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Confined-phonon effects in the band-gap renormalization of semiconductor quantum wires
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We calculate the band-gap renormalization in quasi-one-dimensional semiconductor quantum wires includ-
ing carrier-carrier and carrier-phonon interactions. We use the quasistatic approximation to obtain the self-
energies at the band edge that define the band-gap renormalization. The random-phase approximation at finite
temperature is employed to describe the screening effects. We find that confined LO-phonon modes through
their interaction with the electrons and holes modify the band gap significantly and produce a larger value than
the statice, approximation[S0163-182@8)01007-§

I. INTRODUCTION gap data with the available calculations, Cingolatial®
pointed out the need for more realistic calculations. Density

A dense electron-hole plasma being formed in a semicondependence of the BGR in Q1D systems was first considered
ductor under intense laser excitation comprises an interestirigy Benner and Hatfgvithin the quasistatic approximation as
many-body system. Screening of the Coulomb interactiorpreviously employed for 2D and 3D systefs®® Hu and
among the charge carriers renormalizes the single-particlbas Sarmé also calculated the BGR, neglecting the hole
properties. A notable phenomenon is the band-gap renormabopulation and considering an electron plasma confined in
ization (BGR) as a function of the plasma density, which is the lowest conduction subband only. These results are in
important to determine the emission wavelength of coherentather close agreement with the measurem@attough the
emitters as being used in semiconducfofss a substantial analysis of experimental data was performed using a free-
amount of carrier population may be induced by optical ex-carrier model.
citation, the renormalized band gap can affect the excitation The aim of this paper is to study the carrier density de-
process in turn and lead to optical nonlinearities. In this papendence of the band-gap renormalization in quantum wires,
per we investigate the density dependence of the BGR imhen carrier-carrier and carrier-phonon interactions are in-
guasi-one-dimensiondlQ1D) photoexcited semiconductors cluded. We first show that for the quantum-wire model we
including the phonon effects. The band gap for 2D and bulkuse, the total band-gap renormalization is determined by the
systems is found to decrease with increasing plasma densiscreened-exchange and Coulomb-hole contributions. We
due to exchange-correlation effects. The observed band gafisen demonstrate that within the quasistatic approximation to
are typically renormalized by-20 meV within the range of the self-energies, the explicit treatment of carrier-carrier and
plasma densities of interest, which arise chiefly from thecarrier-bulk phonon interactions does not reduce to éhe
conduction-band electrons and valence-band holes. In tha@pproximation and gives a larger BGR. When the interaction
Q1D structures based on the confinement of electrons anof carriers with the confined phonon modes is considered, we
holes, the electron-hole plasma is quantized in two transversabtain a similar magnitude for the BGR. We employ the
directions, thus the charge carriers essentially move only imlielectric continuum mod& to describe the phonon con-
the longitudinal direction. Recent progress in fabricationfinement effects and incorporate the many-body renormaliza-
technigues such as molecular-beam epit?dBE) and litho-  tion effects due to electron-phonon interactions within our
graphic deposition have made possible the realization oformalism. In low-dimensional semiconductor structures,
such quasi-one-dimensional systémBand-gap renormal- phonon confinement is an essential part of the description of
ization as well as various optical properties of the Ql1Delectron-phonon interactions. Since the early observation of
electron-hole systems have been stutfidgcimilar to the confined phonons in GaAs/AlAs superlattic€she phonon
bulk (3D) and quantum-well(2D) semiconductor®®®  modes in microstructures have been attracting increasing
Some experimental resultindicate that the BGR in quan- attention?> Among the various macroscopic pictures, the di-
tum wires is somewhat smaller than that predictedelectric continuum(DC) model®?! offers a simple frame-
theoretically® and LO-phonon-carrier interaction effects to work to address the phonon confinement effects. The phonon
explain the discrepancy were suggeste&olaronic correc- modes in the DC model aré) an infinite set of confined
tions to the BGR were also investigated for quantum wellsmodes with vanishing electrostatic potentials at the interfaces
and quantum wire¥’ which oscillate at the bulk LO-phonon frequency of GaAs,

One of our main motivations comes from the recentand(ii) a set of modes with electrostatic potentials attaining
experimentd in which the carrier density dependence of amaxima at the interfaces. We include both the confined and
quasi-one-dimensional electron-hole plasma confined ifnterface phonon modes in our calculation, envisioning a thin
GaAs gquantum wires is investigated. Comparing the bandwire of GaAs embedded in a barrier material of AlAs.
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The rest of this paper is organized as follows. In the next

section we give a brief outline of the static screening and 35(k)=— 2 Vok—k)fi(k"), and

guasistatic approximations. In Sec. Ill we present our results k!

for the BGR in Q1D electron-hole plasmas interacting with

LO phonons. Finally, we conclude with a brief summary of SC=13 [Vy(k')—V(K)]. 3)

our main results. K/

The above set of equations have been deffvédm the
Il. MODEL AND THEORY dynamical self-energy expressions by neglecting all recoil
energies with respect to the plasma frequency. As in the case
The quantum wire model we use is of cylindrical shapeof 2D and 3D calculatio® 14 we assume that the BGR
with radiusR, and infinite potential barri€’: The quantum  results from rigid band shifts; i.e., the self-energies depend

wire is made of material 1GaAs and the surrounding ma- only weakly on wave vectok. The band-gap renormaliza-
terial 2 (AlAs). Such a model leads to an analytic tion is then given by

expressioff V(q) = (e/2¢,)F(q) for the Coulomb potential
between the carriers within certain approximatidh&) is a AEG=E;—Eyg=2¢(0)+X(0), 4
form factor vyielding ~In(gR) behavior in the long- )
wavelength limit, andk, is the static dielectric constaof ~ namely, the electron and hole self-energies calculated at the
material 3. The cylindrical wire model has the further ad- respective band edges. Within the same spirit, we may cal-
Vantage of treating the Confined phonon modes in a Simp|§ulate the renorma“zed tOtal Chem|Ca| potentlal Of the
way, as will be shown later. We assume that the lineaelectron-hole plasma usingr=3;[u{+3i(kg)], in which
plasma densityN, is such that only the lowest subband is ke=7N/2 is the Fermi wave vector. The self-energy part in
populated. This will hol® when the parameterR, the above expression is also called the exchange-correlation
=1/(2wNR), exceeds~0.3. We assume that effective mass contributionu, to the chemical potential.
approximation holds and for GaAs take,=0.067n, and In the case of the electron-phonon system, we take the
m,=0.5m, wherem is the bare electron mass. Due to the bare Coulomb interaction to bé(q) = (e’/2¢..;)F(q) (note
presence of an electron-hole plasma, assumed to be in eqdipat the high-frequency dielectric constant of material 1,
librium, the bare Coulomb interaction is screened. The equiGaAs, is usef and include the phonon-mediated carrier-
librium assumption is justified since the laser pulse durationsarrier interactionV(q,w)==,M5 ,D,(q,») where the
are typically much longer than the relaxation times of thesum is over all the phonon modes present. I—Mrfpis the
semiconductor structures under study. Defining the staticallgffective 1D carrier-phonon matrix element, which depends
screened Coulomb interaction a&(q)=V(q)/e(q), we on the type of phonon modes, arﬁd)\(q,w)=2w}\'q/(w2
consider the dielectric function in the random-phase approxi— wiyq) is the phonon propagator, with phonon dispersion
mation (RPA) wyq. The effective carrier-carrier interaction within the
RPA is given by®

fi(k) —fi(k+q)

_ V(q)+Vpr(d,
f@=1-V2 =i, Y W)= (@) +Vpr(9,©)

1-[V(9)+Vpr(Q,0) ][ 11¢(q, @) + (g, )]

where the index=e,h, ande;(k) =#2k?/2m; are the single- :LQ),
particle energies. Thus screening by both electrons and holes etor(, @)

is accounted for within this approach. Assuming a homoge- ; . : o , )
neously distributed electron-hole plasma in thermal equilib-Where ITen(d,@) is the noninteracting density-density re

. L . -~ sponse function for electrons and holege also Eq(1)].
rium the electron and hole distribution functions are wrltten.l.he above equation defines the total dielectric function for

®

as the system in the presence of phonons, which can also be
written ag®
e Vpr(, )| 7
filk) efla—ulyq’ @ etor(d,0)=| 1+ p\r}(T} —V(q)[1I(q,»)
+11p(q,w)]. (6)

where 8=1/kgT and ,uio are the inverse carrier temperature
and(unrenormalizefichemical potential of the different spe- If the interaction of the charge carriers with the dispersion-
cies, respectively. The plasma density determines,u? less bulk phonon modes in 1D is considered, with the matrix
through the normalization conditiod= 2%, f;(k). eIementMﬁzV(q)(l— €./ €p) w /2, the static effective in-
Adopting the quasistatic approximatibh!! which  teraction W(q,0=0) does not reduce to the
amounts to neglecting the recoil effects relative to the plasma,-approximation result. This is whe, is replaced by, in
frequency in the full frequency dependent expressions, wéhe bare Coulomb interaction, and the carrier-phonon inter-
may decompos&!!the electron and hole self-energies into actions are not included expliciﬁ@(vphz 0). In our case the
screened exchangésx) and Coulomb hole(Ch) terms: Coulomb-hole term contains the difference between the en-
3i(k)=3(k)+ 3", where ergy of the electron inside the plasma and in the semicon-
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ductor. Since we are in a quasistatic approximation the latter 0

term contains., not € as in the statiey approximation.
Within the DC modelV,(q) is the sum of both the con-

fined V3™ and all interface/y;" mode potentials, which can

interact in an electronic ground-state transition. The confined

LO-phonon mode potentials in the wire are giverft#

50@1) wLOl[48J3(X0n)/X8n]2

e2
Vconf( )= E (1__
ph (d 2€,.1% €01 J%(Xon)(quz—’_XSn)
2w 01
: (7)
W —w o1

In the above expressiah,(x) is the Bessel function of order
n, and Xy, is the nth root of Jy(x). The interface phonon

mode potential for mode is?1%°
62 €1
VIF,n , —
o (4 S ARI(ARIT (AR A(wgr)
2
8| 3(C|R3) qun ®)
(AR | w?- w2
where
0 0
A(w)= 61(0))_61(0)) e(w) o)

dw &(w) do

ande; w) are the GaAsg1) and AlAs (2) phonon dielectric
functions, given bye;(») = €i(w?— wiol 0>~ 0fo), ®gn
are the interface mode frequenctésand I,,(x) is the nth
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FIG. 1. The band-gap renormalization in thg approximation
as a function of plasma densily, for a quantum wire oR=50 A,
and atT=100 K. The dashed and dotted lines indicate the screened-
exchange and Coulomb-hole contributions, respectively, whereas
the solid line stands for the totalE, .

for DC phonons. Unlike in 3D and 2D systems, in 1D a
closed form expression fak, is not possibl&’ because of
the nature of the form factors contained\iq) andV,(q).

Ill. RESULTS AND DISCUSSION

We now present our results on the band-gap renormaliza-

order modified Bessel function of the first kind. The confinedjon in Q1D quantum wires, concentrating on the density
phonons have the GaAs zone center frequency whereas t'i‘&nge ofN=10F—10" cm™L. \}Ve first discuss the screened-

interface modes have dispersive frequencies which lie in th%xchange and Coulomb-hole contributions to the BGR with-
reststrahlband of the wire and barrier materidfsThese are out subtracting the polaronic renormalization. Figure 1

labeled as GaAs interface and AlAs interface modes depen%howsAEg as a function ofN for a quantum wire ofR

ing on their frequency. Only the lowest-order confined and_cgy & 4tT=0. We do not include the phonon effects ex-
interface modes interact in a one-subband approximation. '

more detailed description of DC phonon modes interactin

with Q1D electrons is given by Bennett al?

and Wang
and Lei®®

Finally, in the case of the electron-phonon system, w

should subtract the polaronic renormalizati@f the band
edge$ A, from the band-gap renormalizatian Eg, as was

done for 2D system& since this is already included but

cannot be measured by experimeky.is obtained from per-

?Iicitly, but use theey approximation for material 1 for the
i

me being. The rationale for this approximation, as argued
by Das Sarma, Jalabert, and Ya&figs that the effect of
high-frequency phonons is to screen the Coulomb interac-

&ion, which is accounted for by the replacemenigfby e.

The dashed and dotted lines denote the screened-exchange
and Coulomb-hole contributions, respectively, whereas the
solid line is the total BGR. There are several noteworthy
features. For the cylindrical quantum-wire model we use, the

turbation theory in the one carrier limit at zero temperaturec, ,jomb-hole contribution is important in determining the

as

2 €x0 V(q)
Ag=——|1—— d 10
® 77( fo>wLoi—ze,h qq2/2mi+w,_o (10
for bulk phonons and
4 Vconf 0
ADC:_E jd 2 ph (q )
Ti=eh q /2mi+w|_01
Vpi'(a,0)

+2 f dg—o——— (11)

n q°/2m;i+ wgp

total AE4. In a different wire model, Benner and Haug
found the density dependence AE, is not as strong as
ours, and it is mainly determined by the screened-exchange
contribution. Our finding here is also in contrast with the
situation in 2D and 3D systems, where the BGR is to a large
extent determined by the Coulomb-hole contribuidhe
slight upturn in the Coulomb-hole contribution at high den-
sities is a peculiar effect, perhaps related to the 1D character
of the system. Similar behavior was also found in a different
quantum-wire modéel’ Since the analysis of the photolumi-
nescence measurements depends on the theoretical model
used to extract the observed BGR, a direct comparison with
experimental data is difficult. However, it is conceivable to
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FIG. 3. The band-gap renormalization within the quasistatic ap-
T=100 K using the quasistatic approach with bulk GaAs phonongroach including DC phonor(solid line), bulk GaAs phonong&ot-

T=100 K.

have drastically differeniN dependence for the BGR, de-

ted line, or bulk AlAs phonons(dashed ling with R=50 A and

pending on the degree of confinement as described by varfuantum wire of radiu=50 A are shown in Fig. 3. The

ous models.

solid, dotted, and dashed lines repres&hi, calculated us-

We next investigate the effects of carrier-phonon interacing carrier-DC phonon, carrier-bulk GaAs phonon, and
tion on the BGR. For this purpose, the bare carrier-carriercarrier-bulk AlAs phonon interactions, respectlveléli Figure 4
and carrier-phonon-mediated interactions should be treateghows the same curves agaifstwith N=10° cm™*. We

on an equal footing_ If one were to use the dynamicallyassume confined LO phonons to be dispersionless, but use
screened effective interaction within the RPA, the phonorthe dispersion relations for interface phonon modes derived
effects would be discerned. In quantum-well systems, takingvithin the DC modef*?® Also, we have not deducted the

also the finite-width effects into account, Das Sarma, JalabPolaronic renormalization. The DC phonon result appears to

ert, and Yan§ have found that, approximation is suffi- lie very close to the bulk GaAs phonon result. This is in

cient to describe the phonon interaction effects for weaklycontrast to earlier work8 and to the approximate sum rufe,
coupled polar materials. However, the calculations of Dagvhich is known to hold for the DC model, namely, for small
Sarma, Jalabert, and Yaigshow that the phonon effects R the DC result should give the bulk AlAs phonon result and

tend to increase the magnitude of BGR. Dan and BecH$tedt

calculated the LO-phonon effects in Q1D systems, within the e L

quasistatic approximation. They found that phonon effects i i
reduce the magnitude &E,. We believe that this discrep- L iy
ancy partly stems from the fact that the static dielectric con- —20 —

stant e, appears in the Coulomb interaction, even though
they treat the carrier-carrier and carrier-phonon interactions

on an equal footing. = —40
We compare the result of the, approximation and the ‘é’

result using the phonon potentials for bulk GaAs phonons in ™

Fig. 2. Both results have the same form but using the quasi- § _g

static approximation gives a larger BGR because we have, at
least in part, included some effect of a finite frequency. As
discussed in the previous section, the self-energy in the semi-
conductor, which appears in the Coulomb hole term, still
containse..,. Our results indicate an increase in the magni-
tude of BGR upon the inclusion of explicit phonon effects
similar to the situatioff in 2D. Since our approach is not
fully dynamical but quasistatic the effect may have been
slightly overestimated and the true BGR lies between the two
extreme results.

—-80

R (4)

FIG. 4. The band-gap renormalization as a function of quantum

Using the phonon potentials for confined LO-phononwire radius within the quasistatic approach including DC phonons
modes and interface phonon modes, we next calculate theolid line), bulk GaAs phononédotted ling, or bulk AlAs phonons
BGR within the guasistatic approximation. Our results for a(dashed lingwith N=10f cm * and T=100 K.
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for largeR the bulk GaAs phonon result. The phonon poten- L e SN R s s e s s s s
tials do reduce to the bulk phonon results at the appropriate - 1
limits, however, the AlAs bulk limit is not reached because - 1
the dependence is ayR and the integration oveq is infi-
nite. This implies that in the quasistatic case the BGR is —20
controlled by shorter wavelength modes than is usually the
case. Thus, the result using DC phonons only reduces to the o~
result with AlAs bulk phonons for very small radii. “é
Subtracting the polaronic effects leads to another interest- — —40
ing result. The polaron shiftXpc) tends towards the small ﬁ'
radius limit of the sum rule for the DC model for larger
values ofR than the quasistatic approximation. Thus, sub-
tracting polaronic effects produces a result where the BGR —60
including DC phonons is smaller than both of the bulk pho-
non cases. This does not contradict the approximate sum
rule, since the result is the difference between the quasistatic r .
approximation and polaronic shifts that independently satisfy ol 1l L 1
the sum rule. Our results with polaronic shifts subtracted are =0 40 60 80 100
illustrated in Fig. 5. The decrease in magnitude for all the R (&)
cases4|s similar to that obtained by Das Sarma, Jalabert, and £ 5 The band-gap renormalization as a function of quantum
Yang** for 2D systems. o wire radius within the quasistatic approach including DC phonons
The main shortcoming of the present calculation is the(solid line), bulk GaAs phonongdashed ling with N=1° cm™ .
quasistatic approximation employed to obtain the self-4ngT=0 K. The thin curves are just the quasistatic result while the
energies. However, the confined and interface phonon CORhick curves do not include the polaronic energy shift.
tributions to the BGR can be estimated. A more complete
theory should take the full frequency dependence of the varicanﬂy the magnitude of the band-gap renormalization when
ous phonon potentials which appear in the total dielectricbompared to band-gap renormalization including bulk GaAs
functions(q, ), and perform an internal frequency integral, phonons. However, excluding the polaronic effects, which
similar to the case in 2D systerts? cannot be measured experimentally, a smaller BGR is ob-
tained for the DC phonon modes than for the bulk phonons.
Extension of our calculations to multisubband cases would
be interesting.
In this paper, we have examined the effects of carrier-
phonon interactions on the band-gap renormalization in pho- ACKNOWLEDGMENTS
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