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Transport properties of semiconductor-superconductor junctions in quantizing magnetic fields
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We present the results of a numerical calculation on the quantum transport properties in junctions of a
two-dimensional electron gas and a superconductor in the presence of a perpendicular magnetic field. The
low-field conductance drops in a steplike manner, whenever the Landau levels are depopulated, provided that
quasiparticle excitations are almost perfectly Andreev reflected from the interface. If the normal reflection is
enhanced, the conductance exhibits a sinusoidal oscillation. In contrast to the behavior in conventional con-
ductors, the maxima of the oscillation take place at the depopulation thresholds. In high magnetic fields, a
periodic transmission resonance with a complete disappearance of the conductance is found, irrespective of the
Andreev-reflection probability. The current distribution indicates that this high-field oscillation is ascribed to
the skipping orbit along the interface. We show that the plateau value in the Hall resistance remains unchanged
when one of the leads is replaced by the superconductor. Using the selective edge-state detection technique, the
distribution of Andreev-reflected quasiparticles among the edge states can be evaluated.
[S0163-182¢08)00107-9

I. INTRODUCTION approaches the superconducting §ap.
In the presence of a magnetic fidddapplied perpendicu-

Transport properties in ultrasmall normal-conductor—lar to the 2DEG, the retroproperty is also disturbed since the
superconductofNS) junctions have attracted a great deal of effective direction of8 acting on the quasiparticles is oppo-
attention in recent years. At low temperatures, the phase irsite for the electronlike and holelike excitations. The deflec-
formation of quasiparticle excitations is preserved duringtion of the ballistic trajectories by the magnetic field was
their traversal in the NS system, giving rise to quantum in-demonstrated in recent experimehince the superconduc-
terference effects in the conductaride. addition, the trans- tivity is destroyed if the magnetic field is strong, previous
port can be made ballistic by employing a high-mobility two- studies on the magnetic-field effect were restricted to weak
dimensional electron gg@DEG) confined in semiconductor fields. However, a recent experiment reports that the Joseph-
heterostructures as the normal conduétbtany of the novel son coupling in a superconductor-2DEG-superconductor
characteristics in the NS system originate from the unusughnction can be intact even 8t~8 T by employing NbN as
reflection, known as the Andreev reflection, of the quasiparthe superconductd.
ticles from the NS interfac@An electronlike excitation with In this paper, we investigate the conductance of NS junc-
energye below the Fermi level is reflected as a holelike tions when the in-plane motion of the quasiparticles is Lan-
excitation with energyes above the Fermi level. The dau quantized. We find that magnetotransport properties de-
Andreev-reflected quasiparticle exactly follows the trajectorypend significantly on the Andreev-reflection probability.
of the original quasiparticléretroproperty. Moreover, the When the Andreev reflection is almost perfect, the two-
phase shift associated with the electronlike excitation and théerminal conductance exhibits a steplike decrease associated
holelike excitation cancels out in the Andreev-reflected trawith a depopulation of the Landau levels. When the normal
jectory. As pointed out by Beenakkéthe transport proper- reflection is increased, the conductance exhibits a sinusoidal
ties in the NS system are determined solely by the scatteringscillation that resembles the Shubnikov—-de Haas oscillation
characteristics of the quasiparticles in the normal region iin the four-terminal resistance. We find that the conductance
the Andreev reflection is perfect. This significantly simplifies becomes maximum near the depopulation threshold of the
the theoretical calculation. Landau levels. When the Landau enerfjy., where w.

In real devices, however, the quasiparticles experience &eB/m is the cyclotron frequency, is comparableuo pe-
considerable amount of normal reflection. The Andreev<iodic resonances show up in the conductance. The emer-
reflection probability approaches unity when the amplitudegence of this oscillation does not rely on the normal reflec-
of the pair potentialA is much smaller than the Fermi energy tion at the NS interface. We examine the distribution of the
.2 However, the difference ine in the normal conductor current to explore the origin of the resonance states.
and the superconductor, and also a potential barrier at the NS
interface,” cause the normal reflection. Additional features Il. CALCULATION OF THE TWO-TERMINAL
may be _ant|C|pated to emerge when the partlall_y normal re- CONDUCTANCE
flection is made possibfeThe phase cancellation breaks
down when the retroproperty is disrupted by applying a bias Consider a wire, defined i W/2<y<<W/2, which con-
to the NS junction. The interference between the electromists of 2DEG ¥<<0) and superconductox$0) segments.
and hole channels induced by the normal reflection wadhe phase coherent transmission of the quasiparticle excita-
found to produce a transmission resonance when the bida®ns is described by the Bogoliubov—de Gennes equation
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V\{here;u(x,y) andy(x,y) are the wave fupctlpns of the qua- f,(y)=g,(y)=h,(y)= \/\/:VSin[WW y+§ =y(y).
siparticles. The single-particle Hamiltonian is 5
Ho=[p—eAX,y)]?2m+U(Xx,y)— u, (20  We emphasize that the direction of the magnetic field acting

on the electronlike and holelike excitations is opposite.
whereA andU are the vector and scalar potentials, respec herefore, the edge states that propagate in the same direc-
tively. For simplicity, we neglect the self-consistency of the fion are shifted toward the same boundary of the wire. In the
pair potentialA,® and assume that=A, in the supercon- Superconductor, the wave function is
ductor and 0 in the semiconductor. The step-function model
is valid when the wire widthW is small compared to the S B i x
superconducting coherence length=%vg/(2A) (which \Ifn(x,y)—El Cin| g, | €™ 1Y)
represents the size of the Cooper pair when the resistiv-
ity of the semiconductor is larger than the normal resistivity a.
of the superconductdf. Throughout this paper, we sag, to n zl: Dm( ,8) e 1 Xy (y), ©6)

a4

be 2% of the Fermi energy in the 2DEG. This value corre-

sponds to that deduced in the experiment by Takayanagi and

Akazaki® The conditioné>W to justify the step-function Where the wave number is given by
model is satisfied whekeW/7<50/7. The magnetic field is 2 2 2
assumed to be present only in the 2DEG region. This model ﬁ_thZ _ h_( '_77) +i \/m @
corresponds to the situation where the field is completely 2m™ 2m\W/ o =

excluded from the superconductor by the Meissner effect. Ir\]Nhen the excitation energy is below the superconducting

this case, a large current supported by a gradient of the ordera A~ the sinale-particle excitations decay in the SUpercon-
parameter must flow at the edge of the superconductor f PRo, gle-p y P

the small penetration depth. Experimentally, type-I| super-dUCtor' In this case, we have

conductors are typically utilized to maintain the supercon- o

ductivity in high magnetic fields. The field partially pen- @ =a-=1N2, (8
etrates the superconductor in the form of thin flux tubes. The >

conclusions of this paper, at least qualitatively, hold in either B.=p* :*"“f_'\/Ao_8 8b)
case, since nonuniformities iA on length scales smaller P N

than & do not alter the dynamics of the quasiparticles. It ) ) o

should be emphasized that we focus most of our attention t&" the other hand, the single-particle excitations are trans-
the zero-bias conductance, and so the conductance of tigitted through the superconductor wher-Ao. The wave
system is primarily determined by the transport properties ofunction is written in the well-known forna, = 8_=u, and

the quasiparticles in the normal regibn. a_=p,=vo, with

When the pair potential is zero, the electronlike and hole-
like excitations are decoupled. If we choose the vector po- UZZE 1+ VSZ_Aé 12 ©)
tential to be A=(0,0,0) for x=0 and A=(0,Bx,0) for 073 e vo

x<0, the wave function in the normal region when an elec-

tronlike excitation is injected into the NS junction through | e amplitude of the modes,, By, Cyn, andDyy is de-
moden is given by termined by the continuity of the wave function and its nor-

mal derivative.
By virtue of the current conservation, the current can be

N 1 " eB evaluated in the normal region and is given, within the ap-
Vixy)={o|€ “an(Y)eX4 i TXY) proximation by Blonder, Tinkham, and Klapwijk, &
2¢? o
N B =253 [ oo —ev—fo(e)]
+> An o|e ™ g (y)ex i7xy ln J-e
[
><[:I-_Reejn"'Rhe,ln]dsy (10
0 K x .eB where f is the distribution function. The reflection prob-
+§|: Bin| 1 |€™ "hi(y)exp —i—Z-xy|. abilities are related to the amplitude of the backscattered
modes as
3
ReeJn:(Ul-'—/UrT”Alnlz’ (11a

WhenB=0, the wave number and the transverse wave func- . )
tion, respectively, become Riein=(vy /vy)[Binl?, (11b
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the quantization of the conductance in narrow wires of nor-
mal conductors is improved in magnetic fiefdghe quanti-
zation in the NS system rapidly deteriorates, indicating the
breakdown of the retroproperty by magnetic fields. For
hw>0.2uy, the conductance exhibits an oscillation whose
period is unrelated to the magnetic depopulation of the sub-
bands. Due to overlap of the contributions from different
modes, the oscillation shows fluctuations when multiple
modes are occupied. In the single-mode regime, the conduc-
tance vanishes completely at the minima. We also find that
the dip is Lorentzian shaped. It is therefore suggested that the
high-field oscillation originates from transmission resonance
through quasibound states, which are plausibly induced
around the NS interface by the magnetic fil®Dn the other
hand, the conductance does not reaef/ at the maxima.
Moreover, the peak value is suppressed for larger magnetic
fields.
The normal reflection is increased for cutyéoy increas-
ing ug relative towy . The steplike structure at low magnetic
fields changes to a SdH-like oscillatiéhh’ The oscillation
amplitude increases when the normal reflection is enhanced
Foc/y by increasing the ratio of the Fermi energies. It has been
shown that the two-terminal conductance of normal conduc-
The number of modeN whenV=0 is indicated by the dotted line. f[or.s develops.dips near the moqe .thresholds when a disorder
The dashed line indicates the conductance value expected when tﬁelntroduced into the systeilﬁ.Thls is because of the strong

Andreev reflection is perfect, 242e?/h. Curvesa-c are shown Scattering due to the long duration time for energies just
with an expanded scale in the inset by solid, dashed, and dotte@Pove the thresholds, and to the quasibound states induced

lines, respectively. Thin solid lines show and 2. The arrows DY the impurities for energies just below the thresholds. In
indicate the magnetic fields for which the bias dependence is calcontrast to the behavior expected for a 2DEG, the conduc-
culated in Fig. 4. tance becomes maximum at the depopulation threshold of
the Landau levels in the NS systehlote that no disorder is
wherev|" is the velocity of channdl. Note that the probabil- introduced in Fig. 1.In high magnetic fields, the conduc-
ity conservation requirés tance oscillation is again unrelated to the subband depopula-
tion. Although the normal reflection seems to be irrelevant to
s o the existence of the high-field oscillation, the period and the
Z [Reejnt Rhejnt (Ug=v0) (Teejn + Theyn) 1=1, peak height critically depend on the normal-reflection prob-
(12) ability. We later examine the dependence on the normal-
reflection probability in more detail. The Andreev-reflection
where the transmission probabilitigg,), and Ty, Which  probability becomes almost unity when the bias applied to
become relevant whea>A,, are defined as in Eq11). the NS junction approaches the superconducting gap. Curve
Using Reejn and Ry evaluated ak=eV, the differential ¢, for whicheV=0.999,, hence resembles cureedespite
conductance af=0 K is given by the Takane-Ebisawa the nonuniform Fermi energy. As the wavelength for the
formulat? electronlike and holelike excitations is not identical when
V+0, the number of the steps doubles. When the bias is

n
o

24f~- keW/m=12.5

—_
[=)
T

diZdv  (units of 2e°/h)

di/dv  (units of 2¢°/h)

FIG. 1. Differential conductance as a function of magnetic field.

_dl 2e? larger than the gap, the single-particle excitations can propa-
G(V)= N _ h N-— % Reein+ % Rhein |, (13) gate in the superconductor. The conductance shown by curve
' ' d exhibits a step structure with the height a#2h, which is
whereN is the number of incident modes. typical in normal conductors. The quantization becomes al-
most perfect in high magnetic fields. We find that the deficit
IIl. MAGNETOCONDUCTANCE OF NS JUNCTIONS in the current due to the normal reflection is exactly compen-

sated by the Andreev reflectidf Thus the nearly complete
Figure 1 shows the differential conductance as a functioguantization of the conductance does not necessarily mean

of the magnetic field. Note thatu,/fw. roughly corre- the absence of the reflection in the NS system.

sponds to the Landau-level filling factor, where the factor 2 The conductance oscillation is shown in Fig. 2 for three
is the spin degeneracy. For curaethe Fermi energyuy  wire widths. The high-field oscillation shows clear single
=#%2kE/2m in the 2DEG is chosen to be identical to that in periodicity when only the lowest Landau level is occupied.
the superconductogs. The quasiparticles are almost per- The period becomes smaller for wider wires. The critical
fectly Andreev reflected, resulting in the quantization of themagnetic field for the transition between the two types of
zero-field conductance in units 0% h.***When the num-  oscillation is smaller for wider wires. Therefore, we can ex-
ber of propagating modédslotted ling changes with increas- pect the low-field conductance to exhibit an additional oscil-
ing magnetic field, the conductance drops abruptly. AlthougHation while an individual Landau level is being depopulated
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FIG. 2. Differential conductance for three widths of the wire.
Dotted lines indicate the number of moddsvhenV=0.

if the wire width is sufficiently large compared to the Fermi
wavelengtt In this regime, however, the oscillation would
be fairly irregular, in particular for wider wires, due to the

overlap of oscillations generated by the multiple modes
WhenW=> ¢, the pair potential can no longer be treated a
uniform. The phase shift associated with the Andreev reflec
tion acquires a fluctuation, which will result in a suppression
of the resonance effect. At finite temperatures, the effectiv
wire width is anticipated to be limited by the phase coher-

ence length.

The conductance reveals a periodic oscillation wiWérs
varied in the single-mode regime. We find that the perio
SW crucially depends on the magnetic field and the rati
msl uy Of the Fermi energie@ig. 3). Whenfiw . <(>) wy,
the period 6W is smaller(largep for larger ug/uy. The
period becomes nearly independent @/ when fiw,

THMN-

Ag/uN=0.02

ke SW/n

ey

FIG. 3. PeriodSW of transmission resonance in the single-mod
regime.

ev/A,

FIG. 4. Bias dependence of the differential conductance for the
magnetic fields indicated in the inset of Fig. 1. The inset shows a
rapid oscillation aeV~ A for hw/uy=0.099.

We calculated the bias dependence of the differential con-
ductance(Fig. 4) for the magnetic fields indicated by the
arrows in the inset of Fig. 1. The conductance when the
Andreev-reflection probability is nearly unity decreases more
quickly with increasing magnetic field than it does when the
S ) N
normal-reflection probability is large. Therefore, one can de-
fine two regimes using the magnetic field at which the curves
Sross. In the low-field regime, the conductance always in-
Creases wherV approaches\, due to the enhanced An-
dreev reflection. On the other hand, the three curves com-
pared in the inset of Fig. 1 roughly take the same value at the
dminima of the sinusoidal oscillation in the high-field regime.
0Correspondingly, the broad peakel~ A, is found to turn
into a sharp dip in Fig. 4. Because of the interference effect
resulting from the bias-induced breakdown of the retroprop-

erty, a rapid oscillation appears in the conductance véén

eteletetetetetelelotstelele!
T e
edetetleleteteleteletodolet
Rttt ete et ta e %tetele!

FIG. 5. Classical trajectory of quasiparticle excitations in the
presence of a magnetic field. Filled and open circles represent the
eelectronlike and holelike excitations, respectively. The supercon-
ducting region is indicated by the hatched area.
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FIG. 6. Distribution of equilibrium current carried k) elec-
tronlike and(b) holelike excitations for a minimum of the conduc-
tance,G=0, athw./uny=1.047. An electronlike excitation is inci-
dent from the lower-left corner. Total current density and
probability density are shown iiic) and (d), respectively. The
length of the arrows ia) and (b) is normalized using a common
factor. HerekeW/7m=7.5, ug= uy, andV=0.

FIG. 7. Distribution of equilibrium current carried k@) elec-
tronlike and(b) holelike excitations for a maximum of the conduc-
tance,G=1.75x 2e?/h, athw./uy=0.82. An electronlike excita-
tion is incident from the lower-left corner. Helg W/ 7=7.5, ug
=un, andV=0.

where the currentgd, and J,, carried, respectively, by the

. 7 A . electronlike and holelike excitations, are given by
is near Ay,." The oscillation begins at smaller values of

eVIAg when Ag/uy is increased as the difference in the et e?
wavelengths of the electronlike and holelike excitations be- Je(X,y) =~ |m(U*VU)—EA|U|2, (1539
comes larger.
eh . e’
IV. CURRENT DISTRIBUTION In(x.y)= —=Im(* Vo) +—Alv[* (15b)

In terms of the classical trajectory, the reflection of theThe current density satisfies the continuity equation
quasiparticles from the NS interface is described as illus-

trated in Fig. 5. Let us restrict our discussion to the case of V-Jo=(4e/h) Im(Au*v). (16
V.=0.. If the Andreev reflection is perfect,. thfa incident qua- 5.0 can also define the probability density

siparticle changes from one type of excitation to the other
after each reflection. When the quasiparticle eventually Jo(x,y)=[Ju(X,y) = Jn(X,y) /e (17)
reaches the boundary at the other side of the wire, it returns . POy = .e( Y _ h(_ v

to the reservoir connected to the normal wire through eithefor which the conservation law is given by

the electron or the hole channels. The conductance will thus V.o 1
oscillate when the wire width is varied by an amount which Jp=0. (18)

is roughly given by the cyclotron diametky=27ike/eB. A |n the normal side of the NS junction, the current is carried
close relation of this classical trajectory to the high-field os-py the electronlike and holelike excitations alternately after
cillation is suggested by the distribution of the current. gyccessive reflections. For Figs. 6 and 7\ in the normal
In Figs. 6 and 7, we show the current density defined byregion is estimated, respectively, to be 0.16 and 0.21. These
values roughly correspond to the diameter of the current loop
Jo(X,y)=Je(X,y) +In(X,Y), (14)  at the interface. WhehlV is an even-integer multiple of the
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loop diameter, the quasiparticle leaves the system through
the electron channels, giving rise to the conductance minima.

We notice that the period plotted in Fig. 3 possesses a
universality KeW/m)(fiwe/uy)~2.51 at ug~uy. This
value is in excellent agreement with the one#Bkxpected
when SW=2I.. The amplitude of the high-field oscillation
decreases drastically when the normal reflection becomes
stronger as the alternate arrival of the electronlike and hole-
like excitations is obscured. We also notice that the transition
magnetic field between the two regimes is well described by
a condition 2.~W, indicating that the quasiparticles are
multiply reflected from the NS interface in the high-
magnetic-field regime. These observations are consistent
with the classical interpretation. However, this mechanism
does not anticipate the complete disappearance of the con-
ductance. Although the detail is not clear at the moment, the
guantum-mechanical effect in the superconductor is expected
to have produced the quasibound states. We emphasize that ) o ) S
the current distributions for the minima and the maxima of FIG- 8. Edge-state configuration in four-terminal NS junction.
the conductance are remarkably similar. This is unexpectedh® superconductor lead is indicated by the hatched region. The
since the current distribution at the resonance condifiog. solid and.dotted_llm_es repr_esent the et_nlge states_ of the electronlike
6) would reflect the standing wave pattern of the probabilityan.d _holellke excitationsy; is the chemical potential of the reser-
distribution of the quasibound state. voir i, andl; is the current.

Note that, despite the absence of the magnetic field, Vor\hhereqs is the magnetic flux that threads through the area

tices al’(i created in the superconduct_or region. Such \(ortlceesnCIosed by the electron and hole trajectofi#mded area in
whenB=0 were reported to appear in a nonuniform inter-

acting system as a consequence of the gauge ZeThe Fig. 5, ¢o=h/e, and 6, is the phase shift arising from the

circular vortices in the electron and the hole current are Canr_eflectlon. The phase shift due to the wave number is inde-

celed in the total current distribution in such a way that el_pendent of the center coordinate of the cyclotron orbit. The

liptic vortices are left. The flow of the probability current in AB flux ¢, on the other hand, depends on the center coordi-

. . nate, and is zero if the orbit center is located at the interface.
the superconductor stirred by the edge state in the 2DEG i urther studies are hence required to find out if the phase

relaxed by creating a chain of vortices and antivortices. For odulation survives after all contributions with various
comparison, we also examined the current distribution in g

2DEG wire with a constant width. The magnetic field is Fhasﬁ ?hlfts, due;g ?ﬁerent center coordinates and reflec-
similarly assumed to b& for x<0 and 0 forx>0. The lon nistory, are added up.
incident edge state is totally reflected by placing a barrier
potentialU (= u,) in the region ofx>0 instead of the su- V. HALL RESISTANCE IN NS JUNCTIONS
perconductor. In this case, however, we did not find the vor-
tices in the barrier regiofnot shown.?

We point out that the skipping orbit along the NS inter-
face can give rise to an Aharonov-Boh®B)-type interfer-

Finally, let us consider the Hall resistance in NS junc-
tions. The current flows across the NS junction horizontally,
while the Hall voltage is measured between the upper and

. A lower leads in Fig. 8. We choose the polarity of the magnetic
ence effect when the normal reflection probability is non-gq 4 o beu > u>uy . Therefore, electronlike excitations

zero. Suppose that an electronlike excitation remains to be afith energies between, and u are injected into the cross

electronl_|ke excitation after two consecuﬂ_ve r_eflect|ons fromjunction from the lower lead, whereas holelike excitations
the NS interface. If the Andreev reflection is not perfect

oo : 'with energies between and . are injected from the upper
there are two possibilities for this to happen: wo AndreevIead. The current in the norrrL;aI leads is evaluated using the

reflections or two normal reflections. The phase differencq_ambert formula® which extended Bitiker's approact to
between these two probability amplitudes is modulated bthe NS system. ’We restrict our discussion to the zero-bias
the magnetic field, and this leads to a conductance oscillar-

tion. This interf foct be the oriain of e/ esistance. At =0, the group velocities of the electronlike
ion. This interference effect may be the origin of ja/ uy and holelike excitations are equal to the Fermi velocity.

dependence of the period in Fig. 3. The phase shift is ob; - o _
tained by the line integral of the wave number and the vectoﬁence’ the currerit , for instance, is given ar=0 by
potential along the trajectory. It can be shown that, between| _ s>o/m\r(N—R! +R! — ) —(TL—TlL _
the electron and hole paths, the phase shift due to the wave' ( s et Rine) (11~ 1) = (Tee™ The) (11— 1)
number adds constructively, whereas that due to the vector — (T =TI (= o)1, (20)
potential adds destructively. This is opposite to the phase . . o .
cancellation for the Andreev-reflected trajectéfyThere- WwhereR,, is the reflection probability in the left-hand side
fore, the phase accumulation is given by lead for quasiparticles of type to quasiparticles of type
and T'p’(, the transmission probability for quasiparticles of
type o in lead | to quasiparticles of type in leadi. As
80= kel 427 hl po+ 6y, (19 suggested in Figs. 6 and 7, the quasiparticles injected from
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the left-hand sidéuppe) lead will be totally transmitted into  where the lowesK edge states are assumed to be transmitted
the same type of the quasiparticles in the lowleft-hand through the upper lead. In the adiabatic limit, the Andreev-
side lead when the edge states are well-established. Theeflected quasiparticles are transmitted into the upper lead by

expression for the current, thus, reduces to theK lower-lying edge states and into the left-hand side lead
by theN-K higher-lying edge states. Notice thefj} + T is
l1=(2e/h)[N(py— p) +N(p—py) 1, (218 the total Andreev reflection probability and is independent of
the gate voltage. Although the absolute value of the Andreev
IL=(2e/h)[N(pL—p) = N(p—p)], (21D reflection probability cannot be determined, the distribution
of the Andreev-reflected quasiparticles among the edge states
lu=(2e/M)[ —N(p—py) +(The —Tee) (m— )] can be estimated from the plateau valueRgf for various

(219  values ofK. It is noteworthy that, in contrast to the case of
[he selective injection and detection of the edge states in the
rormal conductorsRy; is given by the filling factor in the
bulk region, Eq.(22), when the distribution is uniform.

Imposing the conditions for the Hall resistance measuremen
I[,=1 andl =1,=0, we find that the Hall resistance is

Ry=e(u — uy)/1=h/(2e?N). (22

In contrast to the doubling effect in the two-terminal

conductancé? the Hall resistance is not affected by the An- !N conclusion, we have investigated the magnetotransport
dreev reflection from the NS interface, provided that thepropertles in NS junctions. We find that the conductance

s L . L exhibits two types of oscillation for low and high magnetic
frir:%g?he;tctgflaéﬁ ;gstig'?ariae"islzrsgu i\r/tzgr;:obn. %g"\?\lﬂi’nwe fields. The low-field oscillation is associated with the de-
: . S0 9 y population of the Landau levels. The conductance decreases
the current flows in the vertical direction. Note that, at weak

S . " ! in a steplike manner when the Andreev reflection is almost
magnetic fields or in the transition regions between the Halertect whereas the shape changes to a sinusoidal oscillation

plateaus, the Hall resistance is expected to be modified Sigyhen the normal-reflection probability is increased. In high
nificantly by the Andreev reflection. _ magnetic fields, Lorentzian-shaped dips appear periodically
.'Ifhe. mdepgndence &y on the Andreev reflection prob- \yhen the ratio of the wire width and the cyclotron diameter
ability is reminiscent of the independencefj on the par-  is varied. Evidence indicates that the high-field oscillation
tial reflection of the edge states in gated cross junctions Ofyiginates from the skipping orbit along the NS interface. We
normal conductors. The Hall resistance in normal cross junchaye also shown that the Hall resistance in the NS junction is
tions is unaffected when higher-lying edge states are repot affected by the quasiparticle reflection from the NS in-
flected by a potential barrier in one of the leads. Howeverigrface when the interboundary edge state scattering is ab-
when the edge states are partially reflected in two adjacerfent. The plateau value is influenced by the Andreev reflec-
leads,R,, is determined by the number of transmltteed edgetion when higher-lying edge states in the voltage lead are
states rather than the filling factor in the bulk regi8f°We refiected by a gate. The distribution of the Andreev-reflected

therefore expect the influence of the Andreev reflection Quasiparticles among the edge states can be determined by
show up inRy when the number of transmitted edge states ishe selective detection technique.

decreased in the upper lead by a gate. Analyzing the Lambert

VI. SUMMARY
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