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First-principles calculation of hydrogen vibrations of the H-P complex in silicon
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We present a theoretical investigation of the local vibrational modes of hydrogen in the H-P complex in
silicon. The energy surface of the hydrogen is calculatedibinitio methods, fitted to a model potential, and
the vibrational spectrum is investigated by perturbation theory. A Fermi resonance is found between the second
hydrogen-wagging and fundamental stretching modes. The calculated vibrational frequencies compare very
well to the experimental results, and confirm a recent assignment of the hydrogen vibrational bands of donor-
hydrogen complexes in §iS0163-18208)05108-X]

. INTRODUCTION higher than 2000 cm for the axial mode. In contrast, DF-
based calculations show a weaker bonding with Si-H dis-
The behavior of hydrogen in semiconductors has attractethnces around 1.6—1.7 & The corresponding stretching and
considerable interest in the past few years. This is mainlwagging modes are lower than the experimental ones.
due to the fact that it can passivate electrically active accep- In the present work, results are reported for the H-P com-
tor and donor impurities by forming neutral compleXés. plex in Si, obtained with the DF method in clusters. In Sec.
Experimental and theoretical studies suggest the followingdl, the method and the calculated equilibrium geometry are
equilibrium configurations for these passivated centers. Fogxplained. The energy surface of hydrogen is calculated at a
an acceptor, H is located close to a bond-center position ofery large number of H sties. A model potential which de-
one of the Si-acceptor bonds. For a donor, H is on the exscribes this energy surface is discussed in Sec. lll. The local
tension of a Si-donor bond, antibonding to Si. In both casesyibrational modes of H and D are then determined by solving
the atoms around the H relax accordingly. the Schrdinger equation. As described in Sec. IV, this is
The geometry for the passivated donor complex waglone by both a perturbation approach and a numerical solu-
suggestetibased on the experimental observation that thdion. Our calculated vibrational spectra support the model by
vibrational frequencies of H are very low and nearly inde-Zheng and Stavolhand provide quantitative results for the
pendent of the donor species. The hydrogen frequenciggnharmonic coupling. Conclusions are in Sec. V.
found at 1555, 1561, and 1562 cffor the P, As, and Sb

4 . . .
donors; respectlygly, were attributed to the stretching II. ENERGY SURFACE

modes. Two additional bands were observed near 810 and

1660 cm! for each of the complexes. The 810-chrband In a first step, we determined the equilibrium configura-

was assigned to the H-wagging mode, whereas the assigtion for hydrogen in P-doped silicon. We started with a clus-
ment of the 1660 cm' band was controversiil.’ Recently,  ter consisting of 44 Si atoms and 42 H surface saturators, the
Zheng and Stavofaproposed an assignment for the vibra- positions of which are energy optimizéd\ext, the inner-
tional spectra, based upon a Fermi resonance between thgost pair of atoms was replaced by a Si-P pair, and an ad-
second harmonic of the wagging and the fundamentaflitional H was placed between these two atoms. The posi-
stretching modes. They explained the presence of all threéons of these three atoniSi, H, P as well as those of the
vibrational bands without the need for additional chargesix nearest-neighbor Si atoms were then optimized under
states or defect species that have been suggésteuladdi-  constraint ofC,, symmetry. For these nine atoms, polariza-
tion, they obtained data to confirm their model. tion functions were used in addition to the Gaussian doygble-
The microscopic electronic structure of H-passivatedbasis set on all the atoms. Pseudopotentials described the
complexes in semiconductors was the subject of a large nungore electrons of Si and P. The calculations were performed
ber of theoretical investigations. For donor-hydrogen comwith the DF method in the local-density approximation, as
plexes in Si, various techniques were applied, includingmplemented in thesAussiaN 94 code® using the Vosko-
semiempirical procedurés, Hartree-Fock (HF) cluster  Wilk-Nusair local-density functionaf®
calculations®!! and methods based on the density- The same optimization procedure was repeated for a H
functional (DF) method">* The results for the equilibrium antibonding to R(Si-P-H) and to Si(H-Si-P). In agreement
structure and the vibrational frequencies of the hydrogemvith previous work, the site antibonding to Si was found to
generally agree, but some significant discrepancies betwedre the most stable. The equilibrium configuration is shown in
HF and DF predictions remain to be explained. HF-likeFig. 1. The positions of the relaxed atoms are close to results
methods in general predict strong bonding between Si and Hom plane-wave DF calculatiors, which yielded dy,.g;
with Si-H distances of the order of 1.4 A and frequencies=1.618 A anddg.p=2.812 A.
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FIG. 2. Energy surfacén cm™?) (Ref. 20 scanned parallel to
FIG. 1. The calculated equilibrium configuration for H in P- the symmetry axis. The calculated points are fitted to a Morse po-

doped Si. The dashed circles indicate unrelaxed positions. tential for each scan. Distances are in A.

The (111) direction from P to the equilibrium site of H is A(p)=Ay+Asp2, 3
denoted as the axis. We explored the energy surface near
the equilibrium positiorzy. The hydrogen was moved away a(p)=ap+ayp?, (4)
from its equilibrium site, and the total energy was calculated.
The positions of all the other atoms were kept fixed. This Z(p) =20+ 72,p°, (5)
assumes that the H or D move much faster than the heavier
atoms in the cluster. Only calculations with H along the e(p) = €o+ €2p%+ €4p”. (6)

axis were feasible in the large cluster. To explore the ener-
gies with H away from this axis, where most of the symme-While a quadratic dependence is adequate for the first three
try is lacking, the smaller cluster SHPH,, was used with ~parameters, the anharmonicity of the wagging mode enforces
the same atomic positions as optimized in the large clustethe inclusion of a quartic term in the fourth one. These equa-
The energy variations relative to the equilibrium site are intions completely define our model potential.
very good agreement in both clusters when the H is moved in The coefficients of Eqs(3)—(6) are determined in two
7 direction. steps. First, the potential of Eq) is fitted to the energy

In a p|ane perpendicu|ar to ﬂmxis’ the potentia| energy surface calculated at thab initio level for eaChp, as shown
depends on the angl¢ and the distance. However, thegy  in Fig. 2. In this way, we obtain foup-dependent Morse
dependency of the energy surface is weak, as will be showRotential parameter#\, a, z, and e. Second, these four
below. Therefore we assume the energy surface to be inddlorse potential parameters are approximated by the func-
pendent ofé, which provides us with a simple analytical as tional form of Eqs(3)—(6). The numerical values of the nine
well as computational tractable model. model potential parameters, in atomic units, are in Table I.

Altogether, more than 180 points in the-p) plane were The energy scale is shifted to be zero at the minimumznd

calculated. The impurity was moved up to 0.3 A in the nega-'s set to zero.

tive (toward S) z direction, up to 0.6 A in the positive
direction, and up to 0.75 A in thedirection bisecting two of IV. PERTURBATION APPROACH
the threefold mirror planes. The calculated energies for vari-
ous impurity positions are shown in Fig. 2. The solid lines
are fits to Morse potentiafg.

Having determined a functional form for the impurity en-
ergy surface, the vibrational spectrum can be calculated. We
use an analytical perturbative approach. Poteiftinls split

into two parts by expanding the Morse part of the potential
into a Taylor series aroung=0, and neglecting higher than

Since the energy for various positions of H parallel to theS€cond-order terms ip,
z axis is well modeled by a Morse potential, an ansatz for a

IIl. MODEL POTENTIAL

model potential for the whole energy surface was chosen in V(z,p)=Vo(z,p) +V1(Z.p), @)
the form TABLE |. The fitted parameters for the model potential in
V(z,p)=VM(z,p) + e(p), (1) ~ atomic unis

with Parameter p° p? p?

yM z,p)=A 1_e—a(p)[z—i(p)] 2 2 A 0.0977 0.0099

(.p) (Pl 1 @ a 0.7502 —0.0997

For fixed p, this potential hgs the form of a Morse potential. 7 0 —0.1092
The four parameter8, a, z, ande vary with p, as seenin ¢ 0 0.01354 —0.001 07

Fig. 2. For these parameters we assume the following forms:
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TABLE I1l. The first four eigenvalues and eigenstates for the  TABLE Ill. The unperturbed frequencies for hydrogen and deu-
unperturbed problems andw stand for stretching and wagging, terium in phosphorus-doped silicon in ¢
respectively.

Transition H D
Energy Eigenstate EoE., 843 -
Eo=Ep' + o' |0)=[000 Eo— Eow 1686 1192
Eo—E1s 1631 1168
En=EY+20' [1w*)=|100
|1w™)=1010
El=w!(n+1/2), (13
|2w™)=]110 .
Epy=EN+ 30! |2w) = 1/4/2(|200) +|020)) wheren=0,1,..., and thétransversgfrequency is
|2w~)=1/,/2(]200)—|020))
t 262
w'=\/—. (14
Eis=EY+ o' |1s)=|001) m
The lowest four modes of the three-dimensional unper-
with turbed problem are listed in Table Il. For the eigenstates, the
abbreviation|n m )= x,(X) xm(Y) ¥1(2) is used, wherey,
Vo(z,p)=Ag[1—e 202 20012+ ¢+ €,p2, (8)  are the eigenstates of a particle in a harmonic potential and
i those in a Morse potential. The explicit expressions for
V1(z,p)=V"(2) p*+ €4p*, (9)  the x, and ¢, functions are in the Appendix.
The spectrum can now be calculated by means of Egs.
where (11)—(14), the eigenvalues of Table Il and the potential pa-
oM rameters of Table I. Numerical values for hydrogen and deu-
V'(2)= } IV (z,p) _ (10) terium are given in Table Ill. Note that the frequencies cor-
2 9p° b0 responding toE,—E;s would be 1698 cm! (1201 cm?)

for H (D) if calculated from the curvature of the potential at

Potential (8) has the longitudinal and transverse directionsits minimum. The reduction by 4.0%2.7% is due to the
decoupled. It consists of a Morse potential in theirection  anharmonicity inherent to the Morse potential. In Fig43
and a harmonic potential in thedirection. The Schidinger  the corresponding spectrum of (B) vibrations is shown in
equation can be solved analytically with both these parts. Weolumn 1.
call Vo(z,p) the “unperturbed potential.” _ Including the zero-point ener@¥of 1684 cm?, the en-

The coupling between theand p directions is contained ergy of the second wagging H mode amounts to 3370%m
in the “perturbation potentialVV,(z,p) [EQ. (9)]. Note that
there is no linear term ip, since the first derivative vanishes. 1700 —

2
The anharmonicity of the wagging mode is also treated in a v
perturbative manner.
A. Uncoupled spectrum .
1is S —_—
Since there is no coupling between different directions, 1600 > —
— W

the three-dimensional eigenvalue problem decomposes into
two one-dimensional Schdinger equations. Eigenvalues of
the three-dimensional problem are written as sums of the
one-dimensional eigenvalues, and the corresponding three-
dimensional eigenfunctions are products of the one-
dimensional eigenfunctions.

The eigenvalues for a particle with mass in a one- 1500
dimensional Morse potential afeee the Appendix

A\
B\Y

900
2

a
E,']“=AO—% (k—=n—1/2)2, (12)

with -

om 800 '—
k=1/ ZAO . (12 I 11 11 v
o

. ) ) ) . FIG. 3. Spectrum of H vibrational modes in cfh Column I:
The eigenvalues for a one-dimensional harmonic potentialinperturbedMorse potential along, harmonic potential along);
are II: perturbed but uncoupled; Ill: coupled; IV: experimental values.
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TABLE V. Theoretical and experimental vibrational frequencies
for hydrogen and deuterium in phosphorus-doped silicon in‘cm

Impurity Theory

Expt

Impurity

Theory

Expt

H 815
1546
1620
1678

809.5
1555.4
1615.5
1645.5

D

582

1117
1159
1197

584.7
1141.5

12155

8Reference 8.

|n) are the eigenstates of the Morse potential. We calcu-
lated these one-dimensional integrals numerically.

Only nonzero perturbation terms are shown in Table 1V,
and it is seen that onljls) and|2w) are coupled, reducing
the evaluation of the perturbed spectrum to >@22matrix
eigenvalue problem. However, this is just an approximation.
In principle,|1s) and|2w) also couple to the ground state
|0). Since the difference betweéh andE,,, to Eq is large,
the influence of this coupling on the perturbed eigenstates is
small. In fact, an explicit treatment of these coupling terms
shows that the vibrational frequencies change by less than
0.5%. Thus we neglect these couplings since they complicate

FIG. 4. Spectrum of D vibrational modes. Notations are thethe calculation unnecessarily.
same as in Fig. 3.

An inspection of Fig. 2 show3 that this energy lies well

The energy values in the two last columns of Table IV are
given relative to{0|H|0) and the corresponding frequencies
are plotted in column Il of Figs. 3 and 4. We find a dramatic

within the mapped region of the potential energy surfacechange relative to the unperturbed frequency for the second
and is not in the vicinity of any saddle point. The secondwagging mode, which is lowered from 1686 to 1610 ¢m

transverse and first longitudinal modes are nearly degeneratend becomes even lower than the stretching mode at 1614
This leads to the Fermi resonance discussed below.

cm L. This demonstrates the importance of including higher
than quadratic terms when modeling the energy surface in
the transverse direction. Furthermore, since the frequencies

B. Perturbed spectrum . . .
of the two states are now almost identical, the coupling be-

The coupling between the longitudinal and transversal ditween these states becomes very important. This is a typical
rections of the pOtentIal and terms h|gher than quadrat}ﬁ n examp'e of a Fermi resonance, as has been predicted by
is treated by perturbation theory. We write the full Hamil- zheng and Stavol&.
tonian as Setting Hy,=(1s|H|1s), Hy,=(1s|H|2w), and H,,

= (2w|H|2w), the eigenvalue problem of thex2 perturba-

tion matrix has the solutio”$
with the eigenstates and eigenvalues gfihl Table Il. The E.=3(Hy+Hy) =36 +4[H )%, (16)
matrix elements of H in the basis of the unperturbed eigen- _
states are listed in Table IV. We use the notatioﬁl with eigenstates
=1/\2e,m, with e, the harmonic coefficient of the trans-
verse potential given in Table I. The terms includin§ in
the energies of Table IV result frofy,|p"|x|) and are easy
to calculate.W,, are defined byW,,={y|V"|), where

H=Ho+V"(2)p*+ esp”, (15)

|¢1)=cosa e '¥’1s)+sina ¥?2w),  (17)
lo_)=—sina e *?|1s)+cosa €*?2w), (19

=Hy— = <2a<
TABLE IV. Matrix elements of the perturbation calculation. En- where d=Hi,—Hy,, tan 2e=2|Hy)l/5, 0<2a<m, and

ergies are in cm’.

Hio=e '?|Hy.
For hydrogen, the numerical values fiar. are 1678 and
1546 cm?, respectively. Thus, the energies are essentially

Expression Energy H D ‘ \ 1S .
shifted by the couplingH4. A very similar result is found

(19H[19 Eis+ W05+ €,2 ) 1614 1159  for deuterium. The final calculated vibrational spectra for H
(19H[2w) W, 0 65.9 39.9 and D in P-doped Si as well as the experimental results are
(2w|H|2w) Eowt Woo3 a§+ €,14 crﬁ 1610 1155 listed in Table V and shown in Figs. 3 and 4. A good agree-
(wrH[2w*) Byt Wogd 05+ €412 07 1620 1159 ment between theory and experiment is found for all bands,
(AWSH[IWS)  Egy+Wo02+ 6,6 0 815 582 although the motions of all atoms other than H are neglected.
(0[H|0) Eo+ WooU§+ €2 02 0 0 To check the soundness of our analytical perturbative ap-

proach, we also calculated the vibrational spectrum numeri-
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cally. The energy surface was directly used without any fit-
ting to an analytical form. The vibrational spectrum was then
obtained with the help of a numerical solver for the Sehro
dinger equation. The resulting bands differ by less than 0.7%
from our analytical results. Thus our simple method, based
on an analytical approximation of the energy surface and the
treatment of the coupling terms by perturbation theory, is
quite appropriate. 0.0

To give a rough estimate of the error introduced by as- ~1.0
suming a rotationally invariant energy surface, we scanned z
the energy surface &, in two directions perpendicular to
the z axis, enclosing an angk of 30° and 60° to our origi- . . .
nal (z-p) plane. The potential slightly increases for increas-
ing ¢, indicating that our frequencies are slightly underesti-
mated. In order to quantify the effect of tiledependence on
the frequencies, Ed6) of the model potential was extended
to  e(p,¢)=e(p)+ €4 1—cos(3p)]p*+e€xf 1—cos(3p)]p* ,
with e(p), as given in Eq(6). The unknown parametees,
and €4, were estimated to be 0.00127 Iaéland 0.00045 A/\/
Hal/ag, respectively. Note that for an exact determination of 00 5 ey Yy o5 To
the parameters, the whole-p) energy surface had to be ' ' . ’ '
scanned for at least one value @f The ¢-dependent part of
the potential was then included in the perturbation theory. As FIG. 5. The eigenstates of H in P-doped Si from perturbation
expected, an increase of the frequencies resulted, but thBeory. The square of the wave function is shown inzltirection
change was less than 6% for all the frequencies. Thus we c&tongitudina) and in thex direction(transversalfor the frequencies
conclude that a much more demanding analysis including around 1600 cm!. The strong mixing of thg1s) and the|2w)
scan of the whole three-dimensional energy surface wouldtate is visible in the upper figure. Distances are in A.
not change the frequencies dramatically.

The square of the corresponding wave functions for H inment with the experimental results. In particular, theory con-
P-doped Si are shown in Fig. 5. A strong mixing is found forfirms the recently proposed explanation by Zheng and
the two coupled statelds) and|2w). The mixing anglea  Stavola for the vibrational bands by means of a Fermi reso-
between the wagging and stretching states is neadyfor  nance.

H as well as for D. The wagging and stretching states have

almost the same contribution to the coupled states, and it is ACKNOWLEDGMENTS

in fact no longer possible to distinguish between wagging

and stretching for the coupled modes. This is also reflected in The authors would like to thank H. U. Suter and M.
the ratio of the intensities of the coupled modes. The ratio iStavola for enlightening discussions. This work was partially
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and 2.5 for D. While a rather good agreement between theory

and experiment is found for H, the experimental ratio of APPENDIX: A PARTICLE IN AN EXTERNAL POTENTIAL
intensities for D is about a factor of 2 larger than the calcu-

lated value. It is questionable whether this large difference The energies and eigenstates are given for a particle with
can be explained by our theoretical approach, where differmassm in an external potential. The Morse poterfttand
ences between H and D do on|y enter in the kinetic-energwe harmonic potentig are considered. Atomic units are
term. However, these intensity ratios are very sensitive to th&sed.

actual values of the unperturbed levels and to the coupling.

6.0 | , 1

4.0

20 -

H-density (arb. units)

1.0

40 | :

H-density (arb. units)
N
(=]
£

1. Morse potential
V. CONCLUSIONS . —an(z—
Potential: V(z)=Aq(1—e 2z~ 2))2,

On the basis of a first-principles potential-energy surface,

we calculated the vibrational frequencies of hydrogen and ag
deuterium in phosphorus-doped silicon. We showed that the Energy: E,=Ay— %(k—n— 1/2)2,
three-dimensional energy surface in the vicinity of th€lH
impurity is well approximated by an analytic expression
based on Morse potentials withdependent parameters. We
treated the coupled potential by analytical perturbation
theory, and showed that the coupling in the longitudinal and Functions: ¢(z) = Coe ™My
transverse direction is important to understand the entire
spectrum. The calculated frequencies are in very good agree- P1(2)=Ce Wy 3 2(ky—k+1),

n=0,1,2,...,

k—1/2
1
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om . C 1/4
k= /[ on y=e 2 %), Functions: yo(x)= —) e o,
ag ™
C, andC,are normalization factors. 4cB\ 14 2
xi(¥)=|—| xe ™7
au
2. Harmonic potential
c |\ 14
Potential: V(x) = e,x?, X2(X)= E) (1
1 _2CX2)e—cx2/2
Energy: E = n+§ w,

_ 262 . 2
n=012,.. ®= NV CTveme
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