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Spin-wave instability in itinerant ferromagnets

Takuya Okabe
Department of Physics, Kyoto University, Kyoto 606-01, Japan
(Received 29 July 1997

We show variationally that instability of the ferromagnetic state in the Hubbard model is largely controlled
by softening of a long-wavelength spin-wave excitation, except in the overdoped strong-coupling region where
the individual-particle excitation becomes unstable first. A similar conclusion is drawn also for the double-
exchange ferromagnet. Generally the spin-wave instability may be regarded as a precursor of the metal-
insulator transition[S0163-182@8)03601-7

I. INTRODUCTION of the Hubbard model,

Recently the electron correlation effect in the strong- __ ot A oo
coupling Hubbard model around half filling has been inten- 3 ijE t'JC'”C"’+UEi Miniy
sively investigated. Since Nagaoka showed the existence of
the itinerant ferromagnetic ground state in the litdit> o _ + non
andn—1 several authofs’ attempted a variational esti- % skck"ck"JrUzi" MinMiy - @
mate of the stability of the ferromagnetic state in this limit.
On the other side, there are works that try to investigate th
metal-insulator transition from the ferromagnetic side. In
particular, the two-body problem of a particle-hole pair in .
the half-filled band was treated as an exactly solvable case g{ate.
the Mott transition by several authds'! To describe physi- W)= b]|F) 3
cally relevant situations in this approach, one must treat the a a
many-body problem of the particle-hole bound states. Fowhere
example, one may use the BCS-type mean-fieé(il%aj&pgoxima- L
tion when the ground state is magnetically ord : t_ t iqr:

In this paper we discuss the stability of the Nagaoka fer- bg= ﬁ%" fo(rj—riei ;e (4)
romagnetic state, with the problem of the metal-insulator
transition in mind. We show that the ferromagnetic state in 1
the over-doped region of the strong coupling Hubbard model =
is destabilized by the individual-particle excitation, as JL
Shastry, Krishnamurthy, and Anderson notddowever, it is
found that in almost all the other regions the instability is
controlled by softening of the spin-wave stiffness. In Sec.
Il A, we give a phase diagram showing this feature on the 1
basis of a variational trial state. We estimate an upper bound  (F|b,[H ,b;]|F>= EE N(eksq— ekt UN)|fo(K)|?
for , which is defined by=2zt/U_x for the ferromagnetic k
threshold in the limitU —o and x=1-n—0. Stability of 1
the double-exchange ferromagnet is discussed in Sec. Il B. - UEE N fq(k)
Incidentally, in Appendix A, we discuss that the antiferro- K
magnetic Heisenberg model can be reproduced by using the 1
results of the two-body problem, or from the spin wave in iy — = 2
the insulating ferromagnetic state. Mathematical details are <F|bqbq|F> Lz Ml fa(O1% @
given in Appendix B.

gy way of illustration, here we present results obtained in the
random phase approximatidiRPA) first. To this end, we
may use the following trial state for the spin-wave excited

; fa(K)Chy g/ Cur » (5)

and L denotes the total number of lattice sites. Then we
obtain

2
3

(6)

where

II. VARIATIONAL DESCRIPTION OF THE SPIN-WAVE [ 1, g<eg ®
nk_

EXCITED STATE “lo e > £

A. Randam phase approximation and carrier density is defined by

We first investigate the ferromagnetic state, 1
nEEEK (F|ny|F).
|F)= H CMO), (1)

sK<ef Taking the functional derivative of
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FIG. 1. Dispersion of the spin waveo(/4t) and the bottom of con'iilr?lju?wl{?yisp(ﬂ)s ;23 grot:ge (:p(i;; \(/\(/)a;/z)i/it)) ggutlgfeg?/f/ti?rﬂhog
' - <g<nm)i . . /min ' T
continuum[ 7min(q)/4t)] along (,q) (0O<qg=<w) in the RPA improved trial state.
t .
" :<F|bq[H'bq]|F> 9 From these results, we observe several poiiitso, and
4 <F|bqb;|F> ' 7q(K) are separated by energy gap of ortler(Fig. 1). (i)

The bandwidth ofv, becomes narrow an(i ) the minimum
of wqy moves away fromg=Q=(7,7) as the density of
holes increasedig. 2). For example, the minimum s for
1 u U/4t=4 andn=0.9 lies atq=(m,0.37). With respect to
IE Nif (k). (10 (iii), we are led to the following speculation; beyond spin-
wave instability, the spin wave with momentugs g, that
gives the minimumw,<0 will be set to populate the ferro-
magnetic state, resulting in Bose-Einstein condensation of
1 Nk 1 (11) the bosor‘bgmm. In particular, around half filingh=1, the
L% exig—extUn—wq U’ resulting state will be the commensurateeNerdered phase
with g=Q. Upon dopingn=<0.93, e.g., folU/4t=4, the re-
Substitutingf 4(k") = oy in Egs.(6), (7), and(9), we obtain  sylting phase will become the spiral state with incommensu-
rate modulationg# Q. Qualitatively this is consistent with
the result of recent studié$-'® Moreover, further hole dop-
for the energv of the particle-hole continuum. The boun ing (n<0.82 forU/4t=4) stabilizes the ferromagnetic state,
state (spin w%)\//e energ)F/)wq is given as a solution of Eq. just as concluded _from the meanjf_leld treatmertf. How- _
) . e ; S ever, the latter point on the stability of the ferromagnetic
(112). In particular, for a tight-binding dispersion in a square g io as well as the above poiiitare shown to be modified
lattice, the results are shown in Fig. 1 far=(q,q) by improving the approximation.
(0O=qg=m) for various values oh. The spin-wave part of
Fig. 1 is shown in Fig. 2. The result for=1 reproduces the B. Improved trial state
two-body result given in Appendix A. Discussion based on - 1mp
Eq. (11) is equivalent to the random phase approximation, Next we consider the following creation operator to im-

which properly takes into account the two-body correlationprove the trial state created by Ed):
effect of the particle-hole ladder. In all of the cases shown in

with respect tof ;(k), we obtain

fa(l)= gxrgq— ek TUN—wq

Summingn,f,(k) overk, we have the eigenequation

77q(k):8k+q_8k+Un (12

the figures, the ferromagnetic state is unstable to the spin- 1 ) .
wavegexcitation. ) P bi= ﬁ; fo(rj—r)cl (sing+cosge ¢l ) e,
(13
0.1 i The wave function of this form was first used by Ro#nd
U/4t=4 also adopted later by Shastry, Krishnamurthy, and Andérson
0.0 — =] to investigate stability of the Nagaoka ferromagnetic state.
— ‘*i{l‘:: ----------- However, since the spin-wave spectrum for generand
E 0.1} \\\\\__ . finite U derived from Eq(13), which turns out to be impor-
g \“\ """ tant for our purpose, has not yet been thoroughly investi-
g 02} n=0.85 \\\ 1 gated, we derive results by ourselves from the outset. Math-
S Q- n=0.9 s ematical details are deferred to Appendix B. Below we show
-0.3 [ ---- n=0.95 T only results to compare them with those given in the last
=== n=1 RPA subsection.
-0.4(0, 0 . a . * ) For the square lattice, the bottom of the continuum

7min(@) =Mine74(k) and wq for g=(q,q) (0<g=m) and

U/4t=5 are shown in Fig. 3, and, for various values of
FIG. 2. Dispersionw(q) for U/4t=4 in the RPA. are shown in Fig. 4.
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FIG. 4. Dispersionw(q) for U/4t=4 for the improved trial
state. FIG. 5. Threshold for the stability of the ferromagnetic state in a
square lattice.
These are to be compared with Fig. 1 and Fig. 2, respec-
tively. As for wq, in the slightly doped regiontn<1, the  was noted by NagaoKaThis argument, however, does not
results are not modified considerably from those of the RPAtell us whether the instability is brought about localbon-
On the other side, the individual particle-hole spectrum pretinuously or globally. We show that it is in fact given as a
sents a striking contrast, as is clear from Fig. 1 and Fig. 3. Iocal instability by investigating the spin-wave excitation for
the improved estimate, the continuum no longer has energg strong but finite interaction energy. It is noted here that a
of orderU, but it forms a flat band lying in the low-energy quantitative aspect of the above fact was addressed in a re-
region. This is because of the fact that vacancy made througtent work by Hanisch, Uhring, and Mer-Hartmant where
the hole doping enables particles to hop around, though it ismphasis is put on how far the stable region of the Nagaoka
a quite restricted motiohAs the density of hole £ n in-  state can be reduced, rather than its physical origin of our
creases, the bandwidth af, broadens and finally we have a concern.
vanishing binding energ ;= 7min(q) — @q for g~qmin, as We display the inverse of the critical coupling as a func-
shown in Fig. 3. In the overdoped region, therefore, the spiriion of n in Fig. 5 and Fig. 6 for a square and a simple cubic
wave forg~ g, cannot be regarded as a well-defined boundattice, respectively® In the figures, threshold curves deter-
state. mined using Eq(13) are shown. These are calculated by the
conditions 7mi,=0 (dashed wy=0 (long-dashey and
D=0 (solid line), where 7y, is the minimum value of
7¢(K). In the region above the curves, the ferromagnetic
A. Hubbard model state is absolutely unstable. Mathematical details #gr
In our previous paperd;'8we discussed stability of itin- ©q, @1dD are given in Appendix B. The stiffness constant
erant ferromagnets on the basis of a model comprising deP_for the case’U=0 was shown as a function afin Ref.
generate orbitals. In the strong-coupling limit, we observed!’- !N Fig. 5, threshold bpgpa=0 using Eq.(B24) is also
that the instability condition derived from the individual par- shown. It is clear how the trial stat@3) improves the result
ticle excitation is more stringent than the condition con-Of the RPA;in the latter we cannot prove instability for any
cluded for the spin-wave instability. Therefore, putting moren in the strong-coupling region. _ o
emphasis on the study of the individual particle excitation 1he figures show that, in the strong-coupling limit
than for the spin-wave spectrum, we calculated the criticaf Y'Y =0, the individual particle excitatioridashed curve
interactionU, below which excitation energy of the indi- brings about instability prior to the softening of the stiffness
vidual particle-hole pair becomes negative as a function of
carrier densityn.}” The result for the Hubbard model was
that U, approaches a finite value as-1 for both a square 0.4 T v
and a simple cubic lattice. In other words, we could not sc T Nmin=0
prove instability of the Nagaoka ferromagnetic state in the o3 T =0 |
underdoped strong-coupling region, even though a more — D=
elaborate trial state than that derived from Ef) is used to 02 | M
estimate energy of the individual-particle excitation. On the ) "N
contrary, for the Hubbard model, a simple argument can be \
given, indicating that); should become infinity as— 1. To 0.1 - \ ]
show this, one may consider the case where holes of concen- /S F
tration x=1—n are doped into the half-filled Hubbard 0.0 ! . .
model. If x is small enough, energy of the complete ferro- 04 05 06 0.7 08 09 1.0
magnetic state is given by xzt per site. On the other hand, n
energy of the antiferromagnetic configuration is
—2zt?/U+ O(x) per site. Therefore, equating these two, the  FIG. 6. Threshold for the stability of the ferromagnetic state in a
critical boundary is expected to take the fortiU X, as  simple cubic lattice.

IIl. INSTABILITY OF THE FERROMAGNETIC STATE

6t/U

&
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constant(solid curve, just in accordance with our previous
results. However, the phase boundary in the other region is
primarily determined by the spin-wave instabili9,<0. In
particular, in the regiotd —» andn—1, the phase bound-
ary is of the formzt/U.= «x and is determined by the spin- o i
wave instability. In this limit, we cannot distinguish the two E o
results bywg=0 and D=0, which in turn do not differ ©
appreciably fromDgpp=0. Physically we may say that the 02t/ .-
spin-wave instability determines the threshold for ferromag- femmmaac” F
netism in the region where the metal-insulator transition is
likely to occur. A similar behavior is observed also for the 0'00 P 0'2 0'4 0.6 0.8 1.0
double-exchange ferromagnet as shown in the next subsec- ) ) ) ) ) )
tion.

As for k=zt/Ux, our calculation givesc=1.08 for the
square latticeZ=4). For the simple cubic latticeeE&6), we FIG. 7. Inverse of the critical couplingtf/g, as a function oh
obtainedx=2.08, which is better thar=3.96 of Richmond for the S;=3/2 ferromagnetic Kondo lattice model in a simple cubic
and Rickayzeﬁ,who estimatedc by assuming a flipped spin lattice. The ferromagnetic state is unstable outside the region de-
to stay at a single site, i.e., not to hop around in a lattice agoted byF.
the spin wave does. For reference, we cite Nagaoka's
estimaté x=1.47 for a simple cubic lattice. This value, ganese oxides, we may conclude that the observed result is
however, is not to be compared with our result since thexplained by assumi@6tzg/6tn~5, i.e.,U/W~2.5 with
former does not have a variational significance. Our resultihe bandwidthW=12t. In particular, our results indicate the
being based on the variational treatment, sets the exact uppgin-wave instability in the underdoped regime, while in the

0.6 SC S,=3/2

-
-
-

n

bound for the true value ot. overdoped regime the instability is controlled by the indi-
vidual particle excitation with wave numberk;. Gener-
B. Double-exchange model ally the spin wavew, is made unstable first at the momen-

tum q# Q= (=, m, 7). Therefore the resulting phase beyond
the instability is expected to be the incommensurate spiral
state?° as in the case of the Hubbard model.
. In Fig. 8, we show thé&; dependence of the phase bound-
H=—t> cl,cj,tUX nyny =" Sq-s ary 4tn/g in a square lattice. Solid curves are determined by
e ' ' D=0. As above, for the instability due to the individual-
J'S particle excitation (denoted by long-dashed curyesve
+ T.E Nig s (14 adopted the more stringent conditiep, = £, on the basis
7 of our previous result§7.9) and(7.10 of Ref. 17, than that
where we assume a positive couplidg>0. This model concluded from the expression derived from E#5), the
with S;=3/2 is often used to describe the lanthanum mangaeounterpart of Eq(B6). The figure shows that the threshold
nese oxides La ,A,MnO3, whereA is a divalent ion such nearn—1 is determined byD=0, as in the case of the
as Sr, Pb, or Ca. To create a trial state for the spin-wavélubbard model. Théd =0 portion of the phase boundary

Next, we consider the ferromagnetic Kondo lattice
(double exchangemodel,

excitation, we use the operator increases as a function & . In particular forS;=o in the
;1 : .
bi= ﬁ%‘, fo(rj—rl(c,cj;+Sp)sing 0.6 i
’ Square ) .
+(cf cip+Sq)cl ¢ coseln, (15 T8
04t
which reduces to Eq13) when S;=0. The expression for D N
6=0, whenU=J'=a, was previously treated by d8. £ N N5
As an example, we show threshold for the instability of = 02 |\ T S
the double exchange ferromagnet, the ferromagnetic ground ) AN N
state of Eq.(14). In Fig. 7, we show 6n/g. determined by e // S=1/2
D=0 as a function of carrier density (solid curve where 0.0 __~~~-' Ferromagnetic
g=J’'S;+ Un represents the mean-field exchange splitting of 00 02 04 06 08 1.0
the model(14). We assumed a tight-binding band in a simple n

cubic lattice. In the figure, we juxtaposed our previous

reSU,Ii” (dashed curve which was obtained by investigating  FG. 8. 4n/g, as a function of for the ferromagnetic Kondo
the instability of the individual particle excitation; shown as |5ttice model in a square lattice f=1/2, 3/2, andw. Solid

the dashed curve in the right figure of Fig. 9 of Ref. 17.curves are determined bp=0. Instability of the individual-
Experimentally, the itinerant ferromagnetic state is observe@article excitation occurs above the long-dashed curves. The ferro-
only in a restricted range 02x=1—n=<0.5. On the as- magnetic state is unstable outside the region denoted by “ferromag-
sumption that the mod€ll4) adequately describes the man- netic.”
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square lattice, the boundary is exclusively determined by theealized after the spin-wave instability may show anomalous
conditionD =0 down ton=0, while we found that the solid metallic properties. This kind of consideration makes sense
curve D=0 and the dashed curve cross each other arounplist around half filling only where the lowest energy spin-
(n,6tn/g)=(0.5,0.5) forS;=« in the simple cubic lattice wave state can be regarded as a well-defined bound state
(not shown in Fig. Y. Note that in the cas; =« the bound-  (Fig. 3). Although it is an interesting problem to consider the
ary is the same as the result of the random phase approximanteracting ferromagnetic spin wave as an elementary con-
tion. [SeeDgpa=0 of Fig. 5, as well as EqsB24) and stituent, further investigation on this point requires compli-
(B25).] We see that all the boundaries in Fig. 8 approach &ated calculation that is far beyond the scope of this article.
finite value asn—0. This is a specific feature of two-

dimensional lattices. Generally f&+# 0, the parmetep in ACKNOWLEDGMENTS

Eq. (15) determined variationally increases from zeront(2 ]
as n decreases from 1 to 0. Thus one can show that the The author would like to thank Professor K. Yamada for

conditionD=0 gives 4n/g= 1/ in the limit n—0 for the discussions and gritical comments. This WOI’I'( was supported
square lattice, using Eq¢B24) and (B25). On the other by_the_Japan Society for the Promotion of Science for Young
hand, in the simple cubic lattice, we haveg#0 in this  SCclentists.

limit (Fig. 7). Finally we note that the physically relevant

situation S;=3/2 lies just in between the classiced; & =) APPENDIX A: TWO-BODY PROBLEM
and the quantumS;=1/2) limit. AND THE HEISENBERG MODEL

Let us consider the simplest case of a particle-hole pair in
the ferromagnetic band insulator,

In the previous section, we showed that the ferromagnetic
state in the Hubbard model as well as in the double exchange IFy=11 CMO)_ (A1)
model is unstable to the spin-wave excitation in the under- k
doped region, while it is unstable to the individual-particle
excitation in the strong-coupling overdoped region. Gener
ally the spin-wave moda, may take a mimimum at finite
wave vectolg= q,,. This minimum is interpreted to indicate 1 1 1
the potential spiral-spin correlation contained in the ferro- = =_. (A2)
magnetic configuration, which becomes conspicuous as the LK exrgmektU—oq U
excitation gapwg approaches zero. We found that the soft—ThiS is obtained as a limit—1 of Eq.(11), and is the exact

ening of the long-wavelength spin wave mdde-0 closely  regylt of the two-body problefr!! It is also derived as the
follows the gap collapseq  —0. Thus we may conclude congition for the particle-hole ladder to have a pole. We note
that the spin-wave instability is a precursor of the metal-that the bound-state solutias, is nothing but a spin wave in
insulator transition. It is physically plausible that instability the ferromagnetic vacuuig1). On the other side, the inter-
of the ferromagnetic state in the region where the metalnal structure of the bound stafg(k) is given by
insulator transition is likely to occur is dictated by the spin-
wave instability, since the spin wave is nothing but a 1 U
particle-hole bound state in the ferromagnetic vacuum and, fq(k)=— Py (A3)
on the other side, we may interpret the Mott insulator as L eia ek 4
composed of the particle-hole bound statéppendix A.  without loss of generality.
Therefore we expect that the above conclusion is generally e investigate a general case of the tight-binding band,
valid; for example, instability of ferromagnetism in the situ- to; which e is given by
ation appropriate to metallic nickel will be caused by the
individual-particle excitation since the fillingi~0.2 per o
band is far from being critical for the metal-insulator transi- g =—1t>, ek?, (A4)
tion. In this respect, we note that the Hubbard model as a s
model for an itinerant ferromagnet is a rather exceptiona!N
case, because the ferromagnetic state if any can be reaIiZﬁgrs1
only around half filling(Nagaoka limi}. This is the reason
why we found a dominant role played by the spin-wave in-
stability in Fig. 5 and Fig. 6.

Finally let us speculate on the approach to the metal- wq=—
insulator transition from the ferromagnetic side. We could
derive the antiferromagnetic Heisenberg model from the
spin-wave dispersion of the ferromagnetic insulating state, _ 2t? iq oy
and observed that, unlike the individual-particle excitation - U% (1-e®7), (AB)
spectrum, the spin-wave dispersion itself does not change
drastically upon hole dopingFig. 1 and Fig. 3 Then if the  where Eq.(A4) is substituted. The cage=1 of Fig. 2 and
spin wave as a particle-hole bound state is robust even whefig. 4 can be well fitted by this expression.
a slight amount of holes are doped, the paramagnetic phase As for f(k), we have

IV. DISCUSSION

Then the eigenequation fas,, which is the eigenvalue of
the state(3), is given by

ere the sum is taken over nearest-neighbor veciorgo
e accuracy of orde®(t/U), from Eq. (A2) we obtain an
expression for,

| =

; (ektq—eK)° (A5)

Clr
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I PR V=233 b!5,b'b, (A13)
fq(k)_ﬁ(l_T , (A7) &) T
to the accuracy of orded(t/U). We then obtain where the sum is taken over the nearest-neighbor pairs. On

the other side for the hopping part, the one-body energy
1 _ is given by Eq.(A6). In terms ofJ=2t%/U we rewrite it as
fa(rj=ri)=—=20 fq(kpe "=
JLX

t - T= wgblb=-3> X (1-€9)b/b
:5rjfri+UZ 5rj7ri7§ﬁe'q5—1), (A8) g a s o
5

bi’r:iE bae_iqri Instead of the hard-core boson, we can equivalently use
L a the quantum operator for the sp8+ 1/2, which are defined
1 by

= EE 2 fq(ri’_ri')cr'lci’Teiq(ri’_ri)

a i’ —~—

i S;i= % - bini ,
=clci+ UZ_ (C:,ECW—CECHE)- (A9)
? s'=b,, s =b. (A15)

The result Eq(A9) shows that the bosdn for nonzerat/U

has an internal structure extending to neighboring sites of th¢hen as the effective model to describe the half-filled Hub-
site where it is created. PhySIcaHy this structure is |nterprete%ard model in the Strong_coup”ng regime’ we can reproduce

as a singlet cloud formed with the neighboring sites. the antiferromagnetic Heisenberg model in terms of these
Energy of the localized boson is given by spin operators: Putting E¢A13) and Eq.(A14) together, we
R , obtain
wi=<F|b'[H'Tb']|F>=—22t ' (AL0)
(F|bibj|F) U ~ o~ e e
H=T+V=21> [(3-b/b)(3-D]b))
wherez is a coordination numbegz=Z331. The result Eq. (D)
(A10) is obtained also as the center of gravity of the band + %(gigi+gtg,)_ 4
wq, EQ. (AB), P
1 9t? =233, [S,iS,+3(S'S] +S )~ 1]
—_ — (i)
wq_EE wq— - T (All)

q
=2] .S — 1y, Al6

From the form of the structure, EA9), Eq. (A10) is inter- OZD (5573 (A1)
preted as a sum of energy of singlets formed with the
nearest neighbors. The factor 2 is due to the two processes Similarly as above, as an effective model for the case
due to a particle and a hole hopping, which are representegen holes are doped, the following Hamiltonian is sug-
in the two terms in the parentheses of E49). gested:

Now let us introduce the creation and annihilation opera-

tor of the hard-core bosoh andb; in place ofb! andb; ;

3 N H=t> T/T,—t> b/T,T/0;+23> (S-5-1).
bi—bl, bi—b;. (A12) B B {iD) AL7)

The bound state created I/ extends only to the nearest-
neighboring sites of, as indicated from EqA9). As a re-  The first term describes the hopping process of a doped hole,

sult, total energy of two localized bosons differs frorw;2 Ti’fECiT(l—BiT'Bi), and the second term takes into account
only when they are in the nearest-neighboring sites, when thgye hopping of the boson when its neighboring sites are va-
total energy amounts to-4(z—1)t?/U. Increase by an cant. The Hilbert space of EGA17) is spanned at each site
amount 2=4t?/U from 2w; is due to overlap of the singlet 1, 110, 1L)=D{|1;) and vacancy|0))=C|1;). The fer-
cloud of the two bosons. In the hard-core boson picture this . ~ .
must be regarded as an interaction energy, i.e., the interaf?'on gperatorcn must thus t?e 'operated on the S|tes~where
tion part of the Hamiltonian for the hard-core boson is giventhere is no boson. To take this into account, one mayfise
by instead ofc; .
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APPENDIX B: CALCULATION FOR THE IMPROVED VARIATIONAL STATE

We calculatew, for the creation operator,

= E[f )el e+ T o(rj—riel cipclici 1el. (B1)

Ny

To obtain results, we may follow the same procedure as given in Sec. Il A. First we obtain

1 2
U= nify
L%

1 1 S 1 .
(FlbelH.bglIF)= 12 Ni(eicq= it Un)fif*= L2 Al TP EKEP Tipaf & fp

1 _\/1 _’k‘—>f 1-n f_ﬁ‘—>f§c

— -_— * — [

+ sz: nk(8k+q gk)fk)(l_Ek: nkfk + k_>f_k‘| L 2 nk(8k+q 8k)f fk+ fk_)f_k ’

(B2
and — .

1 1-ney — . |1 12 /1 —\(1 v — i
Flbgbl|Fy= =2 nful2+ ——2> |2+ |=> nefl +{ =2 mfi | =2 nef| + _
(Flnl)= £ mitgs S8 T 73 o (£ mafE (£ ma+|

1- _ _’ﬁf:
L A 3
k fk_>fk

Here we denoted,(k) simply asf, . Bracketed expressions tively. A functionf, and a parametet have to be fixed so as
mean to repeat the preceding terms with the replaced funde minimize w,. We note that Eq(13) for 6= /2 gives Eq.
tions as indicated in the brackel‘v.skq andl'ypqin Eq.(B2)is  (4). Moreover, Eq.(13) becomes the trial state for the case
the caseS; =0 of the expression defined {A.6) and(4.7) of U= (Refs. 2 and #by assumingd=0, since in this case
Ref. 17. In the tight-binding dispersion EGA4), the former  the variational state does not depend on the interaction en-
is given by ergy U at all. For a finite value obJ, the parameted takes

a value in the range € < 7/2.

2
Ag=legl—(1—n)g + | (1—n)>— ) , (B4
ka | gl ( et ( ) t Fhra B4) 1. Individual particle excitation
where To derive excitation energy of the individual particle-hole
1 pair, we may sef,,= &, in Eqs.(B2) and(B3) to calculate
GgE EZk nk8k. (BS) <F|bq[H b ]|F>

- 0 (Flbgbl|F)
For the wave function Eq.13), one may replacé, and att /r

f—k in the above expressions Hysing and f,cosd, respec- Then we obtain

Acho§0+(ek+q ex+Un)sif 0+ 2(1—n)(ey. q— &) SiNGCOSH
(1—n)cof6+ 2(1—n)sindcosd+ sint o '

For 74(k) this expression should be minimized with respectt@nd 7, is defined as a minimum of4(k).

(B6)

77q(k

2. Spin-wave dispersion

To minimize wq with respect tdf,, we take functional derivativéw,/df; after replacing and f in Egs.(B2) and(B3)
by f,sing and f,cosd. Then we obtain an equation,

Ek+qg~ €k 1
L nifet =2 (e g— e fi
L R LK

1
Akqfk+E% rkqup)co§0+

22 nkfk) Sir‘|26+

(g et Un) i -

2
EZ nf+2(1— n)fk) singcos |.
K

+2(1—n)(sk+q—sk)fk)sinacos9= wgq

1
((1—n)fk+ EZ nkfk) cog 6+ fsirf o+
K

(B7)
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We investigate the tight-binding model in a squaile=Q) In the long-wavelength limig— 0, we can expand (k)

and simple cubic latticed=3), for which with respect togq and deriveD analytically from Eq.(B2)
and Eq.(B3). Below we give only the resulting expressions.
1 As shown in our previous papéfthe results for the Hub-
e =——2, cogk;). (B8) bard model are obtained as a special case of those for the
di= Kondo lattice model(14). Using Eq.(15), we calculatedD

Here and below we sett=1 wherez=2d. Furthermore, we 0r this general model;

are interested in the dispersian for g along the diagonal of

the Brillou-in zone, i.e., forq=(_q,q) anq q=(q,q,q) D(6)=Dy—D(6), (B19)
(0=g=m) in the square and the simple cubic lattice, respec-
tively. Then we can cast E¢B7) into the following form: whereD=|¢4|/2Szin terms of twice the spontaneous mag-
3 netization Z=2S;+n, and
D(k,a)fq(k)= 2, Ni(k,a)Fi(a), (BY)
' I ((1—n)cos 6+ sirt 6+ (2—n)sindcoss)?
where oD(6)= :
2S(1+ 4| zIcos 0/2)(1+ 2sindcosy)
D(K,q)=[Axq— (1= N)wg]cos O+ (gx1q— skt UN—wg) (>0). (B20)
Xsinfg+2(1— —ek— i
Si6+2(1=n)(eyeq~ o~ wg)sinbeoss, In these expressions, v, , andA,, are given by
(B10) *
Fi(q) 12 (5 St e 0ia)fq(k), (Bl | 1 W, (B21)
i(g)=+—2, Nk(0j1— €K0oi2t €O , = - ,
itg Lk k\¥i1 k¢i2 k¢i3/1q Lk Akoco§0+gsin20
N1(K,@)=[wq—|€gleq— (1—N)eyqlcoS O+ Usir?g b= % (822
+(2wq— &4 ¢t &) SINGCO, (B12) x
and
No(K,q)=—[|€gle+qt (1—N)eq]cosd
—(1+&4)sinfcos, (B13 Ao=(2Si+1)[| €g] = (1= n)ey ] +[(1—n)>— gl
(>0). (B23

Na(k,q)=—[|€ge ks qT (1—N) e 4]cOS 6~ v SiNICO.
(k@ ="llegexiqt(1=neg] Pa (B14) A parameteq in Eq.(B2)) is defined byg=Un+J'S;, and

_ represents the mean-field exchange splitting of the model
Here we introduced (14). We must minimizeD(6) to obtainD. To reproduce the
1.9 result for the Hubbard model, we may s&t=0. The par-

== sin(k), =si _ B15 ticular case of the above results, i.e., in the strong-coupling
“kTde ki), vg=sin(a) (B19 limit g=% (6#=0), was obtained previousfy:’ For the

Hubbard model, the result of the random phase approxima-

Solving Eq.(B9) for fq(k) and substituting the result into jon D, is obtained by setting;=0 and 8= /2,
Eqg. (B11), we get the eigenequation

defA;:(q)—8.:1=0, B16 g 11
{ ”(Q) Ij] ( ) DRPA:Z_?]_ 2E nkUEX- (B24)
where Un® Lk
1 N (k.q) A similar expression is obtained in the lin8t—« where we
) — - T o 4 should assum@= /2 to keepl and 256D (#) finite. Then
A (@)= T2 NS~ ewdio+exdid) B o o bian
(B17)
To obtain the spin-wave energy,, we must minimize the D :i @_ E E nup2 B25
solution wq( ) of Eq. (B16) with respect tod. S°*T28l z g sz: KUk, |- (B25)
3. Spin-wave stiffness constant In the main text, we regarded the approximation scheme giv-
. ) ) ) ing the result corresponding to Eq&24) and (B25) as the
The spin-wave stiffness constadtis defined by random phase approximation. The former red@p4) is

well known for the Hubbard model. The latter was recently
w,=Dg® (g—0). (B18)  obtained by another methdd.
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