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Raman intensity of single-wall carbon nanotubes
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Using nonresonant bond-polarization theory, the Raman intensity of a single-wall carbon nanotube is cal-
culated as a function of the polarization of light and the chirality of the carbon nanotube. The force-constant
tensor for calculating phonon dispersion relations in the nanotubes is scaled from those for two-dimensional
graphite. The calculated Raman spectra do not depend much on the chirality, while their frequencies clearly
depend on the nanotube diameter. The polarization and sample orientation dependence of the Raman intensity
shows that the symmetry of the Raman modes can be obtained by varying the direction of the nanotube axis,
keeping the polarization vectors of the light fixed.
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I. INTRODUCTION are 15 or 16 Raman-active modeskat 0 for all armchair
(n,n), zigzag 0,0), and chiral ,m) (n#m) nanotubes:®
An important advance in carbon nanotube sciéiigghe  The number of Raman-active modes does not depend on the
synthesis of single-wall carbon nanotulf8WCN’s) in high  number of carbon atoms in the unit cell, which is given by
yield using the laser ablation method with transition-metal2N=4(n?+m?+nm)/dg for (n,m) nanotubes.Heredg is
catalysts, in which a bundle of SWCN'’s forms a triangularthe highest common divisor of (@+n) and (Zn+m). A
lattice of nanotubes, known asrape?® Using such nano- simple explanation for why we get almost the same number
tube ropes, several solid state properties pertaining to af Raman modes for any nanotube is as follows: For lower
single nanotube have been observed. In particular, RaRaman frequencies, the vibrations can “see” only the cylin-
et al* have reported Raman spectra for SWCN'’s in whichdrical surface, while for higher Raman frequencies, the vi-
they assigned the observed Raman modes with specifisrations see only the localp?-bond structure of graphite,
(n,m) nanotubes known to be present in their samples. Thewhich is the same for any nanotube. However, the chirality
showed that the Raman signal from the rope not only conef the nanotube may affect the Raman frequency, as we will
sists of the graphite-orientefl,y (or E;) modes, which oc- show below.
cur around 1550-1600 cit, but also contains a strong low- An another interesting point concerns polarization effects
frequency Ag-active mode, known as the nanotube radialin the Raman spectra, which are commonly observed in low-
breathing mode, which is special to the nanotube geometrdimensional materials. Since nanotubes are one-dimensional
Within the bond-polarization theory, they have assigned thisnaterials, the use of light polarized parallel or perpendicular
spectral contribution as coming from armchair nanotutfes, to the tube axis will give information about the low dimen-
which are denoted by the chiral vecti$(n,n) for n=8,9,  sionality of the nanotubes. The availability of purified
and 10. The authors, however, did not consider the case siamples of aligned nanotubes would allow us to obtain the
other chiral nanotubes in their theoretical analysis. symmetry of a mode directly from the measured Raman in-
Recently Kataurat al.” reported that various chiral nano- tensity by changing the experimental geometry, such as the
tubes with almost all possible nanotube chiral angles are expolarization of the light and the sample orientation, as dis-
pected from the assignment of the observed Raman specteassed in this paper.
to the calculatedh,4 breathing mode® under different syn- The enhancement of the Raman intensity is observed as a
thesis conditions through variation of the catalyst composifunction of laser frequency when the excitation frequency is
tion and the furnace temperature. According to their results,close to a frequency of high “optical” absorption and this
smaller diameter nanotubes are obtained by lowering the fureffect is called the resonant Raman effect. The observed Ra-
nace temperature to the range of 1000—1200 °C and usingmaan spectra of SWNT’s show resonant Raman effécts,
Rh/Pd catalyst instead of the Ni/Co catalyst that was used tehich reflect the one-dimensional van Hove singularities of
prepare the samples in Ref. 4. the electronic density of statéDOS) of the = bands. The
As for the distribution in chiral angle of carbon nanotubesresonant Raman effect is expected to be observed clearly in
prepared by the method in Refs. 3 and 4, Cowldyal. carbon nanotubes when the singularities in the one-
showed from TEM experiments that the observed range oflimensional density of electronic states are separated from
chiral angle lies within 7.3° from the armchair an§l&hus  each other in the DOS spectra. The number of singularities in
it is interesting to examine the Raman spectra for chirathe DOS spectra of a nanotube depends on the number of
nanotubes theoretically. energy subbandsN\?, whereN is the number of carbon atoms
The group theory for carbon nanotubes predicts that theri the unit cell defined above. Thus nanotubes with siNall

0163-1829/98/5(7)/41459)/$15.00 57 4145 © 1998 The American Physical Society



4146 R. SAITOet al. 57

such as the achiral nanotubes and chiral nanotubes with large D E)JF 0. ©)
dr, may show a clear resonance effect when the frequency

of the laser light is tuned. On the other hand, chiral nanoTg gbtain the eigenvaluesz(ﬁ) for D(IZ) and the nontrivial
tubes with largeN may not show the resonance effect. Sinceeigenvectors JE?&G we solve the secular equation

the numbemN depends strongly on the chirality, the resonant - e . . -
Raman intensitypdepends or? t{1e chirality. Th)e/ different resogerD(k)=0 for .a g|venk- VeCEOr'_ Itiis convenient to d,IVIde
nant energies come from the electronic structure of the corfh€ full dynamical matrixD(k) into small 33 matrices
stituent nanotubes of the sample, which have different diam® (k) (i,j=1,... N), where we denote the dynamical ma-
eters and chiralities. Since the Raman modes can bgix D(k) by {DPU(k)} and it follows thatDi(K) is ex-
reasonably well identified for a single chirality nanotube,pressed as
such a resonant effect from a mixed sample emphasizes ef-
fects associated with a distribution of nanotube radii. Though (e Q" 5 () ik-AR
the present theory is within a nonresonant scheme so that i (k)= 2 KW =M (k) 5ii__2 K™ Ve U
cannot be used to obtain the resonant spectra explicitly, we ) y 3
believe that our model nevertheless gives important informa- @)
tion about the Raman modes for nanotubes with differenivhere the sum ove’ is taken for all neighbor sitegelative
diameters and chiralities. to theith atom) with K0 and the sum ovej’ is only

In Sec. II we first show the method for calculating the taken over the sites equivalent to tt& atom.
phonon dispersion relations in carbon nanotubes and in Sec. Since we have R carbon atoms, the dynamical matrix to
Il the calculated Raman intensities for different chiral Nano-pe solved becomes &\B< 6N matrix. In ana|ogy to graphite'
tubes are presented as a function of the polarization of thghe hexagonal lattice of a nanotube consists of two sublat-
light and the relative orientation of the nanotube axis withtices denoted byA andB. Here we denote theN2 atoms as
respect to the polarization vector. Finally, a summary of theaj andBj (i,j=1,... N), where theNAi (or NBj) atoms are

findings is given in Sec. IV. geometrically equivalent to one another. This equivalence
reduces the calculation of the force-constant tensor as fol-
Il. METHOD lows. When we divide the full BX6N dynamical matrix

into the 3x 3 small matricesD*8) for a pair of Ai andBj
atoms, we then consider KB?=4N? small matricesD(A'A),

A general approach for obtaining the phonon dispersionp(AiBi) p(BiA) and DB (i j=1,...N), in which inter-
relations of carbon nanotubes is given by the zone-foldingctions only up to fourth-nearest-neighbor pairs are consid-

method, whereby the phonon dispersion relations of a tWogred. The corresponding force-constant tert*B9 can
dimensional(2D) graphene sheet are folded into the one-pe generated using

dimensional Brillouin zon¥ for the carbon nanotube. How-

ever, in the zone-folding method, special corrections are K(APBA = (y ~1)p~1K (AlBa=p+lyp—1 (4)
necessary, especially for the lower-frequency phonon modes,

since some phonon modes of SWCN’s cannot be expresseédhere U is a unitary matrix for rotation by an angle
by the zone-folded phonon modes of 2D grap]lﬁté'ms WV =27/N around the nanotube axis ahﬂ’*l is defined as
comes from the fact that the in-plane and out-of-plane modes ,

are decoupled in the 2D graphite phonon modes, but that is cogp—L¥  sin(p—L)¥ 0
not the case for a nanotube. In order to avoid this difficulty, yr-1=| —sin(p—L)¥ cogp-1)¥ 0O
tight-binding molecular dynamics are adopted for the nano-

X . ; : 0 0 1
tube geometry, in which the atomic force potential for gen-
eral carbon materials is us&8 Here we use the scaled force
constants from those of 2D graphite and we construct avhere thez axis is taken for the nanotube axis. When
force-constant tensor for a constituent atom of the SWCN s¢q—p+1) is negative or zero in Eq.4) we use
as to satisfy the rotational sum rule for force constahts. (N+g—p+1) for (q—p+1). When the value op goes

In general, the equations of motion for the displacemenfrom 1 toN, we go over allAp atoms once in the unit cell.
of theith Coordinateﬁi=(xi yi,z;) for N atoms in the unit Thus we can generate all force-constant tensorsAlfArom the
cell, are given by nonzero tensors related t&1 or B1, such askK(®*1AP),

K(Apr), K(BlAp), andK (B1Bp)

The force-constant tens&"'8P is generated by rotating
the chemical bond\1Bp from the two-dimensional plane to
B the three-dimensional coordinates of the nanotube, as shown
whereM; is the mass of theth atom ancK (1) represents the in Fig. 1. We now explain how to rotate the boAdB1. At
3Xx 3 force-constant tensor that couples flle andjth at-  first the atomA1 is on thex axis andB1 is at an open circle
oms. The sum ovey in Eg. (1) is normally taken over only in thexy plane, as shown in Fig.(d). We move theB1 atom
a few neighbor distances relative to tith site, which for a  from the xy plane to another open circle as shown in Fig.
2D graphene sheet has been carried out up to fourth-nearedita) by rotating by=/6— @ around thex axis, wheref is the
neighbor interaction®® Using the Fourier transform of the chiral angle defined by=tan [ \/§m/(m+ 2n)]. Then in
displacements; , we get a 3 x 3N dynamical matrixD(k),  the top view of Fig. 1b), we rotateB1 from the open circle
which satisfies to the solid circle by an angle/2 aroundAl, whereg is

A. Force-constant model

©)

M= K=t (i=1,...N), (1)
J
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where theg;, and ¢, are, respectively, the scaled and the
FIG. 1. Rotations of the chemical bonds from the two- original force-constant parameters, and a similar notation is
dimensional plane to the cylindrical surface. The force constantised for the force constant parametéfsand ¢; . The idea
matrix is generated by performing the corresponding set of rotationfor using this scaled force-constant approach comes from the
on a second-rank tensor. See details in the text. fact that we recover a reduction in the force due to the dif-
ferent directions of the force defined for the chemical bond in

defined by the angle betwedl andB1 around thez axis. free space from the force on the cylindrical surface. When
This notation allows us to put tH&1 atom on the cylindrical W& make these corrections to the force constant using Eq.
surface of the nanotube. Finally, we rotatdd and B1 (_6)’ we always get th? correct vanishing of the purely rota-
around thez axis by the anglel in Eq. (5) as discussed t|ona! _moqle frequenme_s at=0 for any hanoiube, ?”d this
above[Fig. 1(c)]. The force constant matrix in the new co- condition is necessary in orﬂdéer to satisfy the rotational sum
ordinate system is generated by the corresponding rotation (ﬁ‘"e for the force constants. As for the other phonon

the second rank tensor in which the two-dimensional graph- eqtjle_nclﬁs, lthe frfguenuzs at ﬂhelgt)_omtfshlft t?]y at mos’;.4
ite force-constant paramet&tare used. cm - In the lowesity, mode resuiling from the correction

Multiplying the force-constant tensor thus obtained byto the force-constant parameters faf1d,10 nanotube asso-

. - ciated with Eq.(6). As for the higher-frequency modes, the
exp(kAz;), whereAz;; is the component o R;; along thez o ection to these frequencies is very small. We emphasize

or nanotube axis, the dynamical matrix is obtained as a funcg, ¢ although the magnitude of the corrections in E).is
tion of the wave vectok [see Eq(3)]. The phonon energy gmg|; this correction is important to ensure that the symme-

dispersion relationo(k) is obtained by solving the dynami- v conditions for translations of the centers of mass and

cal matrix of Eq.(3) for many k points in the one- |gations about the center of mass are correctly satisfied.
dimensional Brillouin zone.

It should be mentioned that the effect of curvature is not
perfectly included in the force constants thus obtained and
the calculated frequency &t=0 for the rotational acoustic Using the calculated phonon modes of a SWCN, the Ra-
mode is not zero as it must be, but rather has a finite valuean intensities of the modes are calculated within the non-
[~4 cm™?! for the (10,10 nanotubé It is clear that the resonant bond-polarization theory, in which empirical bond
rotational motions of the two neighboring atoms are not parpolarization parameters are uséd:he bond parameters that
allel to the chemical bonds between the two atoms and thisve used in this paper are listed in Table I. In the table we
effect gives an artificial out-of-plane force using the methodalso list the Raman polarizability parameters that are used for
described above. To avoid this unphysical result, we scaledarbon atoms. In order to obtain these parameters, we start
the force-constant paramet¥ty the formulas: from the values for the bond polarizability that were used for

d’tro = ot bro

$1= it o, cos(%—a)

b= it i sin( % - 9)

B. Raman intensity

TABLE |. Raman polarizability parameters for various carbon-related molecules. The bond lengths of
C—C and G=C for Cgy and G=C for SWNT are 1.46, 1.40, and 1.44 A, respectively, aridlenotes the
derivative ofa.

at+2a; a—a, ) +2a) a —al

Molecule Bond (A% (A% (A? (A?
CHZ? C—H 1.944
C,H,? c—C 2.016 1.28 3.13 2.31
C,H,2 C=C 4.890 1.65 6.50 2.60
Ce® c—c 1.28 2.30+ 0.01 2.30% 0.30

C=C 0.32+ 0.09 7.55+ 0.40 2.60x 0.36
Ceo™ c—C 1.28= 0.20 1.28+ 0.30 1.35+ 0.20

Cc=C 0.00* 0.20 5.40+ 0.70 4.50+ 0.50
SWNT® c=C 0.04 4.7 4.0

8Reference 12.
bReference 13.
®Present work.
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400 1 — = FIG. 3. Phonon dispersion relations shown on an expanded scale
// for a (10,10 carbon nanotube near thepoint (k=0).
is close to that for 2D graphite except for the small peaks due
00.0 02 04 06 08 1.000  1.0x10% to the one-dimensional singularities.

KT/ = [(states/C atom)/cm”] Let us focus our attention on the acoustic modes of the
(10,10 carbon nanotube. In Fig. 3 the phonon dispersion
FIG. 2. (a) Calculated E)honon dispersion relations of an arm-re|ations around th€ point are shown on an expanded scale
chair carbon nanotube wit@,=(10,10). The number of degrees of for the (10,10 carbon nanotube. The lowest-energy modes
freedom is 120 and the number of distinct phonon branches is 6Gaeark=0 are the transverse-acousfitA) modes, which are
(b) Phonon density of states 6£0,10 nanotubes. doubly degenerate, and haxeandy displacements perpen-
dicular to the nanotubezf axis. The highest-energy mode is
Ceo (Refs. 12 and 18and other materials for singl@.46 A  the longitudinal-acousti(LA) mode whose displacement ex-
and double(1.40 A) carbon bonds and we interpolate be-ists in the direction of the nanotube axis. Since the displace-
tween these values to obtain an estimate for the bondments of the three acoustic modes are three dimensional, the
polarizability parameters for SWCN’s. We then adjust thesdrequencies of the phonon dispersion relations are propor-
parameters so as to reproduce the Raman signal for randomtipnal to k for all three phonon branches, as is commonly
oriented nanotubes. Although the values thus obtained ar@bserved in the solid state. The sound velocities of the TA

within a reasonable range, the values listed in Table | for thend LA phonons for 410,10 carbon nanotube; *'9 and
various carbon materials show considerable scatter. v{R19  are estimated asv{}?'9=9.42 km/s and

It is known, however, that the polarizability parameters of,, (19.10= 20,35 km/s, respectively. Since the TA mode of ev-
carbon are similar for a variety of carbon materials. Furtheryry pnanotube has both an “in-cylindrical-plane” and an
more, the relative intensities for the Raman modes are not se,t_of-cylindrical-plane” component, the TA modes of the
sensitive to small changes in the values of the bondhanotube are softer than the TA or LA modes of 2D graphite.
polarization parameters except for the lowést; mode.  op the other hand, the LA mode of the nanotube has only an
Only the lowestE,q mode is found to be sensitive to the jn-plane component mode that is comparable in slope to the
bond-polarization parameter;—«, . Thus the fitted values | A mode of 2D graphite. In fact, with the force-constant
listed in Table | were used for the present calculation. Theparameters that are used in this paper, we have calculated the
Raman intensity is calculated using the eigenvectors for thghonon dispersion relations of 2D graphite, which give
vibrational modes, obtained by solving the dynamical matrix,chaA:15_Oo km/s and)fA=21.11 km/s for the in-plane TA
and the _polarizabilzity parameters are obtained using bondsng | A modes, respectively. The calculated phase velocity
polarization theory: of the out-of-plane TA mode for 2D graphite is almost 0

km/s because of itk’> dependence. It is clear that thg>1?
that has an out-of-plane component is smaller than the purely
in-pIanev?A. Further, the sound velocities of 2D graphite do
A. Phonon dispersion relations not depend on the direction in the graphitic plane because of
the threefold symmetry in the hexagonal lattice. However,

The results thus obtained far(k) for a (10,10 armchair . - !
carbon nanotube are given in FigaR whereT denotes the SINC€ the threefold symmetry is broken in carbon nanotubes,
we expect a chirality dependence of the sound velocity on

unit vector along the tube axisFor the N=40 carbon at- SWNT i ,

oms per circumferential strip for th€10,10 nanotube, we Via and soon. This eflf(()-:‘i:(')[ will be repgrted elsewhere.
have 120 vibrational degrees of freedom, but because of From the value forv{i*%, the elastic constantC,;,
mode degeneracies there are only 66 distinct phonoWwhere 1 denotegz can be estimated by, o=+Cj1/p, in
branches, for which 12 modes are nondegenerate and 54 aiich p is the mass density of the carbon atoms. When we
doubly degenerate. We also show the phonon density gissume a triangular lattice of nanotubes with lattice
states for(10,10 in Fig. 2(b). Here we integrated the states constantd a=16.95 A andc=1.44x 3 A, the mass den-
with an accuracy of 10 cm®. The phonon density of states sity p becomes 1.2810° kg/m®, from which we obtain

Ill. CALCULATED RESULTS
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Young’s modulusC,;=530 GPa. Young’s modulus is al- 1000
most the same a€,; since C,, is expected to be much E Sey,
smaller than in 2D graphit¥. This value is much smaller o,
than C;;=1060 GPa(Ref. 15 and the range discussed by Aw °s
several other group$;'” and the difference in the estimate E
for Young's modulus is due to the smaller values for the 1 o,
mass density.

In addition, there is a fourth acoustic mode for the carbon
nanotube, which is related to a rotation around the nanotube
axis atk=0. Since the force driving this wave motion is a
twisting motion of the nanotublewe call this mode a twist- %
ing mode. The velocity of the twisting acoustic wave is es- %
timated to be 15.00 km/s for @0,10 nanotube. This value °
is equal to the calculated velocity o?A for a graphene sheet
since the twisting mode is an in-cylindrical-plane mode. It is 10
noted that the sound velocities that we have calculated for 1 10
2D graphite are similar to those observed in 3D graphite, rfAl
for which v $3°=12.3 km/s and 3P =21.0 km/s. Although
there is some difference in the sound velocities calculated bX f
various groups, the present calculation gives good results for
the Raman mode frequencies as shown below.

It is interesting to note that the lowest phonon mode withshould be useful to experimentalists. Hergo 10)andr (10,19
nonzero frequency d=0 is not a nodelesé;4 mode, but are, respectively, the frequency and radius of ¢(he,10
rather anE,, mode with two nodes in which the cross sec-armchair nanotube, with values af(1410=165 cm ! and
tion of the carbon nanotube is vibrating with the symmetryr ;4 10=6.785 A, respectively.
described by the basis functions x#—y? andxy. The cal- It is the noted that theE;; and A;; modes exist in a
culated frequency of th&,, mode for the(10,10 carbon  similar frequency region. However, since the intensity of the
nanotube is 17 cm!. Although this mode is a Raman-active E,y modes is not as strong as that for the; mode, the
mode, there is at present no experimental observation of thisxperimental Raman spectra between 100 and 300'cane
mode. Possible reasons why this mode has not yet been oleminated by theA;; mode. As for the higher-frequency
served is that the frequency may be too small to be observedaman modes, we do not see a strong dependencesioce
because of the strong Rayleigh scattering or that the frethe frequencies of the higher optical modes are more sensi-
quency of theE,; mode may be modified by the effect of tively determined by the local movements of the atoms.
internanotube interactions.

The strongest low-frequency Raman mode is the radial
breathingA,, mode whose frequency is calculated to be 165 B. Raman intensity of nanotubes

C.mfl for _the(lO,lO ”?”Ot”be- Since this frequen_cy is iq the The Raman intensity for the various Raman-active modes
silent region for graphite and other carbon materials,Aj{s iy carbon nanotubes is calculated at a phonon temperature of
mode provides a good marker for specifying the carborygg i \hich appears in the formula for the Bose distribu-
nanotube geometry. Another merit of tgq mode is that jon fynction for phonons. The eigenfunctions for the various
the A, frequency is sensitive to the nanotube diameltedr  \inrational modes are calculated numerically at Ehgoint
radiusr. In Fig. 4 we give the calculated lower Raman-active k=0).

mode frequencies as a function of the carbon nanotube radius
r on a log-log plot for @,m) in the range

100 | 1

0 [cm'1 1
[s]

FIG. 4. A log-log plot of the lower Raman mode frequencies as
unction of carbon nanotube radius.

8<n<10, O0<m=n. Figure 4 clearly shows straight-line 1. The chirality dependence of the Raman intensity
dependences on for all four Raman modes, showing a as a function of the polarization of the light
power dependence ab(r) on r, but no chirality depen- In Fig. 5 we show the calculated Raman intensities for the

dence, which is consistent with the fact that the energy gap10,10 armchair,(17,0 zigzag, and11,9 chiral nanotubes,
of a semiconducting nanotube and the strain energy depenghose radii are, respectively, 6.78 A, 6.66 A, and 6.47 A and
only on the nanotube radid&'°From the slopes 0b(r) for  are close to one another. Here the Raman intensity is aver-
this range ofr, we conclude that, except for the lowdsf;  aged over the sample orientation of the nanotube axis rela-
mode, the frequencies are inversely proportional teithin  tive to the Poynting vector, in which the average is calcu-
only a small deviation. This dependence is closely related ttated by summing over the many possible directions,
the circumferential length of the nanotube. As for the lowestweighted by the solid angle for that direction. Here we con-
EZ% mode, the frequencyw,,(r) has a dependence of sider two possible geometries for the polarization of the
r~1:95:0.03 which is approximately quadratic, and may re- light: the VV and VH configurations. In theé/V configura-
flect the curvature effect of the nanotube. The fitted powetion, the incident and the scattered polarizations are parallel
law for theA;, mode that is valid in the region 34r<7A: to each other, while they are perpendicular to each other in
10017+ 0.0007 the VH direction. Generally the cross section for Raman
r<10,10> T

7) scattering is a function of the scattered angle of the light.
» )

However the formula of the bond polarization theory consid-

w(r):w(lo,lc;(
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the polarization. In fact, in Sec. lll B 2 we can see a strong
dependence of the Raman intensity on the sample orientation
for the A;; mode. As mentioned in Sec. Il the lattice can be
split into two sublattices consisting éf andB atoms. In the
higher-frequencyA,; mode, theAandB atoms move in op-
posite directiongout of phasgin the unit cell, while in the
lower-frequencyA;4; mode, theAand B atoms move in the
same way(in phase¢. When we investigate the vibration of
the higher-frequencp,, mode, the vibration corresponds to
the folded vibration of one of the high&,, modes of graph-

ite. Thus, in the cylindrical geometry, we may get a result
that is not so polarization sensitive. On the other hand, in
Ceo, Since all 60 atoms are equivalent, no carbon atom can
move in an out-of-phase direction around tBe axes for
either of the twoA,; modes, so that both modes show simi-
lar polarization behavior to each othfer.

When we compare the calculated Raman intensities for
armchair, zigzag, and chiral nanotubes of similar diameters,
we do not see large differences in the lower-frequency Ra-
man modes. This is because the lower-frequency modes have
a long wavelength, in-phase motion, so that these modes
cannot see the chirality of the nanotube in detail, but rather
the modes see a homogeneous elastic cylinder. However, it is
interesting to see whether the Raman intensity is sensitive to
the nanotube chirality for the higher-frequency Raman
modes. An explanation for the chirality dependence in the
higher-frequency Raman modes may come from the curva-

ture of the nanotube as follows. In the high-frequency region,
all phonon modes consist of the out-of-phase and in-
cylindrical-plane modes that result from the folding of the
phonon modes with variouis points of 2D graphité® The
out-of-phase modes for a=£C bond consist of €&C radial
(or bond stretchingmotion and tangential in-plarier bond-
bending motion, in which the tangential motion is perpen-

FIG. 5. Polarization dependence of the Raman scattering inter@icular to the radial motion. The Raman-actiég, mode of
sity for (10,10 armchair(top), (17,0 zigzag(middle), and(11,9 2D graphite at 1582 cm® corresponds to £C bond-
chiral (bottom nanotubes. The left column is for theV scattering ~ Stretching motions for one of the three nearest-neighbor
configuration and the right column is for théH configuration. bonds in the unit cell. A similar motion in a nanotube should

be expected to give a large Raman intensity. When we see

ers only S-scattered wavé$ and thus the calculated result the motion of the Raman-active modes of a nanotube, we can
cannot distinguish between forward and backward scatteringonsider an envelope function for the amplitude of the vibra-
of the light. tion, multiplying it by the above-mentioned out-of-phase

When we compare theV with the VH configurations for motions. We can say that the envelope function should sat-
the polarized light, the Raman intensity shows anisotropidsfy the selection rules for Raman-active modes among the
behavior. Most importantly, thé;; mode at 165 cm!is  many phonon modes. For example, the envelope functions
suppressed in the/H configuration, while the lower- for the A4, E;4 and E;; modes are functions with zero,
frequencyE,y and E,y modes are not suppressed. This an-two, and four nodes around the tulzeaxis, respectively.
isotropy is due to the degenerate vibrations of Ehnmodes, Thus the envelope functions with a given symmetry are simi-
whose eigenfunctions are partners that are orthogonal to eatdr to one another for nanotubes with ang,) values.
other, thus giving rise to larg€¢H signals. The Raman in- However, the directions of the out-of-phase motions of the
tensity is normalized in each figure to the maximum intensityA,, modes are different for armchair and zigzag nanotubes.
of unity. From the figure we see that the relative intensitiedn fact, the G=C bond-stretching motions can be seen in the
for the same lower-frequendy,; mode between theV and  horizontally and the vertically vibrating<€C bonds for arm-
VH polarizations are quite different. However, the absolutechair and zigzag nanotubes, respectively. Thus the curvature
values for the intensities for théV andVH polarizations are  of the nanotube affects the frequency of these modes. A
on the same order for all the modes. similar discussion can be applied to tBemodes or to a

It is interesting that the highek,; mode does not show chiral nanotube, in which the direction of the out-of-phase
much suppression between thé&V and VH geometries, mode is affected by the curvature. The ratio of the bond-
which is closely related to the direction of the vibrations. stretching displacement to the bond-bending displacement in
Even if the phonon mode is ah,; mode, we can expect a the out-of-phase motions affects the relative intensity of each
signal in theVH geometry if the vibration is not parallel to mode and the relative intensity depends on the chirality of
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1200 1600
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the nanotube. Although these higher-frequency modes art
difficult to distinguish from one another in the experiment
because of their similar frequencies, it should be possible tc
identify the different modes experimentally, once purified,
aligned, single-wall nanotube samples become available, a
shown in Sec. Il B 2, where the angular dependence of the
Raman intensities is discussed.

It could be very interesting to discuss the Raman frequen-
cies in the intermediate frequency region where the fre-
quency may show the greatest chirality dependéhdhe
calculated results, however, show almost no intensity for the
intermediate Raman modes around 1200-1500 tnThe
Raman experiments on single-wall nanotubes show wealg
peaks that have been assigned to armchair mbBesm the
calculation we cannot explain why these low-intensity peaksS
appears. The peaks might come from a lowering of the sym-2
metry of the nanotube. In fact, broad Raman peaks arount
1350 cmi ! are observed in the experimérfe Broad peaks
around 1350 cm! are known to be associated with
symmetry-lowering effects in disordered graphitand in
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carbon fibers® The relative intensity of the broad peak A\g1587

around 1350 cm* to the strongE,, mode at 1582 cm* is
sensitive to the lowering of the crystal symmetry of E,,1585
graphite?®?* and the amount of disorder in carbon fibers x
and in graphite nanoclustérscan be controlled by the heat
treatment temperatur@,; or by ion implantatiorf® The
non-zone-center phonon mode at 1365 ¢nhas a flat en- 0
ergy dispersion around théd point in the Brillouin zone of
graphite, which implies a high phonon density of stafes.
Moreover, in small aromatic molecules, though the fre- FIG. 6. Raman intensities as a function of the sample orientation
quency and the normal mode displacements are modified b" the (10,10 armchair nanotube. As shown on the right,and 6,
the finite-size effect, thes-point phonon modes become arg angles of the ngnotube axis from thexis to thex_ axis andy
Raman activ® and have a large intensif?’.zg Thus some &S, respectlvely% is the angI.e of the nanotubg axis around zhe
symmetry-lowering effects such as the effect of the end cap&x's from thex axis to they axis. '_I'he_ left- and right-hand figures
the bending of the nanotube, and other possible defects a?grres'oond t,olthyv andVH polarizations. Th£.29 moo.les at 368
. . . . . . and 1591 cm * are almost on the same curve in the figures except
likely to give rise to Raman intensity for thid -point mode. for the VH (6,) confi i
. . > guration.
Note that if the nanotube is deformed to & 2 structure for
any reason, th& point phonon can be folded to thépoint
and the folded modes become Raman-actig modes. rotate the nanotube axis from tleaxis by fixing the polar-
However, since a Peierls instability is unlikely, this situationization vectors to lie along theandx axes, respectively, for
may occur only in the case of intercalated nanotéhes theV andH polarizations. In this geometry, three rotations
when there is orientational ordering of the nanotubes in th@f the nanotube axis are possible for t& and theVH
rope. configurations and these three rotations are denoted by
As is noted in the Introduction, it is important to consider ¢ (i=1,2,3). Hered; and 6, are the angles of the nanotube
the resonance effect when discussing Raman intensities. A@xis from thez axis to thex andy axes, respectively, while
though the three nanotubes in Fig. 5 have similar radii, the/s is the angle of the nanotube axis around thexis from
number of carbon atoms per 1D unit cell is very different.the x to they axis. Since we put the horizontal polarization
For example, th€10,10 and (17,0 nanotubes have 40 and vector along thex axis, 6, and 6, are different from each
68 carbon atoms in their 1D unit cells, respectively. How-other for theVH configuration. Even for th&'V configura-
ever, the(11,9 nanotube has 364 carbon atoms in its unittion the rotations byd; and 8, are not equivalent to each
cell. The singularities in the electronic density of states aredther in the case of thél0,10 armchair since th€10,10
difficult to observe in th€11,8 nanotube within the resolu- armchair nanotube has a tenfold symmetry akisyf that is
tion of the scanning tunneling microscope and thus the resagiot compatible with the Cartesian axes. Here we define the
nant Raman effect for chiral nanotubes should also be rela,y,z axes so that we put a carbon atom along xhaxis
tively difficult to observe compared to the case of achiralwhen #;=0°. In Fig. 6 we show the relative Raman inten-
nanotubes. It would be interesting to be able to assign thsities for the(10,10 armchair nanotube for théV andVH
chirality of a nanotube from the Raman spectra by usingconfigurations as a function & (i=1,2,3).
many laser excitation frequencies. When we see the Raman intensity as a functiofofthe
A1y mode at 1587 cm?® has a maximum a#;=0, which
corresponds ta,= 0;=0 for the VV configuration, while
Finally, we show the Raman intensity of tfi0,10 arm-  the E;4 mode at 1585 cm?® has a maximum ap,;=45°.
chair nanotube as a function of sample orientation. Here w&Vhen 6, increases to 45°, the relationship between the in-
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90
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tensities of theA;; mode at 1587 cm? and theE,y mode at  n-fold symmetry of the nanotube can match the lattice sym-
1585 cm ! becomes reversed for both th&/ andVH con-  metry operations, for which detailed angular-dependent se-
figurations. Thus we can distinguish these two close-lyindection rules can be expected.

modes from each other experimentally if we have an axially

aligned nanotube sample. There is alsdag mode at 1591 IV. SUMMARY

71 . B .
cm™ - that can be distinguished from t andE;, modes . . . .
g " v In summary, we have investigated the Raman intensity of

since theE,; mode has a maximum a =90°. As for the L . . :
mchair, zigzag, and chiral nanotubes as a function of their

other Raman-active modes, we can also distinguish them b L : :
their frequencies and polarizations. Even the modes belon _oIar|z_at|on geo.me”y and sample orlenta'tlon. We found that
ere is no significant dependence on chiral angle of the in-

ing to the same irreducible representation do not always ha i for the | ¢ R des bel 500
the same basis functions since we have two inequivalent a{_en§|ly or the lower-lrequency =aman modes below
cm™ - for carbon nanotubes, while the higher-frequency Ra-

omsA andB in the hexagonal lattice. For example, thg, . L ”» .
mode at 165 cm? has a different functional form from the Man que.s_ have different relative Intensities depending on
A,, mode at 1587 cm®. their chiralities. The resonant Raman intensity may depend
?:rom Fig. 6 it is seen that the angular dependences gn the number of carbon atoms in the unit cell. The sample
almost all the Raman intensities @h and 6, are similar to orientation dependence of the Ram_an intensity shpws that
each other for th&V configuration, except for thg;,; mode not only_the symmetry but also the direction of the dls_place—
at 1585 cmi 1. The difference of th&,, modes betwees, ments gives r|§e'to 't.s own angular dependence, Wh'Ch.Can
and#, at 1585 cm ! is due to the formgof the basis function. be used for dlstlngwshlng between the symmetry assign-
ments for the higher-frequency Raman modes. Such a sym-

There is also a symmetry reason why we can see énly s ; g .
. metry analysis will also be useful for identifying the chirality
modes andE modes in the/V (63) and theVH (6, and 63) of carbon nanotubes.

configurations, respectively. On the other hand, we can seé
that there are some very weak intensities in the figure since
the triangular lattice of the nanotube ropes is incompatible
with the tenfold symmetry axis. Even if we get an aligned The authors thank Nakadaira Masao, Manyalibo Mat-
sample in the axis, thexy direction of the constituent nano- thews, Dr. H. Kataura, and Dr. E. Richter for stimulating
tubes should be random since the tenfold symmetry of theliscussions. R.S., G.D., and M.S.D. thank the International
(10,10 nanotube does not satisfy the symmetry of the trian-Joint Research Program of the New Energy and Industrial
gular nanotube lattice. Thus an averaged angular dependentechnology OrganizatiofNEDO), Japan for its support.
for 6, and 6, is expected for a general aligned sample. EverPart of the work by R.S. was supported by a Grant-in-Aid for
in this case, since thé;; modes at 165 cm! and 1587  Scientific Researct{Grants Nos. 08454079 and 9243211
cm™ ! are independent df5, this signal will be clearly seen. from the Ministry of Education and Science of Japan. The
It is pointed out that th€9,9) armchair nanotube is thus of MIT work was partly supported by the NSfrant No.
special interest since it is one of a few examples where th®MR 95-10093.
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