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Spin-wave instability in itinerant ferromagnets

Takuya Okabe
Department of Physics, Kyoto University, Kyoto 606-01, Japan

~Received 29 July 1997!

We show variationally that instability of the ferromagnetic state in the Hubbard model is largely controlled
by softening of a long-wavelength spin-wave excitation, except in the overdoped strong-coupling region where
the individual-particle excitation becomes unstable first. A similar conclusion is drawn also for the double-
exchange ferromagnet. Generally the spin-wave instability may be regarded as a precursor of the metal-
insulator transition.@S0163-1829~98!03601-7#
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I. INTRODUCTION

Recently the electron correlation effect in the stron
coupling Hubbard model around half filling has been inte
sively investigated. Since Nagaoka showed the existenc
the itinerant ferromagnetic ground state in the limitU→`
and n→1,1 several authors2–7 attempted a variational est
mate of the stability of the ferromagnetic state in this lim
On the other side, there are works that try to investigate
metal-insulator transition from the ferromagnetic side.
particular, the two-body problem of a particle-hole pair
the half-filled band was treated as an exactly solvable cas
the Mott transition by several authors.8–11To describe physi-
cally relevant situations in this approach, one must treat
many-body problem of the particle-hole bound states.
example, one may use the BCS-type mean-field approxi
tion when the ground state is magnetically ordered.10,12,13

In this paper we discuss the stability of the Nagaoka f
romagnetic state, with the problem of the metal-insula
transition in mind. We show that the ferromagnetic state
the over-doped region of the strong coupling Hubbard mo
is destabilized by the individual-particle excitation,
Shastry, Krishnamurthy, and Anderson noted.4 However, it is
found that in almost all the other regions the instability
controlled by softening of the spin-wave stiffness. In S
III A, we give a phase diagram showing this feature on
basis of a variational trial state. We estimate an upper bo
for k, which is defined byk[zt/Ucx for the ferromagnetic
threshold in the limitU→` and x512n→0. Stability of
the double-exchange ferromagnet is discussed in Sec. I
Incidentally, in Appendix A, we discuss that the antiferr
magnetic Heisenberg model can be reproduced by using
results of the two-body problem, or from the spin wave
the insulating ferromagnetic state. Mathematical details
given in Appendix B.

II. VARIATIONAL DESCRIPTION OF THE SPIN-WAVE
EXCITED STATE

A. Random phase approximation

We first investigate the ferromagnetic state,
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of the Hubbard model,

H52 (
i , j ,s

t i j cis
† cj s1U(

i
n̂i↑n̂i↓

5(
ks

«kcks
† cks1U(

i
n̂i↑n̂i↓ . ~2!

By way of illustration, here we present results obtained in
random phase approximation~RPA! first. To this end, we
may use the following trial state for the spin-wave excit
state:

uCq&5bq
†uF&, ~3!

where

bq
†[

1

AL
(
i , j

f q~r j2r i !ci↓
† cj↑e

iqr i ~4!

5
1

AL
(

k
f q~k!ck1q↓

† ck↑ , ~5!

and L denotes the total number of lattice sites. Then
obtain

^Fubq@H,bq
†#uF&5

1

L(
k

nk~«k1q2«k1Un!u f q~k!u2

2UU1L(
k

nkf q~k!U2

, ~6!

^Fubqbq
†uF&5

1

L(
k

nku f q~k!u2, ~7!

where

nk5H 1, «k,« f

0, «k.« f
~8!

and carrier densityn is defined by

n[
1

L(
k

^FunkuF&.

Taking the functional derivative of
403 © 1998 The American Physical Society
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vq5
^Fubq@H,bq

†#uF&

^Fubqbq
†uF&

, ~9!

with respect tof q(k), we obtain

f q~k!5
1

«k1q2«k1Un2vq

U

L (
k

nkf q~k!. ~10!

Summingnkf q(k) over k, we have the eigenequation

1

L(
k

nk

«k1q2«k1Un2vq
5

1

U
. ~11!

Substitutingf q(k8)5dkk8 in Eqs.~6!, ~7!, and~9!, we obtain

hq~k!5«k1q2«k1Un ~12!

for the energy of the particle-hole continuum. The bou
state ~spin wave! energyvq is given as a solution of Eq
~11!. In particular, for a tight-binding dispersion in a squa
lattice, the results are shown in Fig. 1 forq5(q,q)
(0<q<p) for various values ofn. The spin-wave part of
Fig. 1 is shown in Fig. 2. The result forn51 reproduces the
two-body result given in Appendix A. Discussion based
Eq. ~11! is equivalent to the random phase approximati
which properly takes into account the two-body correlat
effect of the particle-hole ladder. In all of the cases shown
the figures, the ferromagnetic state is unstable to the s
wave excitation.

FIG. 1. Dispersion of the spin wave (vq/4t) and the bottom of
continuum@hmin(q)/4t)] along (q,q) (0<q<p) in the RPA.

FIG. 2. Dispersionv(q) for U/4t54 in the RPA.
d

,

n
n-

From these results, we observe several points.~i! vq and
hq(k) are separated by energy gap of orderU ~Fig. 1!. ~ii !
The bandwidth ofvq becomes narrow and~iii ! the minimum
of vq moves away fromq5Q5(p,p) as the density of
holes increases~Fig. 2!. For example, the minimum ofvq for
U/4t54 and n50.9 lies atq5(p,0.3p). With respect to
~iii !, we are led to the following speculation; beyond sp
wave instability, the spin wave with momentumq5qmin that
gives the minimumvq<0 will be set to populate the ferro
magnetic state, resulting in Bose-Einstein condensation
the bosonbqmin

† . In particular, around half fillingn&1, the

resulting state will be the commensurate Ne´el ordered phase
with q5Q. Upon dopingn&0.93, e.g., forU/4t54, the re-
sulting phase will become the spiral state with incommen
rate modulationqÞQ. Qualitatively this is consistent with
the result of recent studies.14–16 Moreover, further hole dop-
ing (n&0.82 forU/4t54) stabilizes the ferromagnetic stat
just as concluded from the mean-field treatment.15,16 How-
ever, the latter point on the stability of the ferromagne
state as well as the above point~i! are shown to be modified
by improving the approximation.

B. Improved trial state

Next we consider the following creation operator to im
prove the trial state created by Eq.~4!:

bq
†[

1

AL
(
i , j

f q~r j2r i !ci↓
† ~sinu1cosuci↑ci↑

† !cj↑e
iqr i.

~13!

The wave function of this form was first used by Roth2 and
also adopted later by Shastry, Krishnamurthy, and Anders4

to investigate stability of the Nagaoka ferromagnetic sta
However, since the spin-wave spectrum for generalq and
finite U derived from Eq.~13!, which turns out to be impor-
tant for our purpose, has not yet been thoroughly inve
gated, we derive results by ourselves from the outset. M
ematical details are deferred to Appendix B. Below we sh
only results to compare them with those given in the l
subsection.

For the square lattice, the bottom of the continuu
hmin(q)5minkhq(k) and vq for q5(q,q) (0<q<p) and
U/4t55 are shown in Fig. 3, andvq for various values ofn
are shown in Fig. 4.

FIG. 3. Dispersion of the spin wave (vq/4t) and the bottom of
continuum@hmin(q)/4t# along (q,q) (0<q<p) calculated with the
improved trial state.
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These are to be compared with Fig. 1 and Fig. 2, resp
tively. As for vq , in the slightly doped region 12n!1, the
results are not modified considerably from those of the RP
On the other side, the individual particle-hole spectrum p
sents a striking contrast, as is clear from Fig. 1 and Fig. 3
the improved estimate, the continuum no longer has ene
of orderU, but it forms a flat band lying in the low-energ
region. This is because of the fact that vacancy made thro
the hole doping enables particles to hop around, though
a quite restricted motion.4 As the density of hole 12n in-
creases, the bandwidth ofhq broadens and finally we have
vanishing binding energyDq[hmin(q)2vq for q;qmin, as
shown in Fig. 3. In the overdoped region, therefore, the s
wave forq;qmin cannot be regarded as a well-defined bou
state.

III. INSTABILITY OF THE FERROMAGNETIC STATE

A. Hubbard model

In our previous papers,17,18 we discussed stability of itin-
erant ferromagnets on the basis of a model comprising
generate orbitals. In the strong-coupling limit, we observ
that the instability condition derived from the individual pa
ticle excitation is more stringent than the condition co
cluded for the spin-wave instability. Therefore, putting mo
emphasis on the study of the individual particle excitat
than for the spin-wave spectrum, we calculated the crit
interactionUc below which excitation energy of the ind
vidual particle-hole pair becomes negative as a function
carrier densityn.17 The result for the Hubbard model wa
that Uc approaches a finite value asn→1 for both a square
and a simple cubic lattice. In other words, we could n
prove instability of the Nagaoka ferromagnetic state in
underdoped strong-coupling region, even though a m
elaborate trial state than that derived from Eq.~13! is used to
estimate energy of the individual-particle excitation. On t
contrary, for the Hubbard model, a simple argument can
given, indicating thatUc should become infinity asn→1. To
show this, one may consider the case where holes of con
tration x512n are doped into the half-filled Hubbar
model. If x is small enough, energy of the complete ferr
magnetic state is given by2xzt per site. On the other hand
energy of the antiferromagnetic configuration
22zt2/U1O(x) per site. Therefore, equating these two, t
critical boundary is expected to take the formzt/Uc}x, as

FIG. 4. Dispersionv(q) for U/4t54 for the improved trial
state.
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was noted by Nagaoka.1 This argument, however, does n
tell us whether the instability is brought about locally~con-
tinuously! or globally. We show that it is in fact given as
local instability by investigating the spin-wave excitation f
a strong but finite interaction energy. It is noted here tha
quantitative aspect of the above fact was addressed in a
cent work by Hanisch, Uhring, and Mu¨ller-Hartmann7 where
emphasis is put on how far the stable region of the Naga
state can be reduced, rather than its physical origin of
concern.

We display the inverse of the critical coupling as a fun
tion of n in Fig. 5 and Fig. 6 for a square and a simple cub
lattice, respectively.19 In the figures, threshold curves dete
mined using Eq.~13! are shown. These are calculated by t
conditions hmin50 ~dashed!, vQ50 ~long-dashed!, and
D50 ~solid line!, where hmin is the minimum value of
hq(k). In the region above the curves, the ferromagne
state is absolutely unstable. Mathematical details forhq ,
vq , andD are given in Appendix B. The stiffness consta
D for the casezt/U50 was shown as a function ofn in Ref.
17. In Fig. 5, threshold byDRPA50 using Eq.~B24! is also
shown. It is clear how the trial state~13! improves the result
of the RPA; in the latter we cannot prove instability for an
n in the strong-coupling region.

The figures show that, in the strong-coupling lim
zt/U50, the individual particle excitation~dashed curve!
brings about instability prior to the softening of the stiffne

FIG. 5. Threshold for the stability of the ferromagnetic state in
square lattice.

FIG. 6. Threshold for the stability of the ferromagnetic state in
simple cubic lattice.
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constant~solid curve!, just in accordance with our previou
results. However, the phase boundary in the other regio
primarily determined by the spin-wave instability,D,0. In
particular, in the regionU→` andn→1, the phase bound
ary is of the formzt/Uc5kx and is determined by the spin
wave instability. In this limit, we cannot distinguish the tw
results byvQ50 and D50, which in turn do not differ
appreciably fromDRPA50. Physically we may say that th
spin-wave instability determines the threshold for ferrom
netism in the region where the metal-insulator transition
likely to occur. A similar behavior is observed also for th
double-exchange ferromagnet as shown in the next sub
tion.

As for k[zt/Ucx, our calculation givesk51.08 for the
square lattice (z54). For the simple cubic lattice (z56), we
obtainedk52.08, which is better thank53.96 of Richmond
and Rickayzen,3 who estimatedk by assuming a flipped spin
to stay at a single site, i.e., not to hop around in a lattice
the spin wave does. For reference, we cite Nagaok
estimate1 k51.47 for a simple cubic lattice. This value
however, is not to be compared with our result since
former does not have a variational significance. Our res
being based on the variational treatment, sets the exact u
bound for the true value ofk.

B. Double-exchange model

Next, we consider the ferromagnetic Kondo latti
~double exchange! model,

H52t (
i , j ,s

cis
† cj s1U(

i
ni↑ni↓2J8(

i
Sf i•si

1
J8Sf

2 (
i ,s

nis , ~14!

where we assume a positive couplingJ8.0. This model
with Sf53/2 is often used to describe the lanthanum man
nese oxides La12xAxMnO3, whereA is a divalent ion such
as Sr, Pb, or Ca. To create a trial state for the spin-w
excitation, we use the operator

bq
†[

1

AL
(
i , j

f q~r j2r i !@~ci↓
† cj↑1Sf i

2!sinu

1~ci↓
† ci↑1Sf i

2!ci↑
† cj↑cosu#eiqr i , ~15!

which reduces to Eq.~13! when Sf50. The expression for
u50, whenU5J85`, was previously treated by us.17

As an example, we show threshold for the instability
the double exchange ferromagnet, the ferromagnetic gro
state of Eq.~14!. In Fig. 7, we show 6tn/gc determined by
D50 as a function of carrier densityn ~solid curve! where
g[J8Sf1Un represents the mean-field exchange splitting
the model~14!. We assumed a tight-binding band in a simp
cubic lattice. In the figure, we juxtaposed our previo
result17 ~dashed curve!, which was obtained by investigatin
the instability of the individual particle excitation; shown
the dashed curve in the right figure of Fig. 9 of Ref. 1
Experimentally, the itinerant ferromagnetic state is obser
only in a restricted range 0.2&x[12n&0.5. On the as-
sumption that the model~14! adequately describes the ma
is
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ganese oxides, we may conclude that the observed resu
explained by assumingŪ/6t[g/6tn;5, i.e.,Ū/W;2.5 with
the bandwidthW512t. In particular, our results indicate th
spin-wave instability in the underdoped regime, while in t
overdoped regime the instability is controlled by the ind
vidual particle excitation with wave numberq;kf . Gener-
ally the spin wavevq is made unstable first at the mome
tum qÞQ5(p,p,p). Therefore the resulting phase beyon
the instability is expected to be the incommensurate sp
state,20 as in the case of the Hubbard model.

In Fig. 8, we show theSf dependence of the phase boun
ary 4tn/g in a square lattice. Solid curves are determined
D50. As above, for the instability due to the individua
particle excitation ~denoted by long-dashed curves!, we
adopted the more stringent condition«k50↓5« f , on the basis
of our previous results~7.9! and ~7.10! of Ref. 17, than that
concluded from the expression derived from Eq.~15!, the
counterpart of Eq.~B6!. The figure shows that the thresho
near n→1 is determined byD50, as in the case of the
Hubbard model. TheD50 portion of the phase boundar
increases as a function ofSf . In particular forSf5` in the

FIG. 7. Inverse of the critical coupling 6tn/gc as a function ofn
for theSf53/2 ferromagnetic Kondo lattice model in a simple cub
lattice. The ferromagnetic state is unstable outside the region
noted byF.

FIG. 8. 4tn/gc as a function ofn for the ferromagnetic Kondo
lattice model in a square lattice forSf51/2, 3/2, and`. Solid
curves are determined byD50. Instability of the individual-
particle excitation occurs above the long-dashed curves. The fe
magnetic state is unstable outside the region denoted by ‘‘ferrom
netic.’’
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square lattice, the boundary is exclusively determined by
conditionD50 down ton50, while we found that the solid
curve D50 and the dashed curve cross each other aro
(n,6tn/g)5(0.5,0.5) forSf5` in the simple cubic lattice
~not shown in Fig. 7!. Note that in the caseSf5` the bound-
ary is the same as the result of the random phase approx
tion. @See DRPA50 of Fig. 5, as well as Eqs.~B24! and
~B25!.# We see that all the boundaries in Fig. 8 approac
finite value asn→0. This is a specific feature of two
dimensional lattices. Generally forSfÞ0, the parmeteru in
Eq. ~15! determined variationally increases from zero top/2
as n decreases from 1 to 0. Thus one can show that
conditionD50 gives 4tn/g51/p in the limit n→0 for the
square lattice, using Eqs.~B24! and ~B25!. On the other
hand, in the simple cubic lattice, we have 1/g→0 in this
limit ~Fig. 7!. Finally we note that the physically relevan
situationSf53/2 lies just in between the classical (Sf5`)
and the quantum (Sf51/2) limit.

IV. DISCUSSION

In the previous section, we showed that the ferromagn
state in the Hubbard model as well as in the double excha
model is unstable to the spin-wave excitation in the und
doped region, while it is unstable to the individual-partic
excitation in the strong-coupling overdoped region. Gen
ally the spin-wave modevq may take a mimimum at finite
wave vectorq5qmin. This minimum is interpreted to indicat
the potential spiral-spin correlation contained in the fer
magnetic configuration, which becomes conspicuous as
excitation gapvqmin

approaches zero. We found that the so

ening of the long-wavelength spin wave modeD→0 closely
follows the gap collapsevqmin

→0. Thus we may conclude
that the spin-wave instability is a precursor of the met
insulator transition. It is physically plausible that instabili
of the ferromagnetic state in the region where the me
insulator transition is likely to occur is dictated by the sp
wave instability, since the spin wave is nothing but
particle-hole bound state in the ferromagnetic vacuum a
on the other side, we may interpret the Mott insulator
composed of the particle-hole bound states~Appendix A!.
Therefore we expect that the above conclusion is gener
valid; for example, instability of ferromagnetism in the sit
ation appropriate to metallic nickel will be caused by t
individual-particle excitation since the fillingn;0.2 per
band is far from being critical for the metal-insulator tran
tion. In this respect, we note that the Hubbard model a
model for an itinerant ferromagnet is a rather exceptio
case, because the ferromagnetic state if any can be rea
only around half filling~Nagaoka limit!. This is the reason
why we found a dominant role played by the spin-wave
stability in Fig. 5 and Fig. 6.

Finally let us speculate on the approach to the me
insulator transition from the ferromagnetic side. We cou
derive the antiferromagnetic Heisenberg model from
spin-wave dispersion of the ferromagnetic insulating sta
and observed that, unlike the individual-particle excitati
spectrum, the spin-wave dispersion itself does not cha
drastically upon hole doping~Fig. 1 and Fig. 3!. Then if the
spin wave as a particle-hole bound state is robust even w
a slight amount of holes are doped, the paramagnetic p
e
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realized after the spin-wave instability may show anomalo
metallic properties. This kind of consideration makes se
just around half filling only where the lowest energy spi
wave state can be regarded as a well-defined bound
~Fig. 3!. Although it is an interesting problem to consider th
interacting ferromagnetic spin wave as an elementary c
stituent, further investigation on this point requires comp
cated calculation that is far beyond the scope of this arti
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APPENDIX A: TWO-BODY PROBLEM
AND THE HEISENBERG MODEL

Let us consider the simplest case of a particle-hole pai
the ferromagnetic band insulator,

uF&[)
k

ck↑
† u0&. ~A1!

Then the eigenequation forvq , which is the eigenvalue o
the state~3!, is given by

1

L(
k

1

«k1q2«k1U2vq
5

1

U
. ~A2!

This is obtained as a limitn→1 of Eq.~11!, and is the exact
result of the two-body problem.8–11 It is also derived as the
condition for the particle-hole ladder to have a pole. We n
that the bound-state solutionvq is nothing but a spin wave in
the ferromagnetic vacuum~A1!. On the other side, the inter
nal structure of the bound statef q(k) is given by

f q~k!5
1

AL

U

«k1q2«k1U2vq
, ~A3!

without loss of generality.
We investigate a general case of the tight-binding ba

for which «k is given by

«k52t(
d̄

eik d̄ , ~A4!

where the sum is taken over nearest-neighbor vectorsd̄ . To
the accuracy of orderO(t/U), from Eq. ~A2! we obtain an
expression forvq ,

vq52
1

U

1

L(
k

~«k1q2«k!
2 ~A5!

52
2t2

U (
d̄

~12eiq d̄ !, ~A6!

where Eq.~A4! is substituted. The casen51 of Fig. 2 and
Fig. 4 can be well fitted by this expression.

As for f q(k), we have
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f q~k!5
1

AL
S 12

«k1q2«k

U D , ~A7!

to the accuracy of orderO(t/U). We then obtain

f q~r j2r i !5
1

AL
(

k
f q~k!e2 ik~r j 2r i !

5d r j 2r i
1

t

U(
d̄

d r j 2r i2 d̄ ~eiq d̄ 21!, ~A8!

and

bi
†5

1

AL
(

q
bq

†e2 iqr i

5
1

L(
q

(
i 8, j 8

f q~r j 82r i 8!ci 8↓
† cj 8↑e

iq~r i 82r i !

5ci↓
† ci↑1

t

U(
d̄

~ci 2 d̄ ↓
†

ci↑2ci↓
† ci 1 d̄ ↑!. ~A9!

The result Eq.~A9! shows that the bosonbi
† for nonzerot/U

has an internal structure extending to neighboring sites of
site where it is created. Physically this structure is interpre
as a singlet cloud formed with the neighboring sites.

Energy of the localized boson is given by

v i5
^Fubi@H,bi

†#uF&

^Fubibi
†uF&

52
2zt2

U
, ~A10!

wherez is a coordination number,z5( d̄1. The result Eq.
~A10! is obtained also as the center of gravity of the ba
vq , Eq. ~A6!,

v̄q5
1

L(
q

vq52
2zt2

U
. ~A11!

From the form of the structure, Eq.~A9!, Eq. ~A10! is inter-
preted as a sum of energy of singlets formed with thez
nearest neighbors. The factor 2 is due to the two proce
due to a particle and a hole hopping, which are represe
in the two terms in the parentheses of Eq.~A9!.

Now let us introduce the creation and annihilation ope
tor of the hard-core bosonb̃ i

† and b̃ i in place ofbi
† andbi ;

bi
†→ b̃ i

† , bi→ b̃ i . ~A12!

The bound state created bybi
† extends only to the neares

neighboring sites ofi , as indicated from Eq.~A9!. As a re-
sult, total energy of two localized bosons differs from 2v i
only when they are in the nearest-neighboring sites, when
total energy amounts to24(z21)t2/U. Increase by an
amount 2J[4t2/U from 2v i is due to overlap of the single
cloud of the two bosons. In the hard-core boson picture
must be regarded as an interaction energy, i.e., the inte
tion part of the Hamiltonian for the hard-core boson is giv
by
e
d

d

es
ed

-

he

is
c-

Ṽ52J(
^ i , j &

b̃ i
†b̃ i b̃ j

†b̃ j , ~A13!

where the sum is taken over the nearest-neighbor pairs
the other side for the hopping part, the one-body energyvq
is given by Eq.~A6!. In terms ofJ[2t2/U we rewrite it as

T̃5(
q

vqb̃q
†b̃q52J(

q
(

d̄
~12eiq d̄ ! b̃q

†b̃q

5J(
^ i , j &

~2 b̃ i
†b̃ i2 b̃ j

†b̃ j1 b̃ i b̃ j
†1 b̃ i

†b̃ j !. ~A14!

Instead of the hard-core boson, we can equivalently
the quantum operator for the spinS51/2, which are defined
by

Szi5
1
2 2 b̃ i

†b̃ i ,

Si
15 b̃ i , Si

25 b̃ i
† . ~A15!

Then as the effective model to describe the half-filled Hu
bard model in the strong-coupling regime, we can reprod
the antiferromagnetic Heisenberg model in terms of th
spin operators: Putting Eq.~A13! and Eq.~A14! together, we
obtain

H̃5 T̃1Ṽ52J(
^ i , j &

@~ 1
2 2 b̃ i

†b̃ i !~
1
2 2 b̃ j

†b̃ j !

1 1
2 ~ b̃ i b̃ j

†1 b̃ i
†b̃ j !2 1

4 #

52J(
^ i , j &

@SziSz j1
1
2 ~Si

1Sj
21Si

2Sj
1!2 1

4 #

52J(
^ i , j &

~Si•Sj2
1
4 !. ~A16!

Similarly as above, as an effective model for the ca
when holes are doped, the following Hamiltonian is su
gested:

H5t(
i , j

f̃ i
† f̃ j2t(

i , j
b̃ i

† f̃ i f̃ j
†b̃ j12J(

^ i , j &
~Si•Sj2

1
4 !.

~A17!

The first term describes the hopping process of a doped h
f̃ i

†[ci↑(12 b̃ i
†b̃ i), and the second term takes into accou

the hopping of the boson when its neighboring sites are
cant. The Hilbert space of Eq.~A17! is spanned at each sit
by u↑ i&, u↓ i&[ b̃ i

†u↑ i& and vacancyu0i&[ c̃ i↑u↑ i&. The fer-

mion operatorc̃ i↑ must thus be operated on the sites whe
there is no boson. To take this into account, one may usef̃ i

†

instead ofc̃ i↑ .
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APPENDIX B: CALCULATION FOR THE IMPROVED VARIATIONAL STATE

We calculatevq for the creation operator,

bq
†[

1

AL
(
i , j

@ f q~r j2r i !ci↓
† cj↑1 f̄ q~r j2r i !ci↓

† ci↑ci↑
† cj↑#e

iqr i. ~B1!

To obtain results, we may follow the same procedure as given in Sec. II A. First we obtain

^Fubq@H,bq
†#uF&5

1

L(
k

nk~«k1q2«k1Un!u f ku22UU1L(
k

nkf kU2

1
1

L(
k

Dkqu f̄ ku21
1

L2(k,p
Gkpq f̄ k* f̄ p

1S 1

L(
k

nk~«k1q2«k! f̄ k* D S 1

L(
k

nkf kD 1F f̄ k*→ f k*

f k→ f̄ k
G1

12n

L (
k

nk~«k1q2«k! f̄ k* f k1F f̄ k*→ f k*

f k→ f̄ k
G ,

~B2!

and

^Fubqbq
†uF&5

1

L(
k

nku f ku21
12n

L (
k

u f̄ ku21U1L(
k

nk f̄ kU2

1S 1

L(
k

nk f̄ k* D S 1

L(
k

nkf kD 1F f̄ k*→ f k*

f k→ f̄ k
G

1
12n

L (
k

nk f̄ k* f k1F f̄ k*→ f k*

f k→ f̄ k
G . ~B3!
s
n

se

en-

le
Here we denotedf q(k) simply asf k . Bracketed expression
mean to repeat the preceding terms with the replaced fu
tions as indicated in the brackets.Dkq andGkpq in Eq. ~B2! is
the caseSf50 of the expression defined in~4.6! and~4.7! of
Ref. 17. In the tight-binding dispersion Eq.~A4!, the former
is given by

Dkq5uegu2~12n!«k1S ~12n!22Ueg

ztU
2D «k1q , ~B4!

where

eg[
1

L(
k

nk«k . ~B5!

For the wave function Eq.~13!, one may replacef k and
f̄ k in the above expressions byf ksinu and f kcosu, respec-
c-
tively. A function f k and a parameteru have to be fixed so as
to minimizevq . We note that Eq.~13! for u5p/2 gives Eq.
~4!. Moreover, Eq.~13! becomes the trial state for the ca
U5` ~Refs. 2 and 4! by assumingu50, since in this case
the variational state does not depend on the interaction
ergy U at all. For a finite value ofU, the parameteru takes
a value in the range 0<u<p/2.

1. Individual particle excitation

To derive excitation energy of the individual particle-ho
pair, we may setf k85dkk8 in Eqs.~B2! and~B3! to calculate

vq5
^Fubq@H,bq

†#uF&

^Fubqbq
†uF&.

Then we obtain
hq~k,u!5
Dkqcos2u1~«k1q2«k1Un!sin2u12~12n!~«k1q2«k!sinucosu

~12n!cos2u12~12n!sinucosu1sin2u
. ~B6!

For hq(k) this expression should be minimized with respect tou, andhmin is defined as a minimum ofhq(k).

2. Spin-wave dispersion

To minimizevq with respect tof k , we take functional derivative]vq /] f p* after replacingf k and f̄ k in Eqs.~B2! and~B3!
by f ksinu and f kcosu. Then we obtain an equation,

S Dkqf k1
1

L(
p

Gkpqf pD cos2u1S ~«k1q2«k1Un! f k2
U

L (
k

nkf kD sin2u1S «k1q2«k

L (
k

nkf k1
1

L(
k

nk~«k1q2«k! f k

12~12n!~«k1q2«k! f kD sinucosu5vqF S ~12n! f k1
1

L(
k

nkf kD cos2u1 f ksin2u1S 2

L(
k

nkf k12~12n! f kD sinucosuG .
~B7!
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We investigate the tight-binding model in a square (d52)
and simple cubic lattice (d53), for which

«k52
1

d(i 51

d

cos~ki !. ~B8!

Here and below we setzt51 wherez52d. Furthermore, we
are interested in the dispersionvq for q along the diagonal of
the Brillouin zone, i.e., for q5(q,q) and q5(q,q,q)
(0<q<p) in the square and the simple cubic lattice, resp
tively. Then we can cast Eq.~B7! into the following form:

D~k,q! f q~k!5(
i 51

3

Ni~k,q!Fi~q!, ~B9!

where

D~k,q!5@Dkq2~12n!vq#cos2u1~«k1q2«k1Un2vq!

3sin2u12~12n!~«k1q2«k2vq!sinucosu,

~B10!

Fi~q![
1

L(
k

nk~d i12«kd i21 «̃ kd i3! f q~k!, ~B11!

N1~k,q![@vq2uegu«q2~12n!«k1q#cos2u1Usin2u

1~2vq2«k1q1«k!sinucosu, ~B12!

N2~k,q![2@ uegu«k1q1~12n!«q#cos2u

2~11«q!sinucosu, ~B13!

N3~k,q![2@ uegu «̃ k1q1~12n! «̃ q#cos2u2vqsinucosu.
~B14!

Here we introduced

«̃ k5
1

d(i 51

d

sin~ki !, vq5sin~q!. ~B15!

Solving Eq.~B9! for f q(k) and substituting the result int
Eq. ~B11!, we get the eigenequation

det@Ai j ~q!2d i j #50, ~B16!

where

Ai j ~q!5
1

L(
k

nk~d i12«kd i21 «̃ kd i3!
Nj~k,q!

D~k,q!
.

~B17!

To obtain the spin-wave energyvq , we must minimize the
solutionvq(u) of Eq. ~B16! with respect tou.

3. Spin-wave stiffness constant

The spin-wave stiffness constantD is defined by

vq5Dq2 ~q→0!. ~B18!
-

In the long-wavelength limitq→0, we can expandf q(k)
with respect toq and deriveD analytically from Eq.~B2!
and Eq.~B3!. Below we give only the resulting expression

As shown in our previous paper,17 the results for the Hub-
bard model are obtained as a special case of those for
Kondo lattice model~14!. Using Eq.~15!, we calculatedD
for this general model;

D~u!5D02dD~u!, ~B19!

whereD05uegu/2Sz in terms of twice the spontaneous ma
netization 2S[2Sf1n, and

dD~u!5
I ~~12n!cos2u1sin2u1~22n!sinucosu!2

2S~11ueguzIcos2u/2!~112sinucosu!

~.0!. ~B20!

In these expressions,I , vkx
, andDk0 are given by

I 5
1

L(
k

nkvkx

2

Dk0cos2u1gsin2u
, ~B21!

vkx
5

]«k

]kx
, ~B22!

and

Dk05~2Sf11!@ uegu2~12n!«k#1@~12n!22uegu2#«k

~.0!. ~B23!

A parameterg in Eq. ~B21! is defined byg5Un1J8Sf , and
represents the mean-field exchange splitting of the mo
~14!. We must minimizeD(u) to obtainD. To reproduce the
result for the Hubbard model, we may setSf50. The par-
ticular case of the above results, i.e., in the strong-coup
limit g5` (u50), was obtained previously.4,17 For the
Hubbard model, the result of the random phase approxi
tion DRPA is obtained by settingSf50 andu5p/2,

DRPA5
uegu
zn

2
1

Un2

1

L(
k

nkvkx

2 . ~B24!

A similar expression is obtained in the limitS→` where we
should assumeu5p/2 to keepI and 2SdD(u) finite. Then
we obtain

DS→`5
1

2SS uegu
z

2
1

g

1

L(
k

nkvkx

2 D . ~B25!

In the main text, we regarded the approximation scheme
ing the result corresponding to Eqs.~B24! and ~B25! as the
random phase approximation. The former result~B24! is
well known for the Hubbard model. The latter was recen
obtained by another method.21
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