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First-principles calculation of hydrogen vibrations of the H-P complex in silicon
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Yu Zhou
Department of Physics and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455

~Received 30 May 1997!

We present a theoretical investigation of the local vibrational modes of hydrogen in the H-P complex in
silicon. The energy surface of the hydrogen is calculated byab initio methods, fitted to a model potential, and
the vibrational spectrum is investigated by perturbation theory. A Fermi resonance is found between the second
hydrogen-wagging and fundamental stretching modes. The calculated vibrational frequencies compare very
well to the experimental results, and confirm a recent assignment of the hydrogen vibrational bands of donor-
hydrogen complexes in Si.@S0163-1829~98!05108-X#
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I. INTRODUCTION

The behavior of hydrogen in semiconductors has attrac
considerable interest in the past few years. This is ma
due to the fact that it can passivate electrically active acc
tor and donor impurities by forming neutral complexes1,2

Experimental and theoretical studies suggest the follow
equilibrium configurations for these passivated centers.
an acceptor, H is located close to a bond-center positio
one of the Si-acceptor bonds. For a donor, H is on the
tension of a Si-donor bond, antibonding to Si. In both cas
the atoms around the H relax accordingly.

The geometry for the passivated donor complex w
suggested3 based on the experimental observation that
vibrational frequencies of H are very low and nearly ind
pendent of the donor species. The hydrogen frequen
found at 1555, 1561, and 1562 cm21 for the P, As, and Sb
donors,4 respectively, were attributed to the stretchi
modes. Two additional bands were observed near 810
1660 cm21 for each of the complexes. The 810-cm21 band
was assigned to the H-wagging mode, whereas the ass
ment of the 1660 cm21 band was controversial.4–7 Recently,
Zheng and Stavola8 proposed an assignment for the vibr
tional spectra, based upon a Fermi resonance between
second harmonic of the wagging and the fundame
stretching modes. They explained the presence of all th
vibrational bands without the need for additional char
states or defect species that have been suggested.4–7 In addi-
tion, they obtained data to confirm their model.

The microscopic electronic structure of H-passiva
complexes in semiconductors was the subject of a large n
ber of theoretical investigations. For donor-hydrogen co
plexes in Si, various techniques were applied, includ
semiempirical procedures,9 Hartree-Fock ~HF! cluster
calculations,10,11 and methods based on the densi
functional ~DF! method.12–16 The results for the equilibrium
structure and the vibrational frequencies of the hydrog
generally agree, but some significant discrepancies betw
HF and DF predictions remain to be explained. HF-li
methods in general predict strong bonding between Si an
with Si-H distances of the order of 1.4 Å and frequenc
570163-1829/98/57~8!/4413~6!/$15.00
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higher than 2000 cm21 for the axial mode. In contrast, DF
based calculations show a weaker bonding with Si-H d
tances around 1.6–1.7 Å.17 The corresponding stretching an
wagging modes are lower than the experimental ones.

In the present work, results are reported for the H-P co
plex in Si, obtained with the DF method in clusters. In Se
II, the method and the calculated equilibrium geometry
explained. The energy surface of hydrogen is calculated
very large number of H sties. A model potential which d
scribes this energy surface is discussed in Sec. III. The lo
vibrational modes of H and D are then determined by solv
the Schro¨dinger equation. As described in Sec. IV, this
done by both a perturbation approach and a numerical s
tion. Our calculated vibrational spectra support the model
Zheng and Stavola,8 and provide quantitative results for th
anharmonic coupling. Conclusions are in Sec. V.

II. ENERGY SURFACE

In a first step, we determined the equilibrium configur
tion for hydrogen in P-doped silicon. We started with a clu
ter consisting of 44 Si atoms and 42 H surface saturators,
positions of which are energy optimized.2 Next, the inner-
most pair of atoms was replaced by a Si-P pair, and an
ditional H was placed between these two atoms. The p
tions of these three atoms~Si, H, P! as well as those of the
six nearest-neighbor Si atoms were then optimized un
constraint ofC3v symmetry. For these nine atoms, polariz
tion functions were used in addition to the Gaussian doubz
basis set on all the atoms. Pseudopotentials described
core electrons of Si and P. The calculations were perform
with the DF method in the local-density approximation,
implemented in theGAUSSIAN 94 code18 using the Vosko-
Wilk-Nusair local-density functional.19

The same optimization procedure was repeated for a
antibonding to P~Si-P-H! and to Si~H-Si-P!. In agreement
with previous work, the site antibonding to Si was found
be the most stable. The equilibrium configuration is shown
Fig. 1. The positions of the relaxed atoms are close to res
from plane-wave DF calculations,15 which yielded dH-Si
51.618 Å anddSi-P52.812 Å.
4413 © 1998 The American Physical Society
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The ^111& direction from P to the equilibrium site of H i
denoted as thez axis. We explored the energy surface ne
the equilibrium positionz0. The hydrogen was moved awa
from its equilibrium site, and the total energy was calculat
The positions of all the other atoms were kept fixed. T
assumes that the H or D move much faster than the hea
atoms in the cluster. Only calculations with H along thez
axis were feasible in the large cluster. To explore the en
gies with H away from this axis, where most of the symm
try is lacking, the smaller cluster Si13HPH24 was used with
the same atomic positions as optimized in the large clus
The energy variations relative to the equilibrium site are
very good agreement in both clusters when the H is move
z direction.

In a plane perpendicular to thez axis, the potential energy
depends on the anglef and the distancer. However, thef
dependency of the energy surface is weak, as will be sh
below. Therefore we assume the energy surface to be i
pendent off, which provides us with a simple analytical a
well as computational tractable model.

Altogether, more than 180 points in the (z-r) plane were
calculated. The impurity was moved up to 0.3 Å in the ne
tive ~toward Si! z direction, up to 0.6 Å in the positivez
direction, and up to 0.75 Å in ther direction bisecting two of
the threefold mirror planes. The calculated energies for v
ous impurity positions are shown in Fig. 2. The solid lin
are fits to Morse potentials.21

III. MODEL POTENTIAL

Since the energy for various positions of H parallel to t
z axis is well modeled by a Morse potential, an ansatz fo
model potential for the whole energy surface was chose
the form

V~z,r!5VM~z,r!1e~r!, ~1!

with

VM~z,r!5A~r!@12e2a~r!@z2 z̃~r!##2. ~2!

For fixedr, this potential has the form of a Morse potenti
The four parametersA, a, z̃, ande vary with r, as seen in
Fig. 2. For these parameters we assume the following for

FIG. 1. The calculated equilibrium configuration for H in P
doped Si. The dashed circles indicate unrelaxed positions.
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A~r!5A01A2r2, ~3!

a~r!5a01a2r2, ~4!

z̃~r!5z01z2r2, ~5!

e~r!5e01e2r21e4r4. ~6!

While a quadratic dependence is adequate for the first th
parameters, the anharmonicity of the wagging mode enfo
the inclusion of a quartic term in the fourth one. These eq
tions completely define our model potential.

The coefficients of Eqs.~3!–~6! are determined in two
steps. First, the potential of Eq.~1! is fitted to the energy
surface calculated at theab initio level for eachr, as shown
in Fig. 2. In this way, we obtain fourr-dependent Morse
potential parametersA, a, z̃, and e. Second, these fou
Morse potential parameters are approximated by the fu
tional form of Eqs.~3!–~6!. The numerical values of the nin
model potential parameters, in atomic units, are in Table
The energy scale is shifted to be zero at the minimum andz0
is set to zero.

IV. PERTURBATION APPROACH

Having determined a functional form for the impurity e
ergy surface, the vibrational spectrum can be calculated.
use an analytical perturbative approach. Potential~1! is split
into two parts by expanding the Morse part of the poten
into a Taylor series aroundr50, and neglecting higher tha
second-order terms inr,

V~z,r!.V0~z,r!1V1~z,r!, ~7!

FIG. 2. Energy surface~in cm21) ~Ref. 20! scanned parallel to
the symmetry axis. The calculated points are fitted to a Morse
tential for each scan. Distances are in Å.

TABLE I. The fitted parameters for the model potential
atomic units.

Parameter r0 r2 r4

A 0.0977 0.0099
a 0.7502 20.0997
z̃ 0 20.1092
e 0 0.013 54 20.001 07
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with

V0~z,r!5A0@12e2a0~z2z0!#21e01e2r2, ~8!

V1~z,r!5V9~z!r21e4r4, ~9!

where

V9~z!5
1

2

]2VM~z,r!

]r2 U
r50

. ~10!

Potential ~8! has the longitudinal and transverse directio
decoupled. It consists of a Morse potential in thez direction
and a harmonic potential in ther direction. The Schro¨dinger
equation can be solved analytically with both these parts.
call V0(z,r) the ‘‘unperturbed potential.’’

The coupling between thez andr directions is contained
in the ‘‘perturbation potential’’V1(z,r) @Eq. ~9!#. Note that
there is no linear term inr, since the first derivative vanishe
The anharmonicity of the wagging mode is also treated i
perturbative manner.

A. Uncoupled spectrum

Since there is no coupling between different directio
the three-dimensional eigenvalue problem decomposes
two one-dimensional Schro¨dinger equations. Eigenvalues o
the three-dimensional problem are written as sums of
one-dimensional eigenvalues, and the corresponding th
dimensional eigenfunctions are products of the o
dimensional eigenfunctions.

The eigenvalues for a particle with massm in a one-
dimensional Morse potential are~see the Appendix!

En
M5A02

a0
2

2m
~k2n21/2!2, ~11!

with

k5A2mA0

a0
2 . ~12!

The eigenvalues for a one-dimensional harmonic poten
are

TABLE II. The first four eigenvalues and eigenstates for t
unperturbed problem.s and w stand for stretching and wagging
respectively.

Energy Eigenstate

E05E0
M1v t u0&5u000&

E1w5E0
M12v t u1w1&5u100&

u1w2&5u010&

u2w1&5u110&
E2w5E0

M13v t u2w&51/A2(u200&1u020&)
u2w2&51/A2(u200&2u020&)

E1s5E1
M1v t u1s&5u001&
s

e

a

,
to

e
e-
-

al

En
H5v t~n11/2!, ~13!

wheren50,1,..., and the~transverse! frequency is

v t5A2e2

m
. ~14!

The lowest four modes of the three-dimensional unp
turbed problem are listed in Table II. For the eigenstates,
abbreviationun m l&5xn(x)xm(y)c l(z) is used, wherexn
are the eigenstates of a particle in a harmonic potential
c l those in a Morse potential. The explicit expressions
the xk andc l functions are in the Appendix.

The spectrum can now be calculated by means of E
~11!–~14!, the eigenvalues of Table II and the potential p
rameters of Table I. Numerical values for hydrogen and d
terium are given in Table III. Note that the frequencies c
responding toE0→E1s would be 1698 cm21 ~1201 cm21!
for H ~D! if calculated from the curvature of the potential
its minimum. The reduction by 4.0%~2.7%! is due to the
anharmonicity inherent to the Morse potential. In Fig. 3~4!
the corresponding spectrum of H~D! vibrations is shown in
column I.

Including the zero-point energy22 of 1684 cm21, the en-
ergy of the second wagging H mode amounts to 3370 cm21.

TABLE III. The unperturbed frequencies for hydrogen and de
terium in phosphorus-doped silicon in cm21.

Transition H D

E0→E1w 843 596
E0→E2w 1686 1192
E0→E1s 1631 1168

FIG. 3. Spectrum of H vibrational modes in cm21. Column I:
unperturbed~Morse potential alongz, harmonic potential alongr!;
II: perturbed but uncoupled; III: coupled; IV: experimental value
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An inspection of Fig. 2 shows23 that this energy lies wel
within the mapped region of the potential energy surfa
and is not in the vicinity of any saddle point. The seco
transverse and first longitudinal modes are nearly degene
This leads to the Fermi resonance discussed below.

B. Perturbed spectrum

The coupling between the longitudinal and transversal
rections of the potential and terms higher than quadraticr
is treated by perturbation theory. We write the full Ham
tonian as

H5H01V9~z!r21e4r4, ~15!

with the eigenstates and eigenvalues of H0 in Table II. The
matrix elements of H in the basis of the unperturbed eig
states are listed in Table IV. We use the notationsr

2

51/A2e2m, with e2 the harmonic coefficient of the trans
verse potential given in Table I. The terms includingsr

2 in
the energies of Table IV result from̂xkurnux l& and are easy
to calculate.Wkl are defined byWkl5^ckuV9uc l&, where

FIG. 4. Spectrum of D vibrational modes. Notations are
same as in Fig. 3.

TABLE IV. Matrix elements of the perturbation calculation. E
ergies are in cm21.

Expression Energy H D

^1suHu1s& E1s1W11sr
21e42 sr

4 1614 1159
^1suHu2w& 2W10sr

2 65.9 39.9

^2wuHu2w& E2w1W003 sr
21e414sr

4 1610 1155

^2w6uHu2w6& E2w1W003 sr
21e412sr

4 1620 1159

^1w6uHu1w6& E1w1W002sr
21e46 sr

4 815 582

^0uHu0& E01W00sr
21e42 sr

4 0 0
,

te.

i-

-

uck& are the eigenstates of the Morse potential. We cal
lated these one-dimensional integrals numerically.

Only nonzero perturbation terms are shown in Table
and it is seen that onlyu1s& and u2w& are coupled, reducing
the evaluation of the perturbed spectrum to a 232 matrix
eigenvalue problem. However, this is just an approximati
In principle, u1s& and u2w& also couple to the ground stat
u0&. Since the difference betweenE1s andE2w to E0 is large,
the influence of this coupling on the perturbed eigenstate
small. In fact, an explicit treatment of these coupling ter
shows that the vibrational frequencies change by less t
0.5%. Thus we neglect these couplings since they compli
the calculation unnecessarily.

The energy values in the two last columns of Table IV a
given relative tô 0uHu0& and the corresponding frequencie
are plotted in column II of Figs. 3 and 4. We find a drama
change relative to the unperturbed frequency for the sec
wagging mode, which is lowered from 1686 to 1610 cm21,
and becomes even lower than the stretching mode at 1
cm21. This demonstrates the importance of including high
than quadratic terms when modeling the energy surface
the transverse direction. Furthermore, since the frequen
of the two states are now almost identical, the coupling
tween these states becomes very important. This is a typ
example of a Fermi resonance, as has been predicted
Zheng and Stavola.8

Setting H115^1suHu1s&, H125^1suHu2w&, and H22
5^2wuHu2w&, the eigenvalue problem of the 232 perturba-
tion matrix has the solutions24

E65 1
2 ~H111H22!6 1

2 Ad214uH12u2, ~16!

with eigenstates

uw1&5cosa e2 if/2u1s&1sin a eif/2u2w&, ~17!

uw2&52sin a e2 if/2u1s&1cosa eif/2u2w&, ~18!

where d5H112H22, tan 2a52uH12u/d, 0<2a<p, and
H125e2 ifuH12u.

For hydrogen, the numerical values forE6 are 1678 and
1546 cm21, respectively. Thus, the energies are essenti
shifted by the couplinguH12u. A very similar result is found
for deuterium. The final calculated vibrational spectra for
and D in P-doped Si as well as the experimental results
listed in Table V and shown in Figs. 3 and 4. A good agre
ment between theory and experiment is found for all ban
although the motions of all atoms other than H are neglec

To check the soundness of our analytical perturbative
proach, we also calculated the vibrational spectrum num

TABLE V. Theoretical and experimental vibrational frequenci
for hydrogen and deuterium in phosphorus-doped silicon in cm21.

Impurity Theory Expt.a Impurity Theory Expt.a

H 815 809.5 D 582 584.7
1546 1555.4 1117 1141.5
1620 1615.5 1159
1678 1645.5 1197 1215.5

aReference 8.
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cally. The energy surface was directly used without any
ting to an analytical form. The vibrational spectrum was th
obtained with the help of a numerical solver for the Sch¨-
dinger equation. The resulting bands differ by less than 0
from our analytical results. Thus our simple method, ba
on an analytical approximation of the energy surface and
treatment of the coupling terms by perturbation theory,
quite appropriate.

To give a rough estimate of the error introduced by
suming a rotationally invariant energy surface, we scan
the energy surface atz0 in two directions perpendicular to
the z axis, enclosing an anglef of 30° and 60° to our origi-
nal ~z-r! plane. The potential slightly increases for increa
ing f, indicating that our frequencies are slightly underes
mated. In order to quantify the effect of thef dependence on
the frequencies, Eq.~6! of the model potential was extende
to e(r,f)5e(r)1e22@12cos(3f)#r21e42@12cos(3f)#r4

with e(r), as given in Eq.~6!. The unknown parameterse22

and e42 were estimated to be 0.00127 Ha/aB
2 and 0.00045

Ha/aB
4, respectively. Note that for an exact determination

the parameters, the whole (z-r) energy surface had to b
scanned for at least one value off. Thef-dependent part o
the potential was then included in the perturbation theory.
expected, an increase of the frequencies resulted, but
change was less than 6% for all the frequencies. Thus we
conclude that a much more demanding analysis includin
scan of the whole three-dimensional energy surface wo
not change the frequencies dramatically.

The square of the corresponding wave functions for H
P-doped Si are shown in Fig. 5. A strong mixing is found
the two coupled statesu1s& and u2w&. The mixing anglea
between the wagging and stretching states is nearlyp/4 for
H as well as for D. The wagging and stretching states h
almost the same contribution to the coupled states, and
in fact no longer possible to distinguish between wagg
and stretching for the coupled modes. This is also reflecte
the ratio of the intensities of the coupled modes. The rati
given by8 I 1 /I 25cos2 a/sin2 a. Our calculated value for H
is 1.06 very close to unity. For D, it is 1.11, just a little b
higher than for H. The experimental values8 are 1.3 for H
and 2.5 for D. While a rather good agreement between the
and experiment is found for H, the experimental ratio
intensities for D is about a factor of 2 larger than the cal
lated value. It is questionable whether this large differen
can be explained by our theoretical approach, where dif
ences between H and D do only enter in the kinetic-ene
term. However, these intensity ratios are very sensitive to
actual values of the unperturbed levels and to the coupli

V. CONCLUSIONS

On the basis of a first-principles potential-energy surfa
we calculated the vibrational frequencies of hydrogen a
deuterium in phosphorus-doped silicon. We showed that
three-dimensional energy surface in the vicinity of the H~D!
impurity is well approximated by an analytic expressi
based on Morse potentials withr-dependent parameters. W
treated the coupled potential by analytical perturbat
theory, and showed that the coupling in the longitudinal a
transverse direction is important to understand the en
spectrum. The calculated frequencies are in very good ag
-
n
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ment with the experimental results. In particular, theory co
firms the recently proposed explanation by Zheng a
Stavola for the vibrational bands by means of a Fermi re
nance.

ACKNOWLEDGMENTS

The authors would like to thank H. U. Suter and M
Stavola for enlightening discussions. This work was partia
supported by the Swiss National Science Foundation.
services provided by the national supercomputing cen
CSCS have been essential for this study.

APPENDIX: A PARTICLE IN AN EXTERNAL POTENTIAL

The energies and eigenstates are given for a particle
massm in an external potential. The Morse potential21 and
the harmonic potential25 are considered. Atomic units ar
used.

1. Morse potential

Potential: V~z!5A0~12e2a0~z2z0!!2,

Energy: En5A02
a0

2

2m
~k2n21/2!2,

n50,1,2,...,

Functions: c0~z!5C0e2kyyk21/2,

c1~z!5C1e2kyyk23/2~ky2k11!,

FIG. 5. The eigenstates of H in P-doped Si from perturbat
theory. The square of the wave function is shown in thez direction
~longitudinal! and in thex direction~transversal! for the frequencies
around 1600 cm21. The strong mixing of theu1s& and theu2w&
state is visible in the upper figure. Distances are in Å.
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k5A2mA0

a0
2 , y5e2a0~z2z0!.

C0 andC1are normalization factors.

2. Harmonic potential

Potential: V~x!5e2x2,

Energy: En5S n1
1

2Dv,

n50,1,2,...,
Functions: x0~x!5S c

p D 1/4

e2cx2/2,

x1~x!5S 4c3

p D 1/4

x e2cx2/2,

x2~x!5S c

4p D 1/4

~1

22cx2!e2cx2/2,

v5A2e2

m
, c5A2me2.
e

.
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