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Self-consistent calculation of the electronic structure and electron-electron interaction
in self-assembled InAs-GaAs quantum dot structures

L. R. C. Fonseca* and J. L. Jimenez
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 6180

J. P. Leburton
Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology,

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Richard M. Martin
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

~Received 9 September 1997!

We have performed a detailed self-consistent calculation of the electronic structure and electron-electron
interaction energy in pyramidal self-assembled InAs-GaAs quantum dot structures. Our model is general for
three-dimensional quantum devices without simplifying assumptions on the shape of the confining potential
nor fitting parameters. We have used a continuum model for the strain, from which the position-dependent
effective mass and band diagram are calculated. The number of electrons in the dot is controlled by applying
an external voltage to a metal gate on the top of a complete multilayer device containing a single dot. In order
to determine the electron occupation number in the dot that minimizes the total energy of the system, we have
adopted the concept of transition state as defined by Slater for shell filling in atoms. We have calculated the
exchange and correlation terms of the many-body Hamiltonian using the local~-spin! -density approximation.
By accounting for spins we have been able to determine the shell structure in the pyramid and to calculate the
energy differences between the various spin configurations. We have also calculated the different contributions
to the total electronic energy in the dot, i.e., the single-particle energies, the exchange-correlation energy, and
the classical electrostatic electron-electron repulsion energy as a function of the gate voltage and number of
electrons in the dot. Comparison with recent experimental data of Frickeet al. @Europhys. Lett.36, 197~1996!#
shows good agreement.@S0163-1829~98!02008-6#
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I. INTRODUCTION

Due to their small sizes, self-assembled quantum dots
fer an excellent opportunity to study the physics of high
confined few-electron systems. Furthermore, possible ap
cations of quantum dot structures such as lasers,1 spectral
detectors,2 and optical memories3 have spurred a conside
able interest in those systems.

Very recently, the work by Taruchaet al.4 has demon-
strated electronic shell structure and spin effects in lit
graphically defined quantum dots containing more than
extra electrons. That work showed that shell filling at sm
magnetic field follows the parallel spin ordering predicted
Hund’s rule. In a different experiment using small se
assembled quantum dots containing up to six ex
electrons,5 the shell structure in the dots displayed an ene
spectrum very different from the simple Coulomb blocka
picture observed in metallic and mesoscopic structures.
combination of capacitance and far-infrared spectroscop
the latter experiment has provided experimental informat
on level separation, as well as on the electron-electron in
action energy of thes and p states within a single InAs
GaAs quantum dot.

Previous calculations of the electronic structure of py
midal quantum dots have either not considered the dot ch
ing problem at all,6,7 were limited to Coulomb interaction
between different dots,8 or have done so by using a simpl
570163-1829/98/57~7!/4017~10!/$15.00
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fied analytic model.9 In this paper we address the electro
electron interaction within a single dot using a realistic stru
ture with electron interactions treated within spin-densi
functional theory. The structure analyzed is a compl
multilayer device containing one pyramidal InAs quantu
dot embedded in a GaAs matrix~Fig. 1!. The number of
electrons in the dot is controlled by applying voltage to
metal gate on the top of the device. Strain in the pyram
wetting layer~the thin InAs layer from where the quantum
dots arise10—see Fig. 1!, and surrounding GaAs matrix i

FIG. 1. Schematic representation of the self-assembled
structure used in the present work.
4017 © 1998 The American Physical Society
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calculated using a continuum model. The bulk electron
fective mass and band diagram are considerably modifie
the strain in the region of the dot, becoming position dep
dent. In order to determine accurately the bias voltage
which charging occurs, we have used the idea of transi
states~Sec. II C!. We have used both the local-density a
proximation~LDA ! and the local-spin-density approximatio
~LSDA! to calculate the many-body interaction terms of t
Hamiltonian.11 Because LSDA provides an extra degree
freedom by considering spins, we have been able to calcu
the energies of possible spin configurations in the dot sh
ing that the dot filling indeed follows Hund’s rule.

Our model has been applied to the system measure
Fricke et al.5 and the numerical results compared with t
experimental data. The agreement is good considering s
of the approximations assumed in the calculation, and
complications involved in extracting and interpreting intri
sic properties of the dots from the experimental data.

The paper is organized as follows. In Sec. II we descr
our model and the numerical techniques used. In Sec. III
discuss our results and compare them with previous calc
tions and experiments. Conclusions are presented in Sec

II. MODEL

A. Background

Figure 1 shows the device used in our calculation. It c
sists of a highly doped (1018/cm3) 420-Å GaAs substrate
followed by a 450-Å Al0.3Ga0.7As barrier. The active region
consists of two 300-Å-wide layers of undoped GaAs s
rounding a 6-Å InAs wetting layer and the InAs pyramid.
highly doped (1018/cm3) 260-Å GaAs cap and a metalli
gate complete the device. We have assumed a conduc
band offsetDEc5770 meV between GaAs and InAs~ratio
DEc /DEg570%), and bulk electron effective masses
GaAs and InAs of 0.067me and 0.023me ,12 respectively,
where me is the bare electron mass. As described belo
those effective masses change considerably as strain is
sidered in the calculation~the strain calculation is indispens
able for an accurate simulation of the InAs-GaAs hete
structure due to its rather large lattice mismatch, of the or
of 7%!. All the calculations were performed at 4.2 K.

In order to speed up the calculations, our device has b
separated in two distinct regions: far from and close to
dot. In the region far from the dot we have calculated
ionized donorND

1(r ), ionized acceptorNA
2(r ), electronn(r ),

and hole p(r ) densities using the semiclassical Thoma
Fermi approximation for bulk charges,13 and determined the
conduction-band edge by solving the Poisson equation:

¹2f52
q

e~r !
@p~r !2n~r !1ND

1~r !2NA
2~r !#, ~1!

whereq is the electron charge. In the region close to the
~defined by a box containing the pyramid, the wetting lay
and some of the GaAs surrounding matrix! we have assumed
no other charges but electrons with a concentration given

n~r !5(
i 51

N

ni uc i~r ,s!u2, ~2!
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wherec i is i th solution of the stationary Schro¨dinger Eq.~3!,
ni is the occupation number of leveli , N is the number of
electrons, ands denotes spin. We have assumed a dot den
small enough to avoid overlap between wave functions
longing to different dots and to assure the electric field c
fully relax before the next dot is reached. The potentialf
resulting from the solution of Eq.~1! is incorporated into the
Schrödinger equation, written in the envelope approximati
as

H 2
\2

2
¹@M 21¹#1V~r !J cn~r !5Encn~r !. ~3!

In Eq. ~3!, M is the electron effective-mass tensor~see be-
low! and the potential energyV is given by

V~r !5Vext~r !1VH~r !1Vc~r !1Vxc~r !1Voff~r !, ~4!

whereVext(r ) is the potential due to externally applied vol
age,VH(r )52qf(r ) is the Hartree potential,Vc(r ) is the
conduction-band strain potential,Vxc(r ) is the exchange-
correlation potential~see Sec. II B!, and Voff(r ) is the
conduction-band offset.

The strain tensor has been obtained from the minimiza
of the elastic energy of the system. This procedure provi
the strain tensor componentsexx , eyy , and ezz, as well as
the shear componentsexy , exz , and eyz , which have been
neglected in the present calculations.6 The hydrostatic and
biaxial components of the strain, defined as

eh~r !5exx~r !1eyy~r !1ezz~r !, ~5!

eb~r !5exx~r !1eyy~r !22ezz~r !, ~6!

respectively, play a major role in the electronic structure
the dot. Ignoring the splitoff bands, one can derive the ba
edge energies at the Brillouin-zone center~k50!:

Vc~r !5Eg1aceh~r !,

Vhh~r !5aveh~r !1
b

2
eb~r !, ~7!

Vlh~r !5aveh~r !2
b

2
eb~r !,

whereEg is the unstrained band gap energy, andVhh andVlh
are the heavy-hole and light-hole bands. The deforma
potentialsac , av , and b for InAs and GaAs are listed in
Table I. Using time-independent perturbation theory up
second order, we have obtained the following expressions
the diagonal components of electron effective-mass ten
~for a detailed derivation, see Appendix A!:

mz* ~r !5m* „Vc~r !2Vlh~r !…/Eg , ~8!

TABLE I. Deformation potentials~Ref. 12!.

Material ac av b

GaAs 27.17 1.16 21.70
InAs 25.08 1.00 21.80
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mx,y* ~r !5m* „Vc~r !2Vhh~r !…

3„Vc~r !2Vlh~r !…/@Eg„Vc20.75Vlh~r !

20.25Vhh~r !…#,

where m* , mz* , and mx,y* denote bulk, perpendicular, an
in-plane electron effective masses~the wetting layer lies in
the xy plane!. The remaining components of the effectiv
mass tensor are zero. It is easy to see from Eq.~8! that in the
limit of small strain componentsexx ,eyy , andezz we recover
the original bulk effective massm* . Figures 2~a! and ~b!
show the strain potential and electron effective masses a
the z direction, through the tip of the pyramid. Notice th
large value of the strain potential and the considerable m
fication of the bulk effective mass, by a factor of two
average, in good agreement with the work of Cusack, B
don, and Jaros.6 The spikes near the tip of the pyramid a
from numerical origin, caused by the difficulty in calculatin
the strain components around the edges of the pyramid.

The presence of the shear strains in the InAs-GaAs in
faces leads to the appearance of a polarization charge an
associated piezoelectric potential, which reduces the sym
try of the system, lifting some of the degeneracies obser
in pyramidal quantum dot systems. However, piezoelec
effects in dots of the size considered in this work are v

FIG. 2. ~a! Strain potential;~b! perpendicular and in-plane elec
tron effective masses along thez direction through the tip of the
pyramid ~in units of bare electron mass!. Pyramid diameter5 200
Å and height5 100 Å.
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small, of the order of 1 meV as shown by Grundmann, St
and Bimberg7 and our own private calculations, thus we ha
neglected them in this work.

Equations~8! are accurate up to second order in mome
tum k. In fact, because the confinement is so strong,
energy difference between the electron energy level and
conduction-band edge is quite large, leading to possibly la
high-order corrections where nonparabolicity effects wo
be taken into account.14 Such corrections would affect th
position of the energy levels, which in turn set the confin
ment of the wave function. However, for the strongly co
fined states that correction would not lead to any signific
change in the charge density, and therefore to the elect
electron interaction energy, which is our main investigati
goal. A detailed comparison between the eight-bandk–p cal-
culation of the conduction band and the effective-mass hi
order approximation is described elsewhere.15

Equations~1! and~3! are iterated until self-consistency
achieved. The Poisson equation is solved using the multi
method.16 Multigrid allows for nonuniform grids necessar
to simulate relatively large devices (;1 mm! as the one in
Fig. 1, with features as small as a few angstroms~the quan-
tum dot and wetting layer!. In addition to that, multigrid is
very efficient and scales linearly with the number of gr
points NG . The Schro¨dinger equation is solved using th
iterative extraction-orthogonalization method~IEOM!.17 The
major advantage of IEOM is efficiency resulting from i
ability to generate an arbitrarily small number of eigensta
NE . As a result, the method scales asNE

2NG , also linear in
NG .

B. Local-spin-density approximation

The usual way of calculating the exchange energy
many-electron systems in the context of device physics i
use the local-density approximation~LDA ! of the Kohn-
Sham density-functional theory~DFT!.18 The basic idea of
DFT is to replace the rather complexN-electron wave func-
tion c(x1 ,x2 , . . . ,xN) and the associated Schro¨dinger equa-
tion by the much simpler electron densityn(r ) and the cor-
responding functional formsT@n# and V@n# of the kinetic
and potential energy operators, respectively. The treatm
of the quantum-mechanical electron-electron interaction
left to the exchange-correlation potentialVxc , which does
not have an exact formulation. LDA assumes that
exchange-correlation energyExc

LDA@n# can be written as

Exc
LDA@n#5E n~r !exc@n~r !#dr , ~9!

whereexc@n# is the exchange and correlation energy per p
ticle of a uniform electron gas of densityn. The functional
exc@n# can be separated into exchange and correlation c
tributions,

exc@n#5ex@n#1ec@n#. ~10!

The exchange part is well known,19 and is given by

ex@n#52
3

4S 3

p
n~r ! D 1/3

, ~11!
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in atomic units, while accurate values of the correlation p
ec@n# have been obtained from quantum Monte Ca
calculations20 as parametrized by Perdew and Zunge21

From Eq.~9! we can derive the exchange-correlation pote
tial:

Vxc
LDA~r !5

dExc
LDA

dn~r !
. ~12!

LSDA offers a more general approximation for th
exchange-correlation potential. In this case the exchan
correlation energyExc@na,nb# is a function of thea-electron
and b-electron densitiesna(r ) and nb(r ), wherea and b
denote spins up and down. The exchange term become
only a function of the total charge densityn5n↑1n↓ but
also a function of the polarization parameterz,18

ex@n,z#52
3

4S 3

p
n~r ! D 1/3

~21/321! f ~z!, ~13!

where

f ~z!5
1

2

~11z!4/31~12z!4/322

21/321
, ~14!

and

z5
n↑2n↓

n
. ~15!

The correlation term is calculated using the same param
zation of LDA but interpolating between the results of
spin-polarized and unpolarized free electron gas11 depending
on the spin polarization in the dotz. Not only is this formu-
lation necessary for the solution of problems involving ma
netic field, it usually is a better description of the real syst
than the LDA approximation even in the absence of m
netic field.22 This is certainly the case in spin-polarized sy
tems that should occur at least for an odd number of e
trons in the dot.23

The validity of LDA and LSDA is, in principle, limited to
smooth potentials, which is not the case in quantum d
since the high confinement creates electronic potentials v
ing in the scale of angstrons. However, the potentials cre
in atoms are not smooth either, and still the local approxim
tions provide good results.18,22Exact calculations of the elec
tronic structure of pyramidal dots using quantum Mon
Carlo have confirmed our expectations that the local appr
mations indeed provide reliable exchange-correlation e
gies for this system, within the single-band model. A detai
comparison of the two methods is described elsewhere.24

C. Transition state

The desired key quantities are the energies to add e
trons to the dot. If the dot is well isolated from the electric
contacts as well as from the 2D electron gas surroundin
then it is appropriate to consider the number of electron
the dot as integers and the change in the occupation as
sitions between integer occupations. This is a valid appro
if the barriers are high enough so that the overlap betw
the dot wave functions and the contact or the 2D electron
rt
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wave functions is negligible. Thus we will proceed by co
structing an approach for calculating the transition energ
between integer occupations. Note that in the opposite lim
where the coupling to the contacts is strong, it would
more appropriate to use the fractional occupation appro
with a Fermi function commonly employed in othe
studies.17,25

According to the density-functional theory, the Koh
Sham Eq.~3! can only provide the ground state of the syste
and its total energyET . Thus, a rigorous way of determinin
the numberN of electrons in a quantum dot with the electro
charge as a good quantum number is to minimizeET(N), for
N51,2, . . . ,Nmax. This minimization should be repeate
whenever the external voltage biasVg is changed. The use o
just eigenvalues to determine the charge in the dot, wh
charging occurs whenever an eigenvalue crosses the F
level, is only correct in the limit of weakly interacting elec
tron systems.

There are two problems with the use of the total energy
determine the number of electrons in the dot as a function
bias voltage: accuracy and efficiency. The calculation of
total energy of the system involves terms of the order
meV’s like the Hartree and exchange-correlation energ
and terms of the order of tens of eV’s, like the electrosta
energy of the doping impurities and surface charges. T
total energy of the system is of the order of tens of meV
since the large terms mostly cancel out. Clearly such an
curate cancellation is difficult to obtain. The efficiency pro
lem is less severe. In principle, one would have to calcu
at leastET(N) andET(N11) for each value ofVg in order
to determine if there areN or N11 electrons in the dot.
Since each self-consistent calculation is a time consum
operation, such a scheme should be computationally co
The transition state concept offers an elegant solution
these problems.26,27

The Kohn-Sham theory is not restricted to integer nu
bers of electrons in the system. DifferentiatingET with re-
spect to the noninteger occupation numberni of level i one
obtains

]ET

]ni
5e i . ~16!

Equation ~16!, called the Janak theorem,28 provides a
meaning to the eigenvalues of the Kohn-Sham equation.
tegrating Eq.~16! betweenN and N11 one finds the so-
called Slater formula:26

ET~N11!2ET~N!5E
0

1

eLAO~n!dn'eLAO~ 1
2 !, ~17!

whereeLAO corresponds the eigenvalue of the lowest ava
able orbital. The last step in Eq.~17! is exact if eLAO is a
linear function of the occupation number. We have p
formed several numerical experiments which demonstrate
nearly linear relation, showing that the approximation us
in Eq. ~17! is very good.

If one wishes to find out if there areN or N11 electrons
in the dot, one defines the transition state as the state

tainingN10.5 electrons. Its usefulness is obvious: ife( 1
2 ) is

positive thenET(N11).ET(N) and the dot containsN
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electrons, otherwise it containsN11 electrons. This proce
dure not only saves computer time by only solving the eq
tions forN10.5 instead ofN andN11 electrons in the dot
but it also circumvents the difficult problem of accurate
calculating the total energyET of such a complex system
containing dopants and metal gates. This approach for D
where the total energy of the system is minimized keepin
fixed parameter~the charge in the dot! is called constrained
DFT.29,30

III. RESULTS

A. Variable dot size

Figure 3 shows the first ten eigenvalues of empty dots
a function of dot base length~also called base diameter!,
keeping the wetting layer width fixed. The eigenvalues w
calculated with respect to the average conduction-band e
position in the dot. Figure 3 and inset also show the appro
mate depth of the well and the energy difference between
first ~0 0 0! and second~1 0 0! states, and between the seco
and third~0 0 1! states. The notation (ninjnk) corresponds to
the number of nodes of the eigenfunction in thex, y, andz
directions, respectively. The eigenvalues were only ca
lated while the states remained bound or quasibound. No
in the inset that the energy separation between~0 0 0! and~1
0 0! is close to linear, while between~1 0 0! and~0 0 1! it is
almost a constant, reflecting the different confinement dir
tions of the last two states. As the eigenvalues approach
top of the well, the slopes of the curves tend to decrease
a result of deeper wave-function penetration in the bar
region. For energies above the well height, the correspon
eigenfunctions spread over the wetting layer, becomin
two-dimensional electron gas.

FIG. 3. Approximate well depth~thick solid line! and eigenval-
ues of the Hamiltonian as a function of dot diameterd. The eigen-
values were calculated with respect to the average conduction-
edge in the region of the pyramid. States represented, from lo
high energy:~0 0 0!, ~1 0 0!/~0 1 0!, ~0 0 1!, ~1 1 0!, ~2 0 0!-~0 2 0!,
~2 0 0!1~0 2 0!, ~1 0 1!/~0 1 1!, and~1 1 1!. The notation (n1n2n3)
denotes the number of wave-function nodes in thex, y, andz di-
rections. Degenerate states are separated by a slash. Inset: e
separation between states~0 0 0! and ~1 0 0!/~0 1 0! ~solid!, and
between states~1 0 0!/~0 1 0! and~0 0 1! ~dashed!. Pyramid height
h5d/2. Lines are only guides for the eye.
-
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The Hamiltonian of this problem is invariant under th
symmetry operations of the groupC4v ,31 which allows the
wave functions to be symmetrized according to the irred
ible representations of this group. It can be easily chec
that onlyp-like states@like ~1 0 0!# can be degenerate, whil
all other degeneracies are accidental. That explains why
states~2 0 0! and~0 2 0! are not degenerate in a finite barri
pyramid, even though they are degenerate in an infin
square well. In the latter case degeneracy occurs becaus
Hamiltonian allows separation of variables. One can a
show that the irreducible representation of those two sta
are the linear combinations~2 0 0!-~0 2 0! and~2 0 0!1~0 2
0!, shown as the fifth and sixth curves from bottom to top
Fig. 3 ~solid line with stars and dashed line with crosse
respectively!. Perhaps this counterintuitive result can
more easily understood with the help of Fig. 4. It shows t
the projections of the states~2 0 0!-~0 2 0! and~2 0 0!1~0 2
0! are very different, and thus are affected differently by t
pyramidal confining potential. As a result, the energies of
two states do not need to be the same.

Our calculations agree well with those of Ref. 8 in th
range of sizes investigated in that work. As discussed in S
II, these eigenvalues may change considerably if a full eig
bandk–p calculation is performed.

B. Charging effects

Several measurements5,32 as well as calculations8,9 have
addressed the problems of electron charging energy in
ensemble of pyramidal dots and the electron-electron in
action energy in a single pyramidal quantum dot. In the fi
case, calculations are only meaningful if several dots

nd
to

ergy
FIG. 4. Projections of the states~2 0 0!-~0 2 0! ~top! and ~2 0

0!1~0 2 0! ~bottom!. Notice the lobes of the top state along th
diagonals~crossed lines! of the base of the pyramid~square box!,
lowering its energy with respect to the more confined bottom st
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considered, as discussed in Ref. 10, since this is an effect
involves the whole ensemble of dots. The bias value at wh
the next electron occupies a particular dot depends on
state of the neighboring dots, whether they are occupie
not. However, because the distance between two electro
a dot is at least one order of magnitude smaller than
distance between electrons in separate dots, the elec
electron interaction energy in a single dot is only margina
affected by the state of the other dots for typical densities
1010 dots/cm2. Besides, if one of the gates lies nearby, whi
is the case in some experimental setups,5 image charges
screen even further the perturbation caused by neighbo
dots. Since the electron-electron interaction energy has
been indirectly inferred from experimental data and fit
calculations, we have calculated its value self-consiste
using different methods for treating the electron-electron
teraction and for different dot sizes.

The exchange-correlationExc and HartreeEH energies are
defined as

Exc@n#5E n~r !exc~r !dr , ~18!

whereexc(r ) is the exchange and correlation energy per p
ticle of a uniform electron gas of densityn, and

EH5
1

2E n~r !n~r 8!

4p ē ur2r 8u
drdr 8, ~19!

where ē is the average dielectric constant, independen
position, which probably introduces only a small error to t
value ofEH since the dielectric constants throughout the la
ers differ by less than 15%. Because direct solution of
~19! is too time consuming, we have calculated the poten
created only by the electrons in the dotVe and then solved

EH5
1

2

1

4p ē
E Ve~r !n~r !dr . ~20!

The potentialVe is obtained by solving the Poisson equati
with the density determined by the dot electrons and bou
ary condition calculated by multipole expansion~up to quad-
rupole! of the charge in the dot. This is a good approxim
tion if the boundaries are far from the charge, which is
case in our device. However, the expansion is complica
by the presence of materials of different dielectric consta
Again, we have simplified that by assuming an uniform m
dium with a dielectric constant averaged over all the poi
of the device.

The integrations in Eqs.~18! and ~20! are over the dot
regions only, thus only the energy of the electrons in the
has been taken into account. The electron-electron inte
tion energyEee is the sum of the exchange-correlation a
Hartree energies.

Figure 5 shows the charging of three quantum dots
different sizes as a function of bias in the metal gate on
top of the device~see Fig. 1!. In all three staircases LSDA
was used to treat the electron-electron interactions. The
were charged up to the maximum number of electrons t
can fit. As expected, the step size becomes longer as the
size decreases as a result of the more widely spaced si
at
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particle levels~steps corresponding toN52, 6, and 9, where
N is the number of electrons in the dot! and the stronger
electron-electron repulsion. However, the steps involv
charging of degenerate levels (N53, 4, and 5! become more
homogeneous for smaller dots. That results from the diff
ent dependencies of the Hartree and exchange-correlation
ergies on the charge density, thus in the dot volume. W
the first increases asn2, the second increases only asn4/3, as
described in Eqs.~18! and ~19!. Thus the Hartree term
which only depends on the charge in the dot and not on
spin configuration, dominates for smaller dot sizes. The
even steps observed forN53, 4, and 5 in the 200-Å bas
diameter pyramid can be understood as follows. We h
occupied the second~1 0 0!/~0 1 0! degenerate levels follow
ing Hund’s rule, i.e., according to the spin sequen
2px
↑2py

↑2px
↓2py

↓ , where the arrows pointing up and dow
correspond to spin orientation and the notation 2pi means
the second level of typep oriented along directioni . In the
next section we will show that this system indeed follow
Hund’s rule. The step corresponding toN53 is short be-
cause the third and fourth electrons occupy different orbi
~1 0 0! and ~0 1 0!. Even though the two electrons have th
same spin, those orbitals have a node near the center o
pyramid, resulting in small wave-function overlap. The st
corresponding toN54 is long because the fifth electron
forced to share an orbital already half-occupied. There
strong wave function overlap and no exchange energy, s
the fifth electron spin is different from the third and four
electron spins. Finally, the step corresponding toN55 is
short because, even though the sixth electron is repelled
the other three electrons, exchange between the sixth an
fifth electrons decreases the repulsion energy.

The energy of the electrons in the dot can be decompo
in single-particle and electron-electron interaction ener
The single-particle energies for empty dots are displayed
Fig. 3. As the dot is charged those energies shift up, but
energy separation between them stays approximately
same. It is interesting to compare those separations with
electron-electron interaction energy. Table II shows
variation of Exc , EH , and Eee using the LDA and LSDA
approximations as functions of dot diameter and numbe
electrons in the dot. In a crude order of magnitude comp

FIG. 5. Number of electrons in the dot as a function of appl
voltage Vg for different pyramid diametersd. Pyramid height
h5d/2.
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son, we see from Fig. 3 that the single-particle energy se
ration for the first two levels is of the order of 50–100 me
while Table II shows that the electron-electron interact
energy is of the order of 10–30 meV per pair of particles,
average. Because charging of the dot involves the electr
configuration of the entire device and not only of a sing
dot, Fig. 5 cannot be directly obtained from Table II, whi
only shows electronic energies in the dot.

The electron-electron interaction energy has been ca
lated using both LDA and LSDA. Even though there a
differences between the results of the two methods in Ta
II, both provide the same qualitative description of the ma
body effects. Notice thatExc

LSDA is always more attractive o
at least equal toExc

LDA . Consequently, we have an increas
density with LSDA and thereforeEH

LSDA>EH
LDA . Also notice

that LDA provides a better cancellation betweenExc andEH
for one electron in the dot. This is an unexpected result si
LSDA is a better description of the physical system. O
possible explanation for that is the approximate express
we have used for the Hartree energy calculation, as alre
discussed.

Figure 6 shows the relative difference between the LD
and LSDA calculations as a function of the number of el
tronsN in the dot and for two dot sizes. A striking feature
the increase of the relative difference when there are
paired electrons in the dot, which happens forN51,3,4,5,7.
For N54 there are two unpaired electrons, one in each of
degenerate~1 0 0! and ~0 1 0! levels, leading to a high
relative difference. ForN55 the number of unpaired elec
trons decreases to 1, which coincides with a decrease in
relative difference. This trend is not observed fromN57
~one unpaired electron! to N58 ~no unpaired electron! elec-

TABLE II. Exchange-correlation energyExc , Hartree energy
EH , and electron-electron interaction energyEee as a function of
dot diameterd and occupation numberN. The energies are the
averages over gate voltages for each occupation number. Ene
in eV, dot diameter in angstroms. Dot heighth5d/2.

LDA LSDA
d N Exc EH Eee Exc EH Eee

1 20.007 0.007 0.000 20.009 0.007 20.002
2 20.018 0.027 0.009 20.018 0.029 0.011
3 20.028 0.053 0.025 20.029 0.054 0.025
4 20.040 0.086 0.046 20.042 0.088 0.046

200 5 20.052 0.129 0.077 20.053 0.131 0.078
6 20.065 0.179 0.114 20.066 0.182 0.116
7 20.078 0.226 0.148 20.079 0.234 0.155
8 20.092 0.283 0.191 20.093 0.287 0.194
9 20.105 0.351 0.246 20.105 0.352 0.247

1 20.008 0.008 0.000 20.010 0.009 20.001
2 20.021 0.034 0.013 20.021 0.034 0.013

150 3 20.032 0.062 0.030 20.033 0.063 0.030
4 20.044 0.100 0.056 20.046 0.100 0.054
5 20.057 0.145 0.088 20.058 0.147 0.089
6 20.070 0.198 0.128 20.071 0.200 0.129

100 1 20.010 0.010 0.000 20.011 0.010 20.001
2 20.023 0.039 0.016 20.023 0.038 0.017
a-
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trons in the dot, but since the relative difference for tho
values ofN is below 1%, numerical inaccuracy may be a
fecting those results. As we have pointed before, LSDA
supposed to be a better approximation to the many-body
change energy than LDA specially when there are unpa
electrons in the system giving rise to nonzero total spin m
mentum.

We now analyze the LSDA results only. The conclusio
are the same for LDA since the differences between the
methods are not qualitative. In Fig. 7 we have plottedExc
andEH as a function of occupation number for the three d
sizes in a log-log scale. As expected, the Hartree ene
increases approximately asn2, faster than the exchange
correlation energy, which increases~in absolute value! ap-
proximately asn4/3. The observed slopes are smaller than
and 4/3, which we attribute to wave-function penetration
the barrier at higher occupation numbers. Figure 8 shows
electron-electron interaction energyEee as a function of oc-
cupation number and for different dot sizes. This energy
sults from the interactions among all the electrons in the d

FIG. 6. Relative exchange-correlation energy difference
tween LDA and LSDA calculations as a function of occupati
number and for different dot diametersd. Pyramid heighth5d/2.

FIG. 7. Exchange-correlation energy~solid, dashed, and dotte
lines of smallest slopes! and Hartree energy~larger slopes! as a
function of occupation number for different dot diametersd. Off-
sets within each set of curves are due to different dot volum
Pyramid heighth5d/2.
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In the next section we will consider electron-pair interactio
and compare with corresponding energies inferred from
perimental data.

C. Comparison with experiment

In order to compare our results with those of Frickeet al.
we have calculated the electronic structure of a 200 Å b
diameter and 70 Å height pyramidal quantum dot. Figur
shows the number of electrons in such a pyramid as a fu
tion of gate voltageVg . Three curves are shown, corr
sponding spin-dependent~LSDA! charging sequences tha
follow or do not follow Hund’s rule, and a spin-independe
~LDA ! charging sequence. As already pointed, Hund’s r
means that the charging of the fourfold degenerate sec
level follows the spin sequence 2px

↑2py
↑2px

↓2py
↓ . The curve

that does not follow Hund’s rule was obtained by charg
the second level according to the spin seque
2px
↑2py

↓2px
↑2py

↓ . The third possibility, namely, the spin se

FIG. 8. Electron-electron interaction energy as a function
occupation number for different dot diametersd. Pyramid height
h5d/2.

FIG. 9. Number of electrons in the dot as a function of g
voltage Vg using LSDA according to Hund’s rule~second-level
population following the spin sequence 2px

↑2py
↑2px

↓2py
↓), LSDA

not following Hund’s rule ~second-level spin sequenc
2px
↑2py

↓2px
↑2py

↓), and LDA. The dotted curve coincides with th
solid curve whenever the dots are not visible. Pyramid diamete5
200 Å and height5 70 Å.
s
x-

e
9
c-

t
e
nd

e

quence 2px
↑2px

↓2py
↑2py

↓ , was not considered because it w
clearly be unfavorable due to the intense Coulomb repuls
between the 2px

↑ and the 2px
↓ electrons resulting from thei

large wave-function overlap. The step size obtained w
LSDA corresponding to the charging of the fourth electr
(N53) is longer for the charging the dot according to t
spin sequence 1s↑1s↓2px

↑2py
↓ than for 1s↑1s↓2px

↑2py
↑ , indi-

cating that, indeed, Hund’s rule is followed by this syste
The electron-electron interaction energy difference betw
the two spin configurations for four electrons in the dot
;3 meV.

The addition of the fourth electron following Hund’s rul
is less costly because of the presence of exchange intera
~attractive! in this case but not if the spin of the fourth ele
tron is different from the spin of the third. Analogously, th
step corresponding to the charging of the fifth electr
(N54) is shorter for the sequence 2px

↑2py
↓2px

↑2py
↓ because

the fifth electron, either in the 2px
↑ or 2py

↓ state, interacts by
exchange with one of the two electrons already in the sec
level, while according to Hund’s rule, the fifth electron do
not interact by exchange with any of the other two beca
of their different spin states.

The staircase obtained with LDA does not match eith
one of the LSDA staircases at some charging bias points
the analysis of Table II it was pointed out that LSDA usua
provides higher electron-electron charging energies t
LDA, with an exception made for a single electron in the d
~see columns 5 and 8 of Table II!. This exception can be
used to explain the difference between the two LDA/LSD
curves in Fig. 9 for the charging of the first electron, wh
for the second electron the charging delay of LSDA follow
the usual pattern. Notice, however, that Table II can only
used as a guide in the present analysis since none of
structures used for the obtention of Table II have the sa
dimensions as the one we now describe. The coincide
between the LDA and LSDA charging bias for the thir
fifth, and sixth electrons in the dot may result from the fin
voltage step size used, which also explains the finite slo
of the charging steps. The considerably large difference
tween the LDA/LSDA charging bias for the fourth electro
results from the rather poor description of the system p
vided by LDA when the number of unpaired spins is larg
This fact has already been observed in Fig. 6, which sho
that the relative difference between the two approximatio
has a peak at four electrons in the dot. In other words,
LDA staircase is good enough as long as the spins are mo
paired, otherwise it does not accurately account for
many-body interactions.

We now estimate pairwise electron-electron interact
energies. The so-calleds-s interaction between twos elec-
trons can be calculated directly fromExc(2) andEH(2) since
for two electrons in the dot this is the only possible type
interaction. We have obtainedEee

s-s;13 meV, which is only
the Hartree interaction since there is no exchange betw
the s electrons. Since experiments can only detect aver
electron-electron interactions, we have only calculated
proximate values for thep-s and p-p interactions. The
charging energy of the third electron contains ones-s inter-
action and twop-s interactions. Assuming that thes-s inter-
action does not change much when the third electron

f
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added, we have derived the average energy for thep-s inter-
action to beEee

p-s;9 meV. This result is an average becau
the p electron interacts by exchange with only one of thes
electrons~the one with the same spin!. Repeating the sam
argument for the next electrons, we obtained an averagep-p
interaction ofEee

p2p;9 meV. Table III summarizes and com
pares those results with the values inferred from the cap
tance data by Frickeet al. Differences between energies o
tained from calculation and inferred from measurement m
result from our assumption that the different types of int
action (s-s, p-s, or p-p) remain unchanged as more ele
trons are added to the dot. A second source of error in
calculation is the exclusion of interdot repulsion, whi
should push the electrons closer together inside the
However, as we have already pointed out, for dot densitie
1010/cm2, the inclusion of interdot effects should change o
results by less than 1 meV. Finally, the approximation u
to calculateEH may lead to some correction in our calcul
tion. As far as the analysis of the experimental data
concerned,5 it considered the image charge effect but e
cluded interdot repulsion. In fact, these two competing
fects nearly cancel each other for dot densities in the rang
121031010/cm2. The analysis of the experimental data al
excluded the presence of a charged interface between
gates ~the layer of dots charged with one electron eac!.
Indeed, the presence of the layer of charged dots betwee
gatesdecreasesthe electron-electron interaction energy
;gdot33 meV, whererdot5gdot31010/cm2 is the density of
dots in the plane. Because this correction is considera
large and linear ongdot, it is clear that the extraction of th
electron-electron energy from the experimental data requ
precise knowledge of the dot density.

IV. CONCLUSION

We have calculated the electronic structure of se
assembled InAs-GaAs quantum dots as a function of dot
and externally applied voltage. In order to account for
spin polarization of the system depending on the numbe
electrons in the dot, we have used LSDA to calculate
electron-electron exchange-correlation energy and comp
the results with calculations performed with LDA. We ha
also used the concept of a transition state26 to determine the
number of electrons in the dot, which minimizes the to
energy of the system. We have verified that Hund’s r
applies to InAs QD’s due to the small charging energy d
ference of ; 3 meV between the spin configuration
1s↑1s↓2px

↑2py
↓ and 1s↑1s↓2px

↑2py
↑ . We have estimated th

charging energy per electron pair, in good agreement w
experiment.

TABLE III. Charging energy per electron pair~in meV!.

Interaction type Calculated Measured~Ref. 5!

s-s 13 ; 23
s-p ; 9 ; 7
p-p ; 9 ; 18
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APPENDIX A: DERIVATION OF SECOND-ORDER
ACCURATE ELECTRON EFFECTIVE MASS

Using perturbation theory up to second-order approxim
tion for the k–p Hamiltonian and small values of the wav
vector k, we can write the electron effective-mass tens
mab* as12

S 1

m*
D

ab

5
1

m
dab1

1

m2 (
n8Þn

pnn8
a pn8n

b
1pnn8

b pn8n
a

En~0!2En8~0!
,

~A1!

wherem is the bare electron mass and the momentum ma
elementspnn8 are defined as

pnn85E
unit cell

un0* ~r !pun80~r !d3r , ~A2!

with the periodic functionsunk(r ) normalized as

E
unit cell

unk* ~r !un8k~r !d3r5dnn8. ~A3!

Within the Kane’s model for band structure, the near-ba
edge basis wave-functions are

fc
a5u iS↓&, fhh

a 5
1

A2
u2~X1 iY!↑&,

f lh
a 5

1

A6
uX2 iY↑&1A2

3 uZ↓&,

fc
b5u iS↑&, fhh

b 5
1

A2
uX2 iY↓&,

f lh
b 5

1

A6
u2~X1 iY!↓&1A2

3 uZ↑&, ~A4!

where uZ& and uX6 iY& have the angular symmetry of th
spherical harmonicsY10 andY161, respectively, and the sub
scriptsc, hh, and lh stand for conduction, heavy-hole, a
light-hole band, respectively. Here we neglect the split
band since it is very weakly coupled to the other bands.

Let us now calculate the electron effective mass in thz
directionmzz* [mz* , perpendicular to the wetting layer plan
Substitutingn by c andn8 by lh and hh, Eq.~A1! becomes

S 1

m*
D

z

5
1

m
1

2

m2S upc, lh
z u2

Ec2Elh
1

upc,hh
z u2

Ec2Ehh
D . ~A5!
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Using parity arguments, it is easy to see from Eqs.~A2! and
~A4! that upc,hh

z u50. upc, lh
z u can be eliminated from Eq.~A5!

using, in the absence of strain,Ec2Elh5Eg and mz* 5m* ,
where Eg is the band-gap energy andm* is the the bulk
electron effective mass. We have assumed that the ma
elementupc, lh

z u does not change significantly with or withou
strain. Therefore, the expression for the electron effect
mass in thez direction,

mz* 5m*
Ec2Elh

Eg
, ~A6!
trix
t
ive

follows trivially. The only difference between the calculatio
of mz* and the in-plane effective electron massesmx* andmy*
is that both matrix elementsupc,hh

x,y u and upc, lh
x,y u are nonzero,

but the calculation steps remain the same.
Comparison with an eight-bandk–p calculation shows

that the procedure above leads to energy levels~from the
conduction band edge! approximately 5210 % higher than
the exact values, while producing enormous savings in co
puter resources.15 The description of a more accurate a
proximation to the eight-bandk–p theory will be published
elsewhere.
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