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Surface resistivity of semi-infinite crystals
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The surface resistivity of low-index surfaces of Al is evaluated by a first-principles density-functional
calculation. Contrary to the naive expectation that the close-padkelll surface of fcc metals would scatter
conduction electrons in the metal nearly specularly, the calculated resistivity(bf lis found to be much
larger than that of the more loosely packed08l1) surface. The large difference between the two surfaces is
not related to the strength of the surface scattering potential. Instead, it simply arises from the fact that the fcc
crystal has no reflection symmetry about {fié1) crystal plane, which means that there is in general no Bloch
wave corresponding to specular reflection when a conduction electron in the metal is incident(dhljhe
surface [S0163-182@8)00908-4

[. INTRODUCTION second mechanism stems from the symmetry of the crystal
plane corresponding to the surface. If the bulk metal has a
When Bloch electrons incident from the interior of metalsreflection symmetry about they plane, for a given incident
are elastically scattered at the surface, their velocity in th@loch wave ¢, with £=(k,k,,n) andv,(£)>0, there al-
plane can be changed. This scattering process contributes jigays exists a specularly reflected waye, with &' =(k,
the resistivity of the metal, as does the impurity scattering— i, n). On the other hand, if this symmetry is absent, the
Exper?men';ally, .it is known that the res_istivity of a .thin me- two K points, k,k,) and k,—k,), are not symmetrically
tallic film with thicknessl(=10?—10° A is very sensitive to equivalent, which indicates that there is in general no specu-

surface conditions such as adsorbates and steps at IOI\é’rly reflected wavap,, corresponding to the incident wave

temperature$.The surface resistivity is related to other dy- ¢¢. Thus, essentially, all the conduction electrons impinging

namical quantities at the surface such as the electronic friGy, o qyrface are reflected off-specularly and contribute to
tion force exerted on adatomand the nonlocal corrections

to the local Fresnel opticsin the present work, we evaluate the surface resistivity. . . .
the resistivity of clean surfaces of semi-infinite metals. It AS_ an example, let us consider alkali metdisg with a
might appear that ideal crystal surfaces without defect?a'f'f'"e‘_j vglences band. For thesg mgtals, the LEED
should have no resistivity, since the surface retains the synf€chanism is excluded. Thus the resistivity of (b&0 and
metry of the bulk crystal in the surface plane. Looking more(oo_n surfaces of alkali metals van|shes_|d(_ant|cally, yvhereas
closely, one sees that there are two scattering processes cdheir (111) surfaces should have nonvanishing resistivity due
tributing to finite resistivity. to the second mechanism if it is very small. Similarly, the
Let us consider a semi-infinite crystal surface made oflose-packed111) surface of a fcc crystal may have larger
atomic lattice planes piled up in thzedirection. Thez axis is ~ resistivity than its more loosely pack¢a0l) surface, which
taken as a surface normal pointing toward the vacuum. Tdés counterintuitive. In order to explore the significance of
specify a Bloch state in the bulk crystal, we use index these mechanisms, we perform a density-functional calcula-
=(K,n), where K=(k,k,) is the three-dimensional3D) tion for semi-infinite Al surfaces. It will be shown that the
wave vector in the 3D Brillouin zone, and is the band resistivity of the A[111) surface is actually by~6 times
index. The wave function and energy of stgtare denoted larger than that of the AD01) surface.
by ¢, ande(£). The @ component of its velocity is given by The plan of the present paper is as follows. In Sec. Il, we
vo(&)=h"1oe(&)/k,. In the case of defect-free ideal crys- give a microscopic expression of the surface resistivity for
tal surfaces, the electron crystal momentum in the plens,  semi-infinite crystals, and describe a numerical method for
conserved when conduction electrons in the metal are scagvaluating it for the case of clean metal surfaces. In Sec. IlI
tered at the surface. However, their velocity in the plane caRye present results and a discussion of the numerical calcula-
be changed via the two mechanisms. The first is an analogijon for the A111) and Al001) surfaces. Finally, a short
to low-energy electron-diffraction(LEED) experiments  symmary is given in Sec. IV.
where electrons incident from the vacuum are scattered at the
surface, and part of them are scattered in off-specular direc-
tions via the Umklapp process. In the present case, electrons Il. THEORY
are incident from the interior of the metal, but the same '
process can take place if there is more than one reflected Recently we derived a microscopic expression of the dc
wave ¢, with v,(£')<0 for a givenk in the surface Bril-  surface resitivity for semi-infinite metafsin that work, the
louin zone(SB2). This is generally the case for multivalence interior of the metal was treated as jellium. A more general-
metals with several occupied energy bands, or if the SBZ iszed expression, which is applicable to arbitrary semi-infinite
reduced due to the formation of surface superstructures. Theystal surfaces with and without surface defects, is
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whereS, the area of the surface, ahd the thickness of the - S E
film, are macroscopic quantities,, is the number density of ‘ \ z
conduction electrons in the metad; is the Fermi energy, 0 b by |

Av,=v (&) —v,(£),andp(e, & ¢') denotes the probability _

that an incident Bloch electrom, is elastically scattered at  FIG. 1. Geometry for the surface-embedded Green-function cal-
the surface and reflected as a scattered waveThe current ~ culation. The curvy embedding surface on the substrate Side,
conservation implieE . p(e, £,¢') =1. The summation over simulated by a plane-embedding surfae

€ (¢') in Eq. (1) signifies [S ok/(2m)?Zy, 0, that is, the | the present work, the electronic structure of semi-infinite
SBZ integration and discrete summation at elcpoint in crystals is calculated within local-density-functional théory
the SBZ over the pairs ofk,n) satisfying the conditions using the embedding approach of Inglesfi&lthe ion cores
e(é)=er and v,(£)>0 [e(¢')=€r and v,(£')<0]. The are represented by norm-conserving pseudopotertibie
surface resistivity induces energy dissipation in the systenaffects of the semi-infinite substrate and vacuum are ex-
per unit time,P=[SIf]2a,Bp§ﬁJ§Jﬁ, wherelJ, isthea (x  pressed via the complex potentials acting on two embedding
or y) component of the macroscopic current density in thesurfaces,S andS’ (z=b,) (see Fig. 1L To avoid overlap-
interior of the metal. Under the application of a uniform ac ping with the ion-core region where the pseudopotential is
electric field parallel to the surfaceE(,E,)exp(—iot), nonlocal, the true embedding surface dividing the surface
J, is given to the Ilowest order ofw as J, and substrate regionS, must be curved in a complex way.
=(inee2/w)25(1/m*)aBE,3, where (1m*) ,z stands for the However, it is too complicated to treat such a curvy surface
average 0%*2&26(5)/(9kao7kﬁ over all the occupied states. in numerical computations. As was shown by Crampin
mj; appearing in Eq(1) is defined as the inverse of this et al.% it is possible to define a plane-embedding surfage
2X 2 matrix. For a 3D crystal without the surfad@yanishes (z=b) that simulates embedding &
if 7w is smaller than the minimum interband excitation en-  The ground-state calculation consists of two independent
ergy, Mine(&')—e(€)|, where é=(K,n) and & =(K,n’)  steps. First, the embedding potential of the substrat§,aa
are the occupied and unoccupied Bloch states. For cleagenerated for a set dé and energy mesh points from the
metal surfacesk is conserved. HoweveR may remain fi-  bulk crystalline potential. Next, the self-consistent surface
nite even in the limit ofo—0 because of the absencelgf ~ Green-function calculation is performed in the embedded
conservation. This is why clean metallic surfaces can havéurface region to determine the ground-state charge density
finite dc resitivity. For very thin slabsk, is replaced by a and potential energies. In doing so, the Green function at a
discrete quantum numbaerg. The resistivity in this case van- givenk point is expanded with a nonorthogonal plane-wave-
ishes again ifiw is smaller than the minimum interband like basis set aG(e k,r,r')==; ;.G f;(r)f(r"), where
excitation energy with respect tu, .

For the semi-infinite surface geometry, the asymptotic

2 :
form of one-electron wave functions in the interior of the fi(r)= \/;eXLII(k+g)-x]S|r|(pn z)  (by<z<b;)
metal is a sum of the incident and reflected Bloch waves, (4)

wherep,=mn/l (n=1), g is a 2D reciprocal-lattice vector

,/,g(r):i L ¢§(r)+2 r(&&) (N}, (2 corresponding to the 2D lattice in thy plane, and stands
VS| vé) ¢ for a set of indicesg,n). G;;: is calculated a@eS—H]iT,l,

wherer =(x,2), v (£)>0, v(¢')<0, ande(¢&)=e(¢') =€ where S andH are the overlap and Hamiltonian matrices,

and we omitted for simplicity the evanescent waves in thdespectively. More details of the calculational method were

second term. As for the scattering amplitude, one can provéescribed in Ref. 10. o ,
the reciprocity relation (£,é')=r(£'*,£*) where the sym- After the self-consistent surface potential is obtained, we

bol £ indicates ¢)*. We normalize the bulk Bloch state perform an additional Green-function calculation, where the
¢, in a unit volume. Then the scattering probability is given normal derivative of the Green function @ is forced to
by vanish instead of satisfying the boundary condition imposed
by the embedding potential of the substrate. According to the
P(e,&E)=—v,8) v (&)[r(&¢E)]% (3) embedding theor§,the surface inverse of this particular

Equations(1) and(3) indicate that the surface resistivity can Green f.unc.tlon oSy, GSO , provides a genferallzedllog'anth—
be estimated from the asymptotic form of one-electron wavdNic derivative of one-electron wave functions satisfying the
functions at the Fermi energy alone. In the following, we©Utgoing (propagating or decaying toward the vacyum
describe a numerical method for determinigg for semi- ~ oundary condition az=+ . Thus the surface wave func-
infinite clean surfaces. Those who are not interested in calion ¥ with a 2D wave vectok satisfies, or,
culational details can skip over the rest of this section.

Widel_y used repeated—s_lab techniqqes for the 'surface Ipe(X,b1) — 2_m dx’ Ggie(€)k,xx'] e(x' by),
electronic-structure calculation provide little information on Jz 2Js So
the scattering amplitude of bulk Bloch waves at the surface. )
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wherem is the bare electron masg; is expanded o, as"

M

b 12| ! b
be(X,by)= \/— 1 $£(9,by)

M
+2 r(f,v>¢y<g,bl>]exp[i<k+g>-x], (6)

whereM is the number of vectors used to expand the wave
function in the numerical calculation. In E¢(f), we used the
suffix v instead of¢’ for the scattered wavesp, in this
equation should include both the Bloch states and the eva-

—~ \/_\/\/\/
. A 3

nescent waves decaying toward the interior of the metal. The o0 m&g ZT/SS.N
N

method for calculating these Bloch and evanescent waves

was described in Ref. 10. By substituting E6). into Eq.(5), O @ O @ O @ O
one obtains atM X M system of linear equations for thé o N e Y e S

- 6 o ]
unknown constants (£&,v). Among them, the coefficients 10 5 10
corresponding to the reflected Bloch waveé&s,¢'), deter- y (a.u.)

mine the surface resistivity.

FIG. 2. Contour maps of the charge dengiiy(r) on theyz
plane for(a) Al(111) and(b) Al(001). Both surfaces have reflection
symmetry about this plane. The contour spacing is 0.004 a.uzThe

In this section, we use Hartree atomic units with=e coordinate is measured relative to the top-layer Al atoms.
=h=1. Results are presented for tf@01) and (111) sur-
faces of fcc Al. The two outermost Al layers are embeddedstate ¢, with v,<0 corresponds to the scattered wave.
between the semi-infinite substrate and vacuum, and the pdé-igures 3b) and 3c) show the energy bands of Al as a
tential energy in the embedded region is determined selffunction of Ak, , the deviation of they component of the 3D
consistently. The spacing between the neighboring Al layersvave vector from that of statég andé,, respectively. From
is taken as the bulk value. Calculated values of the resistivityhe slope of the dispersion curve Ak,=0, one sees that
may slightly change if the relaxation of surface layers isthey have the same negativg. In Fig. 3d) we plot the
taken into consideration. The cutoff energy for the basis

Ill. RESULTS AND DISCUSSION

function (4) is 9 Ry, which leads to-20 (k+g) vectors at kK (a.u.) Ak Ak
eachk point. In calculating the surface resistivity), the 06 0 06 04 0 04 0
SBZ integration is replaced by summation overl0® 7 X

equally spaceck mesh points. As the resistivity is not a
variational quantity, it converges rather slowly with increas-
ing k mesh points.

The origin of thexy plane is chosen as one of the top-
layer atoms. For th€001) surface, thex andy axes are
parallel to two edges of the square unit cell. For {h&l)
surface, thex axis points toward one of the nearest-neighbor
atoms, and thg axis is contained in one of the three vertical

reflection planes. Figure 2 shows contour maps of the calcu-
lated charge densityg(r) on theyz plane. Both surfaces
have reflection symmetry with respect to this vertical cut

plane. It is seen that the contours on the vacuum side of the 02 L 1L N |
top Al layer are corrugated rather weakly, implying that the '

nonzerog components of the surface barrier potential are

small.

In order to demonstrate how the conduction electrons in (@),
the metal are scattered at the surface, it is convenient to
consider Bloch states witk,=0. Owing to the reflection (d)
symmetry about thgz plane, the velocity vectors of both the z
incident and reflected waves are then contained inythe
plane. As an example, we take=(0,0.43) a.u. At thisk L g, £
point, we plotted the energy bands of fcc Al as a function of
k.. The result is shown in Fig.(8) for the Al(002) surface. FIG. 3. (a) Energy bands of fcc Al ak=(0,0.43) a.u. as a
The energy dispersion is symmetric ab&yt=0 because the fynction ofk, for the Al(001) surface. Stateg; and &, are on the
bulk crystal has reflection symmetry about theplane. The  Fermi surface(b) Energy bands of fcc Al as a function afk, for

dispersion curves cross the Fermi energg,aandé,, where  stateé,. (c) The same aé) for stateé,. (d) Velocity vectors of the
state&; with v,>0 corresponds to the incident wave, while incident wave¢; and reflected wave, in theyz plane.

1
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FIG. 5. (@) Energy bands of fcc Al ak=(0,0.54) a.u. as a
function of k, for the AI(001) surface.(b) Velocity vectors of the
incident and reflected waves for the surface wave funarjgln (©
The same agb) for 7% The small numbers near each scattered
wave indicate the scattering probabilip(eg,&;,§;) (i=1 and 2
andj=3 and 4.

face resistivity is isotropic and written @@ﬁz Oap Ps- AS
for AlI(00D), the k points in ~40% of the SBZ have one
FIG. 4. (a) Energy bands of fcc Al ak=(0,0.43) a.u. as a incident Bloch wave and one scattered wave on the Fermi

function ofk, for the Al(111) surface. State§; and &, are on the  surface. Because the scattered wave propagates in the specu-
Fermi surface(b) Energy bands of fcc Al as a function dfk, for  lar direction for the(001) geometry, this area of the SBZ
state¢;. (c) The same afb) for states,. (d) Velocity vectors of the  makes a vanishing contribution to the resistivity. As dis-
incident wave; and reflected wavé, in theyz plane. cussed above, this is not the case for(thkl) surface. As for
Al(111), thek points in~60% of the SBZ have a single pair

Since there is a single pair of incident and reflected waves aﬁf incident gnd sqattere_d Bloch wavese_at. Accgrdmg to
thisk point, andk is conserved for clean crystal surfaces, theCUr calculation, this region of the SBZ still contributes up to
incident waveg, is scattered to stat with unit probability. 52% of the total resistivity. Thus the second mechanism, as

Since&, corresponds to specular reflection, the surface wavéiscussed in Sec. |, is very important for the surface resistiv-
function at thisk point, ¢, , makes no contribution to the ity of clean metal surfaces. We note that the contribution to
1 1’

surface resistivity. ps from this k region does not depend on the structural re-

The scenario described above is not applicable to the cad@ation of surface layers as far as the original surface unit
of Al(111). Figure 4a) shows the energy bands of fcc Al as cell remains intact. This is becauAe;q in Egq.(Dis a b.ulk
a function ofk, atk=(0,0.43) a.u. for the AlL11) surface. ~Property, and the scattering probabilig(er,£,£"), which
Because the bulk crystal has no reflection symmetry aboudepends in principle on the surface scattering potential, is
the xy plane, the dispersion curves are no longer symmetri€qual to unity in this region.
aboutk,=0. As in the case of AD0), there is one incident For the (001) surface, the surface resistivity arises from
wave&; with v,>0 and one reflected wag with v,<0 at  the Umklapp process. THepoints with two pairs of incident
€, and, thus, staté, incident on the surface is scattered to and scattered Bloch waves gt occupy ~50% of the SBZ,
state¢&, with unit probability. In Figs. 40) and 4c) we show and those with more than two pairs occupyl0% of the
the dispersion curves of Al energy bands as a function oBBZ of AI(001). As an example, let us consider
Ak, for states¢; and&,, respectively. Because of the lower k=(0,0.54) a.u. In Fig. &), we show the energy bands of
symmetry of A(111), the dispersion curves in these two fig- fcc Al as a function ofk, at thisk point for the A(001)
ures are not identical. It is seen that stéfehas a negative surface. There are four Bloch states on the Fermi surface.
vy, whereas staté, has a positive,. Hence, as shown in Among them, stateg; and &, with v,>0 correspond to
Fig. 4(d), the Bloch electroné; changes the direction of incident waves, and statég and&, with v,<0 are reflected
propagation in they direction when it is scattered at the Waves. In Figs. &) and §c), we show the velocity vectors
surface. Equatiorl) indicates that there is an appreciable @nd scattering probability of the two surface wave functions
contribution top?” at thisk point. It should be noted that the #¢, and ¢, The calculated velocities arev(,v,)=
large scattering angle of the incident waisedoes not imply  (—0.607,0.656) a.u. for stateé&; and (@y,v,)
that the A[111) surface has a strong scattering potential. 1t=(0.535,0.621) a.u. for sta. The incident wave; con-
only means that there is no Bloch wave in the bulk metal thatributes to the surface resistivity when it is scattered to the
can propagate in the direction of specular reflection. off-specular beamé;. The calculated probability for this

For the (001) and(111) surfaces of fcc crystals, the sur- event,p(eg,£1,£3), is, however, only 0.11. With a much

velocity vectors of the two Bloch states in tlye plane.
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larger probability, statef; is scattered to staté,, corre- metal surfaces as described in the present paper is quite im-
sponding to specular reflection. The same is true for the inportant. Since this mechanism is not related with any specific
cident wave&,. It should be noted that the relationship properties of the Al band structure, we expect that a similar
per,€1,E3)=p(ee, & ,€)=p(er,&,,&,) holds. The first  trend in the crystal-face dependence of the resistivity may
equality is the reciprocity relation, whereas the second holdgenerally be observed in many fcc and bcc metals, i.e., the
because the twk points (Oky) and (0;- ky) are symmetri- resistivity of the(111) surface would be considerably larger
cally equivalent for thé001) surface. than those of th¢001) and (110 surfaces.

In the case of clean metal surfaces, the surface resistivity
ps Scales in inverse ratio to the film thickndssecause the
surface occupies l/ of the total volume of the crystal. The
calculated resistivity id¢ps=0.59 a.u for A{001) andl¢p, We have studied the resistivity of ideal crystal surfaces of
=3.54 a.u. for A(111). In evaluating these values, we have semi-infinite metals. For clean surfaces, the crystal momen-
usedm*/m=1.42 as the effective mass};=3J,5 m* in  tum in the surface plane is conserved when conduction elec-

IV. SUMMARY

Eq. (1). This value is calculated from trons in the metal are scattered at the surface. Nevertheless,
their velocity in the plane can be changed due to two mecha-

1 1 1 dk nisms: The first is the Umklapp process, and the second

m \m* :wﬁnJSBz(zw)z gn A&l (D arises when the bulk crystal has no reflection symmetry

about the crystal plane corresponding to the surface. Both
where the summation is taken over all the incident and scacontribute to the resistance of the system. We have per-
tered waves on the Fermi surfd@e‘[’he measured resistivity formed a density-functional calculation and evaluated the
of bulk Al at a room temperature T273 K) is  resitivity of low-index surfaces of Al. It was found that the
pp=2.5 uQ cm=0.11 a.u'® Assumingl;=10°® A, we find  resistivity of the smooth and close-packed#l1) surface is
that the surface contributes to 1.7% of the total resistivity ofuch larger than that of the more loosely packed0Bl)
the film for the A(111) surface. This ratio increases with surface, owing to the second mechanism. It is expected that
decreasing temperature and reache$0% at T~100 K. this counterintuitive result may hold for other fcc metals.
Therefore, the resistivity induced by defect-free crystal sur-
faces is not negligible at all in treating thin metallic films.
As stated above, the resistivity of the(AL1) surface is
~6 times larger than that of the @01 surface. This indi- This work was supported by a Grant-in-Aid from the
cates that the second mechanism for the resistivity of cleaMinistry of Education, Science, and Culture of Japan.
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