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Screening cloud in thek-channel Kondo model: Perturbative and large-k results
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We demonstrate the existence of a large Kondo screening cloud in thek-channel Kondo model using both
renormalization-group improved perturbation theory and the large-k limit. We study positionr -dependent spin
Green’s functions in both static and equal-time cases. The equal-time Green’s function provides a natural
definition of the screening-cloud profile, in which the large scalejK[vF /TK appears (vF is the Fermi velocity;
TK is the Kondo temperature!. At large distances it consists of both a slowly varying piece and a piece which
oscillates at twice the Fermi wave vector, 2kF . This function is calculated at allr in the large-k limit. Static
Green’s functions~Knight shift or susceptibility! consist only of a term oscillating at 2kF , and appear to
factorize into a function ofr times a function ofT for rT/vF!1, in agreement with NMR experiments. Most
of the integrated susceptibility comes from the impurity-impurity part with conduction-electron contributions
suppressed by powers of the bare Kondo coupling. The single-channel and overscreened multichannel cases are
rather similar, although anomalous power laws occur in the latter case at larger and lowT due to irrelevant
operator corrections.@S0163-1829~97!01446-X#
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I. INTRODUCTION

It is well known that the spin-1/2 impurity interactin
antiferromagnetically with a Fermi liquid is complete
screened at zero temperature.1 This screening is the essenc
of the Kondo effect.2 The question of the screening length
much more subtle. Scaling implies, at least dimensiona
that the low-energy scale of the model, the Kondo tempe
ture TK;Dexp(21/l0), should be associated with an exp
nentially large length scale,jK5vF /TK. ~Here l0 is the
Kondo coupling times density of states andD is the band-
width!. According to Nozie`res’ Fermi-liquid picture,3 one
could imagine an electron in a region of this size whi
forms a singlet with the impurity spin. Note that this is
more dynamical type of screening than that which occurs
charge impurities in a Fermi liquid since it involves a line
combination of states where the impurity spin and
screening electron spin are in either an up-down or down
configuration. In particular, the finiteness of the suscepti
ity at T→0 should not be attributed to a static conductio
electron polarization canceling the impurity spin polariz
tion. Rather it results from the tendency of the impurity
form a singlet with the screening electron.

Whether or not this large screening cloud really exists
been a controversial subject in the literature, and has rece
attracted some theoretical interest.4–8 Boyce and Slichter9

had performed direct Knight-shift measurements of the sp
spin correlator at all temperatures and had concluded
there was no evidence of the so-called screening cloud. T
measurements, however, were limited to very low distan
~not more than several lattice spacings!, and therefore could
not probe directly any possible crossover at the dista
scalejK .

To study the screening cloud, we will consider the beh
570163-1829/98/57~1!/432~17!/$15.00
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ior of spatial spin-spin correlation functions, both zero fr
quency and equal time. There are two distance scales in
Kondo problem at finite temperature,jK and the thermal
scalejT5vF /T. On general scaling grounds, the spatial c
relators should depend on the ratio of the distancer to these
two scales. So”rensen and Affleck5 have suggested a scalin
form for the r -dependent Knight shift, proportional to th
zero-frequency spin susceptibility, which has been justifi
numerically and perturbatively:5,6

x~r ,T!2r/25
cos~2kFr !

8p2vFr 2
f ~r /jK ,r /jT!. ~1.1!

Here we have subtracted the Pauli contributionr/2; r is the
density of states per spin. Theg factor for the magnetic
impurities is not necessarily equal to that of the conduct
electrons. This is especially the case for some rare-earth i
which have complex multiplet structure. If we take into a
count this possibility, scaling properties of the local spin s
ceptibility become not so simple, and we will consider the
below. The Knight shift in this case is a sum of two par
which scale differently.6

A possible objection to the naive concept of the screen
cloud is based on sum rule arguments. The integral of
local spin susceptibility Eq.~1.1! is proportional to the zero-
frequency correlator̂Sel

z Stot
z &, whereSel

z 5*d3rSel
z (r ) is the

spin of the conduction electrons,Stot
z 5Sel

z 1Simp
z . It can be

shown that there is no net polarization of the conduct
electrons,10–13and this correlator should vanish in the scali
limit ( Jr→0 with TK held fixed!. At T50 this is simply a
consequence of the ground state being a singlet. As rema
above, this does not necessarily imply the absence of
screening cloud in the sense of Nozie`res but only that the
screening is a dynamical process.
432 © 1998 The American Physical Society
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57 433SCREENING CLOUD IN THEk-CHANNEL KONDO . . .
In order to see the dynamical cloud of conduction el
trons let us consider a snapshot of the system, the equal-
correlators. TakeK(r ,T)5^Sel

z (r ,0)Simp
z (0)& as an example

Note that ^Simp
z (0)Simp

z (0)&51/4 for a spin-1/2 impurity,
while ^Sel

z (0)Stot
z (0)&50 as mentioned above.~For this con-

served quantity the equal-time and zero-frequency Gre
functions are proportional to each other.! Thus the correlator
^Sel

z Simp
z &521/4; that isK(r ,T) obeys a sum rule.uK(r ,0)u

is a possible definition of the screening-cloud profile.
The ground-state properties of spatial correlators are

termined by the Kondo scale only. In general we expect th
different scaling regimes forx(r ,T) at a given temperature
with the r boundaries defined by the thermal and Kon
length scales. The goal of this paper is to determine sca
behavior of the spin correlators in these regimes.

Exponentially large length scalejK , if present, could
have important consequences for the theory of alloys w
magnetic impurities. Indeed, typicalTK;10 K andEF;10
eV makesjK;10 000a, wherea is the lattice spacing, much
larger than typical distance between two impurities. Rece
this issue was addressed in one dimension~1D! for Luttinger
liquids with magnetic impurities,14 where it was found that a
crossover happened fornimp;1/jK .

Although perturbative calculations had been done ea
on,15 no definite predictions were made regarding the size
the Kondo screening cloud. Chenet al.16 have developed a
renormalization-group~RG! approach. They, however, onl
considered short-range correlationsr !jK . We use the RG-
improved perturbative technique, which cannot access low
temperaturesT,TK . In order to gain some insight into wha
happens at low temperatures, we also consider overscre
Simp51/2 multichannel Kondo effect, where the low
temperature fixed point is accessible perturbatively usingk
expansion,k being the multiplicity of the bands. A very thor
ough 1/k analysis of the multichannel Kondo effect has be
performed earlier by Gan,4 who, however, came to conclu
sions opposite from ours. We also use the recent confor
field theory approach of one of us and Ludwig17–19 to calcu-
late the properties of the low-temperature, long distance
relation functions and the crossover atjT . This approach, is
valid for all k but only for r @jK , T!TK and fails to predict
the behavior of the spin correlators inside the screen
cloud r &jK . The result is nevertheless interesting becau
as one could expect, the spin-spin correlators reflect the n
Fermi-liquid nature of the overscreened multichannel fix
point.

The paper is organized as follows. In Sec. II we introdu
the model and remind the reader how it is transformed to
equivalent 1D model. We also define notations which
plan to use in the rest of the paper and derive the sca
equations for the spin susceptibility. Section III provides d
tailed perturbative analysis of the spin-spin correlation fu
tions in the ordinary Kondo model~the Fermi-liquid fixed
point!. Section IV is devoted to the non-Fermi-liquid ove
screened large-k case, where it is possible to obtain resu
for the spin correlators at all temperatures and distances
ing the 1/k expansion. We discuss our main conclusions
Sec. V. In Appendix A we mention a few details of o
perturbative calculations. Appendix B gives the proof of t
vanishing of the uniform part of the susceptibility. Append
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C gives results on the overscreened case (k.1) at T!TK
and r @jK obtained from conformal field theory. Some o
these results were presented briefly in Ref. 6.

II. THE MODEL, RENORMALIZATION GROUP, AND
SCALING EQUATIONS

In what follows we consider the standardSimp51/2
Kondo model,

H5(
k

ekck
†acka1JSimp•(

k.k8
ck

†a
sa

b

2
ck8b , ~2.1!

and the multichannelSimp51/2 Kondo model. The Hamil-
tonian for theSimp51/2 k-channel Kondo model also in
cludes summation over different channelsj :

H5(
k j

ekck
†a jcka j1JSimp• (

k,k8, j

ck
†a j

sa
b

2
ck8j b . ~2.2!

Summation over repeated raised and lowered indiced is
plied. The crucial difference between these two models
be seen from the form of theb function:3

b~l!52l21
kl3

2
. ~2.3!

The flow of the effective coupling is different~Fig. 1! for
k51 andk.1. The low-temperature fixed point of the mu
tichannel Kondo problem is shown to have a non-Ferm
liquid nature.17 At large band multiplicity this nontrivial
fixed point becomes accessible perturbatively. This diff
ence is not important for the purpose of this section, and
use Eqs.~2.2! and~2.3! for both multichannel andk51 mod-
els.

The model is simplified if we assume spherically symm
ric Fermi surface. Indeed, linearizing the spectrum and
serving that scattering only takes place in thes-wave chan-
nel, we can expand the wave functions in spheri
harmonics:

cka j5
1

A4pk
c0a j~k!1~••• !,

H05E dke~k!c0
†a j~k!c0a j~k!1~••• !,

H int5l0vFE dkdk8c0
†a j~k!

sa
b

2
c0b j~k8!•Simp , ~2.4!

wheree(k)5vF(k2kF) is the linearized spectrum near th
Fermi surface, (•••) are higher harmonics, andk is the 1D

FIG. 1. RG flows for the single-channel and the multichan
Kondo problems.
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434 57VICTOR BARZYKIN AND IAN AFFLECK
wave vector. Herel05rJ is the dimensionless couplin
constant of the Kondo model, andr5kF

2/2p2vF is the den-
sity of states per spin.

The s-wave operators obey standard one-dimensional
ticommutation relations,

$c0
†a1 j 1~k!,c0a2 j 2

~k8!%5da2

a1d j 2

j 1d~k2k8!. ~2.5!

We define left and right movers on a band of width 2L
aroundkF :

cL,R[E
2L

L

dke6 ikrc0~k1kF!. ~2.6!

The 3D fermion operators are then written in the form

C~r !5
1

2A2pr
@e2 ikFrcL~r !2eikFrcR~r !#1~••• !,

~2.7!

where (•••) are higher harmonics. The left- and righ
moving fields defined onr .0 obey the boundary condition

cL~0!5cR~0!. ~2.8!

Flipping the right-moving field to the negative axi
cL(2r )[cR(r ), we rewrite the 1D Hamiltonian in terms o
the left-moving field only:

H5vFE
2`

`

drcL
†~r !~ id/dr !cL~r !

12pvFl0cL
†~0!

s

2
cL~0!•Simp . ~2.9!

The purpose of this paper is to analyze various sp
spin correlation functions. The most important of the
is the distance-dependent Knight shift, which can be m
sured in NMR experiments. If the impurity spin has
different gyromagnetic ratio from that of the conductio
electrons, the uniform magnetic field couples to t
spin operator Sh5Sel1(gS/2)Simp , where Simp and
Sel5(1/2)*drc†(r )sc(r ) is the total spin operator of th
impurity and conduction electrons, defined with channel s
for the multichannel problem. The expression for the Knig
shift then consists of the electron and impurity contributio

x~r ![E
0

b

dt^Sel
z ~r ,t!Sh

z~0!&5xel~r !1
gs

2
x imp~r !.

~2.10!

~We setmB51.! We will also consider the equal-time sp
correlatorK(r ), defined by

K~r ![^Sel
z ~r ,t50!Simp

z ~0!&. ~2.11!

The above 1D formalism allows to simplify this expressi
for largerkF@1. Substituting Eq.~2.7! in Eq. ~2.10!, we get

xA~r ,T!5
x2kF ,A~r !

4p2r 2vF

cos~2kFr !1
xun,A~r !

8p2r 2vF

, ~2.12!
n-

-

a-

t
:

where A corresponds to imp or el. ForK(r ,T) we get a
similar expression:

K~r ,T!5
K2kF

~r !

4p2r 2vF

cos~2kFr !1
Kun~r !

8p2r 2vF

~2.13!

The total electron spin in 1D is

Sel5
1

2pE2`

`

drcL
†~r !

s

2
cL~r !. ~2.14!

The uniform and 2kF parts take the form:

xun,A~r ,T![vFE
0

b

dt K FcL
†~r ,t!

sz

2
cL~r ,t!

1cL
†~2r ,t!

sz

2
cL~2r ,t!GSA

z ~0!L ,

x2kF ,A~r ,T![2vFE
0

b

dt K cL
†~r ,t!

sz

2
cL~2r ,t!SA

z ~0!L .

~2.15!

Expressions forKun and K imp are analogous to those fo
xun,imp and x2kF , imp in Eq. ~2.15!, although they do not in-

volve integration overt.
If the spins of the impurity and conduction electron ha

equal gyromagnetic ratio (gs52), the operatorSh
z is the total

spin of conduction electrons and impurity, and is conserv
The Knight shift is then given by Eq.~2.15!, with A5tot.
Since the Kondo interaction is local, only boundary (r 50)
operators have nonzero anomalous dimensions. Thus
conduction-electron spin operatorSel(r ) also has zero
anomalous dimension, forrÞ0. The local spin susceptibility
then obeys the following RG equation:

FD
]

]D
1b~l!

]

]lGx~T,l,D,rT/vF!50, ~2.16!

whereD is the ultraviolet cutoff~the bandwidth!, andb(l)
is theb function. So”rensen and Affleck have recently made
conjection,5 supported by perturbative and numerical resu
that in the scaling limit,rkF@1, T!EF , the spin suscepti-
bility has the following form:

xS rT

vF
,

T

TK
D5

x2kF
~rT/vF ,T/TK!

4p2r 2vF

cos~2kFr !, ~2.17!

where x2kF
is a universal functions of two scalin

variables.20 This form follows directly from Eqs.~2.15,2.16!.
In general, one expects that there could be a nonzero pha
Eq. ~2.17!, and a uniform term. It is easy to see that the ph
is zero due to particle-hole symmetry.5 Indeed, under
particle-hole transformationcL(r )→sycL

†(r ), so Stot→Stot ,
cL

†(r )scL(2r )→cL
†(2r )scL(r ). Particle-hole symmetry

of Eq. ~2.17! then requires that the phase is zero. This is
so for more realistic Hamiltonians, for which the particl
hole symmetry is broken. For such Hamiltonians there is
additional phasef in Eq. ~2.17!, but this phase does no
renormalize. That is, it is essentially constant in the scal
region (kFr @1). The fact that the uniform part of the spi
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57 435SCREENING CLOUD IN THEk-CHANNEL KONDO . . .
susceptibility is zero is less trivial. For thestatic local spin
susceptiblity we have proved6 that all graphs in perturbation
theory contain certain integrals that vanish. These prope
hold for the electron and impurity parts of the local sp
susceptibility Eq.~2.15! separately, for both single-chann
and multichannel Kondo effects~see Appendix B!. The uni-
form part and the phase are zero for the Knight shift in c
of nontrivial gyromagnetic ratio for the impurity spin (gS
Þ1) as well.

Since we consider the problem perturbatively, it is use
to express the scaling function Eq.~2.17! in terms of some
effective coupling constants at an energy scaleE,lE . This
way we eliminate nonuniversalTK . The energy scales o
interest are the temperatureT and the distance energy sca
vF /r . We will denote corresponding effective couplings
lT andl r . Expressions in terms of effective couplings c
be easily converted into those in terms ofTK , and vice versa,
provided that theb function is known up to the orde
needed. Indeed,

dlE

d ln~E/D !
[b~lE!, ~2.18!

whereD5vF /L is the bandwidth. Therefore, for the effe
tive coupling at two different energy scalesE and E8 we
have

E
lE

lE8 dl

b~l!
5 ln

E8

E
. ~2.19!

SincelTK
[1 can well be regarded as one of possible d

nitions of TK , we have

E
lE

1 dl

b~l!
5 ln

TK

E
~2.20!

and the arguments of the scaling function in Eq.~2.17! can
be replaced by corresponding effective couplings.

The renormalization-group equations for various parts
the local spin susceptibility in Eq.~2.15! are less trivial. Con-
sider firstx imp . Since the Kondo interaction is at the origi
the fermion bilinear operator has zero anomalous dimens
while the operatorSimp receives anomalous dimension,21

g imp.l2/2. Renormalizability implies that the function
xB, imp (B52kF , un! obey equations of the form:

FD
]

]D
1b~l!

]

]l
1g imp~l!GxB, imp~T,l,D,rT/vF!50,

~2.21!

where g imp(l) is the anomalous dimension, which in th
case is equal to the anomalous dimension of the impu
spin operator. The other correlatorxB,el contains the total
conduction-electron spin operatorSel , in which integration
over the electron spin includes a potentially dangerous
gion near the impurity site. In this region operator mixin
occurs between the electron spin and impurity spin. T
xB,el obeys the nontrivial mixed RG equation:

FD
]

]D
1b~l!

]

]lGxB,el~T,l,D,rT/vF!

5g imp~l!xB, imp~T,l,D,rT/vF!. ~2.22!
es
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f
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This equation can be obtained by subtracting Eq.~2.21! from
Eq. ~2.16!. It is more convenient to express the Knight sh
for gSÞ1 in terms ofx imp and x tot , which obey ordinary
scaling equations Eqs.~2.21!,~2.16!.

The solution of the scaling equation forxB, imp Eq. ~2.21!
has the following form:

xB, impS l0 ,
T

TK
,
rT

vF
D5e*

l0

lT[g imp~l!/b~l!]dlPB, impS lT ,
rT

vF
D

5FB, impS lT ,
rT

vF
De2*

0

l0[g imp~l!/b~l!]dl.

~2.23!

Here FB, imp(lT ,rT/vF), PB, imp(lT ,rT/vF) are some scal-
ing functions to be determined below;l05rJ is the bare
coupling constant. The solution of the scaling equations
x imp is a function ofT/TK and rT/vF , up to some nonuni-
versal coefficient. We see that the non-universal coeffici
exp@2*0

l0dl„g imp(l)/b(l)…# is equal to unity in the scaling
limit of zero bare couplingl0→0, if g imp(l0)/b(l0) is non-
singular in this limit. This is indeed the case for the Kon
model. The scaling functionFB, imp(T/TK ,rT/vF), of course,
can differ fromx2kF

(T/TK ,rT/vF) in Eq. ~2.17!. The equal-
time correlation functions also obey analogous scaling eq
tions Eq. ~2.21! with the anomalous dimension which is
sum of the dimension of the corresponding operators~for
x imp it is againg imp). These equations are also applicable
the uniform part of the correlator, which is now nonzero.

In the rest of this paper we will consider these scali
functions in various regimes, which we now outline. Scali
form is applicable forr @1/kF , and T!D'EF . For the
single-channel Kondo model perturbative treatment is o
valid for T@TK . From Eq.~1.1! one could expect that ther
could be two crossovers: one atjT and one at
jK@jT5vF /T. The latter crossover, however, doesnot hap-
pen as a function ofr for T@TK . The low-temperature cor
relation functions in the single-channel Kondo effect can
studied using the Fermi-liquid approach.3 The region of va-
lidity for this approach isr @jK , T!TK . It provides impor-
tant information about the low-temperature long-distan
form of the correlation functions, and the crossover
jT@jK , but is unable to access the most interesting reg
r;jK , and answer the question of existence of the screen
cloud. For the multichannel Kondo effect the low
temperature long distance correlation functions can be
tained using the conformal field theory approach,17–19which
is a generalization of Nozie`res’ Fermi-liquid picture. It is
also limited to r @jK , T!TK . The interesting low-
temperature region withr;jK only becomes accessible a
largek, when the whole scaling function can be construct

III. THE SINGLE-CHANNEL KONDO MODEL

A. The Knight shift

In what follows we consider the Knight shift in the single
channel Kondo model. As mentioned above, the local s
susceptibility only has the oscillating part. We have calc
lated it up to the third order in perturbation theory.6 Sum-
ming all the relevant diagrams~see Appendix A!, we obtain
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436 57VICTOR BARZYKIN AND IAN AFFLECK
x2kFS x5
rT

vF
,l0 ,D D

5
p2

4 sinh~2px!
$l01l0

2@ ln~D/T!1M ~x!1x#

1l0
3
„ln2~D/T!1 ln~D/T!@2M ~x!12x20.5#

1@M ~x!1x#@M ~x!10.5#1const…%, ~3.1!

where

M ~x!5 ln@12exp~24px!#. ~3.2!

Substituting this expression in Eq.~2.21! we find that scaling
is indeed obeyed. At smallr , x!1, Eq. ~3.1! is rewritten as

x2kF
~r ,l0 ,D !5

pvF

8rT
@l01l0

2ln~L̃r !1l0
3ln2~L̃r !

10.5l0
3ln~L̃r !2l0

3ln~D/T!1l0
3const#,

~3.3!

where L̃54pD/vF54pL;kF . It is clear from Eq.~3.3!
that the infrared divergences of the perturbation theoryare
not cut off at low T by going to smallr , as was noticed by
Gan.4 In the third order, these divergences are associa
with the graph shown in Fig. 2. Due to the nonconservat
of momentum by the Kondo interaction, the bubble on
right gives a logarithmicT-dependent factor which is inde
pendent ofr . Thus, the interior of the screening cloud do
not exhibit weak-coupling behavior.

It is convenient to rewrite this result in terms of effectiv
couplings at the energy scalesT and vF /r . One can easily
write down the effective coupling constant22 at some energy
scalev using the well-knownb function Eq.~2.3!:

lv5l01l0
2ln~D/v!

1l0
3@ ln2~D/v!2~1/2!ln~D/v!1const#. ~3.4!

We find that the expression forx2kF
is simplified when we

use effective couplingslT andlE at the energy scalesT and
E(x)5T/@12exp(24px)#e, x5r /jT . Whenr !jT the latter
becomes the effective coupling at the distance scaler , since
E(x)}vF /r . Equation~3.1! in terms of these effective cou
plings takes the form:

x2kFS x5
rT

vF
,lTD5

@lE1~3p/2!lE
2x1constlE

3 #~12lT!

~4/p2!sinh~2px!
.

~3.5!

FIG. 2. Singular third-order graph forx(r ,T).
d
n
e

It is instructive to consider various limiting cases for th
scaling function Eq.~3.5!. For r !jT we find

x2kF
~x,lT!5~p/8x!~l r1constl r

3!~12lT!. ~3.6!

The factor (12lT)/4T in Eq. ~3.6! is, to the order under
consideration, precisely the total impurity susceptibili
x tt(T). This is the total susceptibility less the bulk Pau
term. Thus Eq.~3.6! can be written

x2kF
~lT,l r !→

l r

2~r /pvF!
x tt~T!. ~3.7!

We conjecture that this equation is exact, for arbitraryT/TK
in the short distance limit,r !vF/T,jK . According to our
conjecture, the infrared divergences which are not cut off
going to smallr are simply the ones which produce the fun
tion x tt(T). since this function has been calculated acc
rately from the Bethe ansatz1 @althoughx(r ,T) has not#, our
conjecture, if correct, has considerable predictive power
the experimentally interesting regionr !jK . We show below
that this conjecture is consistent with the behavior of
integrated susceptibilities and also with the large-k limit.
This conjecture can be understood graphically. In Fig. 2,
bubble atr 50 is simply the one-loop, logarithmically diver
gent, contribution tox tt(T). The other loop connecting th
origin to the pointr makes a factorized contribution. Addin
arbitrary additional insertions and loops atr 50, while leav-
ing the simple bubble connecting 0 tor , gives the factor of
x tt(T). We conjecture that all additional insertions where t
two lines fromr split, etc. are not infrared divergent. As on
can see from Eq.~3.5!, this factorization breaks down atr
;vF/T.

We can compare this result with the experiment of Boy
and Slichter,9 who have measured the Knight shift from C
nuclei near the doped Fe impurities, at distances up to fi
nearest neighbor. At these very small distances of order
few lattice spacings, they have found empirically that t
Knight shift obeyed a factorized form,x(r ,T)' f (r )/T
1TK), with rapidly oscillating functionf (r ) for a wide
range ofT extending from well above to well below th
Kondo temperature. Although our conditionr @1/kF is not
satisfied in this experiment, this form coincides with E
~3.7!, since the Bethe ansatz solution forx tt(T) may be quite
well approximated1 by 1/(T1TK) at intermediate tempera
turesT;TK .

On the other hand, forr @jT , the spin susceptibility takes
the following ~nonfactorized! form:

x2kF
~x,lT!5~3p3/4!lT

2~12lT!e22px. ~3.8!

For high temperaturesT@TK there is no crossover atr
;jK in the behavior of the local spin susceptibility.

At low temperaturesT!TK and large distancesr @jK the
behavior ofx(r ) is determined by the zero-energy Ferm
liquid fixed point.5 The Kondo impurity acts as a potentia
scatterer with a phase shiftp/2 at the Fermi surface.3 The
local susceptibility follows directly from the formula fo
Friedel’s oscillation in the electron density for ans-wave
scatterer andp/2 phase shift,
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n~r !5n02
1

2p2r 3
cos@2kFr 1p/2#. ~3.9!

Since the magnetic fieldH simply shifts the chemical poten
tial by 6gmBH/2 for spin-up or spin-down electrons,

x~r ,T!5
1

vF

dn

dkF
5

r

2
1

1

4p2vFr 2cos~2kFr !. ~3.10!

This implies for the scaling function Eq.~2.21!:

x2kF
51. ~3.11!

The finite-temperature properties ofx2kF
(r ), and, in par-

ticular, the crossover atr;jT can be obtained directly from
the Nozières’ low-energy Hamiltonian for the Fermi-liqui
fixed point:3,17

H05E
2`

1`

drcL
†~r !

d

dr
cL~r !1

d~r !

TK
Sel

2 ~r !, ~3.12!

whereSel(r )[cL
†(r )(s/2)cL(r ). This definition ofTK dif-

fers from one in Eq.~2.20! or x tt}1/(T1TK) by numerical
factorsO(1) ~Wilson ratio!. The expression forx2kF

(r ), Eq.
~3.11!, is zero order in the leading irrelevant coupling co
stant 1/TK , and the finite-temperature form ofx2kF

(r ) is
easily obtained:

x2kF
~x!5

2px

sinh~2px!
, x5

rT

vF
. ~3.13!

We can derive corrections to Eq.~3.13! by doing perturba-
tion theory in the leading irrelevant operator. For the fi
correction we obtain

dx2kF
~x!5

p2T

TKsinh~2px!
. ~3.14!

The first correction does not alter the leading-order behav
At zero temperature the scaling function forr @jK takes the
following form:

x2kF
~r /jK!511p

jK

2r
. ~3.15!

This correction gives rise to the first term in the larg
distance expansion of our scaling functionx2kF

(r /jK). The

behavior of the scaling functionx2kF
in different regimes is

summarized in Fig. 3.x2kF
(r /jK ,r /jT) exhibits a crossove

at low T, when the ‘‘screening’’ cloud is formed. At high
temperatures this crossover is absent.

What happens when theg factor of the impurity is
anomalous?x2kF

(r ,T) is a sum of impurity and electron

parts, x2kF , imp and x2kF ,el . As we have discussed in th
previous section, the latter obeys a complicated mixed
equation, Eq.~2.22!. It is more convenient to express th
spin susceptibility in terms of the correlatorsx2kF ,tot(r ,T)

andx2kF , imp(r ,T), for which RG equations are simple:

x2kF
~r ,T!5~gS/2!x2kF , imp~r ,T!1x2kF ,el~r ,T!,
-

t

r.

-

G

x2kF ,el5x2kF ,tot~r ,T!2x2kF , imp~r ,T!. ~3.16!

Since we have already determinedx2kF ,tot(r ,T), it is suffi-

cient to consider onlyx2kF , imp(r ,T). From the perturbative
analysis~see Appendix A! we obtain

x2kF , impS x5
rT

vF
,l0 ,D D

5
p2

4 sinh~2px!
$l01l0

2@ ln~D/T!1M ~x!10.5#

1l0
3
„ln2~D/T!12ln~D/T!M ~x!

1@M ~x!10.5#21const…%, ~3.17!

whereM (x) is the same as in Eq.~3.2!. One can easily check
that Eq.~2.21! is obeyed with22,4

b~l!52l21
l3

2
, g imp~l!5

l2

2
. ~3.18!

We then obtain for the nonuniversal factor in Eq.~2.23!:

e2*
0

l0[g imp~l!/b~l!]dl.11
l0

2
, ~3.19!

and the local impurity spin susceptibility takes the followin
form:

x2kF , imp.S 11
l0

2 Dx2kF

~1! ~lT ,x!, ~3.20!

where the scaling function

x2kF

~1! ~lT ,x!5
~lE1constlE

3 !~12lT!

~4/p2!sinh~2px!
~3.21!

differs from that for the conserved local susceptibility E
~3.5!. For the electron part we obtain

x2kF ,el'2
l0

2
x2kF

~1! ~lT ,x!1
~3p/2!lE

2x~12lT!

~4/p2!sinh~2px!
.

~3.22!

The second contribution does not vanish in the scaling li
l0→0. However, it only becomes substantial at large d
tancesr;jT , where there is no additional smallness asso
ated with the factorx5r /jT . We conclude that two differen

FIG. 3. Scaling regimes forx2kF
(lT ,x5r /jT) in the single-

channel Kondo effect.
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scaling functions are present in the experimentally measu
Knight shift, and their share depends upon the gyromagn
ratios for the impurity and the conduction electrons.

B. Integrated susceptibilities

It is instructive to consider the integral ofx(r ,T) over all
space. This quantity determines the polarization of
screening cloud in external magnetic field. We immediat
see that the contribution from large distances vanishes
cause of the oscillatory behavior ofx(r ,T) at larger . Nev-
ertheless the integral can be finite due to the contribution
small distancesr;1/kF . We will specify three different spin
correlators:

x tt~T![
^Stot

z Stot
z &

T
, x ti~T![

^Simp
z Stot

z &
T

,

x ii~T![E
0

b

^Simp
z ~t!Simp

z ~0!&dt. ~3.23!

For this choice of correlators the RG equations are sim
fied, and have the form Eq.~2.21!. It seems more natural to
define correlators of the impurity spin and the to
conduction-electron spinSel instead ofStot :

xee~T![E
0

b

^Sel
z ~t!Sel

z ~0!&dt2x0 ,

xei~T![E
0

b

^Sel
z ~t!Simp

z ~0!&dt, ~3.24!

wherex0 is the free-electron susceptibility, proportional
the volume of the system. However, for this set of spin c
relators the RG equations are mixed.

Two of the three spin-correlation functions can be m
sured. The first one is the bulk susceptibility,x tt(T). The
electron-spin polarization in the presence of an impurity
determined by the spatial integral ofx(r ) measured in the
Knight-shift experiment Eq.~2.10!, or, equivalently, by
x tt(T)2x ti(T). If the gyromagnetic ratio for the impurity is
different from 2, the experimentally measured magnetic s
ceptibility is (gs

2/4)x ii1gsx ie1xee, while the integrated
electron susceptibility is given by (gs/2)x ie1xee.

SinceStot
z is conserved, the spin susceptibilities obey t

RG equation, Eq.~2.21!, with anomalous dimensions dete
mined by the dimensiong imp(l) of the operatorSimp

z . For
the three different susceptibilities:g tt50, g ti5g imp , and
g ii52g imp . The solutions of these equations take the fo
Eq. ~2.23!,

4Tx j~T!5F j~lT!e2*0
l[g j ~l!/b~l!]dl, ~3.25!

where j labels tt, ti or ii. From our third-order perturbativ
analysis using Wilson’s result23 for x tt(T) we have obtained
that the functionsF j (lT).12lT coincide for all three sus
ceptibilities up to and including terms of orderlT

2 . If this is
indeed the case in the Kondo model, we then obtain from
~3.25! that in the scaling limitl0→0 bothxee(T) andx ie(T)
vanish. At finite bare couplings these susceptibilities a
become finite, with nonuniversal amplitudes. We then obt
ed
tic

e
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e
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from Eq. ~3.25! for the impurity-electron and electron
electron pieces of the spin susceptibility:

x ie.2
l0

2
x tt~T!,

~3.26!

xee.
l0

2

4
x tt~T!.

Thus, the integrated distance-dependent Knight shift obe

E x~r ,T!dr5xee~T!1x ie~T!'2
l0

2
x tt~T!. ~3.27!

The major contribution to Eq.~3.27! comes from the
electron-impurity correlator. It should be emphasized that
result is nonzero at finite bare couplingl0. @A typical experi-
mental value ofl0 might be 1/ln(EF /TK)'0.15.# It is easy to
see that the integral in Eq.~3.27! is dominated byr;1/kF .
Thus most of the small net polarization of the electrons i
magnetic field ~with the free-electron value subtracte!
comes from very short distances. However, this should
be interpreted as meaning that the screening cloud is sma
can be clearly seen from the equal-time correlation funct
discussed in the next subsection.

If the equality of the scaling functionsF j (lT) defined in
Eq. ~3.25! holds at allT, the integrated electron-spin susce
tibility vanishes in the scaling limit of zero bare coupling
all T. The fact thatx ie andxee are suppressed in the scalin
limit has been known or conjectured from a variety of d
ferent approaches over the years. The earliest result of
sort that we are aware of, in the context of the Anders
model, predates the discovery of the Kondo effect and
referred to as the Anderson-Clogston compensa
theorem.10 It was later established atT50 from the Bethe
ansatz solution.12 A very simple and general proof13 of this
result follows from the Abelian bosonization approach.24 Be-
ginning with left-moving relativistic fermions on the entir
real line, as in Eq.~2.9!, we may bosonize to obtain left
moving spin and charge bosons. The charge boson decou
and the Hamiltonian for the Kondo Hamiltonian can be wr
ten in terms of the left-moving spin boson,fL which obeys
the canonical commutation relation:

@fL~r 8!,] rfL~r !#5~ i /2!d~r 2r 8!. ~3.28!

The Hamiltonian becomes

H5E
2`

`

drFvF„] rwL~r !…22
he

A2p
] rwL~r !G1HK2hiS

z,

HK52pvFl0FSz] rwL~0!

A2p
1const•~S1eiA8pwL~0!1H.c.!G .

~3.29!

Herehi andhe are the magnetic fields acting on the impuri
and the conduction electrons, correspondingly. These fi
may differ by the ratio of correspondingg factors. We can
get rid of the*dr] rwL(r ) term by shifting the bosonic field

wL~r !5w̃L~r !1her /vFA8p. ~3.30!
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The Hamiltonian in terms of the new bosons takes the fo

H5E
2`

`

drvF„] r w̃L~r !…22
he

2L

4pvF
1A2pvFl0Sz] r w̃L~0!

1const•2pvFl0~S1eiA8pw̃L~0!1H.c.!2S hi2
hel0

2 DSz.

~3.31!

Thus, our original Hamiltonian with nonzero fieldhe act-
ing on the conduction electrons is exactly equivalent to
one with no field acting on conduction electrons and mo
fied impurity field. The same argument was given in Ref.
except that the field shift byhel0/2 was not obtained becaus
another, noncommuting, canoncial transformation was p
formed first to eliminate thez component of the Kondo in
teraction.

In terms of the free energy, this is written as

F~hi ,he!52
he

2L

4pvF
1FS 0,hi2

hel0

2 D . ~3.32!

Taking magnetic-field derivatives, we easily find

x ii52
]2F

]hi
2 ,

x ie 52
]2F

]hi]he
52

l0

2
x ii , ~3.33!

xee52
]2F

]he
2 2x05S l0

2 D 2

x ii ,

wherex05L/2pvF is the Pauli term. It is easy to see th
this is valid for the anisotropic Kondo model as well, withl0
being thez component of the Kondo interaction.

C. Equal-time spin-spin correlator

The equal-time spin correlators provide a snapshot of
Kondo system. The quantity of interest is

K~r ,T!5^Sel
z ~r ,0!Simp

z ~0!&. ~3.34!

As we have shown in the previous sections, it satisfie
nonzero sum rule:

E drK~r ,T!521/4. ~3.35!

The proof thatxun(r )50 is based on the fact that the tim
integral for the Feynman diagrams is zero in all orders
perturbation theory~see Appendix B!. For the equal-time
correlator we do not integrate over the time variable, so
uniform part does not have to vanish.K(r ,T) can be rewrit-
ten in 1D in terms of the uniform and 2kF parts, Eqs.
~2.17,2.15!. For the same reason as for the impurity part
the Knight shift, the equal-time correlator obeys the scal
equation~2.21!, with solutions of the form Eq.~2.23!. Since
the decomposition ofK(r ,T) into the uniform and 2kF parts
is only valid in the scaling regionkFr @1, the sum rule Eq.
e
i-
5

r-

e

a

n

e

f
g

~3.35! does not necessarily extend toKun(r ,T). The region
r;1/kF could produce a large contribution to the sum ru
Eq. ~3.35!.

Consider now the equal-time correlatorsKun(r ,T) and
K2kF

(r ,T) perturbatively. In the third order we obtain~see
Appendix A!:

Kun~r ,T!5
p2$2l0

21~1/2!l0
322l0

3ln@D/T#%T

exp~2pr /jT!21

1p2Tl0
3G1~r /jT!,

~3.36!

K2kF
~r ,T!2Tx2kF

~r ,T!

5p2l0
3TFG2~r /jT!2

ln~12e22pr /jT!

4 sinh~2pr /jT!G .
G1,2(x) are some functions which can be represented as
tegrals:

G1~x!5E
0

1 2ds

12sF 1

e2px21
1

s

12s
lnS 12e22px

12se22pxD G ,
~3.37!

G2~x!5E
0

1

ds
e22pxs

~12s!~12se24px!
lnF12se22px

12e22px G .
It is easy to check that Eq.~2.21! is satisfied for both uniform
and 2kF parts. The solutions are found in the form Eq.~2.17!
with the nonuniversal factor Eq.~3.19!. The scaling func-
tions are easily obtained from Eq.~3.36!. The final expres-
sions are simplified in the most interesting limiting cas
For r !jT we obtain

Kun~l r ,r /jT ,l0!52
pvFl r

2~11l0/2!

2r
,

~3.38!

K2kF
~l r ,r /jT ,l0!5

pvFl r~11l0/2!

8r
.

In case ofr @jT , these functions take the form:

Kun~l r ,r /jT ,l0!52p2TlT
2S 11

l0

2 De22pr /jT,
~3.39!

K2kF
~l r ,r /jT ,l0!5

p2Tl0

2 S 11
l0

2 D ~12lT!e22pr /jT.

Note thatK2kF
is suppressed in this limit by the small valu

of the bare coupling. Like the local spin susceptibility, t
equal-time correlator does not have crossover atr;jK at
high temperatures. Instead, the corresponding scaling fu
tion for r @jT has a factorized form,K(r /jT ,T/TK)
} f 1(r /jT) f 2(T/TK).

The behavior of the equal-time correlation function
T!TK and r @jK can be calculated using Nozie´res Fermi-
liquid approach. Indeed, the impurity spin at the infrar
Kondo fixed point should be replaced by the local spin d
sity J(0) for r'0, up to a constant multiplicative factor17,18

Simp}
vFJL~0!

TK
. ~3.40!
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Substituting this in the definition ofKun andK2kF
, we obtain

at finite T

K2kF
~r /jT!52~1/2!Kun~r /jT!5

constT2

TKsinh2~pTr/vF!
.

~3.41!

Thus, at T→0 the equal-time correlatorK decays as
sin2kFr/r4 @see Eq.~2.13!#. This result was obtained by Ishii26

in the context of the Anderson model. The behavior of
equal-time correlatorsK2kF

(r ) and Kun(r ) in different re-
gimes is summarized in Figs. 4 and 5.

IV. LARGE- k MULTICHANNEL KONDO MODEL

The information that one gets for the single-chan
Kondo model using perturbative RG is very limited, and fu
ther numerical analysis is required. To justify the presenc
the Kondo length scale more, we analyze the multichan
model with large band multiplicity. The generalization of th
above perturbative analysis to the multichannel case is q
straightforward. The Hamiltonian for theSimp51/2
k-channel Kondo model is given by Eq.~2.2!. Further analy-
sis of Sec. II applies to the multichannel case as well. So
of the relevant perturbative 1/k calculations for the multi-
channel Kondo effect were done by Gan.4 His scaling equa-
tions and conclusions about the screening cloud are, h
ever, different from ours. We refer to some of his resu
below.

FIG. 4. Scaling regimes for the oscillating part of the equal-ti
spin-spin correlatorK2kF

(lT ,x5r /jT) in the single-channel Kondo
effect.

FIG. 5. Scaling regimes for the uniform part of the equal-tim
correlatorKun(lT ,x5r /jT) in the single-channel Kondo effect.
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A. The local spin susceptibility

Spin susceptibilities of the multichannel Kondo proble
also satisfy RG equation Eq.~2.21!. However, the diagrams
which contribute to the same order in 1/k are different from
the single-channel case. Since the low-temperature fi
point for coupling constant is;1/k, each vertex produces
1/k factor. @Here we assume that the bare coupling,l0, is
also O(1/k).# Each loop, on the other hand, gives a lar
factor ofk. Combination of these factors determines the d
grams that one needs to calculate to a given order in 1/k. The
number of diagrams is finite~see Appendix A for details!.
We shall calculate the spin correlators of interest up to
first nonzero order in 1/k.

The solution of the scaling equations for the coupli
constant up to subleading order in 1/k were obtained by
Gan.4 From the calculation of the conduction electron se
energy he found that theb function is given by

b~lE!52lE
21

1

2
klE

31
1

2
kalE

42
1

4
k2lE

5 , ~4.1!

wherea is some nonuniversal number, which depends on
cutoff procedure. The flow for the overscreened Kon
model is shown in Fig. 1. The low-temperature physics
determined by the intermediate-coupling stable fixed po
l* given byb(l* )50:

l* 5
2

kS 11
224a

k D . ~4.2!

The position of the fixed point is not universal. On the oth
hand, the slope of theb function at this fixed point,
D[b8(l* ) is the dimension of the leading irrelevan
operator,17 and should be universal:

D5b8~l* !5
2

k12
. ~4.3!

This fact is readily checked from Eq.~4.1!.
It is sufficient for our purposes to consider theb function

in the leading order in 1/k, Eq. ~2.3!. At this order
l* 5D52/k. Solving Eq.~2.18!, we obtain

k

2
~fE1 lnufEu!5 ln

E

TK
, ~4.4!

where

TK5D expF k

2
2

1

l0
G S kl0/2

12kl0/2D
k/2

,

fE[
2

klE
21. ~4.5!

We assume that the bare couplingl0 is sufficiently weak on
the 1/k scale,l0,2/k. Then the solution for the running
coupling constant is rewritten as

lE5
l*

F ~21!@~E/TK!D#11
. ~4.6!

Here F (21)(y) is the function inverse toF(x)5x exp(x).
The asymptotic form of this solution atE!TK is also useful:
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lE5l* 2S E

TK
D D

. ~4.7!

The analysis of the local spin susceptibility is parallel
the single-channel case~Sec. III!. It is easy to see that th
uniform part of the local spin susceptibility should vanish
the multichannel model as well~see Appendix B!. Therefore,
for the most general magnetic impurity~i.e., with gyromag-
netic ratio not necessarily 2! we are left with electron and
impurity parts of the oscillating local spin susceptibili
x2kF ,el(r ,T),x2kF , imp(r ,T). The RG equations that thes
quantities satisfy were considered in Sec. II. The only diff
ence with the single-channel case is that theb function and
anomalous dimension are different, withg imp(l) now given
by

g imp~l!5
kl2

2
. ~4.8!

The nonuniversal scale factor for the solution of the R
equations Eq.~2.17! then is

expF2E
0

l0g imp~l!

b~l!
dlG.

1

12kl0/2
. ~4.9!

The scaling functions in the large-k limit are determined
from the perturbative analysis~see Appendix A!. We find
again that the scaling equations Eq.~2.21! are obeyed, and
the solutions are given by

x2kF , imp~lT ,x!5
1

12kl0/2

x2kF

~1! ~lT ,x!

sinh~2px!
,

x2kF ,tot~lT ,x!5
~3p3/8!klE

2x

sinh~2px!
1

x2kF

~1! ~lT ,x!

sinh~2px!
,

~4.10!

where

x2kF

~1! ~lT ,x!5~p2/4!~12klT/2!2
klE

12klE/2
, ~4.11!

and lE is the coupling at the energy scaleE(x)5
T/@12exp(24px)#e, just like in the single-channel case.lE ,
lT are functions ofE/TK or T/TK given by Eq.~4.6!. Using
Eq. ~4.10! together with Eq.~4.6! we determine the scaling
functionsx2kF , imp andx2kF ,el up to the leading order in 1/k

in the scaling limitl0→0, r @1/kF at all temperatures:

x2kF , imp~T/TK ,x!5
p2

2 sinh~2px!S F ~21!@~T/TK!D#

F ~21!@~T/TK!D#11D 2

3
1

F ~21!@~E/TK!D#
,

x2kF ,el~T/TK ,x!5
3p3x

2k sinh~2px!

1

$F ~21!@~E/TK!D#11%2 .

~4.12!

It is interesting to note that Eq.~4.11! has a factorized
form, where theT dependence is once again that of the s
-

n

x2kF

~1! ~lT ,x!5
2p2Tx tt~T!

F ~21!@~E/TK!D#
. ~4.13!

Consider now Eq.~4.10! in various limits. Obviously,
lE5l r for r !jT , andlE5lT for r @jT . At high tempera-
turesjT!jK , and the crossover atr;jK does not happen—
just like we have seen in the single-channel case. Forr @jT
the correlation functions decay exponentially, just as
have seen in the single-channel case. The most interesti
the low-temperature limitT!TK , r !jT . In this limit we
find

x2kF , impS T

TK
,

r

jT
D5

pjT

4r

~T/TK!2D

F ~21!@~jK /@4pr # !D#

1

12kl0/2
,

x2kF ,elS T

TK
,

r

jT
D5

3p2

4k

1

$F ~21!
†~jK /@4pr # !D

‡11%2

1~kl0/2!x2kF , impS T

TK
,

r

jT
D . ~4.14!

The scaling function for the electron piece in the limitl0→0
appears in the subleading order in 1/k. For nonzero bare
coupling there is also a piece in the leading order, which
proportional to the impurity scaling function in Eq.~4.14!
and the anomalous factor.

As in the single-channel case, the weak-coupling beha
is not recovered inside the screening cloud. Outside
screening cloud, forT!TK and jK!r !jT , the local spin
susceptibility takes the form

x2kF ,totS T

TK
,
rT

vF
D5

pvF

4rT S 4prT2

jKTK
2 D D

1
3p2

4k
. ~4.15!

The T divergence is not removed at low temperatures, a
Eq. ~4.15! does not have the Fermi-liquid form, as one cou
expect for a non-Fermi-liquid low-temperature fixed poin
The distance-dependent Knight shift for overscreened Ko
fixed point can also be understood atr .jK using the gener-
alization of the Nozie`res’ Fermi-liquid approach develope
by Affleck and Ludwig.17

The spin susceptibility is obtained as the leading term
the low-temperature fixed point plus corrections in the le
ing irrelevant operator. For the overscreened Kondo fix
point the leading irrelevant operator contribution corr
sponds to the second term in Eq.~4.15!. It is surprising that
the dominant divergent term@the first term in Eq.~4.15!# in
the limit T→0, r !jT , or in the limit k→` appears in the
first order in the leading irrelevant coupling. An interest
reader can find the details on this technical point in App
dix C.

B. Integrated susceptibilities

As we have seen for the single-channel case, the s
spin susceptibility is mostly given by the impurity-impurit
correlation function,x ii (T), while other pieces contribute
only a small fraction which is proportional to the bare co
pling constant, or bare coupling constant squared. It is e
to see that this is also the case for the multichannel mo
Indeed, according to Gan,4
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x ii~T!5
1

4T S 12kl0
2ln

D

T D ,

x ie~T!52
l0k

8T S 12kl0
2ln

D

T D , ~4.16!

xee~T!5
l0

2k2

16T S 12kl0
2ln

D

T D .

Thus, from the scaling equations Eq.~2.21! we obtain

x ii5
x tt

~12kl0/2!2
, x it5

x tt

12kl0/2
, ~4.17!

where the scaling function for the total spin susceptibility
given by

x tt5
1

4T S 12
klT

2 D 2

. ~4.18!

Using Eq.~4.6!, we can rewrite Eq.~4.18! in the form

x tt~T!5
1

4TS F ~21!@~T/TK!D#

F ~21!@~T/TK!D#11D 2

. ~4.19!

The electron-impurity and impurity-impurity correlators co
tain smallness associated with the bare coupling:

x ie.2
kl0

2
x tt~T!, xee.

k2l0
2

4
x tt~T!. ~4.20!

Thus, the spin susceptibility is given mostly by the impurit
impurity spin correlator, and for a system with impurityg
factor gÞ2 there are corrections to the bulk susceptibil
proportional to the bare coupling. ForT,TK the scaling
function for the total spin susceptibility takes the form:

x tt.
1

4T S T

TK
D 2D

. ~4.21!

As in Sec. III B, this fact is easily understood in the boso
language using canonical transformation. The bosoni
Kondo Hamiltonian for thek-channel model has the form

H5E
2`

`

drF „] rwL~r !…22he

Ak

A2p
] rwL~r !G

1H0
para1A2pkl0Sz] rwL~0!1const•l0

3~S1eiA8p/kwL~0!Opara1H.c.!2hiS
z. ~4.22!

Here w is the canonically normalized total spin boson, i.
the sum of the spin bosons for each channel divided byAk.
The additional, independent degrees of freedom wh
couple to the impurity correspond to the SU(2)k Wess-
Zumino-Witten model with one free boson factored out. T
is the Zk parafermion model.27 For thek52 case it corre-
sponds to an extra Ising degree of freedom, or equivalent
Majorana fermion. These extra degrees of freedom play
role in the canonical transformation.

Changing the bosonic fieldwL(r )5w̃L(r )1Akher /A8p,
the Hamiltonian takes the form
d

,

h

s

a
o

H5E
2`

`

dr„] r w̃L~r !…21H0
para2

k

8p
he

2~2L !

1A2pkl0Sz] r w̃L~0!

1const•l0~S1eiA8p/kw̃L~0!Opara1H.c.!2S hikl0

he

2 DSz.

~4.23!

Thus, for the free energy, we have

F~hi ,he!52
Lk

4pvF
he

21FS 0,hi2
hekl0

2 D . ~4.24!

For the susceptibilities we then obtain

x ie52
kl0

2
x ii , xee5S kl0

2 D 2

x ii , ~4.25!

with x05(k/2pvF)L, the Pauli term. This agrees with th
large-k results.

Let us now return to the issue of screening. The electr
total piece of the spin susceptibility,xet5xee1xei , is given
by the integral of the local spin susceptibilityx(r ,T). As in
the single-channel case, sincex(r ,T) only has the oscillating
piece, this integral is determined by the short-distance c
tribution, r;1/kF . The form ofx(r ,T) at r;1/kF is cutoff
dependent. However this dependence disappears in the
gral, which describes conduction-electron spin polarizati
In case of a 3D Fermi gas the cutoff procedure is well d
fined. The fact that the net conduction-electron spin polari
tion due to impurity comes mainly fromr;1/kF is indeed
justified to the orders we worked in perturbation theo
From Eq.~4.10!, with lE.l r.l0&1/k we can write for the
local spin susceptibility:

x~r ,T!5
kl0x tt~T!

12kl0/2S cos2kFr

8pr 3
2

sin2kFr

16pkFr 4D . ~4.26!

We have checked this conjecture to the leading order ink.
Integration of this expression overr gives the correct resul
for xet,

xet~T!5
2kl0/2

12kl0/2
x tt~T!. ~4.27!

Obviously, the major contribution to the integral

E
0

`

d3rx~r ,T!}E
0

`

dr
d

drS sin2kFr

2kFr D ~4.28!

comes fromr;1/kF .

C. Equal-time correlation function

As we have seen above, the zero-frequency spin c
relator vanishes asT2D whenT→0. It also obeys a zero-sum
rule. As in the single-channel case, the equal-time spin c
relator K(r ,T)5^Sel

z (r ,0)Simp
z (0)& has a nonvanishing sum

rule, since^Sel
z Simp

z &521/4. The uniform part of the equal
time spin correlator is nonzero.

Consider the equal-time correlatorsKun(r ,T) and
K2kF

(r ,T) using the 1/k expansion.K(r ,T) satisfy scaling
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equations Eq.~2.21!. As in the single-channel case, forr .jT
the spin correlators decay exponentially. The behavio
most interesting forr !jT , where our expressions are co
siderably simplified. Expressing our results in terms of eff
tive coupling at scaler ,l r , we get

Kun~l r ,r /jT!52
1

12kl0/2

pvFkl r
2

2r
~12kl r /2!2,

~4.29!

K2kF
~l r ,r /jT!5

1

12kl0/2

pvF

8r
kl r~12kl r /2!.

We can rewrite these expressions using Eq.~4.6! in terms of
T/TK ,r /jT variables. Suppressing the anomalous fac
1/(12kl0/2), we obtain

KunS T

TK
,

r

jT
D52

2pTjT

kr
L2@~4pr /jK!D#,

K2kFS T

TK
,

r

jT
D5

pTjT

4r
L@~4pr /jK!D#, ~4.30!

whereL(x) is the function defined by

L~x![
F ~21!~1/x!

@F ~21!~1/x!11#2
. ~4.31!

A plot of this function is shown in Fig. 6. As we have di
cussed in Sec. III, the integral ofK(r ,T) should not vanish.
It is given by Eq.~3.35!, as in the single-channel case. T
integral over long distancesr;jK can be calculated explic
itly from Eq. ~4.29! by changing variabler→l r . Using Eq.
~2.18!,

FIG. 6. Scaling functionL(x).
is

-

r

E
0

`drKun~l r ,r !

2pvF
5E

l0

l* kl r22

22kl0

dl r

2l*
5

kl022

8
.

~4.32!

Thus, in this case the screening length;jK is explicitly
present. The dependence on the bare coupling constantl0 is
surprising, since it should not be there according to the s
rule Eq.~3.35!. The missing part of the sum rule comes fro
the short distances. To provide the most transparent dem
stration of this, we write the second equation in Eq.~4.29!
for a 3D Fermi gas, so that cos(2kFr) is replaced by
cos(2kFr)2@sin(2kFr)/2kFr #, as in Eq. ~4.26!. The short-
distance integral, which is analogous to Eq.~4.28!, gives
precisely the compensating term2kl0/8 needed for the sum
rule Eq.~3.35! to be obeyed.

The low-temperature decay of the equal-time correlato
r @jK in the overscreened multichannel Kondo model can
obtained using conformal field theory approach~see Appen-
dix C!. Indeed, at the low-temperature fixed point w
have17,18

Simp→constf~0,0!TK
2D , ~4.33!

where f is the s51 primary of dimensionD52/(21k),
const is a nonuniversal constant. We then obtain forK2kF

from conformal invariance:

K2kF
~r !}K ~f~0,0!•s!

2TK
D

cL
†~0,r !cL~0,2r !L }

1

TK
Dr 11D

,

~4.34!

in agreement with the large-k result Eq.~4.30!. The same
leading-order calculation gives zero forKun, since
^f(0,0)•J(0,r )&50. The first-order term in the leading ir
relevant operator gives

Kun~r !}
1

TK
2Dr 112D

, ~4.35!

which also agrees with Eq.~4.30!. It is interesting to note
that, unlike the single-channel Kondo model, the lon
distance decay of the uniform and 2kF correlators is differ-
ent.

V. CONCLUSION

Although the techniques employed in this paper
renormalization-group improved perturbation theory and
large-k limit—are of limited validity, they have led to one
exact result~all orders in perturbation theory! and suggested
a certain conjecture which, if true, leads to a rather comp
picture of the Kondo screening cloud. We first summar
the exact result and the conjecture, pointing out a con
tency check between them and then state the resulting
clusions.

~i! The uniform part of ther -dependent susceptibility
vanishes to all orders in perturbation theory. On the ot
hand, the equal-time correlation function has a nonzero u
form part, varying on the scalejK at T50.

~ii ! The 2kF part of ther -dependent susceptibility has
factorized form atr !vF /T,j k:
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x2kF
~r ,T!→

kpvF

2r
l rx tt~T!, ~5.1!

wherex tt(T) is the total susceptibility~less the free-electron
Pauli part! and wherel r is the effective coupling at scaler .
This was verified to third order in perturbation theory and
the large-k limit @including theO(1/k) correction#.

There is an important consistency check relating this
sult and conjecture and the resultx ie52(l0/2)x ii , follow-
ing from the formula:

xet5E d3rx~r !. ~5.2!

Sincex(r ) is an RG invariant, it has no explicit dependen
on the bare coupling. If the uniform part had been nonze
its integral would have given a contribution toxet which
would be unsuppressed by any powers of the bare coup
The integral involvingx2kF

(r ) gives 0 forr @1/kF due to the

cos(2kFr) factor and hence is determined by the value ofx2kF

at short distances ofO(1/kF). In this limit x2kF
(r )}l r'l0

and integrating Eq.~5.1! givesxet.2(l0k/2)x tt .
Strictly speaking this consistency check requires yet

other conjecture:

x~r !'
x2kF

4p2r 2vF
Fcos~2kFr !2

sin2kFr

2kFr G
'

kl rx tt~T!

8pr 2 Fcos~2kFr !2
sin2kFr

2kFr G , ~5.3!

for r !jK , vF /T. This last conjecture involves correction
of O(1/kFO(1/kFr ) which we have not calculated system
atically and go beyond the scope of the one-dimensio
model. We did check the result in lowest order in 1/k.

Despite the limitations of our calculational approach,
are thus led to a fairly complete understanding of the Kon
screening cloud. The heuristic picture of Nozie`res and others
of the Kondo ground state is seen to be correct. The impu
essentially forms a singlet with an electron which is in
wave function spread out over a distance ofO(jK). This is
seen from our calculation of theT50 equal-time correlation
function which varies over the scalejK .

On the other hand, the behavior of static susceptibilitie
considerably more subtle. A naive picture that an infinite
mal magnetic field fully polarizes the impurity but induces
compensating polarization of the electrons is certai
wrong. Rather the impurity polarization is proportional to t
weak magnetic field and theintegratedpolarization of the
electrons~with the free-electron value subtracted! is much
smaller~proportional tol0). The finiteness of theT50 im-
purity susceptibility results from its tendency to form a s
glet with the electrons.

If we now examine ther dependence of the electron p
larization, we find that it is small at short distances@O(l0)#.
However, it exhibits a universal oscillating form at long di
tances which is not suppressed by any powers ofl0 but only
by a dimensional factors of 1/r 2. The fact that it is purely
oscillating ensures that the contribution to the integrated
larization is negligible. The envelope of this oscillating su
-
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ceptibility, consists of the dimensional factor of 1/r 2 times an
interesting and universal scaling function ofr /jK andT/TK .
This scaling function factorizes intox tt(T) f (r /jK) for
vF /T@r .

Our work leaves various open questions for further stu
It seems plausible that our conjecture could be proven to
orders in perturbation theory, thus putting this work on
more solid foundation. There are three interesting unive
scaling functions which we have introduced, one for the 2kF
susceptibility and two for the uniform and 2kF equal-time
correlation functions. A general calculation of these fun
tions could perhaps be accomplished by quantum Mo
Carlo or exact integrability methods. Results on theT50
limit of the susceptibility scaling function were given in Re
5. An obvious generalization of our calculations is to gene
frequency-dependent Green’s functions.

Most importantly, experimental results on the Kond
screening cloud are very limited. The NMR experiments
Boyce and Slichter only probe extremely short distanc
r'1/kF . Our work shows that these results are entirely co
sistent with a large screening cloud. However, these exp
ments do not directly probe the scalejK . NMR is probably
not a feasible technique for doing this since it is difficult
study distances of more than a few lattice constants. O
possibility might be neutron scattering, which could, in pri
ciple, measurex(q,v) for q'2kF . An alternative is to
study small samples with dimensions ofO(jK).28
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APPENDIX A: PERTURBATIVE RESULTS

The diagram technique for interactions involving spin o
erators is complicated due to their nontrivial commutati
relations. It is possible to express these operators in term
pseudofermion operators:22,29

Simp5
1

2 (
a,b51,2

f †asa
b f b . ~A1!

The problem in using the fermion substitution Eq.~A1! is
that thes matrices have dimensionality 2, while the fermio
space is four dimensional. Thus, only the states with

N5(
a

f †a f a51 ~A2!

are physical. This constraint is imposed by choosing app
priate chemical potential.22 For example, Popov’s
technique29 adds an imaginary chemical potential,ipT/2, to
the pseudofermions. Then the contribution of the nonphy
cal states to the partition function is zero. The diagram te
nique then becomes the standard fermion technique with
one-dimensional conduction electron~left-movers! propaga-
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tor (ivn1vFk)21, the pseudofermion propagato
( ivn2 i @pT/2#)21, and the interaction Hamiltonian

H int5vFl0

sa
bsg

d

4
cL

†a~0! f †g f dcLb~0!. ~A3!

For our purpose of computation of spatial correlators it
convenient to work in the coordinater ,t space, where the
propagator for the left movers takes the form

G0~z!5
pT

sin@pTz#
, z5vFt1 ix. ~A4!

For the lowest-order diagrams it may be more conven
to calculate time-ordered impurity-spin averages direc
Such spin operator Green’s-function approach was app
successfully, for example, in case of long-range Heisenb
ferromagnets.30 Consider

^SiSj •••Sk&, ~A5!

wherei , j , . . . ,k5$z,1,2%. Obviously, this average is zer
when the total number ofS1 operators is not equal to th
total number ofS2. Consider first averages containing on
Sz operators. For odd number of spin operators it vanish
In our simpleS51/2 case Tr(@Sz#2n)51/4n. One can use
spin commutation relations and the relatio
S1S25(1/2)1Sz, S2S15(1/2)2Sz to calculate the aver
age Eq.~A5!.

All diagrams for the spin susceptibilityx(r ,T) up to third
order are shown in Fig. 7. Graphs~a!–~d! represent the
electron-impurity part, while graphs~e!–~i! the electron-
electron part. We only show the electron Green functions
these diagrams. The dashed line represents the boundary
the electron-impurity spin-correlation function the extern
electron-spin operatorSel(r ) takes the propogator away from
the boundary. In the case of the electron-electron part of
Knight shift there are two such operators. We have to in
grate over the position of one of these operators.

Straightforward calculations lead to the final results sta
in Eqs.~3.1!, ~3.17! of Sec. III A. To calculate the equal-tim
correlator^Sel(r ,0)Simp(0)&, we need to evaluate the graph
~b!–~d! of Fig. 7 once again. The first graph~a! is frequency
independent, i.e., it is the same as for the electron-impu
part of the local spin susceptibility. Both uniform and 2kF
parts are now nonzero. The result of this calculation is giv
by Eq. ~3.36! of Sec. III C.

For the discussion of static susceptibilities in Sec. III
we need to calculate the impurity-impurity part, in additio
to space integrals ofx ie(r ,T) andxee(r ,T). The second- and
third-order graphs forx ii (T) are shown in Fig. 8. The leadin
order is, of course, 1/4T. We find that

4Tx ii512l0
2S ln

D

T
1A1D2l0

3S ln2
D

T
1A2ln

D

T
1constD ,

4Tx ie52
l0

2
1B1l0

21
l0

3

2
ln

D

T
1constl0

3 , ~A6!

4Txee5
l0

2

4
1constl0

3 .
s

t
.
d

rg

s.

n
For
l

e
-

d

ty

n

In general, the constantsA1, A2, andB1 in Eq. ~A6! de-
pend on the cutoff procedure. However, these three const
are connected,A214B122A150, as follows directly from
the results of Wilson23 on the scaling properties of the tota
spin susceptibility. Using this connection and Eq.~3.25!, the
fact that all three scaling functions for the spin susceptibi
are equal up to the terms;lT

2 is easily demonstrated.
Consider now the multichannel case. As we have m

tioned in the text, the graph selection in this case is differe
since each vertexl is ;1/k. To the order 1/k we need to
calculate all the graphs in Fig. 7, except~c! and~i!, which are
of the order 1/k2. In addition, we need to calculate th
fourth-order graph shown in Fig. 9. The result of this calc
lation is given by Eq.~4.10! in the text.

Calculations of the equal-time correlator are somew
more involved. WhileK2kF

(r ,T) in Eq. ~4.29! is also non-

zero up to this order,Kun(r ,T) vanishes. We need to go t
the next order in 1/k to find the answer. For the terms of th
order 1/k2, we need to calculate graph~c! in Fig. 7, and
additional fourth- and fifth-order graphs shown in Fig. 10

The bulk susceptibility results are found again by calc
lating x ii (T) andr integrating the Knight shift. In the leading
order we only need to consider second-order graph in Fig

APPENDIX B: PROOF THAT THE UNIFORM PART
OF THE LOCAL SUSCEPTIBILITY VANISHES

As clarified in the text, the local spin susceptibility can
written as a sum of impurity and electron parts@see Eq.
~2.10!#. We will consider these two parts separately for t
purpose of this proof.

Consider first the impurity part,xun,imp(r ). Using Eq.
~2.15!, one can write

xun,imp~r ,T!5vFK TF E
0

b

dtcL
†~r ,t!

sz

2
cL~r ,t!Simp

z ~0!

3expH 2E
0

b

dt8H int~t8!J G L 1~r↔2r !,

~B1!

whereH int is given by Eq.~2.9!. The fact that this contribu-
tion vanishes is very easily seen when we perform thet
integration. Indeed, in every order in perturbation theo
xun,imp(r ,T) can be written as

xun,imp~r ,T!5E
0

bE
0

b

dt1dt2I ~t1 ,t2 ,r !3F~t1 ,t2!,

~B2!

where

I ~t1 ,t2 ,r !5E
0

b

dtG~r ,t2t1!G~2r ,t22t!, ~B3!

or, equivalently,

I 5E
0

b dt~pT!2

sin@pT~vFt2vFt11 ir !#sin@pT~vFt22vFt2 ir !#
.

~B4!
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After the change of integration variable,t→exp(i2pTvFt),
one encounters contour integration with two poles on o
side ~see Fig. 11!, andI 50.

Consider now the electron part,xun,el(r ). Here the cancel-
lation of xun,el(r ) is less trivial since there are other graphs
addition to those with the integration Eq.~B4! ~see Fig. 12!:

G~r 8,2t1!G~r 2r 8,t!G~2r ,t22t!h~t22t1!,
~B5!

G~r ,t2t1!G~r 82r ,2t!G~2r 8,t2!h~t22t1!,

whereh(t22t1) is determined by the full perturbative se
ries. We now introduce the complex notatio
z[pT(vFt1 ir ), and remember thatG(z)5pT/sinz. Then
the sum of the graphs in Fig. 12 gives

h~z22z1!

sin~z2z8!
F 1

sin~z22z!sin~z82z1!

2
1

sin~z22z8!sin~z2z1!
G

5
h~z22z1!sin~z12z2!

sin~z2z1!sin~z22z!sin~z82z1!sin~z22z8!
,

~B6!

which is graphically presented in Fig. 12. Integration ovet
Eq. ~B4! yields zero in this case as well. Generalization
this proof to the multiple number of channels is quite trivi
Indeed, the graphs that cancel have the same chan
dependent factor. As we have seen above, the crucial ste
the proof is that the integral Eq.~B4! is zero. Thus, theq50
part of the correlator is absent only for zero-frequency sp
spin correlators, not for equal-time correlators.

FIG. 7. Perturbative diagrams forx(r ,T) up to third order.

FIG. 8. Second- and third-order graphs for the impuri
impurity part of the spin susceptibility,x ii .
e

f
.
el-
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-

Note that the absence of the uniform part in the distan
dependent Knight shift becomes trivial in the bosonic la
guage~see Sec. III B!. Indeed, since

Sel
z ~vFt1 ir !5

1

A2p
] rwL~vFt1 ir !, ~B7!

we find

xun~r !}E
0

b

dtK 1

A2p
] r w̃L~vFt1 ir !SzL

52
i

A2p
„^w̃L~ ir 1vFb!Sz&2^w̃L~ ir !Sz&…50,

~B8!

becausew̃L(z) is periodic in the imaginary time variable
Note that we do not need to worry about a potential sho
distance singularity because the total spin has been repl
by the impurity spin in the expression forxun using the
above argument. A similar argument forxun50 was given in
Ref. 13.

APPENDIX C: LOW-TEMPERATURE LONG DISTANCE
LOCAL SUSCEPTIBILITY IN THE MULTICHANNEL

KONDO MODEL

x2kF
(r ,T) is determined by the infrared stable fixed poi

for r @jK , T!TK and any value of the ratiorT/vF . For
k.1 ~and Simp51/2) this fixed point is of the non-Fermi
liquid type. The low-temperature non-Fermi-liquid mult
channel Kondo fixed point was analyzed by Ludwig a
Affleck17–19 using conformal field theory. We refer th
reader to these works and a recent review31 for details. In the

FIG. 9. Fourth-order graph of the order 1/k.

FIG. 10. Fourth- and fifth-order graphs forx(r ,T) that contrib-
ute to the order 1/k2 in the 1/k expansion.
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57 447SCREENING CLOUD IN THEk-CHANNEL KONDO . . .
bosonized form spin, charge, and flavor sectors of the
fermion Hamiltonian are separate. Only the spin secto
interesting in the Kondo problem, since the impurity sp
couples to the spin current. The effect of the strong-coup
fixed point17 is such that the low-temperature Hamiltonia
density is written in terms of new spin currents,

Hs5
1

2p~k12!
J2~x!, ~C1!

where

J~x!5(
j

cL j
† ~x!

s

2
cL j~x!12pSd~x!. ~C2!

The Fourier modes of the spin currents for a system w
Hamiltonian density Eq.~C1! defined on a large circle o
circumference 2l ,

Jn5
1

2pE2 l

l

dxeinpx/ lJ~x!, ~C3!

satisfy the usual Kac-Moody~KM ! commutation relations,

@Jn
a ,Jm

b #5 i eabcJn1m
c 1

1

2
kndabdn1m,0 . ~C4!

Here eabc is the antisymmetric tensor andk is the Kac-
Moody level. To the leading order, the Knight shift is give
by

x2kF
~r ,T!52

vF

2pE0

bE
2`

1`

dtdy

3 K cL
†~0,r !

sz

2
cL~0,2r !Jz~t,y!L . ~C5!

Using operator product expansion~OPE!

J~z!s

2
cL~z!52

3/4

z2z
cL~z!1Reg~z2z!, ~C6!

FIG. 11. Contour of integration forI .
e
is

g

h

J~z!s

2
cL

†~z!5
3/4

z2z
cL

†~z!1Reg~z2z!, ~C7!

where Reg(z2z) denotes a function which is regular a
z→z, we rewritex2kF

(r ,T50) as

x2kF
~r !52

vF

8pE2`

1`E
2`

1`

dtdyF2
1

t1 iy2 ir
1

1

t1 iy1 ir G
3^cL~0,2r !cL

†~0,r !&. ~C8!

The Green’s function for two points on the opposite sides
the boundary takes the form

^cL
†~z1!cL~ z̄2!&5

S~1!

z12 z̄2

, ~C9!

where

S~1!5
cos@2p/~21k!#

cos@p/~21k!#
~C10!

is the S-~scattering! matrix, calculated in Ref. 19. This is
universal complex number, which depends on the univer
ity class of the boundary conditions. In the one-chan
Kondo effectS(1)521, corresponding to ap/2 phase shift.
At the overscreened Kondo fixed pointsuS(1)u,1, which
means multiparticle scattering. Substracting the free-elec
contribution and performing the integrals, we find

x2kF
~r !5k

12S~1!

2
. ~C11!

In the limit k→` this givesx2kF
(r ).3p2/4k, in agreement

with the large-k result of Sec. IV. Fork51 it agrees with the
Fermi-liquid result Eq.~3.15!. Note that no anomalous powe
laws occur in the leading order in irrelevant coupling co
stants. Only the normalization reflects the non-Fermi-liqu
behavior. As in the single-channel case, finite-tempera
calculations multiply this expression by the fact
2px/sin(2px), wherex5rT/vF .

Consider now corrections to this expression. The lead
irrelevant operator which appears17 in the effective Lagrang-
ian at the overscreened Kondo fixed point isJ21•f, where

FIG. 12. Cancellation of the uniform part of the local spin su
ceptibility.
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f is the s51 SU~2! KM primary field with the dimension
D52/(21k). The dimension of this singlet operator
11D. We can again write this additional piece as

H int;
1

TK
D

„J21•f~0!…. ~C12!

Thus the correction is given by

dx2kF
~r ,T!52

vF

2pTK
DE0

bE
0

bE
2`

1`

dtdt1dy

3 K cL
†~0,r !

sz

2
cL~0,2r !Jz~t,y!

3@J21•f~t1,0!#L . ~C13!

To find the most singular part of this expression asr→0, we
use the boundary OPE

cL
†~01 ir !

s

2
cL~02 ir !→

Cf~0,0!

r 12D
. ~C14!

From conformal invariance, this zero-temperature correla

^„f~0!•J~z1!…„J21•f~z2!…&5
C8

uz1u2Duz12z2u2uz2u2D
.

~C15!
pl

r-
r

The finite-temperature correlation function which appe
under the integral in Eq.~C13! can be obtained using con
formal mapping, a conformal transformation which maps
finite-temperature geometry~half-cylinder! onto the zero-
temperature half-plane.

z5tan~pTw!. ~C16!

Here w5t1 ir in the finite-temperature geometry. A Vira
soro primary operatorA(z) of left-scaling dimensionDA
transforms as

A~w!5S dw

dzD 2DA

A~z!, ~C17!

under conformal transformation. Usingdw(z)/dz5
1/pT(11z2), we express the finite-temperature correlato
in terms of the zero-temperature ones. The net effect is s
that the factors 1/(z12z2) for the half-plane get replaced b
pT/sin(pT@w12w2#) on the half-cylinder. Doing the integra
in Eq. ~C13! and dropping the constants, we obtain

dx2kF
~r ,T!}

1

r 12DT122DTK
D

, ~C18!

in agreement with the large-k result of Sec. IV. This term is
subdominant, forr !vF /T, compared to the leading term i
Eq. ~C11!. On the other hand, it becomes larger than
‘‘leading’’ term if we take T→0 with r @jK held fixed.
Anomalous powers appear from irrelevant operator corr
tions.
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