the moments. Given the dis-
as an input to more simplified FD models. Other kinetic ap+ribution, we can determine the unknown constitutive func-
proaches are based on the choice of particular forms of thgons appearing in the hierarchy of the equations that de-
nonequilibrium distribution function of carriers. Common scribes the time evolution of the moments. We point out that
examples are the simple shifted Maxwelfiam an expansion  the computation of collisional productions is then based on
of the distribution in spherical harmonisThe cylindrical  the sole knowledge of the scattering kernels and the physical
symmetry constraint in momentum space and the reducegantities they contain. Our HD model is then fully closed,
number of terms of the expansion that can be practicallyng, contrarily to other HD models, does not contain fieg
used do not permit, however, to describe transport propertigsarameter On the other hand, the distribution function we
of carriers in conditions very far from equilibriuth. obtain has no particular symmetry restrictions and is fully
The FD models are obtained considering a set of momentsyjjtable for three-dimensional models. Its strong nonlinearity
of the BTE. Such models clearly need the knowledge ofis capable of describing transport phenomena even in condi-
constitutive functions(fluxes and collisional productions tions far from thermodynamic equilibrium, as those present
present in the hierarchy of equations. For instance, the mo§ submicron devices with very high electric fields and field
common hydrodynamic modef$**use the dynamic vari- gradients E~10°v/cm, E/(dE/dx)=100 A].
ables:numerical density nvelocityJ, andenergy density W We remark that in our paper the EMP is used in a differ-
with somead hocconstitutive equations for theeat fluxand  ent way with respect to most of the previous applications
the stress tensoof type Navier-Stokes-Fourier and a model- (see Ref. 1§ in that our method leads to a dynamical de-
ization for the collisional productions through relaxation scription of the physical system. The EMP, by itself, does
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not provide any information about the dynamic evolution ofk to statek’ can be expressed as

a system, but gives only a criterion to express the nonequi-

librium distribution function as function of a set of macro- . wAf,

scopic quantities, used as constraints. In this paper both the S, (k.k')=

distribution function and the macroscopic quantities are re-

garded as local quantities, functions of position and time. To With 7=01,05,03,f1,2,f5. (1)

obtain a dynamic model it is necessary to know a set of

evolution equations for the constraints, which include an acHere Z,, is the number of possible final equivalent valleys

curate description of the microscopic collisional processes(Z,=1 for 7=01,9,,93 andZ, =4 for n=1f,,f,,f3), A is

So, in our application of the EMP, we can see two stéps: the coupling constant is the crystal volumep is the Si

determine a general arhalytic expression for the distribu- density, w, is the phonon angular frequencyN,

tion function, as function of the macroscopic quantities used= 1 expfiw, /KgTg)—1] is the phonon occupation number

as constraintsib) starting from the Boltzmann transport (with T, the lattice temperatujewhile the upper and the

equation, obtain a set of equations for the constraints thd@wer option in the expression corresponds to absorption and

represents a completelglosed hydrodynamic model in emission, respectively.

which all the constitutive functions are completely deter- For intravalley transitions we will consider scattering with

mined starting from their kinetic expressions. acoustic phonons, which will be regarded as approximately
Then we can say that our use of the EMP depends both o@lastic. Since in this approximation there is no distinction

the choice of a set of constrairitmoments of the distribution between final states obtained by absorption or emission pro-

function) and on the determination of a set of evolution cesses, we can express the sum of the intravalley transitions

equations for these constraints that takes explicitly into acprobabilities as

count the underlying physical procesgé® various scatter-

ing phenomena, in this casénly by knowing the dynamic - — -~

evolution of the macroscopic quantities used as constraints is Sac(kk") = VipU? dLe(k) =e k], @

it possible to determine the correct dynamic evolution of the

distribution function in phase space. beingKg the Boltzmann constant), the longitudinal sound
The plan of this paper is the following. In Sec. Il we Vvelocity, E; the deformation potential for longitudinal acous-

introduce the balance equations for the charged carriers artii¢ phonons. For the values of all the costants appearing in

describe the physical characteristics of the model. In Sec. lithe scattering termél),(2) we have used the parameters re-

we exploit the EMP in order to obtain an analytic expressiorported in Ref. 2.

for the distribution function. In Sec. IV we analyze the re- We consider the BTE for an electron gas

striction of the model to the one-dimensional case giving .. .. .

explicitly both the set of balance equations for the moments ~ dF(K,r,t) dx dF(k,r,t) _ec aFKrt)

FA and the expression of the constitutive functidfiaxes at dt  ox Aok (5.

and collisional productionsin Sec. V we discuss the results 3

of the simulations of bulk silicon and unipolar'nn™ de- e : _ -
vices with different doping profiles, size of the active re- WNereF=J(k.r.t) is the single-particle Boltzmann distribu-

gions, and applied bias. In Sec. VI we analyze the system dfon function,dx; /dt=7#k; /m* is the electron group velocity
equations and its hyperbolicity domain. In Sec. VIl we dis-a"dQ(%):

cuss briefly a generalization of the Nessyahu-Tadmor nu- v o

merical scheme to nonhomogeneous systems and its applica- Q(]-‘):—gJ dk’ S(k’, k) F(k',r,t)

bility to our case. (2m)

N77
N,+1

Ae(K)—e()Fho,],

_Z”pr,?

. 27TKBT0E|

\Y, L L
II. PHYSICAL CHARACTERISTICS OF THE MODEL _(277)3f dk’S(k.k") F(k.r.t) (4)
We consider here a HD model for transport phenomena iis the collisional production due to the different scattering
silicon. Our main purpose in the development of this modelprocesse§Q,(F) for the intervalley transitions an@,(F)
has been to test how accurately our distribution function defor the intravalley transitions
scribes strong nonequilibrium conditions. Therefore we have We can pass from the Boltzmann equati@h to the hy-
used a simplified band structure. As is well known, electronsirodynamic equations of the first thirteen moments consid-
contributing to transport are mainly those belonging to theering the followingkinetic quantitieSsee Ref. 15
six equivalentX valleys which, up to an energy of about 0.5
eV, can be considered approximately parabolic. Electrons s ) )
can then be described by a density of states effective mass Pa(k)= LFki 'ﬁk ’EkUkJ) 'Wk i
m* =0.32n, and a band energy(k)=#2k%/2m*. In the ) )
same energy range, the main scattering phenomena are ditiltiplying Eq. (3) by ¢4(k) and integrating irk space we
to electron-phonon interactions, which produce intervalleyobtain the balance equations for the followimpments of
and intravalley transition. the distribution functionor macroscopic fieldsdensity of
We will consider intervalley transitions caused both bycarriersn, flux of carriersnv;, total energy densityV, trace-
f-type andg-type phonons. The scattering probability perless part of momentum flux densiby;;,, energy flux den-
unit time for intervalley transitions of an electron from statesity S;, being

2 hZ h3
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W=§p+%nm*v2, 2<ij>=0<ij>+nm*v<ivj>, 13
F=exp(—3%), =2 ¢ahn. ©)
Si=0qi+ o, + 3pvit znm* v, At

wherev; is the mean velocityp=nKgT is the pressurerj,  To obtain an explicit expression df we have yet to express
is the nonconvective part of tensliy;;, andq; is the heat  the multipliers A, as function of the constraints, i.e., the
flux. If we denote this set of moments bya  momentsF,. By inserting Eq.(9) into the definition of

={n,nv; \W,2j;,,S;}, we can write fields (5) we haveF ,=FA(Ag), and so, to determin&, we
must invert this latter relations obtainingy= A A(Fg). This
FAZJ Ya(K)F(K, 1 t)dk (5)  inversion is extremely difficult and can be obtained only by
numerical integration or by a series expansionfot* We
and the generic balance equation is then have followed the latter approach, expandjifi¢p third order

in {vj,oj),q;} around an equilibrium configuration defined
IFp  IF ax ~ by a local MaxwellianF,, . The choice of a local Maxwell-
T =RatPatPa. ©®  janis justified by the following observation. It is knon
) ... that energyW reaches its equilibrium value much more
HereR, denotes the production term due to the electric f|eld,s|0W|y than other moments such &s,o,q}, because many
while the fluxes and collisional productiofiB,,Pa} caused  collision processeémainly with acoustic phonons involved
by intravalley and intervalley transitions are, respectively, in intravalley transitionsare almost elastic. This fact implies
that during the relaxation process that leads to a global ther-
FAk:i*f z,/;A(IZ)kk}‘(IZ,F,t)dIZ, modynamic e'quilibr'ium(in which 'v=0'=q=0, anq T .
m =T,) the carriers will reach a partial thermodynamic equi-
librium (in whichv=0=q=0, butT# T,) corresponding to

_ % C the local Maxwellian(around which we have computed the
Pa E f Ya(K)Q (P dk, expansion
Pam | unKIQud Pk @ PR e

MT 2rm* KT KgT /'

The set of balance equatio®) contains several unknown

functions, i.e., the fluxes of the equations ®f;, andS;,  \yhich contains the quantities=n(r,t), and T=T(f,t) as
and the collisional production§P,,Pa}. The system can functions of position and time. Introducing the series expan-
then beclosedif the unknown constitutive functionsi,  sion of F into Eq. (5) all the quadratures can be done ana-
={PA,5A,FAK} can be expressed by means of the fiélds Iytically, and the resulting relations can be inverted. In this
This problem can be solved with the help the variationalway we can expres$ as a strongly nonlinear function of
method known asentropy maximum princip/€23 which ~ ma={n,p,v;,0;j).qi}-

allows the determination of the non-equilibrium distribution  In the specific case of semiconductors we will show that
function of hot carriers and consequently permits to find ay using this distribution function we can obtain results com-
closure for theconstitutive functionswWe will show (by a  parable with the results of MC simulations with a remarkable
comparison with MC simulations performed under the sameeduction of the computation times.

physical approximationsthat in this way it is possible to
describe accurately some simple Si devices even in condi-

. - e IV. ONE-DIMENSIONAL HYDRODYNAMIC MODEL
tions very far from thermodynamic equilibrium.

The model resulting from the procedure described in the
previous sections is fully three dimensional, but we show
We start from the known expression of entropy densityhere one-dimensional results. The only independent variables
h=—CJ Flog(F)dk (whereC is a constantassuming that are in this caseF,={n,nv,=nv, W.X,y=2%, §=S},
F(k,r,t) depends om andt only through the field$ A(r,t) @nalogOL.JSIYmA:{n'p’U:.UX' T=0(, 0=0« and E
and then we determine the distribution function, of the form™ E,) satisfying the following balance equations
F(r,k,t)=FFa(r.t),k] that maximizesh under the con-

IIl. MAXIMIZATION OF ENTROPY

straints that the moments, are expressed by the relations ‘9_” &ﬂ _
(5). Following this procedure, we maximize the functional at X ’
13
h'=h—> A f K)F(rktydk—Fa|, (8 v 1 IS+35W) neE -
/_\21 Al | Yalk)FH A M= W P +B.. (10
gt m X m*

imposingsh’ =0. The quantities\ , are theLagrange mul-
tipliers associated with the constraint equatidis$. As is
well known, the distribution function obtained with this W 39S

; — + —-=—nvekE+P,,
proceduré®~2®assumes the following form at = ox v w
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a9 TABLE I. Devices parameters.
s _(3nm v3+1 3pv+ 30'U+ 15q+GE)
Nt N Channel Xs bias
4 epoi Device  (cm %) (cm™3) (m) (pem) V)
=——-nvek+ + ,
3 TR A 1018 10t 02 0.01 1
B 10'8 106 0.3 0.01 1
S 4 c 5.10Y 2.10% 0.4 0.01 1-2
_+ Z 4,164, 4 245,524 : :
gt + ox (ZNMut+ Fqu+apu+30u°+ Gy D 5.101  2.10° 0.4 0.04 2
E 5.10Y 2.10% 0.4 0.06 2
3 5 o -
SN T Ps+ Ps,
2 2m*  m*
L n(m*n\32 A2 fw, n
being Pa={Pp, ,Py,Ps ,Ps} andPp={P,, ,0P; Ps} the A= 53\ 2mp) pw, S T2

collisional production terms due, respectively, to intervalley ) } i

and intravalley transitions whil&,={Gs,Gs} are the con- where all the physical constants are those prewously defined

stitutive functions present in fluxes. Considering the expanfor the scattering probab|I|t|e§ac(k g ),S (k g ). The di-

sion (to third order in the fields{v,q,o}) of f(mA,k) mensionless quantitigd,; , ; can be expressed by means of

around equilibrium configuratioriin which v=0=q=0) the modified Bessel function&; and K,. Defining G*

defined by a local Maxwellian distribution, we find for func- =X, exp(X,)Ky(X,) we have

tions Gy ,Gg the relations . B . . .

Hy =exp(+X,)Ky(X,), Hzy==H;+G~,
361

GE_<Z'—JEQU +

(272nm* - 99 1 )

e 30— =00 . o
625 p 125p H. = +2HZ *=(i+1)!

-2 + +
|2 3H2n41 E
L (nt3)l -~ 2

G_s p2+7 P, 1 +7412 .
S—En " Enm*(f nm*o‘ 25p i=2,...,6,
158 1 361 while  all  the  coefficients {A,C,D} and
+ <_ —q20+ Uq0> (11) {As+1,B2+1,Csis+1,D»i+1} present in the production terms
125p 25p (12) and(13) turn out to be very complex polynomial func-

bt|ons of the momentsn,. We report integrally the coeffi-
cients in Appendix A, notwithstanding their complexity, be-
cause the resulting closure is of general value in the
simulation of unipolar devices. Analyzing these coefficients

Analogously, starting from expressions for scattering pro
abilities (1),(2) and using relations (7) we find, for the intra-
valley transitions,

_ 4 n2_  _ 16 nm*_ _ 12 _ we observe that, as we should expect, at local thermody-
P = —E§FA, Ps= —ggvc, Ps= —?gD, namic equilibrium ¢ =o=q=0) all collisional productions
(12) vanish, except foP,,, which vanishes only at global equi-
librium (T=Ty).
with
V. DEVICE SIMULATIONS
E KTO om* 3/2 p 1/2
4 ( ) (ﬁ) , As test cases, we have considered bulk Si and five unipo-
K pUFL lar and one-dimensional devicesn*nn* (labeled
and, for intervalley transitions, A,B,C,D,E) at different doping and applied biases, as sum-
marized in Table 1. The sampte'nn* devices have regions
4 5 n" of length 0.1um and a channet, respectively, of length
nv=§E A, 2 Agial (N +DHS N HS ], 0.2 um (deviceA), 0.3 um (deviceB) and 0.4um (devices
K =1 C, D, andE). The lattice temperatur&; is 300 K and the
4 doping profileN(x) has been smoothed at junction points
_ + - X;=0.1 um andx,=0.3 um, 0.4 um, and 0.5um (for the
Pu=2 A, X, 2 Boiyal (Nt DHa =Ny Hai ] dilfferen#device}svzvith a groperlyl;caled erfc flLmetion, ie.,
4 ° N(X) =N+ 1(N* —N) 2+erfc{x_xl —erfc{x_x2 ]
P2:1_52n AﬂizEz Coiral (N, +DHZ 3+ N Ho o], 2 Xg Xs |)’

(13)  wherex,=0.01 um, 0.04 um, and 0.06um as reported in
Table I. Boundary conditions are obtained by imposing null

N B gradient to all moments at boundary poiftsThese condi-
Ps=§E A”izz Doival (N, +1)Hg 1+ Ny Ha 41, tions seem compatible with the effective configuration of
7 N moments, both in transient and in the final stationary state.
with For all the device simulations reported in this paper we have

6
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FIG. 1. HD simulation of bulk silicon. Velocity, energy, trace-
less momentum flux, and heat fl(with sign changedas functions
of the applied electric field at temperatures of 30qd6lid lineg % (pm)
and 77 K(dashed lines For the mean energy and velocity we
report also MC datdfrom Ref. 27 of full-band simulations with
electric fields directed along th€l00) (triangles and the(111)
(circles crystallographic directions.

0.0 0.1 0.2 0.3

FIG. 2. Field values as a function of position for devige
Points are MC data. Lines are from the present HD model with
closures for collisional productions at, respectively, fifdash-
dotted line$, second(dashed lines and third(solid line order.
used the finite differences numerical scheme described in
Sec. VII, with N,=130 cells and a time step=0.0016 ps energy, the traceless part of the momentum flux density, and
for a total time of 5 ps. In these conditions our code requiredieat flux, as functions of the applied electric fi¢hd lattice
about two seconds for a picosecond of simulation on a Altemperatured,=300 K andTy=77 K). We report also a
phaStation 600, 333 MHz. MC device simulations have beewomparison with MC simulatior$ for velocity and mean
performed with thedoaMoCLES code?® using 15 000 particles energy. These MC simulations have been performed using a
and under the same physical approximations of our HOull band model and for two orientations of the electric field
model[parabolic isotropic bands and same val(sse Ref. (along the(100) and(111) directiong. We note some dis-

2) of the collisional kernels parametérs crepancy, for low values of the electric field, in the curve of

Figure 1 shows the values, for bulk silicon, of velocity, mean energy af,="77 K. This is probably imputable to the
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FIG. 4. Field values as function of position for deviCewith a

1 V bias. Points are MC data. Lines are from the present HD model.
simplified description of acoustic scattering, that we have

considered, for intravalley transitions, as an elastic processhe results of a series of simulations for deviéeandB with
This approximation can be effectively used at high fieldsthree different closures, in which the collisional productions
and/or high temperatures but will fail at low fields and tem-are evaluated, respectively, with a first-, second-, and third-
peratures in that the maximum transferred energy will be n@rder expansion. We see that for devices with such high
longer a small fraction of the kinetic energy of electrdns. fields and field gradients a strongly nonlinear description is
We observe also that for high values of the electric field oumecessary to obtain a good agreement with MC simulations.

results differ from MC because of the different model used
for the band structure.

In Figs. 5 and 6 we report velocity, energy, the traceless
part of the momentum flux density, heat flux, doping pro-

Figures 2, 3, and 4 show velocity, energy, the traceles§les, and electric fields for devicé&s (with a bias of 2V, D
part of the momentum flux density, and heat flux for devicesandE.

A, B, andC (with a bias of 1 V). In Figs. 2 and 3 we report

As an overall comment to Figs. 2—6, we observe that
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FIG. 5. Velocity and energy for devicgs, D, andE with a 2 V bias. Solid lines are from HD simulation, points are from MC. The
devices differ only in the smoothing parameter used for the doping pfséke Table)l These simulations show, near the second junction,
the strong influence of the electric field gradietdee Fig. 6 on the HD simulation.

overshoot velocity pick, presented by the devices in proxim-
ity to the second junction, tends to decrease both with a f(e(k),ma(x,t)), such thatf f(e,ma(x,t))de=1.

better description of collisional productioftigher-order ex- (15)
pansion in deviceé andB) and with lower gradients of the o
electric field (devicesD andE). Figures 11, 12, and 13 show the electron energy distribution
In Fig. 7 we show thecurrent density-biasharacteristic s a function of position and energy for devides B, andC
curves for device€, D, andE. (with an applied bias of 1 ¥from MC simulations and from

Figure 8 shows the time evolution of velocity, energy, theour HD model. S
traceless part of the momentum flux density, and heat flux, as Figure 14 shows the electron energy distribution in loga-
functions of position for devic€ with a 1 V bias. We see rl'thm|c scale as funct.lon of energy at some positions in de-
that all the fields are nearly relaxed after 4 ps of evolution. VicesA, B, andC (with a bias of 1 V. We note that MC

In the case of one-dimensional devices the distributiorflata show, near the second junctiorhadlistic tail which is

function presents a cylindrical symmetryﬁrspace, and then partially reproduced' by the HD. simulation. ‘This is 'part?cu—
can be conveniently represented as function kof and larly evident for deviceéA, for which we show four points in

— (L2 1 2\12 . - proximity to the second junction.
l;to tﬂ(ey;:f:]zc)tion(see Appendix & We show in Figs. 9 and We have verified that systefd0) with closure(11), ow-

ing to the elevate values of momentround the second
junction), loses its hyperbolic character. For this reason, in

f(ky, ke X, 1) =27k F(Ky Ky M), (14 our simulation we used expressions®§ andGg limited to
second order, which make the hyperbolicity zone of the sys-
normalized such that tem much wider. In next section we will analyze the hyper-

bolic structure of systenil0).

f ke ke, x,t)dk,dk=1 VI. ANALYSIS OF THE HYPERBOLICITY ZONE

] ) ) ) In the one-dimensional case, by definiRg the vector of
at different locations in devic€. Note that because of col- independent variables », the vector of the fluxes, and,

lisional processes a fraction of the electron population seems =
to relax toward an equilibrium conditiofi.e., a Maxwellian _aiﬁ_{—vl:\)l'lf\i;[_el:[)']AatShe source term, systef10) can be com-
distribution centered ak,=k;=0). This phenomenon is pactly

more evident in the simulation with an applied bias of 2 V

- . L . F F
[Fig. (10)]. In this case the electric field has the highest val- oFa + ABQZSA, (16)
ues and then the nonrelaxed fraction of electrons has a higher at 2
mean value ok. whereJg= JF a4/ IF g is the Jacobian matrix of fluxes.

A Integrating the maximum entropy distribution function in | the framework of extended thermodynamics, by using
k space with respect to the solid angl€), we obtain the the entropy principldwhich can be shown to be equivalent
electron energy distributiofsee Appendix Bin the form to the EMP(Ref. 28] and theconcavityof the entropy den-
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FIG. 6. Traceless momentum flux, heat flux, doping profiles,
and electric field for device€ (solid line), D (dashed ling andE
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FIG. 8. Field values as function of position and time for device
C with a 1 V bias.

sity h, it can be provetf that the systent6) may be written

in a symmetric hyperbolic fornfin the sense of Friedrichs
and LaxX®) inside a given neighborhood of the local equilib-
rium configuration. This property assures regular solutions
with finite speeds of propagation and ensures also the appli-
cability of the numerical scheme we have used. Since all the
constitutive functions of systerfi0) (and the associated en-
tropy density have been obtained through a series expansion
around local equilibrium, even the hyperbolicity zone does

FIG. 7. Characteristic curves current density-bias for deviceglepend on this expansion. In this paragraph we intend to find
C, D, andE from the HD model and sample points from MC the limits of hyperbolicity of the system, starting from an

simulations.

analysis of its characteristic speeds.
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FIG. 9. Normalized distribution functioh [see Eq(14)] at different positions of devic€ with a 1 V bias. Wave vectork, andk; are
in units of 10 m~1, f is in units of 108 m2.

The system is hyperbolic if the jacobian matrix of fluxes We see then, that the system will be hyperbolic in a neigh-
has only real eigenvalues and a complete set of eigenvectorigprhood of the equilibrium configuration in the three-
so we should study the characteristic polynomiallpthat  dimensional space spanned by afesc,q}.

we write as At first order the closure for functionS, coincides with
5 4 3 ) the usual gasdynamics one, so we will skip this case, already
A+ 0giN + oA+ gsh+ A +05=0. covered in the literatur®’ We have studied the hyperbolicity

Here the g; coefficents are function of the variables zone at second and third order thrc_)u_gh a numerical compu-
{n,v,p,o,q}. In order to simplify our analysis, it is conve- tation of the rog}s of the characteristic poWDQ."mB)’ by
nient to define a speed=p/nm* and the dimensionless fiXing values ofo and representing in planf,q} the re-

quantities gions With zero, two, or four complex cpr)jugate rqots. As
shown in Figs. 15 and 16 the hyperbolicity zone is much
- (N\=v) ~ v - o - q wider for a second-order expansion of tBg . For this rea-
A= c ' YT 97 B a= Snme 17 son we have used, for the simulations shown in this paper,

_ _ S the second-order closure, since we have noted that in several
In so doing the polynomial assumes the simplified form  cases the strong nonequilibrium conditions lead the system
outside the third-order hyperbolicity zone. In Fig. 17 we re-
port, as an example, the dimensionless quantitiesr,q}
where the new coefficientg; depend only on the three di- for deviceA as function of the position. We can observe that,

mensionless variabld®, o, q} (see Appendix C for the ex- While o changes by a little amount inside the devige a
plicit expressionsand they have a form that depends on therange between-0.3 and 0.2) this is not the case {f,q}.
order of the series expansion of constitutive functi@s. We see als¢from the graphics of Fig. 16 corresponding to

At local thermodynamic equilibrium we hawe=o=g=0  &=-0.4,0.0,0.4 that the hyperbolicity zone does not vary
and Eq.(18) simplifies to much for values ofr close to zero. If we represefgee Fig.

N+ GIN g 3+ N2+ g4 +g5=0, (18)

526534 3% =0 16) the parametric curv@(x),a(x)} in the graphic corre-
_ ) ° sponding tar=0, we can then observe, as we said at the end
with the following (rea) roots: of the previous section, that the system, for some values of
— — {E,E} loses its hyperbolic character. This phenomenon is
> _ T L 65+5‘/§1 T 65_5‘/&1 even more evident for devices in which the electric field
)\1—0, )\23—_ y )\45—_ . .
' 5 5 reaches higher values.

.
oo N
[
(SIS N
[
g aN

o= N

0.21um

PPy
v ‘-“in\
i

LN

T %
.«-‘“\‘k i
R

FIG. 10. Same quantities as for Fig. 9 kvia 2 V bias. We observe that in nonequilibrium conditions the usual approximation of
“displaced Maxwellian” (Ref. 3 cannot be considered effective.
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FIG. 11. Electron energy distribution normalized to ysie Eq.
(15)] as a function of positiox for deviceA, from MC simulation
and from the present HD model.

VIl. NUMERICAL METHOD
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FIG. 12. Same quantities as for Fig. 11 for devige

then obtain the fields at time stept+1 considering time-
centered derivatives. The resulting algorithm is globally of
second order in time. The main steps of the algorithm are the

System(10) is of the quasilinear hyperbolic type, and it is following:
known that such systems can develop discontinuities of vari-

ous kinds even if initial conditions are regurThis pecu- vy on KG'(FD) k_
liarity requires us to use numerical methods capable of de- (@ F; =Fj- 2 h +§S(FJ')’
scribing both the continuous and discontinuous regions of

the solutions. In our case it is impossible to determine an ”IIIIIIIII'

analytic expression for the eigenvalues and eigenvectors of I”IIIIIIIIII?)I

the Jacobian matrix of fluxes. This fact makes difficult the ”IIIIIIIIIIIIIII;;;};*\

usage of common methods for hyperbolic equations, which ,{{{{%{llllg%%Zﬁ

require a knowledge of the characteristic structure of the

systent? For this reason we have used a generalization
nonhomogeneous systend the shock capturingiumerical
procedure proposed by Nessyahu and Tadfforhis

method is based on a staggered Lax-Friedrichs scheme cor-

rected by MUSCL-like interpolations.
The effect of source termsight-hand side of Eq910)]

has been included in the algorithm through the following
scheme. Syster{l0) can be written, omitting for the sake of

simplicity the indexA, as

oF , 9G(F) _
ot ax

S(F),

whereF=F,, G=F,,, S=S, are the vectors of, respec-
tively, the macroscopic fields, their fluxes, and their produc- 5

tion terms. Consider an equally spaced gridN\yf cells of
width h and a constant time stefp Let F}‘ be the mean
values of fields in cellj at time stepn. Consider also a
staggered grid, whose mean values are denote#;hy;,.
Starting from field values at time step we can first com-
puteF and thenG,S at an intermediate time stept 1/2, and

i
= IIII%II;;I?’

Y\
\
\

I,
IIIIIIIIIIIII/;)}%""%
IR
o ,é%zzz%éé;zzzz'
0
0 0.2
0
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FIG. 13. Same quantities as for Fig. 11 for devi¢avith a 1 V
bias.
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FIG. 14. MC (crosses and HD (solid lines electron energy

a:
n
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©

Scaled heat flux gq
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scaled velocity ¥

FIG. 15. Hyperbolicity zone for systefd0) with a second-order
closure for the fluxes. In the light gray and dark gray regions, the
characteristic polynomial18) of the Jacobian matrix has, respec-
tively, two and four complex conjugate roots.

been self-consistentely computed solving Poisson equation
for the total spatial chargee(Np—n)=eA ¢, with ¢
=11.7s, at each time step.

VIIl. CONCLUSIONS

We have shown that the entropy maximum principle al-
lows us to create a closed hydrodynamic model containing
no free parameterfo describe transport phenomena in Si in
strong nonequilibrium conditions. Our approach permits to
determine a strongly nonlinear distribution function of carri-

distributions normalized to unit at various positions of devicesers and, consequently, to calculate all the unknown constitu-

A, B, andC (1 V).

(b) G}]+(l/2): G(FJ[]+(1/2))’ SJ[]+(1/2): S(an+(l/2)),

1
(© Flitp=:(F]+Fl)+5(F{"=Fl)
k n+(1/2) n+(1/2)
+ (5T

k
/ /
+E(Gjn+(l 2)_Gjnir](-l 2)),

whereF’/h, G’/h are approximation of the gradients Bf
and G evaluated with a UNO scheni2 Electric field has

tive functions by integrations of their kinetic expressions.
The physical quantities of our model are then only those
appearing in the scattering kernels, as happens for all kinetic
models (MC, spherical harmonics, ejc.Our model, how-
ever, requires much smaller computational times. We think
that this approach, based on the EMP and extended thermo-
dynamics, opens the road to a series of hydrodynamic mod-
els that can show real advantages in the simulation of semi-
conductor devices. The power and generality of the method
resides in the possibility of finding valid equations for the
macroscopic quantities relative to a fluid, or a mixture of
fluids, on the sole basis of the knowledge of the elementary
microscopic interactions.

We underline that with the equations reported in this work
and the quantities contained in the appendixes, it is possible
to reproduce all our results, and also to perform other device
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FIG. 17. Scaled field§l7) as function of position for devicA.
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APPENDIX A

Coefficients{A,C,D}, appearing in intravalley production
terms(12), obtained starting from a third-order expansion in
the nonequilibrium variablef, o, q}:

K:(5p2v+@)+(pav aq)+<pm*v3 2m*vg?

n n n 5n 2 5p
Scaled velocity v 59rn* q3 110'21) 3m*v2q 510_2q
FIG. 16. Same representation of Fig. 15 for a third-order closure 12@2 56n 10 140Qn/’
for fluxes. In theo=0.0 figure we report the parametric curve of
the values assumed by scaled fiefdgx),q(x)} in deviceA [see > o 2 2
also Fig. 17. The arrow shows the direction of growth of the pa- C= Spo + SPTv E 2pqu + Spo
rameterx along the curve, which starts and ends near pfr(}. 2m*n 3 15 3 28m*n
2 2 3
simulations with different doping profiles, biases, and lattice 101970 5% oa . S%pva 5o ,
temperatures. 175 210 84  112m*n

Regarding to the simulations shown in this paper, we
make clear that, even if for this work we have developed

only an one-dimensional code, our model is fully three di- 5=(q+ 5&) L ( 13m* nv g2 +82m*nqs

mensional, and a two-dimensional code is in progress. 3 Sp 25p? 1250°
By means of the entropy maximum principle our model

can be extended both by taking into account further moments m*vin 11l0%v 3m*v?gqn 2307

of the distribution function and by including a more detailed + 2 + 56p + 10p +20Q32 '

physical description(holes, realistic band structures, and

other scattering procesgsedany of these extensions have

; : Coefficients{A; ,B;,C;,D;}, appearing in intervalley pro-
been already developed and they will be the subject of futurey | .~ term{s(|13) ! obltaingd s?z;)rting f?om a third-orgerr) ex-
papers. '
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n n 5n n pn 4n n 100pn 125°n n
4pq 4pov  560q 105%2q 1lc%v 98m*q® 322n*vg? 84m*v3q 2pm*u’
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80 4am*q® 126%2q 208m*vg? 12m*v2q 1lo?
7= —+ — — + + ,
25n2 625°%n  875pn? 125n 25n 35n2

_[24m*vg® 24m*q®  220%q
7\ 12%n 10520 1750m?)

16rn* q3
A= > |
625N

8p®
Bi=| — |+

5 (8p2m*v2 8m*q?2 4po? 32pm*qv>+(203+16m*q20 112n*voq 16pm*v2(r)
3: - - - T a + - 7

8pm*qv_4p2m*v2+3p02+16m*q2)+(4pm*v2cr o 144m* g’ 56m*va'q)

n? n? n3 5n? n? n®  25n? 5n?

3n? 15n? nd 3n? n® 75pn? 5n? 3n?

B.— 32pm* qu 32n*q2+4po-2 +(2672m*q20 224m*voq 4a'3+ 16pm* v2o
> 15n2 1502 5nd 37502 252 5n3 1502 )’

B 32m*q2)+ 64m*voq  896m*q’o  80°
T\ 7502 75n2 37502 1053/’

Bg=

64m* oo
3752 |

C5:
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n3 3n2 75n2 15n2 n3 25n2 375n? 3n? 2nd)’

C7:

32pm* qu 32m*q2+4p02 N 508n* g0 1803 338n*vaq+44pm*v20'
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APPENDIX B

Analytic expression of the distribution functiditk, ,k;,ma(x,t)) (14), normalized to unit:
312
A% n
2 2
EX[{ — ﬁ B(kx-i- kt)

+ Ry (K24 k2)K2+ Rg(K2+ k2 K3+ Ro( K2+ k2) 2Ky + Ryg( K2+ k2)2K2+ Ryg(K2+ k) 2k3+ Ry K2+ k2)2

2 n

2mm* P

f(kx,kt,mA)ZZWkt(

{1+ Ry + Rk, + Rgk2+ Ryk3+ Rg(k2+ k2) + Rg(K2+ k2) k,

X (2K~ KE) K+ Ry 2KE = kf) + Rya( 2k — ko) K+ Rys( 2K, — kP Kg + Ryg( K+ kf) (2K — K?)
+ Ry A KG+K?) (2kG — KE) ky+ Ryg(KZ+k?) (2K — kZ) K+ Ryg 2KE — k)2 + Rogl 2kE — k?) 2K,
+ Roy(k2+k2) (2k2— k2) 2K+ Ros 2k2— k2)3+ Ros( K2+ k2)°k3},

where the coefficientR; have the following expressions:

R_m*n 1 m*n 2+3 1 2Jr2m*n ) 11 3 18 m*n ) 7 m*n +1m*n )
R I T AR B T L vl - L L R
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57
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Z—F D v p2 q 5 p3 o(q p2 av 25 p4 v( ) p3 Vo 10 p3 v(Q m)—p‘l g q

98 m*2 2 1 m*Z 2
q3 03
125 p5 2 p
ﬁZ lm*2n2 ) 1m*2n2 m*2n2 lzm*Z 2 m*2n2 ) 7m*2 2 )
R3=m*2§ 02 v+§ o Q- 03 qv+§ o vqo— 03 viog 0 qQo,
h 1m*33 ) 1m~k33 1m*3331m*3n33
= vq T —35 q_— qQ°tz vo,
2 p p* p® 6 p3
_hz[ 1m*222 1m*n21m*22 1m*n3 12m*222 3m*22
R5—m*zl 5 p q_Z p3 ot 3 p3 qv+§ p4 o 25 p5 qo+ vqo
. n% [1m*2n? 9 m*2n? 673 m*?n® | 27 m*°n’ 3, 1 m*3n? 1m*?n? 13m*%n®
6 m*3l§ p3 q Z_) p Uq 1000 p5 O-q 625 p6 q 3 p5 vq Z p4 va % p4 vars
ﬁ4 1m~k3n3 1m~k3 3 14m~k3 3 16m~k3 3
— - - "2 =T Y
m*4 5 p4 qv 5 p5 q 25 o5 4o 25 p6 Qo
R_hsjlm*AnA 3+1m*4n4 , 1 m*“nt ,
S_m*Sll_O p7 q 1_0 p5 v q 5 pe Uq ’
B 7o 1 m**n* s 1 m*3n3 , 1 m*“n* )
o= x5~ 25 o7 4"~ 5o 0 o q E—pﬁ vq°(,
[ m*4 4 9 m*4nt , }
_—q o s
50 6 p 125 p7
o e [ 1 m*5n® - 1 m*5n° ]
11~ ® = vq-r,
m*7l 50 p® 50 p’
1 #%nd )
g,
12 200m*3p8q
= 72 [1 m*n 3 m*2n? , 2 m*2n? 1 m*n 2, 83 m*?n? , 49 m*2n?
13_m*2 Z p2 2_5 p4 q 1_5 p3 qu g 3 2_50 5 q l_OO 4 vqo
1 m*?n? 2 9 m*n 3]
—= vo+ =3 o,
8 p3 32 p4
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14= 5 —5 ov— —oQq+ — Q" — ¢ vgt+t 5¢ q vo oqr,
m*3 4 p 4 p4 75 p5 15 p4 25 p6 8 p4 40 p5
ﬁ4 1m~k3n3 1m~k3 3 1m~k3 3
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15 4| 8 0 vo'+8 0 qo4 vqo,
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= Ko [1 m*3n3 3 m*“n4 s 2 m*“n* , 23 m*3n3 ) ]
17— oq— — Qe vd" o5 04,
~ hs[ 1 m*4n? , 1 m*4n4
Rls—m*ﬁl_% o7 q (T+Z) 0 vqo [,
. 54 { 1 m*2n2 , 3 m*3n3 , 1 m*3n3 1 m*2n2 3]
1952122 2 9 "Ton s 9035 5 VU5 )
m*4 32 p 100 p6 30 p5 32 p5
£°( 1 m*3nd 1 m*3nd
_ )= " 2 = 2
RZO_ m* 5 32 p5 vo 32 p6 g q ’
1 & n* 1 #°%n® 1 #° .

n
Ra1= 160_p_0q’ sz@mﬁﬂ, RzaZﬁFEq

Analytic expression of the electron energy distributida (k),ma(x,t)) (15), normalized to unit:

. 2 n3’21/2e 1+2m*n2 1 m*n 2+31 2Jrm*n N 1m*n22 1m*n22
(em)=T2p ” 58 S5pd 20p 8 p? p? U T\3 T VT e
in , 4 m*n? . 4 m*nd 4 m*ns , 1 n? 2| 2, 4 m*n* X 31
- == = qu | & — qu— ¢ q — —0°|& == g-e
2p3 3 p3 15 p4 15 p5 10p4 75 p6

. 1 m*n ) 18 m*n ) 11 , 7 m*n
E p2 (o 2—5 p4 q §p30' 5 p3 voQ

. 2 m*n? ) Jr14m*n2 1n | 2 m*n? )
7—5 p5 q-o g p4 vo( ZFO’ 3 p3 veo|e

. 334m*n3 5 28 m*n® 1 n? 5, 2 m* n3 2 |
ﬁ p6 q 2—5 p5 voqQ EE 1—5 p4 v-o|le

APPENDIX C

We report in the following the coefficients of the characteristic polynor(ii8) of the Jacobian matrix of fluxes, with
closures for the constitutive functiof&y ,Gg} of second and third order.
For a second-order closure we have

T T G- %,
Gam - T 000 T i O+ 4G,
94:%3 aNZ l672756(:12 2— 8622952 C] _1132952q2+ i%qu0'+30'2+60'+3
Os5= zsqas_%agz_%ag_%a

For the third-order closure we have
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