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Transport properties of semiconductor-superconductor junctions in quantizing magnetic fields

Y. Takagaki
NTT Basic Research Laboratories, Atsugi, Kanagawa 243-01, Japan

~Received 25 July 1997; revised manuscript received 28 August 1997!

We present the results of a numerical calculation on the quantum transport properties in junctions of a
two-dimensional electron gas and a superconductor in the presence of a perpendicular magnetic field. The
low-field conductance drops in a steplike manner, whenever the Landau levels are depopulated, provided that
quasiparticle excitations are almost perfectly Andreev reflected from the interface. If the normal reflection is
enhanced, the conductance exhibits a sinusoidal oscillation. In contrast to the behavior in conventional con-
ductors, the maxima of the oscillation take place at the depopulation thresholds. In high magnetic fields, a
periodic transmission resonance with a complete disappearance of the conductance is found, irrespective of the
Andreev-reflection probability. The current distribution indicates that this high-field oscillation is ascribed to
the skipping orbit along the interface. We show that the plateau value in the Hall resistance remains unchanged
when one of the leads is replaced by the superconductor. Using the selective edge-state detection technique, the
distribution of Andreev-reflected quasiparticles among the edge states can be evaluated.
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I. INTRODUCTION

Transport properties in ultrasmall normal-conducto
superconductor~NS! junctions have attracted a great deal
attention in recent years. At low temperatures, the phase
formation of quasiparticle excitations is preserved dur
their traversal in the NS system, giving rise to quantum
terference effects in the conductance.1 In addition, the trans-
port can be made ballistic by employing a high-mobility tw
dimensional electron gas~2DEG! confined in semiconducto
heterostructures as the normal conductor.2 Many of the novel
characteristics in the NS system originate from the unus
reflection, known as the Andreev reflection, of the quasip
ticles from the NS interface.3 An electronlike excitation with
energy« below the Fermi level is reflected as a holeli
excitation with energy« above the Fermi level. The
Andreev-reflected quasiparticle exactly follows the traject
of the original quasiparticle~retroproperty!. Moreover, the
phase shift associated with the electronlike excitation and
holelike excitation cancels out in the Andreev-reflected t
jectory. As pointed out by Beenakker,4 the transport proper
ties in the NS system are determined solely by the scatte
characteristics of the quasiparticles in the normal region
the Andreev reflection is perfect. This significantly simplifi
the theoretical calculation.

In real devices, however, the quasiparticles experienc
considerable amount of normal reflection. The Andre
reflection probability approaches unity when the amplitu
of the pair potentialD is much smaller than the Fermi energ
m.3 However, the difference inm in the normal conductor
and the superconductor, and also a potential barrier at the
interface,5 cause the normal reflection. Additional featur
may be anticipated to emerge when the partially normal
flection is made possible.6 The phase cancellation break
down when the retroproperty is disrupted by applying a b
to the NS junction. The interference between the elect
and hole channels induced by the normal reflection w
found to produce a transmission resonance when the
570163-1829/98/57~7!/4009~8!/$15.00
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approaches the superconducting gap.7

In the presence of a magnetic fieldB applied perpendicu-
lar to the 2DEG, the retroproperty is also disturbed since
effective direction ofB acting on the quasiparticles is oppo
site for the electronlike and holelike excitations. The defle
tion of the ballistic trajectories by the magnetic field w
demonstrated in recent experiments.2 Since the superconduc
tivity is destroyed if the magnetic field is strong, previo
studies on the magnetic-field effect were restricted to w
fields. However, a recent experiment reports that the Jos
son coupling in a superconductor-2DEG-superconduc
junction can be intact even atB;8 T by employing NbN as
the superconductor.8

In this paper, we investigate the conductance of NS ju
tions when the in-plane motion of the quasiparticles is La
dau quantized. We find that magnetotransport properties
pend significantly on the Andreev-reflection probabilit
When the Andreev reflection is almost perfect, the tw
terminal conductance exhibits a steplike decrease assoc
with a depopulation of the Landau levels. When the norm
reflection is increased, the conductance exhibits a sinuso
oscillation that resembles the Shubnikov–de Haas oscilla
in the four-terminal resistance. We find that the conducta
becomes maximum near the depopulation threshold of
Landau levels. When the Landau energy\vc , where vc
5eB/m is the cyclotron frequency, is comparable tom, pe-
riodic resonances show up in the conductance. The em
gence of this oscillation does not rely on the normal refl
tion at the NS interface. We examine the distribution of t
current to explore the origin of the resonance states.

II. CALCULATION OF THE TWO-TERMINAL
CONDUCTANCE

Consider a wire, defined in2W/2,y,W/2, which con-
sists of 2DEG (x,0) and superconductor (x.0) segments.
The phase coherent transmission of the quasiparticle ex
tions is described by the Bogoliubov–de Gennes equatio
4009 © 1998 The American Physical Society
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S H0 D~x,y!

D* ~x,y! 2H0* D S u

v D 5«S u

v D , ~1!

whereu(x,y) andv(x,y) are the wave functions of the qua
siparticles. The single-particle Hamiltonian is

H05@p2eA~x,y!#2/2m1U~x,y!2m, ~2!

whereA andU are the vector and scalar potentials, resp
tively. For simplicity, we neglect the self-consistency of t
pair potentialD,9 and assume thatD5D0 in the supercon-
ductor and 0 in the semiconductor. The step-function mo
is valid when the wire widthW is small compared to the
superconducting coherence lengthj5\vF /(2D) ~which
represents the size of the Cooper pair!, or when the resistiv-
ity of the semiconductor is larger than the normal resistiv
of the superconductor.10 Throughout this paper, we setD0 to
be 2% of the Fermi energy in the 2DEG. This value cor
sponds to that deduced in the experiment by Takayanagi
Akazaki.8 The conditionj.W to justify the step-function
model is satisfied whenkFW/p,50/p. The magnetic field is
assumed to be present only in the 2DEG region. This mo
corresponds to the situation where the field is comple
excluded from the superconductor by the Meissner effect
this case, a large current supported by a gradient of the o
parameter must flow at the edge of the superconductor
the small penetration depth. Experimentally, type-II sup
conductors are typically utilized to maintain the superco
ductivity in high magnetic fields. The field partially pen
etrates the superconductor in the form of thin flux tubes. T
conclusions of this paper, at least qualitatively, hold in eit
case, since nonuniformities inD on length scales smalle
than j do not alter the dynamics of the quasiparticles.
should be emphasized that we focus most of our attentio
the zero-bias conductance, and so the conductance o
system is primarily determined by the transport properties
the quasiparticles in the normal region.4

When the pair potential is zero, the electronlike and ho
like excitations are decoupled. If we choose the vector
tential to be A5(0,0,0) for x>0 and A5(0,Bx,0) for
x,0, the wave function in the normal region when an ele
tronlike excitation is injected into the NS junction throug
moden is given by

Cn
N~x,y!5S 1

0D eikn
1xf n~y!expS i

eB

\
xyD

1(
l

AlnS 1

0D e2 ikl
1xgl~y!expS i

eB

\
xyD

1(
l

BlnS 0

1D eikl
2xhl~y!expS 2 i

eB

\
xyD .

~3!

WhenB50, the wave number and the transverse wave fu
tion, respectively, become
-
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65A2m~m6«!

\2
2S lp

W D 2

, ~4!

f l~y!5gl~y!5hl~y!5A2

W
sinH lp

WS y1
W

2 D J [x l~y!.

~5!

We emphasize that the direction of the magnetic field act
on the electronlike and holelike excitations is opposi
Therefore, the edge states that propagate in the same d
tion are shifted toward the same boundary of the wire. In
superconductor, the wave function is

Cn
S~x,y!5(

l
ClnS a1

b1D eiql
1xx l~y!

1(
l

DlnS a2

b2D e2 iql
2xx l~y!, ~6!

where the wave number is given by

\2

2m
ql

625m2
\2

2mS lp

W D 2

6 iAD0
22«2. ~7!

When the excitation energy« is below the superconductin
gapD0, the single-particle excitations decay in the superc
ductor. In this case, we have

a15a251/A2, ~8a!

b15b2* 5
«2 iAD0

22«2

A2D0

. ~8b!

On the other hand, the single-particle excitations are tra
mitted through the superconductor when«.D0. The wave
function is written in the well-known forma15b25u0 and
a25b15v0, with

u0
25

1

2
S 11

A«22D0
2

«
D 512v0

2 . ~9!

The amplitude of the modesAln , Bln , Cln , andDln is de-
termined by the continuity of the wave function and its no
mal derivative.

By virtue of the current conservation, the current can
evaluated in the normal region and is given, within the a
proximation by Blonder, Tinkham, and Klapwijk, as5,11

I ~V!5
2e2

h (
l ,n

E
2`

`

@ f 0~«2eV!2 f 0~«!#

3@12Ree,ln1Rhe,ln#d«, ~10!

where f 0 is the distribution function. The reflection prob
abilities are related to the amplitude of the backscatte
modes as

Ree,ln5~v l
1/vn

1!uAlnu2, ~11a!

Rhe,ln5~v l
2/vn

1!uBlnu2, ~11b!
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57 4011TRANSPORT PROPERTIES OF SEMICONDUCTOR- . . .
wherev l
6 is the velocity of channell . Note that the probabil-

ity conservation requires5

(
l

@Ree,ln1Rhe,ln1~u0
22v0

2!~Tee,ln1The,ln!#51,

~12!

where the transmission probabilitiesTee,ln andThe,ln , which
become relevant when«.D0, are defined as in Eq.~11!.
Using Ree,ln and Rhe,ln evaluated at«5eV, the differential
conductance atT50 K is given by the Takane-Ebisaw
formula12

G~V![
]I

]V
5

2e2

h S N2(
l ,n

Ree,ln1(
l ,n

Rhe,lnD , ~13!

whereN is the number of incident modes.

III. MAGNETOCONDUCTANCE OF NS JUNCTIONS

Figure 1 shows the differential conductance as a func
of the magnetic field. Note that 2mN /\vc roughly corre-
sponds to the Landau-level filling factor, where the facto
is the spin degeneracy. For curvea, the Fermi energymN

5\2kF
2/2m in the 2DEG is chosen to be identical to that

the superconductor,mS . The quasiparticles are almost pe
fectly Andreev reflected, resulting in the quantization of t
zero-field conductance in units of 4e2/h.13,14When the num-
ber of propagating modes~dotted line! changes with increas
ing magnetic field, the conductance drops abruptly. Althou

FIG. 1. Differential conductance as a function of magnetic fie
The number of modesN whenV50 is indicated by the dotted line
The dashed line indicates the conductance value expected whe
Andreev reflection is perfect, 2432e2/h. Curvesa-c are shown
with an expanded scale in the inset by solid, dashed, and do
lines, respectively. Thin solid lines showN and 2N. The arrows
indicate the magnetic fields for which the bias dependence is
culated in Fig. 4.
n

2

h

the quantization of the conductance in narrow wires of n
mal conductors is improved in magnetic fields,15 the quanti-
zation in the NS system rapidly deteriorates, indicating
breakdown of the retroproperty by magnetic fields. F
\vc.0.2mN , the conductance exhibits an oscillation who
period is unrelated to the magnetic depopulation of the s
bands. Due to overlap of the contributions from differe
modes, the oscillation shows fluctuations when multip
modes are occupied. In the single-mode regime, the con
tance vanishes completely at the minima. We also find t
the dip is Lorentzian shaped. It is therefore suggested tha
high-field oscillation originates from transmission resonan
through quasibound states, which are plausibly indu
around the NS interface by the magnetic field.16 On the other
hand, the conductance does not reach 4e2/h at the maxima.
Moreover, the peak value is suppressed for larger magn
fields.

The normal reflection is increased for curveb by increas-
ing mS relative tomN . The steplike structure at low magnet
fields changes to a SdH-like oscillation.8,17 The oscillation
amplitude increases when the normal reflection is enhan
by increasing the ratio of the Fermi energies. It has be
shown that the two-terminal conductance of normal cond
tors develops dips near the mode thresholds when a diso
is introduced into the system.18 This is because of the stron
scattering due to the long duration time for energies j
above the thresholds, and to the quasibound states ind
by the impurities for energies just below the thresholds.
contrast to the behavior expected for a 2DEG, the cond
tance becomes maximum at the depopulation threshold
the Landau levels in the NS system.~Note that no disorder is
introduced in Fig. 1.! In high magnetic fields, the conduc
tance oscillation is again unrelated to the subband depop
tion. Although the normal reflection seems to be irrelevan
the existence of the high-field oscillation, the period and
peak height critically depend on the normal-reflection pro
ability. We later examine the dependence on the norm
reflection probability in more detail. The Andreev-reflectio
probability becomes almost unity when the bias applied
the NS junction approaches the superconducting gap. C
c, for which eV50.999D0, hence resembles curvea despite
the nonuniform Fermi energy. As the wavelength for t
electronlike and holelike excitations is not identical wh
VÞ0, the number of the steps doubles. When the bia
larger than the gap, the single-particle excitations can pro
gate in the superconductor. The conductance shown by c
d exhibits a step structure with the height of 2e2/h, which is
typical in normal conductors. The quantization becomes
most perfect in high magnetic fields. We find that the defi
in the current due to the normal reflection is exactly comp
sated by the Andreev reflection.19 Thus the nearly complete
quantization of the conductance does not necessarily m
the absence of the reflection in the NS system.

The conductance oscillation is shown in Fig. 2 for thr
wire widths. The high-field oscillation shows clear sing
periodicity when only the lowest Landau level is occupie
The period becomes smaller for wider wires. The critic
magnetic field for the transition between the two types
oscillation is smaller for wider wires. Therefore, we can e
pect the low-field conductance to exhibit an additional os
lation while an individual Landau level is being depopulat
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4012 57Y. TAKAGAKI
if the wire width is sufficiently large compared to the Ferm
wavelength.8 In this regime, however, the oscillation wou
be fairly irregular, in particular for wider wires, due to th
overlap of oscillations generated by the multiple mod
When W.j, the pair potential can no longer be treated
uniform. The phase shift associated with the Andreev refl
tion acquires a fluctuation, which will result in a suppress
of the resonance effect. At finite temperatures, the effec
wire width is anticipated to be limited by the phase coh
ence length.

The conductance reveals a periodic oscillation whenW is
varied in the single-mode regime. We find that the per
dW crucially depends on the magnetic field and the ra
mS /mN of the Fermi energies~Fig. 3!. When\vc,(.) mN ,
the perioddW is smaller ~larger! for larger mS /mN . The
period becomes nearly independent ofmS /mN when \vc
5mN .

FIG. 2. Differential conductance for three widths of the wir
Dotted lines indicate the number of modesN whenV50.

FIG. 3. PerioddW of transmission resonance in the single-mo
regime.
.
s
c-
n
e
-

d
o

We calculated the bias dependence of the differential c
ductance~Fig. 4! for the magnetic fields indicated by th
arrows in the inset of Fig. 1. The conductance when
Andreev-reflection probability is nearly unity decreases m
quickly with increasing magnetic field than it does when t
normal-reflection probability is large. Therefore, one can
fine two regimes using the magnetic field at which the cur
cross. In the low-field regime, the conductance always
creases wheneV approachesD0 due to the enhanced An
dreev reflection. On the other hand, the three curves c
pared in the inset of Fig. 1 roughly take the same value at
minima of the sinusoidal oscillation in the high-field regim
Correspondingly, the broad peak ateV'D0 is found to turn
into a sharp dip in Fig. 4. Because of the interference eff
resulting from the bias-induced breakdown of the retropr
erty, a rapid oscillation appears in the conductance wheneV

FIG. 5. Classical trajectory of quasiparticle excitations in t
presence of a magnetic field. Filled and open circles represen
electronlike and holelike excitations, respectively. The superc
ducting region is indicated by the hatched area.

FIG. 4. Bias dependence of the differential conductance for
magnetic fields indicated in the inset of Fig. 1. The inset show
rapid oscillation ateV;D0 for \vc /mN50.099.
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57 4013TRANSPORT PROPERTIES OF SEMICONDUCTOR- . . .
is near D0.7 The oscillation begins at smaller values
eV/D0 when D0 /mN is increased as the difference in th
wavelengths of the electronlike and holelike excitations
comes larger.

IV. CURRENT DISTRIBUTION

In terms of the classical trajectory, the reflection of t
quasiparticles from the NS interface is described as ill
trated in Fig. 5. Let us restrict our discussion to the case
V50. If the Andreev reflection is perfect, the incident qu
siparticle changes from one type of excitation to the ot
after each reflection. When the quasiparticle eventu
reaches the boundary at the other side of the wire, it retu
to the reservoir connected to the normal wire through eit
the electron or the hole channels. The conductance will t
oscillate when the wire width is varied by an amount whi
is roughly given by the cyclotron diameterl c52\kF /eB. A
close relation of this classical trajectory to the high-field o
cillation is suggested by the distribution of the current.

In Figs. 6 and 7, we show the current density defined

JQ~x,y!5Je~x,y!1Jh~x,y!, ~14!

FIG. 6. Distribution of equilibrium current carried by~a! elec-
tronlike and~b! holelike excitations for a minimum of the conduc
tance,G50, at\vc /mN51.047. An electronlike excitation is inci
dent from the lower-left corner. Total current density a
probability density are shown in~c! and ~d!, respectively. The
length of the arrows in~a! and ~b! is normalized using a commo
factor. HerekFW/p57.5, mS5mN , andV50.
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where the currentsJe and Jh carried, respectively, by the
electronlike and holelike excitations, are given by

Je~x,y!5
e\

m
Im~u* ¹u!2

e2

m
Auuu2, ~15a!

Jh~x,y!5
e\

m
Im~v* ¹v !1

e2

m
Auvu2. ~15b!

The current density satisfies the continuity equation

¹•JQ5~4e/\! Im~Du* v !. ~16!

One can also define the probability density

JP~x,y!5@Je~x,y!2Jh~x,y!#/e, ~17!

for which the conservation law is given by

¹•JP50. ~18!

In the normal side of the NS junction, the current is carri
by the electronlike and holelike excitations alternately af
successive reflections. For Figs. 6 and 7,l c /W in the normal
region is estimated, respectively, to be 0.16 and 0.21. Th
values roughly correspond to the diameter of the current l
at the interface. WhenW is an even-integer multiple of the

FIG. 7. Distribution of equilibrium current carried by~a! elec-
tronlike and~b! holelike excitations for a maximum of the condu
tance,G51.7532e2/h, at \vc /mN50.82. An electronlike excita-
tion is incident from the lower-left corner. HerekFW/p57.5, mS

5mN , andV50.
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4014 57Y. TAKAGAKI
loop diameter, the quasiparticle leaves the system thro
the electron channels, giving rise to the conductance mini

We notice that the period plotted in Fig. 3 possesse
universality (kFdW/p)(\vc /mN)'2.51 at mS'mN . This
value is in excellent agreement with the one (8/p) expected
when dW52l c . The amplitude of the high-field oscillatio
decreases drastically when the normal reflection beco
stronger as the alternate arrival of the electronlike and h
like excitations is obscured. We also notice that the transi
magnetic field between the two regimes is well described
a condition 2l c'W, indicating that the quasiparticles a
multiply reflected from the NS interface in the high
magnetic-field regime. These observations are consis
with the classical interpretation. However, this mechani
does not anticipate the complete disappearance of the
ductance. Although the detail is not clear at the moment,
quantum-mechanical effect in the superconductor is expe
to have produced the quasibound states. We emphasize
the current distributions for the minima and the maxima
the conductance are remarkably similar. This is unexpec
since the current distribution at the resonance condition~Fig.
6! would reflect the standing wave pattern of the probabi
distribution of the quasibound state.

Note that, despite the absence of the magnetic field,
tices are created in the superconductor region. Such vor
when B50 were reported to appear in a nonuniform inte
acting system as a consequence of the gauge field.20 The
circular vortices in the electron and the hole current are c
celed in the total current distribution in such a way that
liptic vortices are left. The flow of the probability current i
the superconductor stirred by the edge state in the 2DE
relaxed by creating a chain of vortices and antivortices.
comparison, we also examined the current distribution i
2DEG wire with a constant width. The magnetic field
similarly assumed to beB for x,0 and 0 forx.0. The
incident edge state is totally reflected by placing a bar
potentialU (>mN) in the region ofx.0 instead of the su-
perconductor. In this case, however, we did not find the v
tices in the barrier region~not shown!.21

We point out that the skipping orbit along the NS inte
face can give rise to an Aharonov-Bohm~AB!-type interfer-
ence effect when the normal reflection probability is no
zero. Suppose that an electronlike excitation remains to b
electronlike excitation after two consecutive reflections fro
the NS interface. If the Andreev reflection is not perfe
there are two possibilities for this to happen: two Andre
reflections or two normal reflections. The phase differen
between these two probability amplitudes is modulated
the magnetic field, and this leads to a conductance osc
tion. This interference effect may be the origin of themS /mN
dependence of the period in Fig. 3. The phase shift is
tained by the line integral of the wave number and the vec
potential along the trajectory. It can be shown that, betw
the electron and hole paths, the phase shift due to the w
number adds constructively, whereas that due to the ve
potential adds destructively. This is opposite to the ph
cancellation for the Andreev-reflected trajectory.22 There-
fore, the phase accumulation is given by

du5pkFl c12pf/f01u0 , ~19!
gh
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wheref is the magnetic flux that threads through the a
enclosed by the electron and hole trajectories~shaded area in
Fig. 5!, f05h/e, andu0 is the phase shift arising from th
reflection. The phase shift due to the wave number is in
pendent of the center coordinate of the cyclotron orbit. T
AB flux f, on the other hand, depends on the center coo
nate, and is zero if the orbit center is located at the interfa
Further studies are hence required to find out if the ph
modulation survives after all contributions with variou
phase shifts, due to different center coordinates and refl
tion history, are added up.

V. HALL RESISTANCE IN NS JUNCTIONS

Finally, let us consider the Hall resistance in NS jun
tions. The current flows across the NS junction horizonta
while the Hall voltage is measured between the upper
lower leads in Fig. 8. We choose the polarity of the magne
field to bemL.m.mU . Therefore, electronlike excitation
with energies betweenmL andm are injected into the cros
junction from the lower lead, whereas holelike excitatio
with energies betweenm andmU are injected from the uppe
lead. The current in the normal leads is evaluated using
Lambert formula,23 which extended Bu¨ttiker’s approach24 to
the NS system. We restrict our discussion to the zero-b
resistance. At«50, the group velocities of the electronlik
and holelike excitations are equal to the Fermi veloci
Hence, the currentI l , for instance, is given atT50 by

I l5~2e/h!@~N2Ree
l 1Rhe

l !~m l2m!2~Tee
lL2The

lL !~mL2m!

2~Teh
lU2Thh

lU !~m2mU!#, ~20!

whereRrs
l is the reflection probability in the left-hand sid

lead for quasiparticles of types to quasiparticles of typer
and Trs

i j the transmission probability for quasiparticles
type s in lead j to quasiparticles of typer in lead i . As
suggested in Figs. 6 and 7, the quasiparticles injected f

FIG. 8. Edge-state configuration in four-terminal NS junctio
The superconductor lead is indicated by the hatched region.
solid and dotted lines represent the edge states of the electro
and holelike excitations.m i is the chemical potential of the rese
voir i , andI i is the current.
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57 4015TRANSPORT PROPERTIES OF SEMICONDUCTOR- . . .
the left-hand side~upper! lead will be totally transmitted into
the same type of the quasiparticles in the lower~left-hand
side! lead when the edge states are well-established.
expression for the current, thus, reduces to

I l5~2e/h!@N~m l2m!1N~m2mU!#, ~21a!

I L5~2e/h!@N~mL2m!2N~m l2m!#, ~21b!

I U5~2e/h!@2N~m2mU!1~The
UL2Tee

UL!~mL2m!#.
~21c!

Imposing the conditions for the Hall resistance measurem
I l5I and I L5I U50, we find that the Hall resistance is

RH[e~mL2mU!/I 5h/~2e2N!. ~22!

In contrast to the doubling effect in the two-termin
conductance,13 the Hall resistance is not affected by the A
dreev reflection from the NS interface, provided that t
magnetic field is in the Hall plateau region. Similarly, w
find that the Hall resistance is also given by Eq.~22! when
the current flows in the vertical direction. Note that, at we
magnetic fields or in the transition regions between the H
plateaus, the Hall resistance is expected to be modified
nificantly by the Andreev reflection.

The independence ofRH on the Andreev reflection prob
ability is reminiscent of the independence ofRH on the par-
tial reflection of the edge states in gated cross junctions
normal conductors. The Hall resistance in normal cross ju
tions is unaffected when higher-lying edge states are
flected by a potential barrier in one of the leads. Howev
when the edge states are partially reflected in two adja
leads,RH is determined by the number of transmitted ed
states rather than the filling factor in the bulk region.25,26We
therefore expect the influence of the Andreev reflection
show up inRH when the number of transmitted edge state
decreased in the upper lead by a gate. Analyzing the Lam
formula, we indeed find that

RH5
h

2e2

Teh
UL

K~Teh
UL1Teh

lL !
, ~23!
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where the lowestK edge states are assumed to be transmi
through the upper lead. In the adiabatic limit, the Andree
reflected quasiparticles are transmitted into the upper lea
theK lower-lying edge states and into the left-hand side le
by theN-K higher-lying edge states. Notice thatTUL

eh 1TlL
eh is

the total Andreev reflection probability and is independent
the gate voltage. Although the absolute value of the Andr
reflection probability cannot be determined, the distributi
of the Andreev-reflected quasiparticles among the edge s
can be estimated from the plateau value ofRH for various
values ofK. It is noteworthy that, in contrast to the case
the selective injection and detection of the edge states in
normal conductors,RH is given by the filling factor in the
bulk region, Eq.~22!, when the distribution is uniform.

VI. SUMMARY

In conclusion, we have investigated the magnetotrans
properties in NS junctions. We find that the conductan
exhibits two types of oscillation for low and high magnet
fields. The low-field oscillation is associated with the d
population of the Landau levels. The conductance decre
in a steplike manner when the Andreev reflection is alm
perfect, whereas the shape changes to a sinusoidal oscill
when the normal-reflection probability is increased. In hi
magnetic fields, Lorentzian-shaped dips appear periodic
when the ratio of the wire width and the cyclotron diame
is varied. Evidence indicates that the high-field oscillati
originates from the skipping orbit along the NS interface. W
have also shown that the Hall resistance in the NS junctio
not affected by the quasiparticle reflection from the NS
terface when the interboundary edge state scattering is
sent. The plateau value is influenced by the Andreev refl
tion when higher-lying edge states in the voltage lead
reflected by a gate. The distribution of the Andreev-reflec
quasiparticles among the edge states can be determine
the selective detection technique.
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