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Surface resistivity of semi-infinite crystals
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College of Humanities and Sciences, Nihon University, Sakura-josui, Tokyo 156, Japan

~Received 29 July 1997!

The surface resistivity of low-index surfaces of Al is evaluated by a first-principles density-functional
calculation. Contrary to the naive expectation that the close-packed~111! surface of fcc metals would scatter
conduction electrons in the metal nearly specularly, the calculated resistivity of Al~111! is found to be much
larger than that of the more loosely packed Al~001! surface. The large difference between the two surfaces is
not related to the strength of the surface scattering potential. Instead, it simply arises from the fact that the fcc
crystal has no reflection symmetry about the~111! crystal plane, which means that there is in general no Bloch
wave corresponding to specular reflection when a conduction electron in the metal is incident on the~111!
surface.@S0163-1829~98!00908-4#
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I. INTRODUCTION

When Bloch electrons incident from the interior of meta
are elastically scattered at the surface, their velocity in
plane can be changed. This scattering process contribut
the resistivity of the metal, as does the impurity scatteri
Experimentally, it is known that the resistivity of a thin m
tallic film with thicknessl f51022103 Å is very sensitive to
surface conditions such as adsorbates and steps at
temperatures.1 The surface resistivity is related to other d
namical quantities at the surface such as the electronic
tion force exerted on adatoms2 and the nonlocal correction
to the local Fresnel optics.3 In the present work, we evaluat
the resistivity of clean surfaces of semi-infinite metals.
might appear that ideal crystal surfaces without defe
should have no resistivity, since the surface retains the s
metry of the bulk crystal in the surface plane. Looking mo
closely, one sees that there are two scattering processes
tributing to finite resistivity.

Let us consider a semi-infinite crystal surface made
atomic lattice planes piled up in thez direction. Thez axis is
taken as a surface normal pointing toward the vacuum.
specify a Bloch state in the bulk crystal, we use indexj
5(K ,n), where K5(k,kz) is the three-dimensional~3D!
wave vector in the 3D Brillouin zone, andn is the band
index. The wave function and energy of statej are denoted
by fj ande(j). Thea component of its velocity is given by
va(j)5\21]e(j)/]ka . In the case of defect-free ideal cry
tal surfaces, the electron crystal momentum in the plane,k, is
conserved when conduction electrons in the metal are s
tered at the surface. However, their velocity in the plane
be changed via the two mechanisms. The first is an ana
to low-energy electron-diffraction~LEED! experiments
where electrons incident from the vacuum are scattered a
surface, and part of them are scattered in off-specular di
tions via the Umklapp process. In the present case, elect
are incident from the interior of the metal, but the sam
process can take place if there is more than one refle
wavefj8 with vz(j8),0 for a givenk in the surface Bril-
louin zone~SBZ!. This is generally the case for multivalenc
metals with several occupied energy bands, or if the SBZ
reduced due to the formation of surface superstructures.
570163-1829/98/57~7!/4140~5!/$15.00
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second mechanism stems from the symmetry of the cry
plane corresponding to the surface. If the bulk metal ha
reflection symmetry about thexy plane, for a given incident
Bloch wavefj with j5(k,kz ,n) and vz(j).0, there al-
ways exists a specularly reflected wavefj8 with j85(k,
2kz ,n). On the other hand, if this symmetry is absent, t
two K points, (k,kz) and (k,2kz), are not symmetrically
equivalent, which indicates that there is in general no spe
larly reflected wavefj8 corresponding to the incident wav
fj . Thus, essentially, all the conduction electrons imping
on the surface are reflected off-specularly and contribute
the surface resistivity.

As an example, let us consider alkali metals~bcc! with a
half-filled valence s band. For these metals, the LEE
mechanism is excluded. Thus the resistivity of the~110! and
~001! surfaces of alkali metals vanishes identically, where
their ~111! surfaces should have nonvanishing resistivity d
to the second mechanism if it is very small. Similarly, t
close-packed~111! surface of a fcc crystal may have larg
resistivity than its more loosely packed~001! surface, which
is counterintuitive. In order to explore the significance
these mechanisms, we perform a density-functional calc
tion for semi-infinite Al surfaces. It will be shown that th
resistivity of the Al~111! surface is actually by;6 times
larger than that of the Al~001! surface.

The plan of the present paper is as follows. In Sec. II,
give a microscopic expression of the surface resistivity
semi-infinite crystals, and describe a numerical method
evaluating it for the case of clean metal surfaces. In Sec
we present results and a discussion of the numerical calc
tion for the Al~111! and Al~001! surfaces. Finally, a shor
summary is given in Sec. IV.

II. THEORY

Recently we derived a microscopic expression of the
surface resitivity for semi-infinite metals.4 In that work, the
interior of the metal was treated as jellium. A more gener
ized expression, which is applicable to arbitrary semi-infin
crystal surfaces with and without surface defects, is
4140 © 1998 The American Physical Society
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@Slf # rs
ab5 (

a8,b8

maa8
* mb8b

*

2p\ne
2e2 (

j,j8
@Dva8Dvb8#p~eF ,j,j8!,

~1!

whereS, the area of the surface, andl f , the thickness of the
film, are macroscopic quantities,ne is the number density o
conduction electrons in the metal,eF is the Fermi energy,
Dva5va(j8)2va(j), andp(e,j,j8) denotes the probability
that an incident Bloch electronfj is elastically scattered a
the surface and reflected as a scattered wavefj8. The current
conservation implies(j8p(e,j,j8)51. The summation ove
j (j8) in Eq. ~1! signifies*S dk/(2p)2(kz ,n , that is, the
SBZ integration and discrete summation at eachk point in
the SBZ over the pairs of (kz ,n) satisfying the conditions
e(j)5eF and vz(j).0 @e(j8)5eF and vz(j8),0#. The
surface resistivity induces energy dissipation in the sys
per unit time,P5@Slf #(a,brs

abJa* Jb , whereJa is thea (x
or y) component of the macroscopic current density in
interior of the metal. Under the application of a uniform
electric field parallel to the surface, (Ex ,Ey)exp(2ivt),
Ja is given to the lowest order of v as Ja
5( inee

2/v)(b(1/m* )abEb , where (1/m* )ab stands for the
average of\22]2e(j)/]ka]kb over all the occupied states
mab* appearing in Eq.~1! is defined as the inverse of th
232 matrix. For a 3D crystal without the surface,P vanishes
if \v is smaller than the minimum interband excitation e
ergy, Minue(j8)2e(j)u, where j5(K ,n) and j85(K ,n8)
are the occupied and unoccupied Bloch states. For c
metal surfaces,k is conserved. However,P may remain fi-
nite even in the limit ofv→0 because of the absence ofkz
conservation. This is why clean metallic surfaces can h
finite dc resitivity. For very thin slabs,kz is replaced by a
discrete quantum numbernz . The resistivity in this case van
ishes again if\v is smaller than the minimum interban
excitation energy with respect tonz .

For the semi-infinite surface geometry, the asympto
form of one-electron wave functions in the interior of th
metal is a sum of the incident and reflected Bloch waves

cj~r !5
1

ASH 1

vz~j!
fj~r !1(

j8
r ~j,j8! fj8~r !J , ~2!

wherer5(x,z), vz(j).0, vz(j8),0, ande(j)5e(j8)5e,
and we omitted for simplicity the evanescent waves in
second term. As for the scattering amplitude, one can pr
the reciprocity relationr (j,j8)5r (j8* ,j* ) where the sym-
bol j* indicates (fj)* . We normalize the bulk Bloch stat
fj in a unit volume. Then the scattering probability is giv
by

p~e,j,j8!52vz~j! vz~j8!ur ~j,j8!u2. ~3!

Equations~1! and~3! indicate that the surface resistivity ca
be estimated from the asymptotic form of one-electron w
functions at the Fermi energy alone. In the following, w
describe a numerical method for determiningcj for semi-
infinite clean surfaces. Those who are not interested in
culational details can skip over the rest of this section.

Widely used repeated-slab techniques for the surf
electronic-structure calculation provide little information o
the scattering amplitude of bulk Bloch waves at the surfa
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In the present work, the electronic structure of semi-infin
crystals is calculated within local-density-functional theor5

using the embedding approach of Inglesfield.6 The ion cores
are represented by norm-conserving pseudopotentials.7 The
effects of the semi-infinite substrate and vacuum are
pressed via the complex potentials acting on two embedd
surfaces,S and S8 (z5b2) ~see Fig. 1!. To avoid overlap-
ping with the ion-core region where the pseudopotentia
nonlocal, the true embedding surface dividing the surfa
and substrate regions,S, must be curved in a complex way
However, it is too complicated to treat such a curvy surfa
in numerical computations. As was shown by Cramp
et al.,8 it is possible to define a plane-embedding surfaceS0
(z5b1) that simulates embedding onS.

The ground-state calculation consists of two independ
steps. First, the embedding potential of the substrate onS0 is
generated for a set ofk and energy mesh points from th
bulk crystalline potential.9 Next, the self-consistent surfac
Green-function calculation is performed in the embedd
surface region to determine the ground-state charge den
and potential energies. In doing so, the Green function a
givenk point is expanded with a nonorthogonal plane-wav
like basis set asG(e,k,r ,r 8)5( i ,i 8Gii 8 f i(r ) f i 8

* (r 8), where

f i~r !5A 2

Sl
exp@ i ~k1g!•x#sin~pn z! ~b1<z<b2!

~4!

wherepn5pn/ l (n>1), g is a 2D reciprocal-lattice vecto
corresponding to the 2D lattice in thexy plane, andi stands
for a set of indices (g,n). Gii 8 is calculated as@eS2H# i i 8

21,
where S and H are the overlap and Hamiltonian matrice
respectively. More details of the calculational method we
described in Ref. 10.

After the self-consistent surface potential is obtained,
perform an additional Green-function calculation, where
normal derivative of the Green function onS0 is forced to
vanish instead of satisfying the boundary condition impos
by the embedding potential of the substrate. According to
embedding theory,6 the surface inverse of this particula
Green function onS0, GS0

21, provides a generalized logarith

mic derivative of one-electron wave functions satisfying t
outgoing ~propagating or decaying toward the vacuum!
boundary condition atz51`. Thus the surface wave func
tion cj with a 2D wave vectork satisfies, onS0,

]cj~x,b1!

]z
5

2m

\2 ES0

dx8 GS0

21@e~j!,k,x,x8# cj~x8,b1!,

~5!

FIG. 1. Geometry for the surface-embedded Green-function
culation. The curvy embedding surface on the substrate side,S, is
simulated by a plane-embedding surfaceS0.
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4142 57H. ISHIDA
wherem is the bare electron mass.cj is expanded onS0 as11

cj~x,b1!5
1

AS
(

g

M H 1

vz~j!
fj~g,b1!

1(
n

M

r ~j,n!fn~g,b1!J exp@ i ~k1g!•x#, ~6!

whereM is the number ofg vectors used to expand the wav
function in the numerical calculation. In Eq.~6!, we used the
suffix n instead ofj8 for the scattered waves.fn in this
equation should include both the Bloch states and the e
nescent waves decaying toward the interior of the metal.
method for calculating these Bloch and evanescent wa
was described in Ref. 10. By substituting Eq.~6! into Eq.~5!,
one obtains anM3M system of linear equations for theM
unknown constantsr (j,n). Among them, the coefficient
corresponding to the reflected Bloch waves,r (j,j8), deter-
mine the surface resistivity.

III. RESULTS AND DISCUSSION

In this section, we use Hartree atomic units withm5e
5\51. Results are presented for the~001! and ~111! sur-
faces of fcc Al. The two outermost Al layers are embedd
between the semi-infinite substrate and vacuum, and the
tential energy in the embedded region is determined s
consistently. The spacing between the neighboring Al lay
is taken as the bulk value. Calculated values of the resisti
may slightly change if the relaxation of surface layers
taken into consideration. The cutoff energy for the ba
function ~4! is 9 Ry, which leads to;20 (k1g) vectors at
eachk point. In calculating the surface resistivity~1!, the
SBZ integration is replaced by summation over;103

equally spacedk mesh points. As the resistivity is not
variational quantity, it converges rather slowly with increa
ing k mesh points.

The origin of thexy plane is chosen as one of the to
layer atoms. For the~001! surface, thex and y axes are
parallel to two edges of the square unit cell. For the~111!
surface, thex axis points toward one of the nearest-neighb
atoms, and they axis is contained in one of the three vertic
reflection planes. Figure 2 shows contour maps of the ca
lated charge densityn0(r ) on the yz plane. Both surfaces
have reflection symmetry with respect to this vertical c
plane. It is seen that the contours on the vacuum side of
top Al layer are corrugated rather weakly, implying that t
nonzerog components of the surface barrier potential a
small.

In order to demonstrate how the conduction electrons
the metal are scattered at the surface, it is convenien
consider Bloch states withkx50. Owing to the reflection
symmetry about theyz plane, the velocity vectors of both th
incident and reflected waves are then contained in theyz
plane. As an example, we takek5(0,0.43) a.u. At thisk
point, we plotted the energy bands of fcc Al as a function
kz . The result is shown in Fig. 3~a! for the Al~001! surface.
The energy dispersion is symmetric aboutkz50 because the
bulk crystal has reflection symmetry about thexy plane. The
dispersion curves cross the Fermi energy atj1 andj2, where
statej1 with vz.0 corresponds to the incident wave, whi
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state j2 with vz,0 corresponds to the scattered wav
Figures 3~b! and 3~c! show the energy bands of Al as
function ofDky , the deviation of they component of the 3D
wave vector from that of statesj1 andj2, respectively. From
the slope of the dispersion curve atDky50, one sees tha
they have the same negativevy . In Fig. 3~d! we plot the

FIG. 2. Contour maps of the charge densityn0(r ) on the yz
plane for~a! Al ~111! and~b! Al ~001!. Both surfaces have reflectio
symmetry about this plane. The contour spacing is 0.004 a.u. Tz
coordinate is measured relative to the top-layer Al atoms.

FIG. 3. ~a! Energy bands of fcc Al atk5(0,0.43) a.u. as a
function of kz for the Al~001! surface. Statesj1 andj2 are on the
Fermi surface.~b! Energy bands of fcc Al as a function ofDky for
statej1. ~c! The same as~b! for statej2. ~d! Velocity vectors of the
incident wavej1 and reflected wavej2 in the yz plane.
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57 4143SURFACE RESISTIVITY OF SEMI-INFINITE CRYSTALS
velocity vectors of the two Bloch states in theyz plane.
Since there is a single pair of incident and reflected wave
this k point, andk is conserved for clean crystal surfaces, t
incident wavej1 is scattered to statej2 with unit probability.
Sincej2 corresponds to specular reflection, the surface w
function at thisk point, cj1

, makes no contribution to the
surface resistivity.

The scenario described above is not applicable to the
of Al ~111!. Figure 4~a! shows the energy bands of fcc Al a
a function ofkz at k5(0,0.43) a.u. for the Al~111! surface.
Because the bulk crystal has no reflection symmetry ab
the xy plane, the dispersion curves are no longer symme
aboutkz50. As in the case of Al~001!, there is one inciden
wavej1 with vz.0 and one reflected wavej2 with vz,0 at
eF , and, thus, statej1 incident on the surface is scattered
statej2 with unit probability. In Figs. 4~b! and 4~c! we show
the dispersion curves of Al energy bands as a function
Dky for statesj1 andj2, respectively. Because of the lowe
symmetry of Al~111!, the dispersion curves in these two fi
ures are not identical. It is seen that statej1 has a negative
vy , whereas statej2 has a positivevy . Hence, as shown in
Fig. 4~d!, the Bloch electronj1 changes the direction o
propagation in they direction when it is scattered at th
surface. Equation~1! indicates that there is an appreciab
contribution tors

yy at thisk point. It should be noted that th
large scattering angle of the incident wavej1 does not imply
that the Al~111! surface has a strong scattering potential
only means that there is no Bloch wave in the bulk metal t
can propagate in the direction of specular reflection.

For the~001! and ~111! surfaces of fcc crystals, the su

FIG. 4. ~a! Energy bands of fcc Al atk5(0,0.43) a.u. as a
function of kz for the Al~111! surface. Statesj1 andj2 are on the
Fermi surface.~b! Energy bands of fcc Al as a function ofDky for
statej1. ~c! The same as~b! for statej2. ~d! Velocity vectors of the
incident wavej1 and reflected wavej2 in the yz plane.
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face resistivity is isotropic and written asrs
ab5dab rs . As

for Al ~001!, the k points in ;40% of the SBZ have one
incident Bloch wave and one scattered wave on the Fe
surface. Because the scattered wave propagates in the s
lar direction for the~001! geometry, this area of the SBZ
makes a vanishing contribution to the resistivityrs . As dis-
cussed above, this is not the case for the~111! surface. As for
Al ~111!, thek points in;60% of the SBZ have a single pa
of incident and scattered Bloch waves ateF . According to
our calculation, this region of the SBZ still contributes up
52% of the total resistivity. Thus the second mechanism
discussed in Sec. I, is very important for the surface resis
ity of clean metal surfaces. We note that the contribution
rs from this k region does not depend on the structural
laxation of surface layers as far as the original surface u
cell remains intact. This is becauseDva in Eq. ~1! is a bulk
property, and the scattering probabilityp(eF ,j,j8), which
depends in principle on the surface scattering potential
equal to unity in thisk region.

For the ~001! surface, the surface resistivity arises fro
the Umklapp process. Thek points with two pairs of incident
and scattered Bloch waves ateF occupy;50% of the SBZ,
and those with more than two pairs occupy;10% of the
SBZ of Al~001!. As an example, let us conside
k5(0,0.54) a.u. In Fig. 5~a!, we show the energy bands o
fcc Al as a function ofkz at this k point for the Al~001!
surface. There are four Bloch states on the Fermi surfa
Among them, statesj1 and j2 with vz.0 correspond to
incident waves, and statesj3 andj4 with vz,0 are reflected
waves. In Figs. 5~b! and 5~c!, we show the velocity vectors
and scattering probability of the two surface wave functio
cj1

and cj2
. The calculated velocities are (vy ,vz)5

(20.607,0.656) a.u. for state j1 and (vy ,vz)
5(0.535,0.621) a.u. for statej2. The incident wavej1 con-
tributes to the surface resistivity when it is scattered to
off-specular beamj3. The calculated probability for this
event, p(eF ,j1 ,j3), is, however, only 0.11. With a much

FIG. 5. ~a! Energy bands of fcc Al atk5(0,0.54) a.u. as a
function of kz for the Al~001! surface.~b! Velocity vectors of the
incident and reflected waves for the surface wave functioncj1

. ~c!

The same as~b! for cj2
. The small numbers near each scatter

wave indicate the scattering probabilityp(eF ,j i ,j j ) ( i 51 and 2
and j 53 and 4!.
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4144 57H. ISHIDA
larger probability, statej1 is scattered to statej4, corre-
sponding to specular reflection. The same is true for the
cident wavej2. It should be noted that the relationsh
p(eF ,j1 ,j3)5p(eF ,j3* ,j1* )5p(eF ,j2 ,j4) holds. The first
equality is the reciprocity relation, whereas the second ho
because the twok points (0,ky) and (0,2ky) are symmetri-
cally equivalent for the~001! surface.

In the case of clean metal surfaces, the surface resist
rs scales in inverse ratio to the film thicknessl f because the
surface occupies 1/l f of the total volume of the crystal. Th
calculated resistivity isl frs50.59 a.u for Al~001! and l frs
53.54 a.u. for Al~111!. In evaluating these values, we ha
usedm* /m51.42 as the effective massmab* 5dab m* in
Eq. ~1!. This value is calculated from

1

m*
5S 1

m*
D

zz

5
1

p\ne
E

SBZ

dk

~2p!2 (
kz ,n

uvz~j!u, ~7!

where the summation is taken over all the incident and s
tered waves on the Fermi surface.12 The measured resistivity
of bulk Al at a room temperature (T5273 K! is
rb52.5 mV cm50.11 a.u.13 Assumingl f5103 Å, we find
that the surface contributes to 1.7% of the total resistivity
the film for the Al~111! surface. This ratio increases wit
decreasing temperature and reaches;10% at T;100 K.
Therefore, the resistivity induced by defect-free crystal s
faces is not negligible at all in treating thin metallic films.

As stated above, the resistivity of the Al~111! surface is
;6 times larger than that of the Al~001! surface. This indi-
cates that the second mechanism for the resistivity of cl
on
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metal surfaces as described in the present paper is quite
portant. Since this mechanism is not related with any spec
properties of the Al band structure, we expect that a sim
trend in the crystal-face dependence of the resistivity m
generally be observed in many fcc and bcc metals, i.e.,
resistivity of the~111! surface would be considerably large
than those of the~001! and ~110! surfaces.

IV. SUMMARY

We have studied the resistivity of ideal crystal surfaces
semi-infinite metals. For clean surfaces, the crystal mom
tum in the surface plane is conserved when conduction e
trons in the metal are scattered at the surface. Neverthe
their velocity in the plane can be changed due to two mec
nisms: The first is the Umklapp process, and the sec
arises when the bulk crystal has no reflection symme
about the crystal plane corresponding to the surface. B
contribute to the resistance of the system. We have p
formed a density-functional calculation and evaluated
resitivity of low-index surfaces of Al. It was found that th
resistivity of the smooth and close-packed Al~111! surface is
much larger than that of the more loosely packed Al~001!
surface, owing to the second mechanism. It is expected
this counterintuitive result may hold for other fcc metals.
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