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We have performed a detailed self-consistent calculation of the electronic structure and electron-electron
interaction energy in pyramidal self-assembled InAs-GaAs quantum dot structures. Our model is general for
three-dimensional quantum devices without simplifying assumptions on the shape of the confining potential
nor fitting parameters. We have used a continuum model for the strain, from which the position-dependent
effective mass and band diagram are calculated. The number of electrons in the dot is controlled by applying
an external voltage to a metal gate on the top of a complete multilayer device containing a single dot. In order
to determine the electron occupation number in the dot that minimizes the total energy of the system, we have
adopted the concept of transition state as defined by Slater for shell filling in atoms. We have calculated the
exchange and correlation terms of the many-body Hamiltonian using the(spai -density approximation.

By accounting for spins we have been able to determine the shell structure in the pyramid and to calculate the
energy differences between the various spin configurations. We have also calculated the different contributions
to the total electronic energy in the dot, i.e., the single-particle energies, the exchange-correlation energy, and
the classical electrostatic electron-electron repulsion energy as a function of the gate voltage and number of
electrons in the dot. Comparison with recent experimental data of Feickk[Europhys. Lett36, 197(1996 ]

shows good agreemen0163-182@08)02008-9

I. INTRODUCTION fied analytic model. In this paper we address the electron-
electron interaction within a single dot using a realistic struc-
Due to their small sizes, self-assembled quantum dots ofture with electron interactions treated within spin-density-
fer an excellent opportunity to study the physics of highlyfunctional theory. The structure analyzed is a complete
confined few-electron systems. Furthermore, possible applimultilayer device containing one pyramidal InAs guantum
cations of quantum dot structures such as laSesgectral dot embedded in a GaAs matriFig. 1). The number of
detectors, and optical memoriéshave spurred a consider- electrons in the dot is controlled by applying voltage to a
able interest in those systems. metal gate on the top of the device. Strain in the pyramid,
Very recently, the work by Taruchat al* has demon- wetting layer(the thin InAs layer from where the quantum
strated electronic shell structure and spin effects in litho-dots arise”—see Fig. 1, and surrounding GaAs matrix is
graphically defined quantum dots containing more than 40
extra electrons. That work showed that shell filling at small
magnetic field follows the parallel spin ordering predicted by
Hund’s rule. In a different experiment using small self- GaAs (Cap 3260 A)
assembled quantum dots containing up to six extra GaAs (300 A)

electrons, the shell structure in the dots displayed an energy .' InAs (WL -6 A)

metal gate

spectrum very different from the simple Coulomb blockade GaAs (300 A)
picture observed in metallic and mesoscopic structures. The o
combination of capacitance and far-infrared spectroscopy in AlXGaI_XAS (450 A)

the latter experiment has provided experimental information
on level separation, as well as on the electron-electron inter-
action energy of thes and p states within a single InAs-
GaAs quantum dot.

Previous calculations of the electronic structure of pyra-
midal quantum dots have either not considered the dot charg-
ing problem at alf:” were limited to Coulomb interactions FIG. 1. Schematic representation of the self-assembled dot
between different dotsor have done so by using a simpli- structure used in the present work.

GaAs (bulk - 420 A)

z

7

0163-1829/98/5(7)/401710)/$15.00 57 4017 © 1998 The American Physical Society



4018 FONSECA, JIMENEZ, LEBURTON, AND MARTIN 57

calculated using a continuum model. The bulk electron ef- TABLE |. Deformation potential§Ref. 12.

fective mass and band diagram are considerably modified by

the strain in the region of the dot, becoming position depenMaterial ac a, b

dent. In order to determine accurately the bias voltage 717 116 170
hich charging occurs, we have used the idea of transition ' ' '

w ThAs ~5.08 1.00 ~1.80

states(Sec. 11 Q. We have used both the local-density ap-
proximation(LDA) and the local-spin-density approximation

(LSDﬁ) to calculate the many-body interaction terms of th?where:pi is ith solution of the stationary Schiimger Eq.(3),
Hamiltonian.~ Because LSDA provides an extra degree of o iha occupation number of level N is the number of

e . n
freedom b_y c0n5|der|_ng Spins, we _have peen_able to CaICUIaEﬁectrons, and denotes spin. We have assumed a dot density
the energies of possible spin configurations in the dot showsya 1 enough to avoid overlap between wave functions be-
mgothat th% d|or2 f'"“;g mdeedl_foélowshHund S rule. q longing to different dots and to assure the electric field can

ur model has been applied to the system measure tmlly relax before the next dot is reached. The potental

Fricke et al” and the numerical results compared with theresulting from the solution of Ed1) is incorporated into the

experimental Qata._ The agreement is good cons_lderlng SorT§chr"(]jinger equation, written in the envelope approximation
of the approximations assumed in the calculation, and th

complications involved in extracting and interpreting intrin-
sic properties of the dots from the experimental data. 2

The paper is organized as follows. In Sec. Il we describe - 7V[M TIVIHV) | (1) =Eq i (1). 3)
our model and the numerical techniques used. In Sec. Il we

discuss our results and compare them with previous calculan Eq. (3), M is the electron effective-mass tengsee be-
tions and experiments. Conclusions are presented in Sec. I¥ow) and the potential energy is given by

1l. MODEL V(1) =Ved 1)+ Vu(r) +Ve(r)+Vydr) +Veg(r), (4)

whereV,(r) is the potential due to externally applied volt-
) ) ) ) age,Vy(r)=—qe(r) is the Hartree potential.(r) is the

_ Figure 1 ;hows the device used in our calculation. It con¢gonduction-band strain potential/,(r) is the exchange-
sists of a highly doped (#&cn’) 420-A GaAs substrate, correlation potential(see Sec. Il B and Vyy(r) is the
followed by a 450-A A} 5Ga, -As barrier. The active region ¢onduction-band offset.

consists of two 300-A-wide layers of undoped GaAs sur-  The strain tensor has been obtained from the minimization
rounding a 6-A InAs wetting layer and the InAs pyramid. A of the elastic energy of the system. This procedure provides
highly doped (1&7cm’) 260-A GaAs cap and a metallic the strain tensor componengs, , €yy, ande,,, as well as
gate complete the device. We have assumed a conductiogye shear components,, «,,, ande,,, which have been

band offsetAE.=770 meV between GaAs and InAgtio  peglected in the present calculatidh$he hydrostatic and

GaAs and InAs of 0.06W, and 0.028n,,'? respectively,

A. Background

where m, is the bare electron mass. As described below, €n(r) = €exx(r) + €yy(r) + €,41), (5)
those effective masses change considerably as strain is con-
sidered in the calculatiofthe strain calculation is indispens- €p(1) = €xx(1) + €y,(1) —2€,AT), (6)

able for an accurate simulation of the InAs-GaAs hetero- ) _ _ )

structure due to its rather large lattice mismatch, of the ordefeSPectively, play a major role in the electronic structure of

of 7%). All the calculations were performed at 4.2 K. the dot. Ignprlng the sphltoff bands, one can derive the band-
In order to speed up the calculations, our device has beefg€ energies at the Brillouin-zone centier0):

separated in two distinct regions: far from and close to the

dot. In the region far from the dot we have calculated the

ionized donoiN; (r), ionized acceptoN, (r), electronn(r), b

and hole p(r)_ densities using the semiclassical. Thomas- V(1) =a,€n(r) += e(r), (7)

Fermi approximation for bulk chargé$and determined the 2

conduction-band edge by solving the Poisson equation:

Vc(r):Eg+ath(r)a

b
q V|h(r):av€h(r)—§€b(r)7
VZ2¢p=———=[p(r)—n(r)+N5(r)—Nx(n], (1) _ _
e(r) whereE, is the unstrained band gap energy, afigdandV),

re the heavy-hole and light-hole bands. The deformation

ﬁotentialsac, a,, andb for InAs and GaAs are listed in
Table I. Using time-independent perturbation theory up to
second order, we have obtained the following expressions for
the diagonal components of electron effective-mass tensor

(for a detailed derivation, see Appendix:A

whereq is the electron charge. In the region close to the do
(defined by a box containing the pyramid, the wetting layer
and some of the GaAs surrounding matnive have assumed

no other charges but electrons with a concentration given b

N
n(n)=2, mlur )P, @ M (1) = m* (Vo(r) = Vin(1))/Eq. ®
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small, of the order of 1 meV as shown by Grundmann, Stier,
(a) and Bimberd and our own private calculations, thus we have
: neglected them in this work.

Equations(8) are accurate up to second order in momen-
tum k. In fact, because the confinement is so strong, the
energy difference between the electron energy level and the
conduction-band edge is quite large, leading to possibly large
high-order corrections where nonparabolicity effects would
1 be taken into accourf. Such corrections would affect the
L\\ position of the energy levels, which in turn set the confine-

] ment of the wave function. However, for the strongly con-
fined states that correction would not lead to any significant
change in the charge density, and therefore to the electron-
electron interaction energy, which is our main investigation
goal. A detailed comparison between the eight-blarpcal-

0.08 - - - . culation of the conduction band and the effective-mass high-
order approximation is described elsewhttre.

Equations(1) and(3) are iterated until self-consistency is
achieved. The Poisson equation is solved using the multigrid
method® Multigrid allows for nonuniform grids necessary
to simulate relatively large devices-(L um) as the one in
Fig. 1, with features as small as a few angstrdthe quan-
tum dot and wetting layer In addition to that, multigrid is
very efficient and scales linearly with the number of grid
points N;. The Schrdinger equation is solved using the

. ] iterative extraction-orthogonalization methd&OM).1’ The
— in—plane mass . . .. . .
major advantage of IEOM is efficiency resulting from its
ability to generate an arbitrarily small number of eigenstates
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FIG. 2. (a) Strain potential{b) perpendicular and in-plane elec-
tron effective masses along thzedirection through the tip of the B. Local-spin-density approximation
pyramid (in units of bare electron massPyramid diameter= 200 )
A and height= 100 A. The usual way of calculating the exchange energy of
many-electron systems in the context of device physics is to
. _ B use the local-density approximatidfDA) of the Kohn-
M5y (1) =m* (Ve(r) = Vi(r)) Sham density-functional theofDFT).*® The basic idea of
X (Ve(r) = Vin(M)I[Eg(V—0.78V(r) DFT is to replace the rather complékelectron wave func-
tion ¥(x1,X,, ... Xy) and the associated Schiinger equa-
—0.25V(r))], tion by the much simpler electron densityr) and the cor-

responding functional form3[n] and V[n] of the kinetic

and potential energy operators, respectively. The treatment
of the quantum-mechanical electron-electron interaction is
left to the exchange-correlation potentid}., which does

not have an exact formulation. LDA assumes that the
exchange-correlation ener@t>*[n] can be written as

where m*, m7 , and my, denote bulk, perpendicular, and

in-plane electron effective masséhe wetting layer lies in
the xy plane. The remaining components of the effective-
mass tensor are zero. It is easy to see from(8qthat in the
limit of small strain components,,, €,,, ande,, we recover
the original bulk effective masm*. Figures 2a) and (b)
show the strain potential and electron effective masses along LDA[ 17—

the z direction, through the tip of the pyramid. Notice the B Ln] f n(r)edn(r)dr, ©
large value of the strain potential and the considerable modi- , )

fication of the bulk effective mass, by a factor of two in Whereedn] is the exchange and correlation energy per par-
average, in good agreement with the work of Cusack, Briglicle of a uniform electron gas of density The functu_)nal
don, and Jaro& The spikes near the tip of the pyramid are e).(c[n] can be separated into exchange and correlation con-
from numerical origin, caused by the difficulty in calculating fributions,

the strain components around the edges of the pyramid.

The presence of the shear strains in the InAs-GaAs inter- exdn]=e€ln]+e[n]. (10)
faces leads to the appearance of a polarization charge and
associated piezoelectric potential, which reduces the symm
try of the system, lifting some of the degeneracies observed 3
in pyramidal quantum dot systems. However, piezoelectric e[n]=— E(En(r)> (11)
effects in dots of the size considered in this work are very X 4\ 7 '

:ﬁe exchange part is well knowfiand is given by
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in atomic units, while accurate values of the correlation partwave functions is negligible. Thus we will proceed by con-
e.[n] have been obtained from quantum Monte Carlostructing an approach for calculating the transition energies

calculationd® as parametrized by Perdew and Zuntfer. between integer occupations. Note that in the opposite limit,
From Eq.(9) we can derive the exchange-correlation poten-where the coupling to the contacts is strong, it would be

tial: more appropriate to use the fractional occupation approach
with a Fermi function commonly employed in other
LDA SEx studies!’?
Vie (r)zm' (12 According to the density-functional theory, the Kohn-

Sham Eq(3) can only provide the ground state of the system

LSDA offers a more general approximation for the and its total energ¥ . Thus, a rigorous way of determining
exchange-correlation potential. In this case the exchangdhe numbeN of electrons in a quantum dot with the electron
correlation energ¥, [ n%,n?] is a function of thex-electron  charge as a good quantum number is to mininkizeN), for
and B-electron densitien®(r) andnf(r), wherea and@  N=1,2,... Ny This minimization should be repeated
denote spins up and down. The exchange term becomes nehenever the external voltage bidg is changed. The use of
only a function of the total charge density=n;+n but just eigenvalues to determine the charge in the dot, where
also a function of the polarization parametet® charging occurs whenever an eigenvalue crosses the Fermi
level, is only correct in the limit of weakly interacting elec-
tron systems.

There are two problems with the use of the total energy to
determine the number of electrons in the dot as a function of

1/3
(2¥™-1)f(¢), (13

3/3
&[N, {]=— Z(;n(f)

where bias voltage: accuracy and efficiency. The calculation of the
3 3 total energy of the system involves terms of 'the order.of

f(0)= E (I+H™+(A-9"-2 (14) meV’s like the Hartree and exchange-gorrelatlon energies,

2 213_1 ' and terms of the order of tens of eV’s, like the electrostatic

energy of the doping impurities and surface charges. The
and total energy of the system is of the order of tens of meV'’s,
since the large terms mostly cancel out. Clearly such an ac-
_ n'—nt (15) curate cancellation is difficult to obtain. The efficiency prob-
= n lem is less severe. In principle, one would have to calculate
at leastE+(N) andE(N+1) for each value oV in order
to determine if there aré or N+1 electrons in the dot.

The correlation term is calculated using the same parametr
zation of LDA but interpolating between the results of agjyce each self-consistent calculation is a time consuming

spin-polarized and unpolarized free electron'gaepending operation, such a scheme should be computationally costly.

on the spin polarization in the dgt Not only is this formu-  rhe transition state concept offers an elegant solution to
lation necessary for the solution of problems involving mag-hese problem&:27

netic field, it usually is a better description of the real system  The Kohn-Sham theory is not restricted to integer num-
than the LDA approximation even in the absence of magyerg of electrons in the system. Differentiatifig with re-

netic field== This is certainly the case in spin-polarized SYS-gpect to the noninteger occupation numbenf level i one
tems that should occur at least for an odd number of elec:

trons in the dof? obtains
The validity of LDA and LSDA is, in principle, limited to 9E+

smooth potentials, which is not the case in quantum dots FramlE

since the high confinement creates electronic potentials vary- :

ing in the scale of angstrons. However, the potentials created Equation (16), called the Janak theorefh,provides a
in atoms are not smooth either, and still the local approxma-meaning to the eigenvalues of the Kohn-Sham equation. In-

tions provide good result§:?2Exact calculations of the elec- tegrating Eq.(16) betweenN andN+1 one finds the so-
tronic structure of pyramidal dots using quantum Monte j1ed SIater.formuI(i?

Carlo have confirmed our expectations that the local approxi-
mations indeed provide reliable exchange-correlation ener- 1

gies for this system, within the single-band model. A detailed E;(N+1)—E4(N)= fo eLpo(Ndn=e A0(3), (17

comparison of the two methods is described elsewffere.

(16)

where €, 5o corresponds the eigenvalue of the lowest avail-
C. Transition state able orbital. The last step in Eql7) is exact if €, 5o is @
inear function of the occupation number. We have per-

The desired key quantities are the energies to add eIe#I : . .
trons to the dot. If the dot is well isolated from the electrical ?0rmed several numerical experiments which demonstrated a

contacts as well as from the 2D electron gas surrounding if}€&1y linear relation, showing that the approximation used
then it is appropriate to consider the number of electrons i Ed- (17) is very good.

the dot as integers and the change in the occupation as tran- T ON€ wishes to find out if there afg or N+1 electrons
sitions between integer occupations. This is a valid approaci? the dot, one defines the transition state as the state con-
if the barriers are high enough so that the overlap betweetginingN+0.5 electrons. Its usefulness is obviouse(#f) is

the dot wave functions and the contact or the 2D electron gagositive thenE(N+1)>E{(N) and the dot containdN
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FIG. 3. Approximate well deptkthick solid ling and eigenval-
ues of the Hamiltonian as a function of dot diameteiThe eigen-
values were calculated with respect to the average conduction-band
edge in the region of the pyramid. States represented, from low to
high energy{000),(100/(010,(002,(110,(200-(020),
(200+(020,(10D/(011,and(111). The notation fi;n,n3)
denotes the number of wave-function nodes inxhg, andz di-
rections. Degenerate states are separated by a slash. Inset: energy. L
separation between staté® 0 0 and (1 0 0/(0 1 0 (solid), and FIG. 4. Projections of the staté2 0 0)-(0 2 0) (top) and(2 0

. . 0)+(0 2 0 (bottom. Notice the lobes of the top state along the
between state€l 0 0/(0 1 0) and(0 0 1) (dashed Pyramid height . ; .
h=d/2. Lines are only guides for the eye. diagonals(crossed linesof the base of the pyramitsquare box

lowering its energy with respect to the more confined bottom state.

0.13

electrons, otherwise it contaimé+ 1 electrons. This proce-

dure not only saves computer time by only solving the equa- The Hamiltonian of this problem is invariant under the
tions forN+0.5 instead oN andN+ 1 electrons in the dot, symmetry operations of the groudy, ,>* which allows the

but it also circumvents the difficult problem of accurately wave functions to be symmetrized according to the irreduc-
calculating the total energie+ of such a complex system ible representations of this group. It can be easily checked
containing dopants and metal gates. This approach for DFihat onlyp-like stateqlike (1 0 0] can be degenerate, while
where the total energy of the system is minimized keeping all other degeneracies are accidental. That explains why the
fixed parametefthe charge in the dpis called constrained stateg2 0 0) and(0 2 0) are not degenerate in a finite barrier

DFT 2930 pyramid, even though they are degenerate in an infinite
square well. In the latter case degeneracy occurs because the
. RESULTS Hamiltonian allows separation of variables. One can also
) ] show that the irreducible representation of those two states
A. Variable dot size are the linear combinatior(® 0 0-(0 2 0) and(2 0 0+(0 2

Figure 3 shows the first ten eigenvalues of empty dots a§), shown as the fifth and sixth curves from bottom to top of
a function of dot base lengttalso called base diamejer Fig. 3 (solid line with stars and dashed line with crosses,
keeping the wetting layer width fixed. The eigenvalues wergespectively. Perhaps this counterintuitive result can be
calculated with respect to the average conduction-band edgeore easily understood with the help of Fig. 4. It shows that
position in the dot. Figure 3 and inset also show the approxithe projections of the stat¢ 0 0-(0 2 0 and(2 0 0+(0 2
mate depth of the well and the energy difference between th@) are very different, and thus are affected differently by the
first (0 0 0) and secondl 0 0 states, and between the secondpyramidal confining potential. As a result, the energies of the
and third(0 0 1) states. The notatiom(n;n,) corresponds to two states do not need to be the same.
the number of nodes of the eigenfunction in they, andz Our calculations agree well with those of Ref. 8 in the
directions, respectively. The eigenvalues were only calcurange of sizes investigated in that work. As discussed in Sec.
lated while the states remained bound or quasibound. Notick, these eigenvalues may change considerably if a full eight-
in the inset that the energy separation betw@ef 0 and(1  bandk-p calculation is performed.
0 0) is close to linear, while betweegh 0 0) and(0 0 1) it is
almost a constant, reflecting the different confinement direc-
tions of the last two states. As the eigenvalues approach the
top of the well, the slopes of the curves tend to decrease, as Several measurement¥ as well as calculatiofiS have
a result of deeper wave-function penetration in the barrieaddressed the problems of electron charging energy in an
region. For energies above the well height, the correspondingnsemble of pyramidal dots and the electron-electron inter-
eigenfunctions spread over the wetting layer, becoming action energy in a single pyramidal quantum dot. In the first
two-dimensional electron gas. case, calculations are only meaningful if several dots are

B. Charging effects
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considered, as discussed in Ref. 10, since this is an effect that 10

involves the whole ensemble of dots. The bias value at which

the next electron occupies a particular dot depends on the gt

state of the neighboring dots, whether they are occupied or

not. However, because the distance between two electronsin 9

a dot is at least one order of magnitude smaller than the £ 6}

distance between electrons in separate dots, the electron- <

electron interaction energy in a single dot is only marginally s 4t

affected by the state of the other dots for typical densities of  §

10 dots/cnt. Besides, if one of the gates lies nearby, which

is the case in some experimental settpmage charges 2r

screen even further the perturbation caused by neighboring

dots. Since the electron-electron interaction energy has only 8
-0.2

been indirectly inferred from experimental data and fit to
calculations, we have calculated its value self-consistently
using different methods for treating the electron-electron in-

FIG. 5. Number of electrons in the dot as a function of applied

teraction and for different dot sizes. _ voltage V, for different pyramid diametersl. Pyramid height
The exchange-correlatidf,. and Hartrede, energies are  p=g/2.
defined as

particle levelgsteps corresponding t8=2, 6, and 9, where
Exc[n]:f n(r) e (r)dr, (19 N is the number of electrons in the daind the stronger

electron-electron repulsion. However, the steps involving
wheree,(r) is the exchange and correlation energy per par_chargmg of degenerate level €3, 4, and 5 become more
) X\ . homogeneous for smaller dots. That results from the differ-
ticle of a uniform electron gas of density and . :

ent dependencies of the Hartree and exchange-correlation en-
, ergies on the charge density, thus in the dot volume. While
Hzlf Mdrdr’ (19  thefirstincreases a¥, the second increases only ¥, as
2) 4me|r—r'| ’ described in Eqs(18) and (19). Thus the Hartree term,

_ which only depends on the charge in the dot and not on the
where € is the average dielectric constant, independent ofpin configuration, dominates for smaller dot sizes. The un-
position, which probably introduces only a small error to theeven steps observed fdt=3, 4, and 5 in the 200-A base
value ofEy since the dielectric constants throughout the lay-diameter pyramid can be understood as follows. We have
ers differ by less than 15%. Because direct solution of Eqoccupied the second 0 0/(0 1 0 degenerate levels follow-
(19) is too time consuming, we have calculated the potentialng Hund’s rule, i.e., according to the spin sequence
created only by the electrons in the dét and then solved zpj(ngzp}(zpi, where the arrows pointing up and down

correspond to spin orientation and the notatign Zheans
the second level of typp oriented along directiom. In the
EH:EKE‘J Ve(r)n(rydr. (20 next section we will show that this system indeed follows
Hund’s rule. The step corresponding kb=3 is short be-
The potentialV, is obtained by solving the Poisson equation cause the third and fourth electrons occupy different orbitals
with the density determined by the dot electrons and boundtl 0 0) and(0 1 0. Even though the two electrons have the
ary condition calculated by multipole expansi@p to quad- same spin, those orbitals have a node near the center of the
rupole of the charge in the dot. This is a good approxima-pyramid, resulting in small wave-function overlap. The step
tion if the boundaries are far from the charge, which is thecorresponding tdN=4 is long because the fifth electron is
case in our device. However, the expansion is complicatefbrced to share an orbital already half-occupied. There is
by the presence of materials of different dielectric constantsstrong wave function overlap and no exchange energy, since
Again, we have simplified that by assuming an uniform me-the fifth electron spin is different from the third and fourth
dium with a dielectric constant averaged over all the pointslectron spins. Finally, the step correspondingNte-5 is
of the device. short because, even though the sixth electron is repelled by
The integrations in Eq918) and (20) are over the dot the other three electrons, exchange between the sixth and the
regions only, thus only the energy of the electrons in the dofifth electrons decreases the repulsion energy.
has been taken into account. The electron-electron interac- The energy of the electrons in the dot can be decomposed
tion energyE.. is the sum of the exchange-correlation andin single-particle and electron-electron interaction energy.
Hartree energies. The single-particle energies for empty dots are displayed in
Figure 5 shows the charging of three quantum dots ofig. 3. As the dot is charged those energies shift up, but the
different sizes as a function of bias in the metal gate on thenergy separation between them stays approximately the
top of the device(see Fig. L1 In all three staircases LSDA same. It is interesting to compare those separations with the
was used to treat the electron-electron interactions. The dotdectron-electron interaction energy. Table 1l shows the
were charged up to the maximum number of electrons theyariation of E,., Ey, and Eg using the LDA and LSDA
can fit. As expected, the step size becomes longer as the dapproximations as functions of dot diameter and number of
size decreases as a result of the more widely spaced singlelectrons in the dot. In a crude order of magnitude compari-
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TABLE Il. Exchange-correlation energk,., Hartree energy 20
Ey, and electron-electron interaction energy, as a function of
dot diameterd and occupation numbeX. The energies are the
averages over gate voltages for each occupation number. Energies

in eV, dot diameter in angstroms. Dot heidhtd/2. %15
|5
c
LDA LSDA 2
210
d N B = Eee Eyxc En Eee 'i
1 -0.007 0.007 0.000 —0.009 0.007 —0.002 %
2 -—0.018 0.027 0.009 —0.018 0.029 0.011 & 5t
3 —0.028 0.053 0.025 —0.029 0.054 0.025
4 —0.040 0.086 0.046 —0.042 0.088 0.046
2000 5 —-0.052 0.129 0.077 —0.053 0.131 0.078 0O 4 5 10
6 —0.065 0.179 0.114 —-0.066 0.182 0.116 Electrons in the dot
7 -—0.078 0.226 0.148 —0.079 0.234 0.155 . ) .
8 0092 0283 01910093 0287 0do4 5 o BEEN AR e o of ocoupation
9 -—-0.105 0.351 0.246 —0.105 0.352 0.247

number and for different dot diametedls Pyramid heighti=d/2.

1 -0.008 0.008 0.000 —0.010 0.009 —0.001

2 -0.021 0034 0.013 -0.021 0.034 0.013  trons in the dot, but since the relative difference for those
150 3 -0.032 0062 0030 —0.033 0.063 0.030 values ofN is below 1%, numerical inaccuracy may be af-

4 -0044 0.100 0.056 -0.046 0.100 0.054 fecting those results. As we have pointed before, LSDA is

5 -0057 0.145 0088 —0.058 0.147 0.089  supposed to be a better approximation to the many-body ex-

6 -0.070 0.198 0.128 —0.071 0.200 0.129  change energy than LDA specially when there are unpaired
100 1 -0010 0010 0000 —0.011 0010 —00o1 electrons in the system giving rise to nonzero total spin mo-

2 —0023 0039 0016 —0.023 0038 0017 Mentum.

We now analyze the LSDA results only. The conclusions
are the same for LDA since the differences between the two

son, we see from Fig. 3 that the single-particle energy sepdi€thods are not qualitative. In Fig. 7 we have plotisd
ration for the first two levels is of the order of 50—100 meV, @andEy as a function of occupation number for the three dot
while Table Il shows that the electron-electron interactionSizes in a log-log scale. As expected, the Hartree energy
energy is of the order of 10—30 meV per pair of particles, onincreases approximately as’, faster than the exchange-
average. Because charging of the dot involves the electrongorrelation energy, which increasés absolute valugap-
configuration of the entire device and not only of a singleProximately an*?. The observed slopes are smaller than 2
dot, Fig. 5 cannot be directly obtained from Table II, which and 4/3, which we attribute to wave-function penetration in
only shows electronic energies in the dot. the barrier at higher occupation numbers. Figure 8 shows the
The electron-electron interaction energy has been calcielectron-electron interaction energy. as a function of oc-
lated using both LDA and LSDA. Even though there arecupation number and for different dot sizes. This energy re-
differences between the results of the two methods in Tablgults from the interactions among all the electrons in the dot.
I, both provide the same qualitative description of the many-
body effects. Notice thaEL>"* is always more attractive or 1
at least equal t&EL>" . Consequently, we have an increased
density with LSDA and therefore>PA=E-P” . Also notice
that LDA provides a better cancellation betwdggp andE, -2t
for one electron in the dot. This is an unexpected result since

LSDA is a better description of the physical system. One ?‘25
possible explanation for that is the approximate expression § -3
we have used for the Hartree energy calculation, as already ;é
discussed. 535
Figure 6 shows the relative difference between the LDA _at
and LSDA calculations as a function of the number of elec-
tronsN in the dot and for two dot sizes. A striking feature is
the increase of the relative difference when there are un- _5
paired electrons in the dot, which happensNo1,3,4,5,7. 0 2.5

; : Log, (N)
ForN=4 there are two unpaired electrons, one in each of the 0910(N)

degeneratgl 0 0 and (0 1 O levels, leading to a high FIG. 7. Exchange-correlation ener¢solid, dashed, and dotted

relative difference. FON=5 the number of unpaired elec- jines of smallest slopgsand Hartree energflarger slopesas a
trons decreases to 1, which coincides with a decrease in th@nction of occupation number for different dot diameteltsOff-

relative difference. This trend is not observed frows7 sets within each set of curves are due to different dot volumes.
(one unpaired electrgrio N=8 (no unpaired electrgrelec-  Pyramid heightb=d/2.
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0.25 quence P,2p;2p)2p;, was not considered because it wil
clearly be unfavorable due to the intense Coulomb repulsion
0.2 between the af( and the :p}( electrons resulting from their
large wave-function overlap. The step size obtained with
< 015 LSDA corresponding to the charging of the fourth electron
% (N=3) is longer for the charging the dot according to the
s 0 spin sequencesl 1s'2p|2p, than for 1s'1s'2p;2p) , indi-
& cating that, indeed, Hund’s rule is followed by this system.
0.05¢ . . .
The electron-electron interaction energy difference between
ol the two spin configurations for four electrons in the dot is
~3 meV.
0.05 , , , , The addition of the fourth electron following Hund’s rule
0 2 4 6 8 10 is less costly because of the presence of exchange interaction

Electrons in the dot (attractive in this case but not if the spin of the fourth elec-

FIG. 8. Electron-electron interaction energy as a function oftron is different from the spin of the third. Analogously, the
occupation number for different dot diametets Pyramid height Step corresponding to the charging of the fifth electron
h=d/2. (N=4) is shorter for the sequence2p,2p)2p, because

the fifth electron, either in they® or 2p;, state, interacts by
In the next section we will consider electron-pair interaCtiOHSexchange with one of the two electrons already in the second
and compare with corresponding energies inferred from extevel, while according to Hund's rule, the fifth electron does

perimental data. not interact by exchange with any of the other two because
of their different spin states.
C. Comparison with experiment The staircase obtained with LDA does not match either

one of the LSDA staircases at some charging bias points. In

; A the analysis of Table Il it was pointed out that LSDA usually
we have calculated the electronic structure of a 200 A bas rovides higher electron-electron charging energies than

diameter and 70 A height pyramidal quantum dot. Figure 9 pa ith an exception made for a single electron in the dot

;hows the number of electrons in such a pyramid as a f””C(“see columns 5 and 8 of Table).IIThis exception can be
tion of gate voltageV,. Three curves are shown, corre- ;seq to explain the difference between the two LDA/LSDA
sponding spln-dependerﬁLSPA) charging sequences that cyres in Fig. 9 for the charging of the first electron, while
follow or do not follow Hund's rule, and a §pm—mdeper;dent for the second electron the charging delay of LSDA follows
(LDA) charging sequence. As already pointed, Hund's rulgne ysyal pattern. Notice, however, that Table Il can only be
means that the che_lrglng of the fourfold degenerate secongkey as a guide in the present analysis since none of the
level follows the spin sequencep22p)2p,2py . The curve  stryuctures used for the obtention of Table Il have the same
that does not follow Hund’s rule was obtained by charginggimensions as the one we now describe. The coincidence
the second level according to the spin sequenc§etween the LDA and LSDA charging bias for the third,
2p)2p,2p)2p; . The third possibility, namely, the spin se- fifth, and sixth electrons in the dot may result from the finite
voltage step size used, which also explains the finite slopes
of the charging steps. The considerably large difference be-
tween the LDA/LSDA charging bias for the fourth electron
results from the rather poor description of the system pro-
vided by LDA when the number of unpaired spins is large.
This fact has already been observed in Fig. 6, which shows
that the relative difference between the two approximations
has a peak at four electrons in the dot. In other words, the
LDA staircase is good enough as long as the spins are mostly
paired, otherwise it does not accurately account for the
many-body interactions.

We now estimate pairwise electron-electron interaction
energies. The so-callests interaction between tws elec-
. . trons can be calculated directly frofy.(2) andEy(2) since
VO-\1/ 0.2 0.3 for two electrons in the dot this is the only possible type of
sV) interaction. We have obtainefs~ 13 meV, which is only
FIG. 9. Number of electrons in the dot as a function of gatethe Hartree interaction since there is no exchange between

voltage V, using LSDA according to Hund's rulésecond-level the s electrons. Since experiments can only detect average
population following the spin sequencep/2p|2pi2pl), LSDA elect_ron-electron interactions, we have_ only c.alculated ap-
not following Hund’'s rule (second-level spin sequence Proximate values for thep-s and p-p interactions. The
2pj2p}2pl2p}), and LDA. The dotted curve coincides with the charging energy of the third electron contains srinter-

solid curve whenever the dots are not visible. Pyramid diameter action and tw-s interactions. Assuming that thes inter-
200 A and height= 70 A. action does not change much when the third electron is

In order to compare our results with those of Frickeal.

6

[%)]

— LSDA (Hund's rule}
-= _[S)RA not Hund’s rule)

~

w

N

Number of electrons in the dot

e
T

%3
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added, we have derived the average energy foptisénter- ~ APPENDIX A: DERIVATION OF SECOND-ORDER
action to beEf°~9 meV. This result is an average because ACCURATE ELECTRON EFFECTIVE MASS

the p electron interacts by exchange with only one of ¢heé  y5ing perturbation theory up to second-order approxima-
electrons(the one with the same spirRepeating the same jon, for the k-p Hamiltonian and small values of the wave

argument for the next electrons, we obtained an avepage  vector k, we can write the electron effective-mass tensor
interaction ofER, P~9 meV. Table Ill summarizes and com- py* = 442

. . .
pares those results with the values inferred from the capaci-
tance data by Fricket al. Differences between energies ob- (

147 , B’ + B , a,
tained from calculation and inferred from measurement may —*) 1 Sapt iz > PrnPo'n ™ Pn P
result from our assumption that the different types of inter- LA m M 20 En(0)—En(0)
action (s-s, p-s, or p-p) remain unchanged as more elec- (AL)
trons are added to the dot. A second source of error in OUherem is the bare electron mass and the momentum matrix
calculation is the exclusion of interdot repulsion, which elementsp,,, are defined as
should push the electrons closer together inside the dot.
However, as we have already pointed out, for dot densities of . 3
10'%cn?, the inclusion of interdot effects should change our Pnn = Jumt Ce”Uno(r)pun’O(r)d r (A2)
results by less than 1 meV. Finally, the approximation used
to calculateEy may lead to some correction in our calcula- with the periodic functions,(r) normalized as
tion. As far as the analysis of the experimental data is
concerned, it considered the image charge effect but ex-
cluded interdot repulsion. In fact, these two competing ef-
fects nearly cancel each other for dot densities in the range of
1—10x 10L%cn?. The analysis of the experimental data alsoWithin thg Kane's model for band structure, the near-band-
excluded the presence of a charged interface between ttfl9€ basis wave-functions are
gates(the layer of dots charged with one electron gach 1
Indeed, the presence of the layer of charged dots between the a_; a_ — ;
gatesdecreaseghe electron-electron interaction energy by $c=1iSl), ¢hh_\/_| (X+)T),
~ YgotX 3 MeV, Wherepgo= v4orx 101%cn? is the density of

Jumt ce”uﬁ,‘k(r)un,k(r)d3r =Spp- (A3)

dots in the plane. Because this correction is considerably 1
large and linear onyyy, it is clear that the extraction of the oh=—=|X=iY 1)+ \/§|ZL>,
electron-electron energy from the experimental data requires G

precise knowledge of the dot density.
1
B=lisT), of=——=|X—iY]),
¢c | T> ¢hh \/§| l)
IV. CONCLUSION

We have calculated the electronic structure of self- 1 . 2
assembled InAs-GaAs quantum dots as a function of dot size ¢€‘_%| —(X+i) )+ \/;|ZT>’ (A4)
and externally applied voltage. In order to account for the
spin polarization of the system depending on the number ofvhere|Z) and |[X=iY) have the angular symmetry of the
electrons in the dot, we have used LSDA to calculate thespherical harmonic¥,,andY,.q, respectively, and the sub-
electron-electron exchange-correlation energy and comparestriptsc, hh, and Ih stand for conduction, heavy-hole, and
the results with calculations performed with LDA. We have light-hole band, respectively. Here we neglect the splitoff
also used the concept of a transition state determine the band since it is very weakly coupled to the other bands.
number of electrons in the dot, which minimizes the total Let us now calculate the electron effective mass inzhe
energy of the system. We have verified that Hund's ruledirectionmy,=m} , perpendicular to the wetting layer plane.
applies to InAs QD’s due to the small charging energy dif-Substitutingn by ¢ andn’ by Ih and hh, Eq(A1) becomes
ference of ~ 3 meV between the spin configurations
1s'1s'2p)2p) and 1s'1s'2p)2p]. We have estimated the ( 1 )

(A5)

charging energy per electron pair, in good agreement with

i—l— 2 ( penl®  1pgn?
experiment.

m* m ' m2\Ec—Ep  Ec—Epn/
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Using parity arguments, it is easy to see from E@) and  follows trivially. The only difference between the calculation
(A4) that|pg n] =0. |pg sl can be eliminated from EGAS)  of mj and the in-plane effective electron massgsandmy
using, in the absence of straiB.—Ejp,=E; andm; =m*, s that both matrix elementgp}Y,| and|p{Y,| are nonzero,
where E4 is the band-gap energy anmd* is the the bulk but the calculation steps remain the same.

electron effective mass. We have assumed that the matrix Comparison with an eight-banki-p calculation shows
element|pg ;| does not change significantly with or without that the procedure above leads to energy levitsm the
strain. Therefore, the expression for the electron effectivgonduction band edgeapproximately 5-10 % higher than
mass in thez direction, the exact values, while producing enormous savings in com-

E_E puter resource¥ The description of a more accurate ap-
% —¢c_ Elh

m¥ =m , (A6)  Proximation to the eight-bankl-p theory will be published
Eq elsewhere.
*Electronic address: fonseca@ceg.uiuc.edu 18w, L. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1987
1s. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. 'D. Jovanovic and J. P. Leburton, Phys. Revi8310 841(1994.
Feng, and S. Charbonneau, Scie@@d, 1350(1996. 18R. G. Parr and W. Yand)ensity-Functional Theory of Atoms and
2J. L. Jimenez, L. R. C. Fonseca, D. E. Wohlert, Y. K. Cheng, D.  Molecules(Oxford University Press, New York, 1989
Brady, and J. P. Leburton, Appl. Phys. Léttl, 3558(1997. I9N. W. Ashcroft and N. D. MerminSolid State Physic&Saunders
3K. Imamura, Y. Sugiyama, Y. Nakata, S. Muto, and N. College, Philadelphia, 1976
Yokoyama, Jpn. J. Appl. Phys., Par34, 1445(1995. 20p. M. Ceperley and B. J. Alder, Phys. Rev. Let§, 566 (1980.
4S. Tarucha, D. G Austing, T. Honda, R. J. van der Hage, and L. P21J. P. Perdew and A. Zunger, Phys. Rev2B 5048(1981).
Kouwenhoven, Phys. Rev. Left7, 3613(1996. 220. Gunnarsson and B. I. Lundqvist, Phys. Rev.1B, 4274
5M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros-Ribeiro, and P.  (1976.
M. Petroff, Europhys. Lett36, 197 (1996. Z3Hund's rule is expected to manifest in quantum dots displaying
®M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev5® geometrical symmetries. In that case unpaired spins should oc-
R2300(1996. cur also for an even number of electrons in the dot.
M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev6B 11  24J. Shumway, L. R. C. Fonseca, J. P. Leburton, Richard M. Martin,
969 (1995. and D. Ceperleyunpublishegl
8G. Medeiros-Ribeiro, F. G. Pikus, P. M. Petroff, and A. L. Efros, 2°M. Stopa, Phys. Rev. B4, 13 767(1996.
Phys. Rev. B55, 1568(1997). 263. C. Slater, Adv. Quantum Chei®, 1 (1972.
9A. Wojs and P. Hawrylak, Phys. Rev. B3, 10 841(1996. 2T\M. Macucci, K. Hess, and G. J. lafrate, Phys. RevA® 17 354
10N, N. Ledentsowet al, in Solid-State Electronic&Elsevier, Great (1993.
Britain, 1996, Vol. 40, Nos. 1-8, p. 785. 283, F. Janak, Phys. Rev. BB, 7165(1978.
113, P. Perdew and Y. Wang, Phys. Rev4g 13 244(1992. 29p. H. Dederichs, S. Blugel, R. Zeller, and H. Akai, Phys. Rev.
125, L. Chuang,Physics of Optoelectronic Devicé®Viley, New Lett. 53, 2512(1984).
York, 1995. 30M. S. Hybertsen, M. Schluter, and N. E. Christensen, Phys. Rev.
BB3g M. Sze Physics of Semiconductor Devid@¥iley, New York, B 39, 9028(1989.
1981). 31T, Inui, Y. Tarabe, and Y. Onoder&roup Theory and its Appli-

1H. Jiang and J. Singh, iRroceedings of the Eighth Annual Con- cations in PhysicgSpringer, New York, 1996
ference on Modulated Semiconductor Structures, M&8Bub-  32R. J. Luyken, A. Lorke, M. Haslinger, B. T. Miller, M. Fricke, J.

lished. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petraffipub-
153, Jimenez, L. R. C. Fonseca, and J. P. Lebuftmpublishedl lished.



