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Screening cloud in thek-channel Kondo model: Perturbative and largek results
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We demonstrate the existence of a large Kondo screening cloud kr¢hannel Kondo model using both
renormalization-group improved perturbation theory and the larty@it. We study positiorr -dependent spin
Green’s functions in both static and equal-time cases. The equal-time Green’s function provides a natural
definition of the screening-cloud profile, in which the large séate v /T appearsdr is the Fermi velocity;

Tk is the Kondo temperatureAt large distances it consists of both a slowly varying piece and a piece which
oscillates at twice the Fermi wave vectokg2 This function is calculated at all in the largek limit. Static

Green's functiongKnight shift or susceptibility consist only of a term oscillating atk2, and appear to
factorize into a function of times a function ofT for rT/vg<1, in agreement with NMR experiments. Most

of the integrated susceptibility comes from the impurity-impurity part with conduction-electron contributions
suppressed by powers of the bare Kondo coupling. The single-channel and overscreened multichannel cases are
rather similar, although anomalous power laws occur in the latter case atrlamg low T due to irrelevant

operator correctiongS0163-182607)01446-X]

[. INTRODUCTION ior of spatial spin-spin correlation functions, both zero fre-
quency and equal time. There are two distance scales in the
It is well known that the spin-1/2 impurity interacting Kondo problem at finite temperaturéx and the thermal
antiferromagnetically with a Fermi liquid is completely scaleér=vg/T. On general scaling grounds, the spatial cor-
screened at zero temperatdr€his screening is the essence relators should depend on the ratio of the distante these
of the Kondo effect The question of the screening length is two scales. S@nsen and Affleckhave suggested a scaling
much more subtle. Scaling implies, at least dimensionallyform for the r-dependent Knight shift, proportional to the
that the low-energy scale of the model, the Kondo temperazero-frequency spin susceptibility, which has been justified
ture T~ Dexp(—1/\), should be associated with an expo- numerically and perturbativef/®
nentially large length scaleéx=vg/Tk. (Here A\, is the q2ker)
Kondo coupling times density of states abBdis the band- _ COS 2K
width). According to Noziees’ Fermi-liquid picturé’ one x(r,T)=pl2= 872 12 f(rige.rién. (LD
could imagine an electron in a region of this size which
forms a singlet with the impurity spin. Note that this is a Here we have subtracted the Pauli contributig®; p is the
more dynamical type of screening than that which occurs foflensity of states per spin. Thg factor for the magnetic
charge impurities in a Fermi liquid since it involves a linear impurities is not necessarily equal to that of the conduction
combination of states where the impurity spin and theelectrons. This is especially the case for some rare-earth ions,
screening electron spin are in either an up-down or down-uphich have complex multiplet structure. If we take into ac-
configuration. In particular, the finiteness of the susceptibil-count this possibility, scaling properties of the local spin sus-
ity at T—0 should not be attributed to a static conduction-ceptibility become not so simple, and we will consider them
electron polarization canceling the impurity spin polariza-Pelow. The Knight shift in this case is a sum of two parts,
tion. Rather it results from the tendency of the impurity toWhich scale differently.
form a singlet with the screening electron. A possible objection to the naive concept of the screening
Whether or not this large screening cloud really exists ha§loud is based on sum rule arguments. The integral of the
been a controversial subject in the literature, and has recentlpcal spin susceptibility Eq1.1) is proportional to the zero-
attracted some theoretical inter8st.Boyce and Slichtér frequency correlatofS;Sf,), where S5=[d®rS(r) is the
had performed direct Knight-shift measurements of the spinspin of the conduction electronSy,=S;+ S, It can be
spin correlator at all temperatures and had concluded thahown that there is no net polarization of the conduction
there was no evidence of the so-called screening cloud. Theélectronsi®~**and this correlator should vanish in the scaling
measurements, however, were limited to very low distancemit (Jp— 0 with T¢ held fixed. At T=0 this is simply a
(not more than several lattice spacipgand therefore could consequence of the ground state being a singlet. As remarked
not probe directly any possible crossover at the distancabove, this does not necessarily imply the absence of the
scaleég . screening cloud in the sense of Nazse but only that the
To study the screening cloud, we will consider the behavscreening is a dynamical process.
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In order to see the dynamical cloud of conduction elec- = ® =
trons let us consider a snapshot of the system, the equal-time 0
correlators. Také (r,T)=(Sg(r,0)Si,,(0)) as an example.

Note that (S},,(0)S},(0))=1/4 for a spin-1/2 impurity, >
while (S£(0)S5(0))=0 as mentioned abové-or this con-

served quantity the equal-time and zero-frequency Green’s FIG. 1. RG flows for the single-channel and the multichannel
functions are proportional to each otheFhus the correlator Kondo problems.

(SeiSimp) = — 1/4; that isK(r,T) obeys a sum rulgK(r,0)| .
is a possible definition of the screening-cloud profile. C gives results on the overscreened cdee 1) at T<Ty

The ground-state properties of spatial correlators are de2nd r>éx obtained from conformal field theory. Some of
termined by the Kondo scale only. In general we expect thre[z:hese results were presented briefly in Ref. 6.
different scaling regimes foy(r,T) at a given temperature,
with the r boundaries defined by the thermal and Kondo !l THE MODEL, RENORMALIZATION GROUP, AND
length scales. The goal of this paper is to determine scaling SCALING EQUATIONS
behavior of 'Fhe spin correlators in thesg regimes. In what follows we consider the standat,,=1/2

Exponentially large length scaléx, if present, could Kondo model,
have important consequences for the theory of alloys with
magnetic impurities. Indeed, typicdlk~10 K andEg~10 . o{i
eV makesé,~ 10 00@, wherea is the lattice spacing, much H= ; el Yiat ISmp: 2 o g, (2D
larger than typical distance between two impurities. Recently ek
this issue was addressed in one dimensidD) for Luttinger  and the multichanne$;,,,=1/2 Kondo model. The Hamil-
liquids with magnetic impuritie$! where it was found that a tonian for the Sip=1/2 k-channel Kondo model also in-
crossover happened fog,,~ 1/¢ . cludes summation over different channgls

Although perturbative calculations had been done early
on!® no definite predictions were made regarding the size of _ o,
the Kondo screening cloud. Chex al® have developed a H=2 et i+ ISmp: 2 wl””y bjg- (2.2
renormalization-grougRG) approach. They, however, only g kk"j
considered short-range correlatians £, . We use the RG-  Symmation over repeated raised and lowered indiced is im-

improved perturbative technique, which cannot access loweslied. The crucial difference between these two models can
temperature§ <Ty . In order to gain some insight into what pe seen from the form of thg function?

happens at low temperatures, we also consider overscreened

Simp=1/2 multichannel Kondo effect, where the low- X ka3

temperature fixed point is accessible perturbatively usikg 1/ B(N)=—N\"+ - 2.9

expansionk being the multiplicity of the bands. A very thor-

ough 1k analysis of the multichannel Kondo effect has beenThe flow of the effective coupling is differer{Fig. 1) for

performed earlier by Gahwho, however, came to conclu- k=1 andk>1. The low-temperature fixed point of the mul-

sions opposite from ours. We also use the recent conformaichannel Kondo problem is shown to have a non-Fermi-

field theory approach of one of us and LudWig'®to calcu-  liquid nature!’ At large band multiplicity this nontrivial

late the properties of the low-temperature, long distance coffixed point becomes accessible perturbatively. This differ-

relation functions and the crossoverét. This approach, is ence is not important for the purpose of this section, and we

valid for all k but only forr>¢,, T<Ty and fails to predict use Egs(2.2) and(2.3) for both multichannel and=1 mod-

the behavior of the spin correlators inside the screeningls.

cloudr=¢g. The result is nevertheless interesting because, The model is simplified if we assume spherically symmet-

as one could expect, the spin-spin correlators reflect the nomic Fermi surface. Indeed, linearizing the spectrum and ob-

Fermi-liquid nature of the overscreened multichannel fixedserving that scattering only takes place in theave chan-

point. nel, we can expand the wave functions in spherical
The paper is organized as follows. In Sec. Il we introduceharmonics:

the model and remind the reader how it is transformed to an

equivalent 1D model. We also define notations which we 1

plan to use in the rest of the paper and derive the scaling ‘//kajzf Poaj(K)+ (),

equations for the spin susceptibility. Section Il provides de- 47k

tailed perturbative analysis of the spin-spin correlation func-

tions in the. ordma}ry Kondo modédthe Ferml-l|_qy|d'f|xed Ho:f dke(k)¢$“‘(k) Youj(K)+ (- ),

point). Section IV is devoted to the non-Fermi-liquid over-

screened larg&-case, where it is possible to obtain results

for the spin correlators at all temperatures and distances us- tai " )

ing the 1k expansion. We discuss our main conclusions in Hine= )‘OUFJ' dkdK 4 (k)7 Yopi(K') - Simp,  (2.4)

Sec. V. In Appendix A we mention a few details of our

perturbative calculations. Appendix B gives the proof of thewhere (k) =vg(k—Kkg) is the linearized spectrum near the

vanishing of the uniform part of the susceptibility. Appendix Fermi surface, {- -) are higher harmonics, ardis the 1D

0 2/k
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wave vector. Here\g=pJ is the dimensionless coupling where A corresponds to imp or el. FdK(r,T) we get a
constant of the Kondo model, apd=kZ/27%v is the den-  similar expression:
sity of states per spin.
The s-wave operators obey standard one-dimensional an- szF(f) Kun(r)
ticommutation relations, K(r,T)=——5—coq2ker) +——— (2.13
4mrcvg 87rvg

(06" 1K), Yoy, (K )} = 825]18(k=K'). (2.5  The total electron spin in 1D is

We define left and right movers on a band of width 2 _LJ“‘ t, 7
aroundkg : Se=5— | drd(r) i (r). (2.14
JA ” The uniform and Rg parts take the form:
= dke" k+kg). 2.6
YR N ol F) (2.6) 5 < T .
r,T)= f d r,7)— ¥ (r,
The 3D fermion operators are then written in the form Xuna(1 T)=vr 0 7| ) 2 hu(r.7)
1 + o’
W(r)= i [e ke (1) — €8 (N ]+ (- - ), H(=nn) 5 (=) A(O)>:
ar
(2.7 B . o ,
where (--) are higher harmonics. The left- and right- X2 'A(r’T)E_UFL dT< ‘/IL(r’T)?wL(_r’T)SA(O)>'
moving fields defined on>0 obey the boundary condition: (2.15
#.(0)= yr(0). (2.8) Expressions forK,, and K, are analogous to those for

o _ . . _ ~ Xunimp @nd x2k_ imp in Eq. (2.15, although they do not in-
Flipping the nght-mow_ng field to the _negatlve axis, yolve integration overr.
Y(—r)=yg(r), we rewrite the 1D Hamiltonian in terms of ¢ the spins of the impurity and conduction electron have
the left-moving field only: equal gyromagnetic ratiay(=2), the operatos;, is the total
" spin of conduction electrons and impurity, and is conserved.
H:UFJ d“/lE(f)(id/df)l//L(r) The Knight shift is then given by Eg2.15, with A=tot.
— Since the Kondo interaction is local, only boundary=Q)
o operators have nonzero anomalous dimensions. Thus the
+27TUF7\01//E(0)§¢L(0)'3mp- (2.9 conductlon-e!ectror_l spin operatdB.(r) a}Iso has zero
anomalous dimension, for= 0. The local spin susceptibility

] ] ] . then obeys the following RG equation:
The purpose of this paper is to analyze various spin-

spin correlation functions. The most important of them
is the distance-dependent Knight shift, which can be mea-
sured in NMR experiments. If the impurity spin has a
different gyromagnetic ratio from that of the conduction whereD is the ultraviolet cutoffithe bandwidth and8(\)
electrons, the uniform magnetic field couples to theis theg function. Seensen and Affleck have recently made a
spin  operator §,=S+(9¢/2)Syp, Wwhere S, and conjection; supported by perturbative and numerical results,
Sy=(1/2)fdr " (r)oy(r) is the total spin operator of the that in the scaling limityke>1, T<Eg, the spin suscepti-
impurity and conduction electrons, defined with channel sunbility has the following form:

for the multichannel problem. The expression for the Knight

shift then consists of the electron and impurity contributions: (rT T

op T

Y(T\,D,rT/vg)=0, (2.16

Dﬁ+ )\&
aD '8()(9)\

szF(rT/UF ,T/TK) $2k ) (2 17)
= Co r, .
4772I’21),: F

— A Z z _ 9s
x(N= fo A7{Selr, 7)Sh(0)) = xel(r) + ?Ximp(r)' where Xk, is a universal functions of two scaling
(2.10  variables® This form follows directly from Eqs(2.15,2.16.
In general, one expects that there could be a nonzero phase in
Eqg.(2.17), and a uniform term. It is easy to see that the phase
is zero due to particle-hole symmTePrylndeed, under
ez ez particle-hole transformatiogy (r)— oY, (r), S0 Sgi— St
K1) =(Selr,7=0)Simp(0))- 213 () op (—1)— g (=)o (r). Particle-hole symmetry
The above 1D formalism allows to simplify this expressionof Eq. (2.17) then requires that the phase is zero. This is not
for largerkg> 1. Substituting Eq(2.7) in Eq. (2.10, we get  so for more realistic Hamiltonians, for which the particle-
hole symmetry is broken. For such Hamiltonians there is an
X2k, A(T) Yana(T) additiona_l phasep _in Ea. (2.17), _but this phas_e does not
xa(r,T)= TCOS{ZKFFH T (2.12 renprmallze. That is, it is essentially _constant in the sca!mg
4T v 87T vE region ker>1). The fact that the uniform part of the spin

(We setug=1. We will also consider the equal-time spin
correlatorK (r), defined by
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susceptibility is zero is less trivial. For thetatic local spin  This equation can be obtained by subtracting cR1) from

susceptiblity we have provedhat all graphs in perturbation Eq. (2.16). It is more convenient to express the Knight shift

theory contain certain integrals that vanish. These propertie®r gs#1 in terms of xi,, and x,;, which obey ordinary

hold for the electron and impurity parts of the local spinscaling equations Eq$2.21),(2.16).

susceptibility Eq.(2.15 separately, for both single-channel  The solution of the scaling equation fgg im, EQ. (2.21)

and multichannel Kondo effectsee Appendix B The uni-  has the following form:

form part and the phase are zero for the Knight shift in case

of nontrivial gyromagnetic ratio for the impurity spi T T A rT

7&1) as We”gy 9 P Y SP rgé XB’imp()\O'T_’U_) =ef)\;[Vimp()\)/ﬁ()\)]d)\HB,imp()\T,v_)
Since we consider the problem perturbatively, it is useful «oF F

to express the scaling function E@.17) in terms of some

effective coupling constants at an energy sdalgg. This

way we eliminate nonuniversal. The energy scales of

interest are the temperatufeand the distance energy scale (223

ve/r. We will denote corresponding effective couplings 8SHere dg ;s(A1,rT/vg), g ims(A7,FT/vg) are some scal-
N7 and.)\r. Expressi_ons in terms of effective co.uplings Canjng funciio?]s to be deterrriinfed belowp=pJ is the bare
be easily converted into those in termsTqf, and vice versa, coypling constant. The solution of the scaling equations for
provided that theB function is known up to the order Ximp iS @ function of /Ty andrT/v, up to some nonuni-
needed. Indeed, versal coefficient. We see that the non-universal coefficient
d\g exq—fg‘)d)\(yimp()\)/ﬂ()\))] is equal to unity in the scaling
WEB()\E): (2.18  limit of zero bare coupling.y—0, if Yims(Ao)/B(Xo) is non-
singular in this limit. This is indeed the case for the Kondo
whereD=vg/A is the bandwidth. Therefore, for the effec- model. The scaling functio®g jm,(T/Tk ,r T/vE), of course,
tive coupling at two different energy scal€&sand E’ we  can differ fromxa (T/Ty ,rT/vg) in Eq.(2.17. The equal-

rT N
= (I)B,imp( )\T , ;) e_foo[yimp(x)/ﬁ@)]d)\.

have time correlation functions also obey analogous scaling equa-
, tions Eq.(2.21) with the anomalous dimension which is a
Aer dA E . . .
— =|n—. (2.19  sum of the dimension of the corresponding operatéos
e BN E Ximp It IS @gainy;y,). These equations are also applicable to

the uniform part of the correlator, which is now nonzero.
In the rest of this paper we will consider these scaling
functions in various regimes, which we now outline. Scaling

Since)\TKzl can well be regarded as one of possible defi
nitions of T, we have

1 d\ T form is applicable forr>1/k:, and T<D~Eg. For the
—— ==~ (2.20  single-channel Kondo model perturbative treatment is only
reB(N) E valid for T>T, . From Eq.(1.1) one could expect that there
and the arguments of the scaling function in E217) can  could be two crossovers: one afy and one at
be replaced by corresponding effective couplings. §k>&r=vge/T. The latter crossover, however, doest hap-

The renormalization-group equations for various parts of€n as a function of for T>T, . The low-temperature cor-
the local spin susceptibility in E42.15 are less trivial. Con-  relation functions in the single-channel Kondo effect can be
sider firstyimp- Since the Kondo interaction is at the origin, Studied using the Fermi-liquid approatfthe region of va-
the fermion bilinear operator has zero anomalous dimensioridity for this approach is> ¢y, T<T. It provides impor-
while the operatorS;,, receives anomalous dimensith, tant information abogt the onv-temperature long-distance
Yimp=M2/2. Renormalizability implies that the functions form of the_ correlation functions, and the crossover at
Xb.imp (B=2kg, ur) obey equations of the form: &> €&y, but is unable to access the most interesting region

r~ &y, and answer the question of existence of the screening
d cloud. For the multichannel Kondo effect the low-
D -5+ BN ==+ Yimp(M) | X8, imp(T. A, DI T/vg) =0, temperature long distance correlation functions can be ob-
(2.2  tained using the conformal field theory approatt’which
is a generalization of Nozies’ Fermi-liquid picture. It is
also limited to r>¢x, T<Tk. The interesting low-
¥emperature region with~ &¢ only becomes accessible at
largek, when the whole scaling function can be constructed.

where yimy()) is the anomalous dimension, which in this
case is equal to the anomalous dimension of the impurit
spin operator. The other correlatgg ¢ contains the total
conduction-electron spin operat&,, in which integration
over the electron spin includes a potentially dangerous re-

gion near the impurity site. In this region operator mixing IIl. THE SINGLE-CHANNEL KONDO MODEL
occurs between the electron spin and impurity spin. Thus A. The Knight shift

Xg e Obeys the nontrivial mixed RG equation: . _ " _
' In what follows we consider the Knight shift in the single-

d channel Kondo model. As mentioned above, the local spin
DE+ﬂ()\)K}XB,eI(Tv)\-D’rT/UF) susceptibility only has the oscillating part. We have calcu-
lated it up to the third order in perturbation theSraum-
= Yimp(M) XB,imp( T-N, D, I T/ug). (2.22  ming all the relevant diagranisee Appendix A we obtain
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(r,0) It is instructive to consider various limiting cases for the
scaling function Eq(3.5). Forr<¢; we find

X2k (X A7) = (m/8X) (N +consh?)(1-\7).  (3.6)

.......... - - -———— The factor (:-\1)/4T in Eq. (3.6) is, to the order under
consideration, precisely the total impurity susceptibility,
O,x) (Ory) ©,t,) xu(T). This is the total susceptibility less the bulk Pauli

FIG. 2. Singular third-order graph for(r,T). term. Thus Eq(3.6) can be written

A
rT I S
X2kF<X:;')\0'D) szF()\T’)\r)*)Z(r/WUF) Xe(T). (32
2 5 We conjecture that this equation is exact, for arbitrafy ¢
= T e iho T AG[IN(D/T) +M(X) +X] in the short distance limitt <vg/T,&¢. According to our
4 sink(27X) . . . .
conjecture, the infrared divergences which are not cut off by
+)\8(In2(D/T)+ In(D/T)[2M(x) +2x—0.5] going to smalk are simply the ones which produce the func-
tion xy(T). since this function has been calculated accu-
+[M(x) +X][M(x)+0.5]+cons)}, (3.D  rately from the Bethe ansdtgalthoughy(r,T) has no}, our

conjecture, if correct, has considerable predictive power in
the experimentally interesting regior< & . We show below
M (x)=In[1—exp(— 47X)]. (3.2 that this conjecture is consistent with the behavior of the
integrated susceptibilities and also with the lakgédimit.
Substituting this expression in E@.21) we find that scaling This conjecture can be understood graphically. In Fig. 2, the
is indeed obeyed. At small, x<1, Eq.(3.1) is rewritten as  bubble atr =0 is simply the one-loop, logarithmically diver-
gent, contribution toy(T). The other loop connecting the
TUF ~ ~ origin to the pointr makes a factorized contribution. Adding
X2k (N0, D)= ﬁ[AOJﬂ‘SIn(Ar)H\gInZ(Ar) arbitrary additional insertions and loopsrat0, while leav-
_ ing the simple bubble connecting 0 to gives the factor of
+0.5\3In(Ar)—\3In(D/T)+\const, xt(T). We conjecture that all additional insertions where the
3.3 two lines fromr split, etc. are not infrared divergent. As one
’ can see from Eq(3.5), this factorization breaks down at

whereK=4wD/vF=4wA~kF. It is clear from Eq.(3.3) ~vglT. _ _ _
that the infrared divergences of the perturbation theamgy We can compare this result with the experiment of Boyce
not cut off at low T by going to smallr, as was noticed by and S|IChtEI9, who have measured the Knight shift from Cu
Gan? In the third order, these divergences are associateBuclei near the doped Fe impurities, at distances up to fifth
with the graph shown in Fig. 2. Due to the nonconservatiorl€arest neighbor. At these very small distances of order of a
of momentum by the Kondo interaction, the bubble on theféw lattice spacings, they have found empirically that the
right gives a logarithmicT-dependent factor which is inde- Knight shift obeyed a factorized formy(r,T)~f(r)/T
pendent ofr. Thus, the interior of the screening cloud does+ Tk), With rapidly oscillating functionf(r) for a wide
not exhibit weak-coupling behavior. range of T extending from well above .tp well be_low the
It is convenient to rewrite this result in terms of effective Kondo temperature. Although our conditio- 1/k is not
couplings at the energy scal@sanduvg/r. One can easily satlsfle_d in this experiment, thls_form coincides Wlth Eq.
write down the effective coupling constahat some energy (3.7, since the Bethe ansatz solution fag(T) may be quite

where

scalew using the well-known3 function Eq.(2.3): well approximated by 1/(T+Ty) at intermediate tempera-
turesT~Tg.
Ao=MNo+ )\éln(D/w) On the other hand, far> ¢+, the spin susceptibility takes

the following (nonfactorizeg form:
+AJ[IN%(D/w)—(1/2)In(D/w)+consi. (3.4

_ 3 2,9 —2mX
We find that the expression forz_ is simplified when we Xak (X, A7) = (B 4N 7(1=Ar)e =" 38

use effective couplingst and\ ¢ at the energy scalék and
E(X)=T/[1—exp(4mX)]e, x=r/&r. Whenr <£5 the latter
becomes the effective coupling at the distance scaince
E(X)xvg/r. Equation(3.1) in terms of these effective cou-
plings takes the form:

For high temperature§>Ty there is no crossover at
~ &k in the behavior of the local spin susceptibility.

At low temperature§ < Ty and large distances> £, the
behavior of x(r) is determined by the zero-energy Fermi-
liquid fixed point® The Kondo impurity acts as a potential
scatterer with a phase shift/2 at the Fermi surfacéThe
local susceptibility follows directly from the formula for
(4l72%)sinh(27x) Friedel's oscillation in the electron density for aawave

(3.5 scatterer andr/2 phase shift,

rT [N+ (37/2)A2x+conshE](1— A7)
Xk X:;J\T =
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1 2 —27x
n(r)=ng— ——— cog 2kgr + 7/2]. (3.9 (n/8x) A (1- }”T) (3“3/4)7‘T(1' }”T) €
27213 S
Since the magnetic field simply shifts the chemical poten- & r
tial by =gugH/2 for spin-up or spin-down electrons, T> 1;(
o tdn _p b o2k, (34
x(r, )_;d_kp_i 471'21),:l‘2(:0S Fr). (310 ? I 1+ n&/2r 4rx exp(- 2nx )
-
This implies for the scaling function E¢2.21): £ £ r
K T < ’];( T
XZkF: 1. (31])

FIG. 3. Scaling regimes fo;s(ZKF()\T,x=r/§T) in the single-
The finite-temperature properties )@ﬁkF(r), and, in par-  channel Kondo effect.
ticular, the crossover at~ ¢; can be obtained directly from
the Noziges' low-energy Hamiltonian for the Fermi-liquid X2k,:,eI:X2kF,tot(rvT)_XZKF,imp(raT)- (3.19

fixed point>!’ _ . o .
Since we have already determingek_ ir,T), it is suffi-

cient to consider onIWZKF,imp(r,T). From the perturbative
analysis(see Appendix Awe obtain

oo d o
H0=fmdfl/fl(r)ml//L(f)Jr-ﬁ—rK)Sé(f), (312

WhereSe,(r)E¢//I(r)(cr/2)¢,_(r). This definition of Ty dif- rT

fers from one in Eq(2.20 or x> 1/(T+Tk) by numerical ~ X2kg imp| X~ ;,)\O,D
factorsO(1) (Wilson ratig. The expression fO)‘(sz(r), Eq.

(3.12), is zero order in the leading irrelevant coupling con- _ 2

stant 1Ty, and the finite-temperature form of, (1) is =2 sinh(2mx) {NoFAg[IN(D/T) +M(x)+0.5]
easily obtained:

2

+A3(IN(D/T)+2In(D/T)M(x)
+[M(x)+ 0.5+ cons)}, (3.17

whereM (x) is the same as in E¢3.2). One can easily check
We can derive corrections to E(B.13 by doing perturba- that Eq.(2.21) is obeyed with**

tion theory in the leading irrelevant operator. For the first

27X rT

XZKF(X):SinI’(TX)' X=;. (3.13

correction we obtain , A 2
B()\):_)\ +7| ')/imp()\):?- (31&
T
Ox 2k (X) = Tesin2mx) (3.19  We then obtain for the nonuniversal factor in £8.23:
The first correction does not alter the leading-order behavior. o= I YimpMBOVI AN 1 4 Ao (3.19
At zero temperature the scaling function for {¢ takes the 2’

following form: and the local impurity spin susceptibility takes the following

£k form:
szF(rng):l"f‘ WE (315)

)\0)
imp=| 1+ = | x5k (A 7,X), 3.2
This correction gives rise to the first term in the large- X2k imp ( 2 | Xk A %) (320

distance expansion of our scaling functng(F(rng). The
behavior of the scaling functioyaZKF in different regimes is .
summarized in Fig. 3xz (r/éx ,r/€7) exhibits a crossover 1) (Agt+conshg)(1-Aq)

(N7, X)= (3.2)
at low T, when the “screening” cloud is formed. At high Xoket T

(417?)sinh(277X)
temperatures this crossover is absent. . .
What happens when thg factor of the impurity is differs from that for the conserved local susceptibility Eq.

anomalous?XZKF(r,T) is a sum of impurity and electron (3.5. For the electron part we obtain

parts, Xzk. imp and X2k, el- AS we have discussed in the 0 ) (3w/2))\§x(1—7\T)
previous section, the latter obeys a complicated mixed RG Xk e~ ™ ?XZKF()\T'X)+ (4/m?)sinh(27x)
equation, Eq.(2.22. It is more convenient to express the (3.22
spin susceptibility in terms of the correIato;@kF,tot(r,T)

andXZkF’imp(r,T), for which RG equations are simple:

where the scaling function

The second contribution does not vanish in the scaling limit
No— 0. However, it only becomes substantial at large dis-
tances ~ ¢+, where there is no additional smallness associ-
X2k (1 T) = (99/2) Xk imp(1 T) + Xakg el 1 T), ated with the factok=r/&;. We conclude that two different
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scaling functions are present in the experimentally measurefiom Eq. (3.25 for the impurity-electron and electron-
Knight shift, and their share depends upon the gyromagnetielectron pieces of the spin susceptibility:
ratios for the impurity and the conduction electrons.

No T
B. Integrated susceptibilities Xie=~ % xu(T), 326
It is instructive to consider the integral {r,T) over all 2

space. This quantity determines the polarization of the
screening cloud in external magnetic field. We immediately
see that the contribution from large distances vanishes b
cause of the oscillatory behavior @{r,T) at larger. Nev-
ertheless the integral can be finite due to the contributions at No

small distances~ 1/kg . We will specify three different spin f x(r,T)Ydr=xed T) + xie(T)~— —Xn(T) 3.29
correlators:

0
Xee™ ZXtt(T)-

eI=hus, the integrated distance-dependent Knight shift obeys

) The major contribution to EQq.(3.27 comes from the
T (SioStor -(T)E< lmpstot> electron-impurity correlator. It should be emphasized that the
Xt T X result is nonzero at finite bare coupliig. [A typical experi-
mental value oy might be 1/InE-/T¢)~0.15] It is easy to
B see that the integral in E§3.27) is dominated by ~ 1/kg.
Xi(T)= J'O <Szmp( T)Sﬁzmp(O»dT' (323 Thyus most of the small net polarization of the electrons in a
magnetic field (with the free-electron value subtracjed
For this choice of correlators the RG equations are simplicomes from very short distances. However, this should not
fied, and have the form E@2.21). It seems more natural to be interpreted as meaning that the screening cloud is small as
define correlators of the impurity spin and the totalcan be clearly seen from the equal-time correlation function

conduction-electron spif,, instead ofS,;: discussed in the next subsection.
If the equality of the scaling function®;(\+) defined in
_ Eq. (3.25 holds at allT, the integrated electron-spin suscep-
Xed T)= f (Sa(m)S:(0))yd 7= x0, tibility vanishes in the scaling limit of zero bare coupling at

all T. The fact thaty,. and x.. are suppressed in the scaling
(B , limit has been known or conjectured from a variety of dif-
Xel( T)= fo (S(7)Sinp(0))d 7, (3249 ferent approaches over the years. The earliest result of this
sort that we are aware of, in the context of the Anderson
where x is the free-electron susceptibility, proportional to model, predates the discovery of the Kondo effect and is
the volume of the system. However, for this set of spin cor+eferred to as the Anderson-Clogston compensation
relators the RG equations are mixed. theoremt® It was later established &=0 from the Bethe
Two of the three spin-correlation functions can be mea-ansatz solutiod? A very simple and general pradfof this
sured. The first one is the bulk susceptibility,(T). The  result follows from the Abelian bosonization approgtBe-
electron-spin polarization in the presence of an impurity isginning with left-moving relativistic fermions on the entire
determined by the spatial integral g{r) measured in the real line, as in Eq(2.9), we may bosonize to obtain left-
Knight-shift experiment Eq.(2.10, or, equivalently, by moving spin and charge bosons. The charge boson decouples
xu(T) — x4(T). If the gyromagnetic ratio for the impurity is and the Hamiltonian for the Kondo Hamiltonian can be writ-
different from 2, the experimentally measured magnetic susten in terms of the left-moving spin boso#, which obeys
ceptibility is (92/4)xi+ gsxiet xeer While the integrated the canonical commutation relation:
electron susceptibility is given byg{/2) xiet Xee- , . ,
SinceSZ, is conserved, the spin susceptibilities obey the [L(r'),drp(r)]=(i12)8(r=r"). (3.28
RG equation, Eq(2.21), with anomalous dimensions deter- The Hamiltonian becomes
mined by the dimensiory;,,(\) of the operatorS{,,,. For

the three different susceptibilitiesy;=0, 4= ¥imp, and ® he
¥i=2%mp- The solutions of these equations take the form H=f dr{ ve(d, L (r))?— —=d,¢.(r) | +Hc—h; S,
Eq (2231 - \/2’77
_ — A yiIBV)]d %9, 0 R
ATx;(T)=®j(Aq)e fenMBOIR @2y o0\ r:%()+const(S+e"8”‘PL(°)+H.c.) .
an

wherej labels tt, ti or ii. From our third-order perturbative (329
analysis using Wilson’s resdftfor y4(T) we have obtained :

that the functionsb;(\1)=1—\ coincide for all three sus- Hereh; andh, are the magnetic fields acting on the impurity
ceptibilities up to and including terms of ordleﬁ If thisis  and the conduction electrons, correspondingly. These fields
indeed the case in the Kondo model, we then obtain from Egnay differ by the ratio of corresponding factors. We can
(3.25 that in the scaling limit.g— 0 both y.{ T) and x;(T) get rid of thefdrd, ¢ (r) term by shifting the bosonic field:
vanish. At finite bare couplings these susceptibilities also _

become finite, with nonuniversal amplitudes. We then obtain oL (r)=e¢(r)+ her/v,:\/ﬂ. (3.30
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The Hamiltonian in terms of the new bosons takes the form3.35 does not necessarily extend kq,(r,T). The region
r~1/kg could produce a large contribution to the sum rule
Eq. (3.39.

Consider now the equal-time correlatos,(r,T) and
Kok (r,T) perturbatively. In the third order we obtaisee

- heh DA
+constzmpxo(s+e'~%d°>+H.c.)—(hi— ‘“‘20)32. Appendix A:

(3.31 Ku(r,T)=

2
e

+ 27V EN S, @1 (0)

H= [ drocGauny- 4o

7= N3+ (LU2N3—27\3n[D/T]IT
exp2mr/ér)—1

Thus, our original Hamiltonian with nonzero fielq act-

2 3
ing on the conduction electrons is exactly equivalent to the T TAGa(r/ &), (3.36
one with no field acting on conduction electrons and modi- K —T T
fied impurity field. The same argument was given in Ref. 25 2k (1 T) = Txaw (1, T)
except that the field shift blgc\ o/2 was not obtained because In(1—e~27"/ér)
another, noncommuting, canoncial transformation was per- =772)\8T Gy(rlér)— ——————|.
formed first to eliminate the component of the Kondo in- 4 sinf(27rr/éy)
teraction. o _ G1(x) are some functions which can be represented as in-
In terms of the free energy, this is written as tegrals:
Eth h : el on heho - G _flzds[ 1 N s | 1—e 2™
( i e)__47TUF+ AT 2 . ( . 2 1(X)_ Ol_sleZWX_l 1_Sn 1_Se*27TX 1
Taki tic-field derivati ily find (3:39
aking magnetic-field derivatives, we easily fin . fld o~ 27%g | 1— g2
072F Z(X)_ 0 9(1_3)(1_567477)() n 1_e*27TX .
Xi= ™ 2
Jh; It is easy to check that EqR.21) is satisfied for both uniform
) and Xg parts. The solutions are found in the form E2.17)
o J°F __ E ) (3.33 with the nonuniversal factor Eq3.19. The scaling func-
Xie dh;ohe 2 Xii» ' tions are easily obtained from E(.36. The final expres-
sions are simplified in the most interesting limiting cases.
&°F Ao\ 2 For r< &1 we obtain
Xee™ — W_XO: 5 Xii 1
e TUENZ(1+ N o/2)
where yo=L/2mvg is the Pauli term. It is easy to see that Ku(Ar.T7€7 M) = = 2r :
this is valid for the anisotropic Kondo model as well, with (338
being thez component of the Kondo interaction. TUEN (1+No/2)

Kok (N ,T1E7, N o) = Br

C. Equal-time spin-spin correlator .
g pi-sp In case ofr> ¢+, these functions take the form:

The equal-time spin correlators provide a snapshot of the

Kondo system. The quantity of interest is

A
Kul A Flér No) = —m°TA] 1+?0 e 2miér,

K(riT):<Sél(r10)SﬁZmp(0)> (334) (339

7T2T)\0

2

Note thatKZkF is suppressed in this limit by the small value

f drK(r,T)=—1/4. (3.35 of the bare coupling. Like the local spin susceptibility, the
equal-time correlator does not have crossover aty at
The proof thaty,(r)=0 is based on the fact that the time high temperatures. Instead, thga corresponding scaling func-
integral for the Feynman diagrams is zero in all orders intion for r>&r has a factorized form,K(r/ér,T/Tk)
perturbation theorysee Appendix B For the equal-time = f1(r/én)fo(T/Tk). . _ _
correlator we do not integrate over the time variable, so the The behavior of the equal-ime correlation function at
uniform part does not have to vanigh(r,T) can be rewrit- T<Tk andr> £y can be calculated using Nozes Fermi-
ten in 1D in terms of the uniform andk2 parts, Egs. liquid approach_. Indeed, the impurity spin at the m_frared
(2.17,2.15. For the same reason as for the impurity part ofiondo fixed point should be replaced by the local spin den-
the Knight shift, the equal-time correlator obeys the scalingity J(0) for r=0, up to a constant multiplicative factdr®
equation(2.21), with solutions of the form Eq2.23. Since 3,(0)
the decomposition ak(r,T) into the uniform and Rg parts Smp™ URL _ (3.40
is only valid in the scaling regiokgr>1, the sum rule Eq. Tk

As we have shown in the previous sections, it satisfies a Ko (N T1é7 ,Ng) =
nonzero sum rule:

A
(1+70)(1—)\T)e2"”§T.
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A. The local spin susceptibility

2 ~2X,
e b, 81 T T }”T)e 2 Spin susceptibilities of the multichannel Kondo problem
3 r also satisfy RG equation E¢R.21). However, the diagrams
T which contribute to the same order irkldre different from
T>'];( the single-channel case. Since the low-temperature fixed
point for coupling constant is-1/k, each vertex produces a
5 ) ) —2m 1k factor. [Here we assume that the bare coupling, is
? | wivd Ty TP T also O(1/k).] Each loop, on the other hand, gives a large
> factor ofk. Combination of these factors determines the dia-
Ex T< 1;( g, r grams that one needs to calculate to a given orderkinThe
number of diagrams is finitésee Appendix A for details
FIG. 4. Scaling regimes for the oscillating part of the equal-timeWe shall calculate the spin correlators of interest up to the
spin-spin correlatoK (A 1,x=r/£r) in the single-channel Kondo ~first nonzero order in ki
effect. The solution of the scaling equations for the coupling
constant up to subleading order ink1lwere obtained by
Substituting this in the definition df,,, andK,_, we obtain Gan? From the calculation of t.he _con_duction electron self-
at finite T F energy he found that thg function is given by

1 1 1
— 22, 3, 7 4 T2y 5
consT? B(he)=—AE+ SKAE+ Skang— KR, (4.0)

Kok (r1é1)=—(LI2K 1/ &)= .
ZKF( &) (2K ufrler) Tesint?(7Trlvg) wherea is some nonuniversal number, which depends on the

(3.41 cutoff procedure. The flow for the overscreened Kondo
model is shown in Fig. 1. The low-temperature physics is
Thus, at T—0 the equal-time correlatoK decays as determined by the intermediate-coupling stable fixed point
sirtker/r* [see Eq(2.13]. This result was obtained by Isffii ~ A* given by B(A\*)=0:
in the context of the Anderson model. The behavior of the
equal-time correlator&y (r) and K(r) in different re- )\*:2( ﬂ
gimes is summarized in Figs. 4 and 5. k k
The position of the fixed point is not universal. On the other
hand, the slope of the3 function at this fixed point,
A=pB'(\*) is the dimension of the leading irrelevant
The information that one gets for the single-channeloperator;” and should be universal:

Kondo model using perturbative RG is very limited, and fur-
ther numerical analysis is required. To justify the presence of A= (\*)= i 4.3
the Kondo length scale more, we analyze the multichannel k+2° '
model with large band multiplicity. The generalization of the __, . . .
above perturbative analysis to the multichannel case is quityulS _fact ;? r_ead|fly checked from E¢4.1). id o :
straightforward. The Hamiltonian for theS;,,=1/2 in :{[r:Z S:Jeallgliim grr doeurr E)nuri(/)seEs to ((2:0:;;3' :tr ﬁigng:'ggr
k-channel Kondo model is given by E.2). Further analy- x—A—ok Sgl g Eq.(2 1’ d- bt- .
sis of Sec. Il applies to the multichannel case as well. Somé =A=2k. Solving Eq.(2.18, we obtain
of the relevant perturbative K/calculations for the multi- K E
channel Kondo effect were done by GhHis scaling equa- 5 (¢petIn|dg))=In—, (4.9
tions and conclusions about the screening cloud are, how- 2 Tk
ever, different from ours. We refer to some of his resultsywhere
below.

4.2

IV. LARGE- k MULTICHANNEL KONDO MODEL

2D k 1]/ kng/2 \K2
) 22 2 AR PR WS W7
- WV A /2t -n°TAe
2
r =—-1. .
E'1‘ ¢E k}\E 1 (4 5)
T> 1; We assume that the bare couplingis sufficiently weak on
the 1k scale,\y<2/k. Then the solution for the running
9 | -n2v2/2TKr2 |-T2e_2"x/21“ coupling constant is rewritten as
: F K
g g Ne= M 4.6
© T<k 7 ETFCOL(EMOr+ 1 49

FIG. 5. Scaling regimes for the uniform part of the equal-time Here F("1)(y) is the function inverse td=(x)=x exp().
correlatorK (A7 ,x=r/£7) in the single-channel Kondo effect. The asymptotic form of this solution &< Ty is also useful:
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)\E=)\*—(T—K) : 4.7)

The analysis of the local spin susceptibility is parallel to

the single-channel cag&ec. ll). It is easy to see that the

uniform part of the local spin susceptibility should vanish in

the multichannel model as webee Appendix B Therefore,
for the most general magnetic impuritye., with gyromag-
netic ratio not necessarily) 2ve are left with electron and
impurity parts of the oscillating local spin susceptibility
XZkF,eI(rlT)’XZkF,imp(r’T)- The RG equations that these
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2772TX w(T)

(1) _T Xall)
FOYL(E/TO?]

Xok (A1.X)= (4.13

Consider now EQ.(4.10 in various limits. Obviously,
Ne=N\, for r<¢;, andhg= N\t for r>§&;. At high tempera-
turesér<<éx, and the crossover at- ¢ does not happen—
just like we have seen in the single-channel case.rBof;
the correlation functions decay exponentially, just as we
have seen in the single-channel case. The most interesting is
the low-temperature limiT<Ty, r<&7. In this limit we

guantities satisfy were considered in Sec. Il. The only differ-

ence with the single-channel case is that gh&unction and
anomalous dimension are different, wiih,,(A\) now given
by

)\2

Yimp()\): T (4.8

The nonuniversal scale factor for the solution of the RG

equations Eq(2.17 then is

1

_ )‘O'Yimp()\) _
C1—k\/2

exp[ o BN

The scaling functions in the larde-imit are determined
from the perturbative analysigee Appendix A We find
again that the scaling equations Eg.21) are obeyed, and
the solutions are given by

dn

4.9

1 Xek (A1)
Xeke o AT X) = 300 S 2 )

(37Y8)KAEX  Xak(AT.X)
X2ke tofl AT, X) =

sinh(27x) sinh(27x) ’
(4.10
where
YV (Ag,x) = (m2/4)(1— kA /2)ZL (4.11)
et T T 1-kngl2”

and \g is the coupling at the energy scalE(x)=
T/[1—exp(—4mX)]e, just like in the single-channel case:,
At are functions oE/Ty or T/Tk given by Eq.(4.6). Using
Eq. (4.10 together with Eq(4.6) we determine the scaling
functionS)(ZKF imp andXZkF,e, up to the leading order in &/

in the scaling limit\g— 0, r>1/kg at all temperatures:

R A A
Xake imp T/ T X) = o S FED (T3] + 1

1
XF<—1>[<E/TK>A] ’

3m3x 1

2k sinh27x) {FCU[(E/T)2]+1}%
(4.12

X2k, el T/ Tk, X) =

It is interesting to note that Eq4.11) has a factorized

_mér (TIT)* 1
 4r FOU[(gl[4mr])2] 1—kho/2

T r
X2Kg ,imp! T_Kvg

_3772 1
~ 4k {FOD[(g [4mr]) 1+ 1)2

T r
X2kg el T_K§_T

r
TK,fT). 419
The scaling function for the electron piece in the linjt— 0
appears in the subleading order irk1For nonzero bare
coupling there is also a piece in the leading order, which is
proportional to the impurity scaling function in E¢4.14
and the anomalous factor.

As in the single-channel case, the weak-coupling behavior
is not recovered inside the screening cloud. Outside the
screening cloud, foM<Tk and éc<<r<<¢&;, the local spin
susceptibility takes the form

47TFT2)A

T rT)

Tk ve &Tk
The T divergence is not removed at low temperatures, and
Eq. (4.195 does not have the Fermi-liquid form, as one could
expect for a non-Fermi-liquid low-temperature fixed point.
The distance-dependent Knight shift for overscreened Kondo
fixed point can also be understoodrat £« using the gener-
alization of the Noziees’ Fermi-liquid approach developed
by Affleck and Ludwig!’

The spin susceptibility is obtained as the leading term at
the low-temperature fixed point plus corrections in the lead-
ing irrelevant operator. For the overscreened Kondo fixed
point the leading irrelevant operator contribution corre-
sponds to the second term in Eg.15. It is surprising that
the dominant divergent terfithe first term in Eq(4.15] in
the limit T—0, r<&g, or in the limitk—oo appears in the
first order in the leading irrelevant coupling. An interested
reader can find the details on this technical point in Appen-
dix C.

T
+(KNo/2) x 2k, ,imp(

372

+ K (4.15

X2k tot “aoT

’7TU;:(

B. Integrated susceptibilities

As we have seen for the single-channel case, the static
spin susceptibility is mostly given by the impurity-impurity
correlation function,y;(T), while other pieces contribute
only a small fraction which is proportional to the bare cou-
pling constant, or bare coupling constant squared. It is easy
to see that this is also the case for the multichannel model.

form, where theT dependence is once again that of the spinindeed, according to Gah,
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1 D ® - k
Xi(M =77 (1—k>\3|n? ) H= Jiwdr(ﬂr%(f))“Hgara_ghg(ZL)
Aok D +27k\ ¢ S%0, 9L (0
XelT)=— = (1—k)\§ln? ) (4.16 koS 1 e (0)
e~ h
22 +const (ST e BTReLOOPAAYL H ¢ ) — ( hik\o ?e) S
D
=% 1K\ 2=
Xed T)= 16T 1 k)\oln_l_ ) 4.23
Thus, from the scaling equations Eg.21) we obtain Thus, for the free energy, we have
Lk hek\o
o Xk XH F(hi,he)=———h2+F| 0h— = ) (4.24
X|| (1—k)\0/2)2, X|t 1_k)\0/2, (417) I e. 47TU|: e I 2
where the scaling function for the total spin susceptibility isFOr the susceptibilities we then obtain
given by k\o kho\?
L o |2 Xie= = 5 Xiin  Xeew| 5| Xiis (4.29
S I
Xe= 27 ( > ) : (418 With yo=(K/2mvg)L, the Pauli term. This agrees with the

largek results.

Let us now return to the issue of screening. The electron-
FEO[(TITOA] |2 total pigce of the spin susceptibility,et= Xeet Xeis is givgn
=D 3 (4.19 by th_e integral of the Iocall spin susceptibiligyr,T). As in
FoLTMTt+1 the single-channel case, singé,T) only has the oscillating
The electron-impurity and impurity-impurity correlators con- Pl€ce, this integral is determined by the short-distance con-

Using Eq.(4.6), we can rewrite Eq(4.18 in the form

)= 1
Xl )—ﬁ

tain smallness associated with the bare coupling: tribution, r ~1/kg . The form of x(r,T) atr~1/k is cutoff
dependent. However this dependence disappears in the inte-
K\g k2\2 gral, which describes conduction-electron spin polarization.

0 ) :
Xie=~ 7 Xu(T),  Xee= 7~ xul(T)- (420 In case of a 3D Fermi gas the cutoff procedure is well de-
fined. The fact that the net conduction-electron spin polariza-
Thus, the spin susceptibility is given mostly by the impurity- tion due to impurity comes mainly from~ 1/kg is indeed
impurity spin correlator, and for a system with impurigy justified to the orders we worked in perturbation theory.
factor g#2 there are corrections to the bulk susceptibility From Eq.(4.10, with Ag=\,=X\,=<1/k we can write for the
proportional to the bare coupling. FAr<Ty the scaling local spin susceptibility:
function for the total spin susceptibility takes the form:
Khoxu(T)[ cosdker  sin2ker
1 (T \* Xt D=9 7 T ik
Y= = | =— (4.21) Ao \ 87r 16aker
4T \ Tk

We have checked this conjecture to the leading orderkn 1/

As in Sec. lll B, this fact is easily understood in the bosonic|eqration of this expression overgives the correct result
language using canonical transformation. The bosonizeg,, et
ets

Kondo Hamiltonian for thek-channel model has the form

(4.26

—k\gl2
% , Jk Xed T)= tht(T)- (4.27
H= [ dr] G e = a0 (1) 0
o N2m Obviously, the major contribution to the integral
+HB 3 27k 0Sd, ¢, (0) +const N = © d(sin2kgr
f d3rX(r,T)ocf dr— (4.28
0 0 dl’ 2k|:r

X (S*eBrlkeO0paRy o)~ h S (4.22

. . . . . comes fromr ~21/kg .
Here ¢ is the canonically normalized total spin boson, i.e., F

the sum of the spin bosons for each channel divided/ky
The additional, independent degrees of freedom which
couple to the impurity correspond to the SU{2\Vess- As we have seen above, the zero-frequency spin cor-
Zumino-Witten model with one free boson factored out. Thisrelator vanishes a2 whenT—0. It also obeys a zero-sum
is the Z, parafermion model’ For thek=2 case it corre- rule. As in the single-channel case, the equal-time spin cor-
sponds to an extra Ising degree of freedom, or equivalently eelator K(r,T) =(sg|(r,0)sfmp(0)> has a nonvanishing sum
Majorana fermion. These extra degrees of freedom play neule, Since<5§|5|zmp>= —1/4. The uniform part of the equal-
role in the canonical transformation. time spin correlator is nonzero.

Changing the bosonic fielgh ()=, (r)+ vkher /8, Consider the equal-time correlator&,(r,T) and
the Hamiltonian takes the form KZkF(r,T) using the 1K expansion.K(r,T) satisfy scaling

C. Equal-time correlation function
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' ' ' derKun()\,,r) _JA* khe—2 dN, kho—2
0 2’7TU;: B No 2_k)\0 2)\*_ 8

(4.32

0.25 1 Thus, in this case the screening lengthé, is explicitly
present. The dependence on the bare coupling consgant
surprising, since it should not be there according to the sum
rule Eq.(3.35. The missing part of the sum rule comes from
the short distances. To provide the most transparent demon-
stration of this, we write the second equation in E429

for a 3D Fermi gas, so that co$ge) is replaced by
cos(&er)—[sin(Xer)/2ker], as in Eq.(4.26. The short-
0.20 . distance integral, which is analogous to H4.28, gives
precisely the compensating terrk\ o/8 needed for the sum
rule Eq.(3.35 to be obeyed.

The low-temperature decay of the equal-time correlator at
r> &, in the overscreened multichannel Kondo model can be
obtained using conformal field theory approdske Appen-

dix C). Indeed, at the low-temperature fixed point we
have 18

L)

0.15 L— ' : :
0.0 05 10 15 2.0 Simp—cONst(0,0 T *, (4.33

X

where ¢ is the s=1 primary of dimensionA=2/(2+Kk),
const is a nonuniversal constant. We then obtainl«fg;gF
from conformal invariance:

FIG. 6. Scaling functiorL(x).

equations Eq(2.2]). As in the single-channel case, for &
the spin correlators decay exponentially. The behavior is

most interesting for <¢;, where our expressions are con- (r)= (¢(0,0-0) ¢/JT(0r)w (0,—1) ) o 1
siderably simplified. Expressing our results in terms of effec-  2<F 2T LS Tarita’
tive coupling at scale,\,, we get (4.39

in agreement with the large-result Eq.(4.30. The same
(1—Kk\,/2)2, leading-order calculation gives zero foK,,, since
(4.29 (¢(0,0)-3(0,r))=0. The first-order term in the leading ir-
' relevant operator gives

1 WUFk)\f
Kun(Np 11é7) =~ 1—Kng/2  2r

Ko (N 1D = TRl (1 ka2)
2kp rallST :1_k)\ 12 8r riL— r . 1
0 Kl T35z (4.35

We can rewrite these expressions using @cp) in terms of _ _ o _
T/Tx,rlér variables. Suppressing the anomalous factowhich also agrees with Ed4.30. It is interesting to note

1/(1—kxo/2), we obtain that, unlike the single-channel Kondo model, the long-
distance decay of the uniform andk correlators is differ-
ent.
un(le) == ﬁLZ[(Mr/ﬁK)A],
Tk &7 kr
V. CONCLUSION
T r 7wTér A Although the techniques employed in this paper—
KZKF(T_K'S_T) ==z LL4mr/&)%], (430 renormalization-group improved perturbation theory and the
largek limit—are of limited validity, they have led to one
whereL(x) is the function defined by exact resuliall orders in perturbation theorand suggested
a certain conjecture which, if true, leads to a rather complete
FC- (1) picture of the Kondo screening cloud. We first summarize
L(x)= . (4.31) the exact result and the conjecture, pointing out a consis-
[FCOYx)+17? tency check between them and then state the resulting con-

clusions.
A plot of this function is shown in Fig. 6. As we have dis- (i) The uniform part of ther-dependent susceptibility,
cussed in Sec. lll, the integral &f(r,T) should not vanish. vanishes to all orders in perturbation theory. On the other
It is given by Eq.(3.39, as in the single-channel case. The hand, the equal-time correlation function has a nonzero uni-
integral over long distances~ & can be calculated explic- form part, varying on the scal§ at T=0.
itly from Eq. (4.29 by changing variable —\, . Using Eq. (i) The 2 part of ther-dependent susceptibility has a
(2.18, factorized form ar <vg/T,£k:
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TUE ceptibility, consists of the dimensional factor of times an
Xake (1 T) = — =M xu(T), (5.1 interesting and universal scaling functionrég, andT/Tj .

This scaling function factorizes intoy(T)f(r/éx) for
wherex«(T) is the total susceptibilityless the free-electron vg/T>r.

Pauli parj and where\, is the effective coupling at scate Our work leaves various open questions for further study.
This was verified to third order in perturbation theory and inlt seems plausible that our conjecture could be proven to all
the largek limit [including theO(1/k) correctior]. orders in perturbation theory, thus putting this work on a

There is an important consistency check relating this remore solid foundation. There are three interesting universal
sult and conjecture and the resmit=—(\/2)xii, follow-  scaling functions which we have introduced, one for the 2
ing from the formula: susceptibility and two for the uniform andkg equal-time

correlation functions. A general calculation of these func-
o= | dBry(n). (5.2 tions could per_haps bg_accomplished by quantum Monte
et Carlo or exact integrability methods. Results on e 0
i , i i ) . limit of the susceptibility scaling function were given in Ref.
Sincex(r) is an RG invariant, it has no explicit dependences an obvious generalization of our calculations is to general
on the bare coupling. If the uniform part had been noNzerofrequency-dependent Green’s functions.
its integral would have given a contribution pg., which Most importantly, experimental results on the Kondo
would be unsuppressed by any powers of the bare couplingcreening cloud are very limited. The NMR experiments of
The integral involvingy,(r) gives 0 forr>1/kg due tothe  Boyce and Slichter only probe extremely short distances,
cos(gr) factor and hence is determined by the valuggf ~ r~1/kg. Our work shows that these results are entirely con-
at short distances dd(1/kg). In this limit szF(r)‘X)\r*ko sistent with a Iqrge screening cloud. Howeve_r, these experi-
and integrating Eq(5.1) gives yor= — (A ok/2) X1t - ments do not directly probe the scdlg. NMR is probably

Strictly speaking this consistency check requires yet anhot a feasible technique for doing this since it is difficult to
other conjecture: study distances of more than a few lattice constants. One

possibility might be neutron scattering, which could, in prin-
ciple, measurey(q,w) for q~2kg. An alternative is to

X2k Sin2Ker b A ; 28
X(n~-— 2F cog 2Ker) — o } study small samples with dimensions ©f ¢).
A7révg Fr
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Despite the limitations of our calculational approach, we
are thus led to a fairly complete understanding of the Kondo APPENDIX A: PERTURBATIVE RESULTS

screening cloud. The heuristic picture of Nage and others ) _ _ ) ) ) )

of the Kondo ground state is seen to be correct. The impurity The diagram technique for interactions involving spin op-
essentially forms a singlet with an electron which is in a@rators is cpmpllca_lted due to their nontrivial commutation
wave function spread out over a distanceQif&,). This is relations. It is possible to ggxpress these operators in terms of
seen from our calculation of tHE=0 equal-time correlation PSeudofermion operatof$:

function which varies over the scaig .

On the other hand, the behavior of static susceptibilities is S :E 2 ftagbs (A1)
considerably more subtle. A naive picture that an infinitesi- 246512 a B
mal magnetic field fully polarizes the impurity but induces a
compensating polarization of the electrons is certainlyThe problem in using the fermion substitution HAL) is
wrong. Rather the impurity polarization is proportional to thethat thee matrices have dimensionality 2, while the fermion
weak magnetic field and thimtegratedpolarization of the —space is four dimensional. Thus, only the states with
electrons(with the free-electron value subtracieid much
smaller(proportional to\ ). The finiteness of th&=0 im-
purity susceptibility results from its tendency to form a sin-
glet with the electrons.

If we now examine the dependence of the electron po- are physical. This constraint is imposed by choosing appro-
larization, we find that it is small at short distan¢€x(\ ) . priate chemical potentid? For example, Popov's
However, it exhibits a universal oscillating form at long dis- techniqué® adds an imaginary chemical potentiekT/2, to
tances which is not suppressed by any powers,dfut only  the pseudofermions. Then the contribution of the nonphysi-
by a dimensional factors of 19. The fact that it is purely cal states to the partition function is zero. The diagram tech-
oscillating ensures that the contribution to the integrated porique then becomes the standard fermion technique with the
larization is negligible. The envelope of this oscillating sus-one-dimensional conduction electr@deft-movers propaga-

N=, ffef, =1 (A2)
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tor (iw,+vek)™ !, the pseudofermion propagator In general, the constants;, A,, andB; in Eq. (A6) de-
(io,—i[7T/2]) "%, and the interaction Hamiltonian pend on the cutoff procedure. However, these three constants
are connectedd,+4B;—2A;=0, as follows directly from

the results of Wilsoff on the scaling properties of the total
spin susceptibility. Using this connection and 8125, the

) ) ~fact that all three scaling functions for the spin susceptibility
For our purpose of computation of spatial correlators it isare equal up to the terms\?2 is easily demonstrated.
convenient to work in the coordinater space, where the  consider now the multichannel case. As we have men-

"'g"'i T T
Hine=vrho 2 P (0) 1 54 5(0). (A3)

propagator for the left movers takes the form tioned in the text, the graph selection in this case is different,
since each vertex is ~1/k. To the order I{ we need to
Go(2)= ——=—, Z=veT+ix. (A4) calculate all the graphs in _F_ig. 7, excéptand(i), which are
sin7Tz] of the order 1K2. In addition, we need to calculate the

) ) . fourth-order graph shown in Fig. 9. The result of this calcu-
For the lowest-order diagrams it may be more convenient;sinn is given by Eq(4.10 in the text.

to calculate time-ordered impurity-spin averages directly. -~ cajcylations of the equal-time correlator are somewhat

Such spin operator Green's-function approach was applief,gre involved. WhileK , (r,T) in Eq. (4.29 is also non-
successfully, for example, in case of long-range Heisenber F

ferromagnet® Consider gero up to this orderK,(r,T) vanishes. We need to go to

the next order in ¥ to find the answer. For the terms of the

(S'9---8Y, (A5)  order 1k?, we need to calculate graple) in Fig. 7, and
o . . _ additional fourth- and fifth-order graphs shown in Fig. 10.
wherei,j, ... k={z,+,—}. Obviously, this average is zero  The bulk susceptibility results are found again by calcu-

when the total number 08" operators is not equal to the lating ;(T) andr integrating the Knight shift. In the leading
total number ofS™. Consider first averages containing only order we only need to consider second-order graph in Fig. 8.
S* operators. For odd number of spin operators it vanishes.

In our simpleS=1/2 case Tf{S*]?")=1/4". One can use APPENDIX B: PROOF THAT THE UNIFORM PART

spin  commutation  relations and the relations OF THE LOCAL SUSCEPTIBILITY VANISHES
StST=(1/2)+ %, S S*=(1/2)— S to calculate the aver-
age Eq.(A5). As clarified in the text, the local spin susceptibility can be

All diagrams for the spin susceptibility(r,T) up to third ~ written as a sum of impurity and electron paftee Eqg.
order are shown in Fig. 7. Grapha)—(d) represent the (2.10]. We will consider these two parts separately for the
electron-impurity part, while graphée)—(i) the electron- purpose of this proof.
electron part. We only show the electron Green functions on Consider first the impurity party, im{r). Using Eq.
these diagrams. The dashed line represents the boundary. F@r15, one can write
the electron-impurity spin-correlation function the external
electron-spin operat@,(r) takes the propogator away from B T o’ .
the boundary. In the case of the electron-electron part of the Xunimd!T)=ve( T JO A7y (1, 7) 5 Y1, 7)Sinp(0)

Knight shift there are two such operators. We have to inte-
grate over the position of one of these operators. B )

Straightforward calculations lead to the final results stated Xexp[ - J 0 d7'Hin(7')
in Egs.(3.1), (3.17) of Sec. Il A. To calculate the equal-time
correlator(Se(r,0)Smp(0)), we need to evaluate the graphs (B1)

(b)—(d) of Fig. 7 once again. The first gragh is frequency whereH,, is given by Eq.(2.9). The fact that this contribu-

independent, i.e., it is the same as for the electron—impurit){ion vanishes is very easily seen when we perform the
part of the local spin susceptibility. Both uniform ané:2 integration. Indeed, in every order in perturbation theory

parts are now nonzero. The result of this calculation is given .
by Eq.(3.36 of Sec. Il C. Xun,imT,T) can be written as

For the discussion of static susceptibilities in Sec. Il B 8 (B
we need to calculate the impurity-impurity part, in addition Xun,imp(rvT):J f drd ol (71,72, F) XF(71q,75),
to space integrals ofic(r,T) and y.{r,T). The second- and 0.J0
third-order graphs fox;;(T) are shown in Fig. 8. The leading (B2
order is, of course, 1 We find that

>+(I’<—>—I’),

where

3 2D D
=Xl In —+A2InT+cons ,

D
=1 —=\2| In— B
4Txi=1 Ao('”-r*‘Al T I(Tl,rz,r)zj drG(r,7—7)G(—r,7,—17), (B3
0

3

A Ay D .
4T xie=— 70 +BNS+ 7°In;+ conshi,  (ap)  On eduivalently,
| JB dr(mT)?
A2 = : — — . R
4Txee=zo+con51\§. o SINTT(vpT—vET+ir)]siNaT(vET,—VET Ir()B]4)
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N
0o 7 do 0 0D s

Note that the absence of the uniform part in the distance-
FIG. 7. Perturbative diagrams fa(r,T) up to third order. dependent Knight shift becomes trivial in the bosonic lan-
guage(see Sec. lll B. Indeed, since
After the change of integration variable—exp(i27Tvg7),
one encounters contour integration with two poles on one 1
side (see Fig. 11, andl=0. Se(veT+ir)= \/?WPL(UFTHF), (B7)
Consider now the electron pajgt,, ¢(r). Here the cancel- ™

lation of x,n () is less trivial since there are other graphs inwe find
addition to those with the integration E@®4) (see Fig. 12

: , B 1 - _
G(r',—7)G(r=r",1)G(—r, 72— 1) (72— 71), (B5) Xun(r)OCJO dT<Eﬁr<pL(vF7+lr)Sz>
G(r,7—7)G(r'—r,—7)G(—r', 7)) p(75— 71), _

i - ~
where n(7,— 7;) is determined by the full perturbative se- =— —(eo (irtveB)S) — (¢ (ir)S))=0,
ries. We now introduce the complex notation, V2T
z=7aT(ver+ir), and remember thad(z) = 7 T/sinz. Then (B8)

the sum of the graphs in Fig. 12 gives _
becauseyp, (z) is periodic in the imaginary time variable.

(22— 21) 1 Note that we do not need to worry about a potential short-
sinz—z') | sin(z,—2)sin(z’ —z;) distance singularity because the total spin has been replaced
by the impurity spin in the expression foy,, using the
1 above argument. A similar argument fgy,= 0 was given in
- : Ref. 13.
sin(z,—2z')sin(z—z,)
7(2,—2,)SIN(2,— 25) APPENDIX C: LOW-TEMPERATURE LONG DISTANCE
== ; — 3 N LOCAL SUSCEPTIBILITY IN THE MULTICHANNEL
Sin(z—z4)sin(z,—z)sin(z' —z;)siN(z,—2") KONDO MODEL
(B6)

szF(r,T) is determined by the infrared stable fixed point
which is g_raph|cally prese_nted in Fig. 12. Integration over for r>¢,, T<Ty and any value of the ratioT/vg. For
Eq. (B4) yields zero in this case as well. Generalization ofy~1 (and Smp=1/2) this fixed point is of the non-Fermi-
this proof to the multiple number of channels is quite trivial. |iquid type. The low-temperature non-Fermi-liquid multi-
Indeed, the graphs that cancel have the same chann&hannel Kondo fixed point was analyzed by Ludwig and
dependent factor. As we have seen above, the crucial step @fifleck!’-1° using conformal field theory. We refer the
the proof is that the integral E¢B4) is zero. Thus, th@=0  reader to these works and a recent revidfor details. In the
part of the correlator is absent only for zero-frequency spin-

spin correlators, not for equal-time correlators.

Ce-- - é@ M-

=S P

FIG. 8. Second- and third-order graphs for the impurity- FIG. 10. Fourth- and fifth-order graphs fg(r,T) that contrib-
impurity part of the spin susceptibility;; . ute to the order ¥ in the 1k expansion.
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)

(/0 /0 /0

(1) (r.T) )
+ QoC S TV,T- Vit

©0z) Oz) O7) O1) (©O1) O1)

FIG. 12. Cancellation of the uniform part of the local spin sus-
ceptibility.

J))o

N LT -
TlﬂL(Z)—EfﬁL(ZH eg({—2), (C7)

fermion Hamiltonian are separate. Only the spin sector isyhere Reg({—z) denotes a function which is regular at

interesting in the Kondo problem, since the impurity spin
couples to the spin current. The effect of the strong-coupling

fixed point’ is such that the low-temperature Hamiltonian
density is written in terms of new spin currents,

—_ 1 2
Hs—m.] (X), (Cl)
where
3100=3 vl 5,0 +27S5x). (€2

{—z, we rewriteXZkF(r,T=O) as

UF + o0 + oo
X === | [ aray

X (P (0,— 1)yl (O))). (e:)

The Green'’s function for two points on the opposite sides of
the boundary takes the form

1 N 1
THiy—ir  7H+iy+ir

The Fourier modes of the spin currents for a system withvhere

Hamiltonian density Eq(C1) defined on a large circle of
circumference P

Jn (C3

1 ! jnarx/|
ﬂf_ldxe' J(x),

satisfy the usual Kac-Mood{KM) commutation relations,

1
(38 Im] =1 €00+ 5kN*80 1m0 (CH)

Here €3¢ is the antisymmetric tensor ark is the Kac-
Moody level. To the leading order, the Knight shift is given

by

Ve (B [t*
Xk (1 T)=— Zfo le drdy

U'Z
><<¢[(o,r>7wL<o,—r>JZ(r,y>>. (CH)
Using operator product expansi¢®PE)

3/4

-z

J)o

5 (C6)

i (2)=— ¥ (2) +Reg({~2),

t —._ Su
(W () (z2))y=—=, (C9)
21_22
_coiZw/(2+k)] €10

Sw= co§ 7/ (2+K)]

is the S-(scattering matrix, calculated in Ref. 19. This is a
universal complex number, which depends on the universal-
ity class of the boundary conditions. In the one-channel
Kondo effectS;)=—1, corresponding to a/2 phase shift.

At the overscreened Kondo fixed poinS;;)|<1, which
means multiparticle scattering. Substracting the free-electron
contribution and performing the integrals, we find

Xake (1) =k——.

(C1)

In the limit k— e this givesXZKF(r):3w2/4k, in agreement
with the largek result of Sec. IV. Fok=1 it agrees with the
Fermi-liquid result Eq(3.15. Note that no anomalous power
laws occur in the leading order in irrelevant coupling con-
stants. Only the normalization reflects the non-Fermi-liquid
behavior. As in the single-channel case, finite-temperature
calculations multiply this expression by the factor
2arx/sin(2mx), wherex=rT/vg.

Consider now corrections to this expression. The leading
irrelevant operator which appeafsn the effective Lagrang-
ian at the overscreened Kondo fixed pointlis; - ¢», where
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¢ is thes=1 SU2) KM primary field with the dimension The finite-temperature correlation function which appears
A=2/(2+k). The dimension of this singlet operator is under the integral in EqC13 can be obtained using con-

1+ A. We can again write this additional piece as

1
HintNF(Jfl’ ¢(0))- (C]-Z)

K
Thus the correction is given by

P) T oF fﬁfﬁrwdd d
r,T)=—
X2k ( 2mtilo Jo | . rd7,dy

T o’ z
X wL(Oir)? lr//L(Oi_ r)‘] (TaY)

X[31‘¢(71,0)]>- (C13

To find the most singular part of this expressiorr as0, we
use the boundary OPE

Cé(0,0

yHO+ir) 2 (0—ir)— —2
L 27L pl-A -

(C19

formal mapping, a conformal transformation which maps the
finite-temperature geometrghalf-cylinde) onto the zero-
temperature half-plane.

z=tan(7Tw). (C16

Herew=7+ir in the finite-temperature geometry. A Vira-
soro primary operatoA(z) of left-scaling dimensionA 5
transforms as

dw) %A
NW)Z(E) A(2), (C17
under conformal transformation. Usingdw(z)/dz=

1w T(1+2%), we express the finite-temperature correlators
in terms of the zero-temperature ones. The net effect is such
that the factors 14; —z,) for the half-plane get replaced by

7 T/sin(mT[w;—Wws]) on the half-cylinder. Doing the integral

in Eg. (C13 and dropping the constants, we obtain

1

OX ok (M T) T (C18
F rl ATl ZATQ

in agreement with the largeresult of Sec. IV. This term is

From conformal invariance, this zero-temperature Co"elatorsubdominant for <ue /T, compared to the leading term in

!

((6(0)-3(21))I-1- H(2,))) =

|21%]21- 25|25

Eqg. (C11). On the other hand, it becomes larger than the
“leading” term if we take T—0 with r>¢¢ held fixed.
Anomalous powers appear from irrelevant operator correc-
tions.
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