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Dielectric susceptibility model for optical phonons in superlattices

T. Dumelow* and S. R. P. Smith
Department of Physics, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom

~Received 14 August 1997!

The form of the long-wavelength optic-phonon modes in semiconductor superlattices is described using a
dielectric susceptibility model. This model only requires knowledge of the frequencies and eigenvalues for LO
and TO modes propagating along the superlattice growth directionz. From these, the principal-axis dielectric
susceptibilities«zz(v) and«xx(v) can be obtained, and so a full description of the optic phonons is possible
for any phonon propagation direction. Calculations of confined LO and TO mode frequencies and displace-
ments are made for GaAs/AlAs superlattices. The susceptibilities and mode displacements are compared using
a simple continuum model and a microscopic linear-chain model. The susceptibilities are also used to model
nonresonant Raman-scattering spectra, and are shown to give results that are in close agreement with published
micro-Raman measurements.@S0163-1829~98!02007-4#
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I. INTRODUCTION

The form of the atomic displacements in the optic-phon
modes of superlattices has been the subject of many inv
gations in recent years. The basic problem is easy to for
late if the phonons propagate along the growth axis~the z
axis! normal to the layers of a superlattice such
(GaAs)n1

(AlAs) n2
. The optic-phonon bands of adjacent la

ers do not usually overlap in frequency, and so the ato
displacements in the phonon modes of the combined st
ture are confined to either one or the other compon
Therefore, the displacement at a sitej of positionzj within a
layer of widthd is approximately

um~zj !;sin~mpzj /d! for 0<zj<d, ~1!

with m an integer representing the order of the confineme
The associated polarizationP;u, so P is also zero at the
boundary of the layer. This form is the same whether
phonon modes are transverse or longitudinal, so the prob
is essentially a one-dimensional lattice-dynamical proble

The first lattice-dynamical calculations of the modes w
performed by Kunc and Martin,1 and followed by many
others,2–8 the later ones also showing that interface disor
or roughness has a significant effect on the phonon frequ
cies in short-period superlattices. However, as soon as
phonon propagation direction departs from being stric
along thez axis, the situation becomes more complicat
because of the coupling between the polarization and
macroscopic electric fields. There are then three categorie
model used to describe the phonon modes.

~a! The full lattice-dynamical microscopic mode
calculations3,7,9–13 in which the long-range electric interac
tions are evaluated explicitly, often using Ewald’s metho

~b! Continuum models, in which the displacementu(z) is
treated as a continuous rather than a discrete variable. S
models started as an extension of the work of Fuchs
Kliewer,14 and include the hydrodynamic continuum mod
of Babiker.15 The types of displacements associated with
continuum model when the wave vector is normal to thez
axis were substantially clarified by Huang and Zhu.16 In or-
570163-1829/98/57~7!/3978~11!/$15.00
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der to satisfy both the electrostatic boundary conditions
volving the macroscopic fieldsD andE and the mechanica
boundary conditions involving the displacementu ~usually
assumed to be zero at an interface!, there is a mixing of the
longitudinal LO optic modes with the transverse~‘‘inter-
face’’! modes.17–21Continuum models normally assume th
the bulk phonon dispersion is quadratic in the wave vec
and so they cannot reliably be applied to very-short-per
superlattices, where nonparabolicity is important since
microscopic wave vectorsmp/d are large and also interfac
disorder is relatively significant.

~c! Dielectric susceptibility models, in which the long
range Coulomb forces produced by the macroscopicD andE
fields are described by the use of an anisotropic dielec
function«= . This approach has been the least explored; it w
originally described in principle by Chu and co-workers,9,10

and has been applied in the present context by Dumelow
Smith22 in order to determine the mode frequencies as
function of propagation direction in the long-waveleng
limit.

The dielectric susceptibility model~c! has certain advan
tages over the two other models. In the long-wavelen
limit q→0 ~whereq is the macroscopic Bloch phonon wav
vector!, the lattice-dynamical problem needed to be solv
only for phonons propagating along thez axis, because
propagation along other directions can be obtained from
by exploiting the properties of the dielectric function«= .
Propagation along thez axis is essentially a one-dimension
problem, which can be solved using either a microscopic o
continuum method. The dielectric susceptibility model the
fore permits a combination of the microscopic~a! and mac-
roscopic~b! approaches without suffering the difficulty in
herent in~a! of doing a full lattice-dynamical calculation a
arbitrary propagation direction, nor needing the elaborate
tailed treatment of the microscopic boundary conditions n
essary to~b!.

In this paper, we describe the dielectric susceptibility a
proach to long-wavelength phonons in superlattices.
show how both a continuum and a microscopic model can
used to describe the dielectric response and to calculate
mode displacements as well as the mode frequencies.
3978 © 1998 The American Physical Society
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compare the displacement patterns obtained from these m
els, and also extend the description so that it gives an
count of mode intensities that have been observed in Ram
scattering experiments on short-period superlattices.

II. SUPERLATTICE DIELECTRIC SUSCEPTIBILITY

This paper examines the properties of superlat
phonons from the point of view of the dielectric functio
«= (q,v). This is a macroscopic quantity that we will obta
by considering the form of the microscopic fields, and it w
help to begin with a discussion of the relationship betwe
the microscopic and macroscopic fields. The superlattic
assumed to be homogeneous in thexy plane but has a peri
odic structure in thez direction with superlattice cell length
L. If the fields have macroscopic wave vectorq and angular
frequencyv, all microscopic fieldsF(r ,t) must have the
Bloch form

F~r ,t !5F~z!ei~q•r2vt !, ~2!

whereF(z) is periodic inL, i.e., F(z1L)5F(z). The cor-
responding macroscopic fieldF̄(r ,t) is obtained by simply
averagingF(z) over the superlattice cell:

F̄~r ,t !5F̄ei ~q•r2vt !, ~3!

where the macroscopic field amplitude is

F̄5
1

L E
z

z1L

F~z!dz. ~4!

This definition of F̄ ensures that so long as the micr
scopic fields satisfy Maxwell’s equations, then so do
macroscopic fields. It is appropriate to use the macrosco
fields F̄(r ,t) so long as one does not wish to probe the s
tem on a length scale as small as the cell lengthL. The
dielectric function«= (q,v) describes the relationship betwee
the macroscopic fieldsD̄ and Ē: thus,

D̄5«0«= ~q,v!•Ē.

In this paper, we are interested in the long-wavelen
limit q→0. The bulk isotropic dielectric function for me
dium i ~i 51 or 2! has the form

« i~v!5« i
`

vLOi
2 2v2

vTOi
2 2v2 , ~5!

wherevLOi and vLOi are the bulk LO and TO frequencie
and « i

` the high-frequency dielectric constant. An~001!-
grown superlattice behaves as a uniaxial medium,
«= (q,v) can be represented by its principal compone
«xx(v)5«yy(v) and«zz(v) ~usually written as«xx and«zz!.
The simplest evaluation of«xx and «zz uses the bulk slab
model in which the superlattice layers are assumed to
sufficiently thick to retain their bulk properties. Then

«xx5
d1«11d2«2

d11d2
, «zz

215
d1«1

211d2«2
21

d11d2
, ~6!

where the two constituent layers have thicknessesd1 andd2 .
The above equations may be simply derived~Agranovich
d-
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and Kravtsov23! using the standard condition thatEx(z) and
Dz(z) are continuous at the boundaries of the superlat
layers, and, in the long-wavelength limit, constant with
each layer. In the far-infrared region in superlattices witho
free carriers,«xx(v) has poles at the TO frequencies of th
two superlattice constituents and«zz(v) has zeros at their
LO frequencies.

When the superlattice layers are thin, the phonon respo
is affected by confinement and the bulk slab model is
longer appropriate. In GaAs/AlAs, the optic-phonon disp
sion curves of the two constituents do not overlap, so
optic phonons are confined within the individual laye
forming standing wave patterns within these layers. F
propagation in thez direction, both the TO and the LO re
sponse of each constituent is split into a number of modem,
each having a different frequencyvm and oscillator strength
Sm . The general form of the dielectric tensor, ignorin
damping, is then

«xx5«xx
` F11(

m

STm

vTm
2 2v2G ,

1

«zz
5

1

«zz
` F12(

m

SLm

vLm
2 2v2G , ~7!

wherevTm andvLm are the frequencies of the confined T
and LO modes of indexm, STm andSLm are their oscillator
strengths, and«xx

` and «zz
` are the principal components o

the high-frequency dielectric tensor. The summation ovem
covers all modes in the phonon bands of both layers.«xx has
poles at each of the confined TO mode frequencies, and«zz
has zeros at the confined LO frequencies. Expressions ha
the general form of Eq.~7! can be obtained from any mode
of phonon confinement that yields dielectric functions.

III. LONG-WAVELENGTH ELECTROSTATIC MODES

Electromagnetic wave propagation in a uniaxial mediu
represented by Eqs.~6! or ~7! includes a polariton region a
small wave vector (q;v/c). If one is merely interested in
the phonon propagation, the polariton region can be exclu
by using the unretarded limit in whichc→`; the modes are
then simply electrostatic modes. The Maxwell equatio
q•D̄50 andq3Ē50 show thatD̄ is transverse to the wav
vectorq, whereasĒ is directed along it. The fieldsD̄ andĒ
associated with unretarded phonons are therefore orthogo
and satisfy the conditionD̄•Ē50; although one or the othe
field must be zero for phonons propagating in special sy
metry directions, in general both may be nonzero.

We take the wave vectorq in thexz plane, with propaga-
tion angleu such that tanu5qx /qz. For p polarization~fields
in the xz plane!, q•D̄50 and q3Ē50 then give, respec-
tively,

tan u52«zzĒz /«xxĒx and tanu5Ēx /Ēz , ~8!

i.e.,

tan2 u52«zz~v!/«xx~v!. ~9!
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This equation relates propagation angleu to frequencyv for
p-polarized phonons, and can also be obtained by taking
unretarded limit (c→`) into the p-polarization polariton
equation22

qx
2/«zz1qz

2/«xx5v2/c2. ~10!

In s polarization~D̄ fields in they direction!, the expression
equivalent to Eq.~9! is just

«xx
2150, ~11!

showing thats-polarized phonons, less interestingly, have
angular dependence.

Equation~9! can be used to describe the angular behav
of long-wavelengthp-polarized phonons, using any conv
nient model for the superlattice dielectric functions. Whe
the bulk slab model, represented by Eq.~6!, is applicable, the
equation describes phonons that are often referred to a
terface modes. In this paper, we concentrate on confi
phonon models that give dielectric functions of the form~7!,
using two models. The first is a simple continuum model t
assumes that all vibrational amplitudes go to zero at the
terfaces. The second is a microscopic linear-chain model
can be modified to include the effects of interface roughne
In each case, we calculate the phonon frequencies at ge
propagation angleu using Eqs.~9! and ~11!, and calculate
the corresponding phonon displacement patterns.

IV. CONTINUUM MODEL FOR THE DIELECTRIC
FUNCTION

All microscopic fieldsF(r ,t) in the superlattice structur
are assumed to have the Bloch form~2!. The electric dis-
placementD satisfies the Maxwell equation¹•D(r ,t)50,
so

iqD~z!1
]Dz~z!

]z
50. ~12!

In the long-wavelength limit,D(z) can be expanded as
power series inqL:

D~z!5D~0!~z!1(
a

Da
~1!~z!qaL1••• . ~13!

Putting Eq.~13! into Eq.~12!, the term of ordern50 in q is
dDz

(0)/dz50, so to zero order inqL, Dz(z) is constant and
equal to the macroscopic averageD̄z over the superlattice
period. Similarly, using¹3E(r ,t)52]B(r ,t)/]t, it can be
shown that bothEx(z) and Ey(z) are effectively constan
over the superlattice period to zero order inqL.

We now use a simple continuum model to obtain a fo
for the dielectric function in the long-wavelength limit, i
which Ex , Ey , andDz are uniform over the superlattice ce
First consider the in-plane motion. SinceEx is a constant, it
is obviously appropriate to treat the in-plane compon
ux(z) of the atomic displacements as a response to this
form field. We make the usual assumption that the ato
displacements are pinned at the boundary between the
media, so the displacementux(z) in layer 1 can be written as
a Fourier sum of mode displacementsum(z)5sin(pmz/d1) of
the form of Eq.~1!:
he
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ux~z!5(
m

a1m sin~pmz/d1!Ex ~0<z<d1!. ~14!

Assuming that each of the functionsum(z) is an eigenmode
of the system, the coefficientsa1m will have the resonant
response form

a1m5
A1m

vT1m
2 2v2 . ~15!

HerevT1m is the eigenfrequency of the modem, which, to a
first approximation, will be the frequencyvTO1(k) of a bulk
TO phonon in medium 1 with wave vectork
5(0,0,mp/d1):

vT1m'vTO1~kz5mp/d1!. ~16!

The displacementsux(z) of the optic-phonon modes cause
local ‘‘phonon’’ polarization Px(z), which we assume is
proportional toux(z). The local susceptibilityxx(z), defined
as

xx~z!5
]Px~z!

«0]Ex
, ~17!

has the form

xx~z!5(
m

r 1m

vT1m
2 2v2 sin~pmz/d1!, ~18!

wherer 1m are coefficients related to the coefficients in Eq
~14! and ~15!.

In order to determine values for these coefficientsr 1m ,
we examine the bulk slab limit for larged1 , when xx(z)
becomes a constant and equal to the bulk phonon susc
bility x1 for layer 1. The relationship between the bulk ele
trostatic fields is

D~z!5«1~v!«0E~z!5«1
`«0E~z!1P~z!,

where«1(v) is given by Eq.~5!, P(z) is the phonon polar-
ization, and the high-frequency dielectric function«1

` incor-
porates the atomic polarizationPat5(«1

`21)«0E. The bulk-
phonon polarization susceptibility is therefore

x15«1~v!2«1
`5

«1
`D1

2

vTO1
2 2v2 with D1

25vLO1
2 2vTO1

2 ,

~19!

In the bulk limit d1→`, xx(z) of Eq. ~18! can be cast in the
form of x1 in Eq. ~19! by replacing the confined mode fre
quenciesvT1m by the bulk valuevTO1 and using the identity

4

p (
m odd

`
1

m
sin~pmz/d1!51 in the range 0,z,d1

~20!

to show that the coefficientsr 1m have the values

r 1m54«1
`D1

2pm for m odd,

r 1m50 for m even. ~21!

The modes of evenm carry no electric dipole moment, an
do not contribute toxx .
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Assuming the values~21! for r 1m can be carried over to
thin layers, the spatially-dependent susceptibility~18! be-
comes

xx~z!5 (
m odd

4«1
`D1

2

mp~vT1m
2 2v2!

sin~pmz/d1! ~0<z<d1!,

~22!

with the average susceptibility for layer 1 given by

^xx&15
1

d1
E

0

d1
xx~z!dz5 (

m odd

8«1
`D1

2

p2m2~vT1m
2 2v2!

.

~23!

All of the above procedure may be repeated for layer
Overall, one can then relate the microscopic polarizat
Px(z) and the electric displacementDx(z) to the uniform
field Ex through spatially-dependent susceptibilitiesxx(z)
and«xx(z):

Px~z!5«0xx~z!Ex Dx~z!5«0«xx~z!Ex ,

where«xx(z)5« i
`1xx(z) in layer i . The macroscopic fields

are related byD̄x5«0«xxEx , where«xx is the spatial average
^«xx(z)&:

«xx5
]D̄x

«0]Ex
5@d1~«1

`1^xx&1!1d2~«2
`1^xx&2!#/~d11d2!.

~24!

This is of the same form as Eq.~7!, with

«xx
` 5~d1«1

`1d2«2
`!/~d11d2!. ~25!

A similar approach to the above may be used in calcu
ing «zz. In this caseDz is the appropriate driving field, be
cause this is uniform throughout the superlattice. The app
priate local susceptibilityjz(z) represents the response of t
z displacements to the fieldDz , and is defined as

jz~z!5]Pz~z!/]Dz , ~26!

and the expression analogous to Eq.~22! is

jz~z!5 (
m odd

4D1
2

pm~vL1m
2 2v2!

sin~pmz/d1!, ~27!

wherevL1m is the frequency of themth confined LO mode
in layer 1. The average susceptibility in layer 1 is then

^jz&15 (
m odd

8D1
2

p2m2~vL1m
2 2v2!

, ~28!

and similarly for layer 2. One can thus obtain the positio
dependent susceptibility

«zz
21~z!5

«0]Ez~z!

]Dz
,

and the average dielectric tensor component

«zz
215

«0]Ēz

]Dz
5@~12^jz&1!d1 /«1

`

1~12^jz&2!d2 /«2
`#/~d11d2!, ~29!
.
n

t-

o-

-

of the same form as Eq.~7!, with «zz
` given by

~«zz
` !215~d1 /«1

`1d2 /«2
`!/~d11d2!. ~30!

Expressions~24! and ~30! for «xx and «zz describe the
long-wavelength dielectric behavior of the superlattice, b
in the polariton region (q;v/c) and in the unretarded pho
non limit (v/c!q!L21), with Eqs.~9! or ~10! providing a
relation between frequencyv and angle of propagationu.
Calculations of mode frequenciesv as functions of angleu
and associated displacementu(z) are described in Sec. VI
The displacementsu(z) are proportional to the polarizatio
P(z), whose components arePx(z)5xx(z) «0Ex andPz(z)
5jz(z) Dz , and the relative amplitudes of the uniform field
Dz andEx can be obtained fromq•D50:

Dz /Ex52«xx«0 tan u. ~31!

Finally, it is worth commenting on the electrostatic potent
V(r ,t) associated with the excitations, in the electrosta
~unretarded! and long-wavelength (q→0) limits. The poten-
tial is related to the electric field byE(r ,t)52¹V(r ,t), and
V(r ,t) takes the Bloch form

V~r ,t !5V~z!ei ~q•r2vt ! with V~z1L !5V~z!

whereV(z) is given by

V~z!5 iEx /qx2«0
21DzE

0

z

dz8@«zz
21~z8!2«zz

21#.

V. MICROSCOPIC MODEL OF DIELECTRIC FUNCTION

In this section, we briefly review the procedure for calc
lation of the susceptibilities in the form of Eq.~7!, using the
random element isodisplacement~REI! model. A full de-
scription of this model is given by Samsonet al.8 and also in
the review by Dumelowet al.,24 so we merely outline the
important features here; the model has also been investig
by Bechstedt, Gerecke, and Grille.25 The REI model evalu-
ates the propagation of phonons along thez axis of the su-
perlattice structure, represented as a diatomic linearA-B
chain. TheA sites contain As atoms, while theB sites are
either Ga or Al, or indeed a proportionx of Ga and (12x) of
Al, since the response is effectively that of the plane of
oms normal to thez axis. By choosing the force constants
the model to describe as accurately as possible the~100!
dispersion curves for bulk GaAs and AlAs and the all
mode frequencies, the model gives an accurate calculatio
the phonon frequencies in GaAs/AlAs superlattices. Unl
the continuum model, the microscopic model needs no
sumptions about how the displacements behave at the in
face between the two constituent materials.

Interface roughness has a very important effect on
confined mode frequencies in short-period superlattices.
model of Samsonet al.8 enables the effects of interfac
roughness~or interface alloying! to be investigated by pre
scribing values ofx for eachB site that are not merely eithe
0 or 1. A simple approach is to characterize the roughnes
a parameterW, such that the concentrationxGa,j of Ga atoms
at sitezj monolayers away from an interface has the er
function form
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FIG. 1. Angular variation of GaAs-like mode frequencies atq→0 in a ~GaAs!7~AlAs!7 superlattice, calculated according to Eq.~8!: ~a!
continuum model;~b! microscopic model with interface broadeningW50; ~c! microscopic model withW52.0. The measured frequencie
of Scamarcioet al. ~Ref. 33! are shown asd, LOm modes~m odd! at u50; 3, LOm modes~m even!; j, TOm modes~m odd!; s, TO
modes.
n

t

b

i

t-
-

xGa,j'
1

2 F11erfH zj

WJ G . ~32!

Samsonet al. find the dynamical matrixY= that couples the
normalized displacementses j ~5us jAMsxs j, whereMs is the
atomic mass! for atom types in the cell j using a one-
dimensional linear-chain model; they obtain a site respo
to applied fieldsf s8 j 8 in the form

es j5(
s8 j 8

f s8 j 8xs j,s8 j 8 with xs j,s8 j 85(
m

vs j,mvs8 j 8,m
*

vm
2 2v2 ,

~33!

wherevs j,m is the matrix that diagonalizesY= with eigenval-
uesvm

2 . The functionsvs j,m have a very similar form to the
functions sin(pmzj /d1) in Eq. ~1!, with m[m and zj[ j a
~with a the lattice constant!, and are identical in the limit of
large d1 and d2 . Eq. ~33! is of the same form as Eq.~18!,
and to complete the analysis in order to obtain dielec
functions«zz and«xx analogous to Eqs.~24! and~29!, values
for the effective chargesQs j involved in coupling the site
displacementses j to the appropriate fields are estimated
recourse to the bulk dielectric functions~19!.

VI. RAMAN SCATTERING INTENSITIES

Hayes and Loudon26 give an expression for the Raman
scattering differential cross section in polar materials, wh
can be reduced to the following form:
se

ric

y

-
ch

d2s

dV dvs
;I ~eIeS ,q!@n~v!11#,

where

I ~eI ,eS ,q!5 (
i j i 8 j 8

eS
i eI

jeS
i 8eI

j 8ImH 2F(
hh8

~ai jhxh1bi jh !

3~aa8 j 8h8xh8
1bi 8 j 8h8!qhqh8G Y f

1(
h

ai jhai 8 j 8hxhJ . ~34!

Here, the~unit! polarization vectors of the incident and sca
tered light areeI andeS , with components denoted by indi
cesi and j (5x,y,z). xh denotes the susceptibility

xh5
]Ph

«0]Eh
~h5x,y,z!, ~35!

assumed to be diagonal in the crystallographic axesx,y,z.
xh(v) has poles at the TO frequenciesvhm . qh is the com-
ponent of the phonon propagation vector along theh axis,
and f is the polar mode dielectric function,

f 5~qx
21qy

2!«xx1qz
2«zz, ~36!

in which the dielectric functions«hh and the susceptibilities
xh are related by

«hh5«hh
` 1xh , ~37!
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FIG. 2. Displacement patterns for modes atu50, p/4, andp/2 for modeA of Fig. 1 ~the LO1 mode atu50!: h, z displacements;3,
x displacements.
he

-

a
in-

u

s

n-

e-

lds
with «xx5«yy because of the tetragonal symmetry of t
superlattice.

ai jh is a coupling coefficient, which in principle is differ
ent for each of the modesm contributing toxh and in writing
down Eq. ~34! we have in effect assumed that the Ram
coupling coefficient of each mode is proportional to its
frared strength. Furthermore, we shall approximateai jh by
assuming that it has the symmetry properties of the b
zinc-blende structure, namely,

ai jh50 unless iÞ j ÞhÞ i , ~38!

and we also assume that the nonzero values ofai jh can all be
put equal to a single parametera when considering phonon
n

lk

in the GaAs reststrahl region. The part of the Rama
scattering cross section involving the coefficientsai jh arises
from coupling of light to phonon displacements via the d
formation potential. The coefficientbi jh is the electro-optic
coefficient that describes coupling to the macroscopic fie
associated with the phonon, usually described as the Fro¨hlich
interaction. We make the same symmetry assumptions~38!
for thebi jh parameters as forai jh ; for bulk GaAs, Hayes and
Loudon quote

b/a520.17
«`D2

vTO
2 with D25vLO

2 2vTO
2 . ~39!
FIG. 3. Displacement patterns for modes atu50, p/4, andp/2 for modeB of Fig. 1 ~the LO3 mode atu50!: h, z displacements;3,
x displacements.
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Note that the coupling considered here is the same as
which gives the Raman scattering in the bulk materials,
will consequently involve only the odd indexm modes.
Strictly speaking, the superlattice symmetry is lower than
bulk ~D2d rather thanTd!, so neither the restriction~38! nor
the assumption of single parametersa and b is rigorously
valid. This becomes apparent under resonant excitation
ditions, when scattering from even index modes is obse
able via a version of the Fro¨hlich interaction which acts
through the intrasubband effect of the electric potential as
ciated with the phonons.27 We ignore this possibility in the
present analysis and restrict our attention to nonresonan
citation conditions, although the analysis may also be reas
ably valid for the odd index scattering under resonant con
tions with the proviso that the parametersa and b will be
differently affected by the resonance.

The expression~34! produces resonances of two types:~a!
when the denominatorf is zero, the resonances correspo
to thep-polarized modes of Eq.~9! ~sometimes referred to a
polar modes!; ~b! when there are poles in the susceptibiliti
xh , TO resonances appear in both terms in the curly brac
in Eq. ~34!, though these resonances can be canceled in
tain geometries.

We will consider various cases, in which the phon
propagation is described by the usual polar anglesu andf.
Thenq is the vectorq(sinu cosf,sinu sinf,cosu), and

f 5q2~sin2u «xx1cos2u «zz!. ~40!

Calculated spectra using Eq.~34! are shown in the next sec
tion.

TABLE I. Definition of axes used in Raman scattering calcu
tions.

Axes Directions of components

(x,y,z) x[(100) y[(010) z[(001)
(x8,y8,z) x8[A1

2 (110) y8[A 1
2 (1̄10) z[(001)

(X,y,Z) X[A1
2 (101) y[(010) Z[A1

2 (1̄01)
(X8,y8,Z8) X8[ 1

2 (11&) y8[A 1
2 (1̄10) Z8[ 1

2 (1̄ 1̄&)
at
d

e

n-
v-

o-

x-
n-
i-

ts
er-

VII. CALCULATIONS OF MODE FREQUENCIES
AND DISPLACEMENTS

In this section we calculate the angular variation of t
mode frequencies and displacements using the two diele
function models outlined above. Where appropriate,
modeled results are compared with published experime
micro-Raman measurements.

Figure 1 shows the dependence of the GaAs-like m
frequencies in a~GaAs!7~AlAs!7 superlattice on propagatio
angle u. The mode frequencies satisfy Eqs.~9! and ~10!.
Three different models have been used for the dielec
function: the continuum model outlined in Sec. III has be
used to model Fig. 1~a!, and the linear-chain model describe
in Sec. IV has been used in Figs. 1~b! and 1~c!, without and
with interface roughness~W50 andW52.0, respectively!.
The continuum model derives its confined mode frequenc
vLOm andvTOm from the same bulk phonon dispersion as
used in the linear-chain model.

As u→0, Eq.~9! has solutions when either«zz(v)→0 or
«xx(v)21→0, and the modes are classified correspondin
as LOm or TOm with displacements parallel or normal to th
axis of propagation, respectively. The modes withm even
~shown by dashed lines in Fig. 1! carry no dipole moment
and so they do not contribute to the dielectric functions a
show no angular variation. Thes-polarized solutions
«xx(v)2150 of Eq. ~10! persist regardless of angle, and a
shown in Fig. 1 as dotted lines. The remaining modes are
dipole-activep-polarized modes, and show angular depe
dence required by Eq.~9!. At u5p/2 ~propagation in thex-y
plane! these modes can be classified as TOm8 or LOm8 accord-
ing to whether they are solutions of«zz(v)2150 or
«xx(v)50, and have displacements alongz or along the
wave vector direction, respectively. We have used odd in
ces m to label dipole active TOm8 and LOm8 modes atu
5p/2, but unlike the situation atu50 the indexm does not
necessarily represent the number of confined phonon h
wavelengths, as will be apparent when the mode patterns
examined.

The continuum model results are similar to those obtain
from other continuum models.16,18,28 The long-wavelength
limit of the model of Chamberlain, Cardona, and Ridley28

for instance, is equivalent to the model presented here
vided that the phonon dispersion is parabolic, that the mo

-

le
TABLE II. Relative intensity factorsI for various Raman-scattering geometries, with propagation angu
and mode classification type. Definitions of axes are given in Table I.

Scattering
geometry Relative intensity factorI

Angle
u

Mode
type

z(xy) z̄ or
z(y8y8) z̄

Im$2(xz1b)2/«zz1xz% 0 LOm

Z(Xy)Z̄ Im$2 1
2(xx2xz)

2/(«xx1«zz)1
1
2(xx1xz)% p/4 mixed

Z8(X8X8)Z̄8 Im$2 1
4(2xx2xz1b)2/(«xx1«zz)1

1
4xx1xz% p/4 mixed

Z8(y8y8)Z̄8 Im$2(xz1b)2/(«xx1«zz)1xz% p/4 mixed

Z(XX)Z̄ Im$xx% p/4 TOm

x8(y8z) x̄8 Im$xx% p/2 TOm

x8(y8y8) x̄8 Im$xz% p/2 TOm8

x(yz) x̄ Im$2(xx1b)2/«xx1xx% p/2 LOm8
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in Eq. ~22! and ~27! are summed to infinity, and that th
phonons in the AlAs layer make no contribution. The pres
model has the advantage over other continuum model
that none of the above assumptions are necessary. More
it is simpler to use, requiring only numerical substitution in
simple algebraic expressions, although, in the form prese
here, it is restricted to the long-wavelength limit.

The three plots in Fig. 1 show some qualitative diffe
ences. For instance, the curve corresponding to LO3 at u
50 extends tovT38 in Figs. 1~a! and 1~b!, but extends tovL18
in Fig. 1~c!. This type of behavior depends on the relati
frequencies of the poles and zero in«xx in comparison to the
poles and zeros in«zz. It is particularly striking that interface

FIG. 4. Calculated nonresonant Raman backscatteringz(xy) z̄
spectra for a~GaAs!7~AlAs!7 superlattice, obtained using Eq.~34!
for the three models of Fig. 1:~a! continuum model;~b! micro-
scopic model withW50; ~c! microscopic model withW52.0.
t
in
er,

ed

roughness appears to affect the results more than whethe
model used is microscopic or continuum in nature. In fa
the results of the continuum model shown in Fig. 1~a! are in
effect intermediate between the microscopic model result
Figs. 1~b! and 1~c!, particularly in respect of the higher
frequency modes.

Figures 2 and 3 show the displacement patterns assoc
with the two highest-frequency modesA andB of Fig. 1 ~the
u50 LO1 and LO3 modes!. The mode patterns are calculate
using each of the three models used in Fig. 1 and are sh
at u50, p/4, andp/2. Note that in the continuum model th
displacement inevitably falls to zero at the interfaces, bu
the microscopic model the vibrations more plausibly exte
slightly into the AlAs layer. Consequently, the confineme
is less than in the continuum model with the result that
microscopic model gives slightly higher mode frequenc
than the continuum model. This effect has long been rec
nized; some authors using the continuum model extend
effective width of the active layer by one monolayer unit
order to model the mode frequencies quantitativ
correctly.28 Interface roughness can markedly affect t
mode frequencies and displacements. As can be seen in
displacement patterns in Figs. 2 and 3, the modes are m
confined when the interfaces are rough. This is because
rough interfaces, which can be considered as thin alloy l
ers, are effectively acting as barriers to the phonon vib
tions. The inclusion of interface roughness therefore tend
lower confined mode frequencies, as observed in Fig. 1~c!
and as pointed out by many authors.7,8,29 At lower frequen-
cies, the interface alloy layers no longer act as barriers,
vibrations extend further into the AlAs layers, decreasi
confinement. These modes appear at a higher frequency
the equivalent modes for a superlattice having sharp in
faces.

Looking in detail at the mode patterns shown in Figs
and 3, it is clear that, while the displacement patterns au
50 have the basic sinusoidal formum(z);sin(mpz/d), they
become much less simple away fromu50. Here, the cou-
pling between the mode displacements and the macrosc
electrostatic fields causes the odd-indexp-polarized modes
to contain significant contributions from a number of eige
modesum , so the mode indexm on these modes does no
necessarily directly denote the number of phonon h
wavelengths confined in the GaAs layer: for example, thu
5p/2 continuum modevT18 is clearly composed primarily
of m51 and m53 modes. Thex displacements for the
modes shown in Figs. 2 and 3 appear to have a simpler f
with a single antimode, but at lower frequencies within t
bulk TO band thex displacements show more promine
oscillatory confinement patterns. The AlAs optic-phon
bands are at higher frequencies than the GaAs optic ba
so all models only show small displacements in the Al
layer at the GaAs-like frequencies.

VIII. CALCULATIONS OF RAMAN SPECTRA

We now consider the Raman spectra corresponding to
expression~34! in Sec. VI. Over the past few years there h
been a number of publications of Raman spectra from Ga
AlAs superlattices with nonzero propagation anglesu, and
without making an exhaustive comparison with experim
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FIG. 5. Nonresonant Raman-scattering intensities calculated using Eq.~34! for a ~GaAs!7~AlAs!7 superlattice, with the scattering
geometries:z(xy) z̄ or z(y8y8) z̄ (u50); Z(Xy)Z̄ (u5p/4); Z8(X8X8)Z̄8 (u5p/4); Z8(y8y8)Z̄8 (u5p/4); Z(XX)Z̄ (u5p/4) @equivalent
to x8(y8z8) x̄8 (u5p/2)#; x8(y8y8) x̄8 (u5p/2); x(yz) x̄ (u5p/2). See text for definitions of axes.
de
th
a
s
ith
g
x
fo
-

e

q
x

k
us
g
b

ta
e

an

n-
ble
tri-

for

e

een
in
n-
fre-

eri-

re-

ices
we want to point out that our approach gives a simple
scription of the intensities as well as the frequencies of
modes observed in such experiments. As far as we are aw
no attempt has hitherto been made to model the intensitie
the spectra, which show a remarkably rich variation w
propagation direction and scattering geometry. Scattering
ometries that are of particular interest involve the sets of a
listed in Table I. The following expressions are obtained
the relative intensity factorsI (eI ,eS ,q) for nonresonant Ra
man scattering, using the conventional notationq̂I(eI ,eS)q̂S ,
in which q̂I and q̂S are the propagation directions of th
incident and scattered photons, with polarizationseI andeS ,
respectively. Table II gives the results calculated from E
~34! ~with a51! for some backscattering geometries of e
perimental interest.

As an illustration, in Fig. 4 we show the calculated bac
scatteringz(xy) z̄ nonresonant Raman spectra, obtained
ing Eq. ~34!, for the three models of Fig. 1. Mode dampin
was obtained for the microscopic model as described
Samsonet al.,8 using the same parameters. In this orien
tion, odd-index LOm modes should be observed at the fr
-
e
re,
of

e-
es
r

.
-

-
-

y
-
-

quencies corresponding tou50 in Fig. 1. In practice, experi-
mental investigations often include resonant Ram
scattering, where the scattering also involves the Fro¨hlich
electric potential interaction, which gives an angularly i
variant contribution from the even-index modes observa
in certain scattering geometries; we do not cover this con
bution here.

In Fig. 5 we compare calculated backscattering spectra
a number of different geometries corresponding tou50,
p/4, andp/2. In all cases the dielectric function is the sam
as was used to model Fig. 1~c!, i.e., that obtained from the
microscopic model with interface roughness. It can be s
how different modes arise from the selection rules implicit
Eq. ~34!. In addition, the spectra show that the relative inte
sities also depend on the scattering geometry. The mode
quencies, in contrast, depend only on the angleu.

We now compare our results with those obtained exp
mentally. As yet, there have been fewuÞ0 measurements
on superlattices with sufficiently thin layers to show app
ciable confinement. Hessmeret al.30 report backscattering
micro-Raman results over a series of angles for superlatt
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having GaAs wells of width about 10 nm. The layers in the
samples are sufficiently thick that a microscopic model is
required, and the results can be interpreted using the b
slab model represented by Eqs.~1! and ~2!. Similarly Fain-
steinet al.31 have used 90° scattering to investigate a sup
lattice with a GaAs width of 5 nm. Although they interpre
their results in terms of confined modes using a continu
model, represented by Eqs.~1! and ~2!, their results are es-
sentially the same as those obtained using the bulk s
model. Haines and Scamarcio32 and Scamarcioet al.33 have
made backscattering measurements on short-period G
AlAs superlattices for bothu50 andu5p/2 using a number
of different scattering geometries. Zunkeet al.34 have also
made backscattering measurements, in this case corresp
ing to a series of intermediate values ofu, but with the po-
larization of incoming and outgoing radiation restricted
the y8 direction, for which unequivocal mode assignmen
are not possible. Since the assignments of Zunkeet al. ap-
pear to differ significantly from those by other authors
similar samples,32,33 we restrict ourselves to modeling th
spectra of Scamarcioet al.33 The unit cell of one of the
samples,~GaAs!2.5~AlAs!1.1 reported in their paper is so fa
off stoichiometry as to make microscopic modeling unre
sonable, but we have modeled all the other results.

Scamarcioet al.33 show experimental Raman-scatterin
spectra for a~GaAs!7~AlAs!7 superlattice with the scattering
geometriesz(xy) z̄, z(yy) z̄, x(yy) x̄, x(yz) x̄, z(y8y8) z̄,
x8(y8y8) x̄8, and x8(zy8) x̄8. The geometriesz(yy) z̄ and
x(yy) x̄ produce no features in nonresonant scattering,
show an LO2 feature due to the Fro¨hlich interaction. Apart
from thex(yz) x̄ spectrum, there is close agreement betwe
the experimental spectra and those shown in Fig. 4, mod
with an interface width ofW52.0, although thez(y8y8) z̄
and x8(y8y8) x̄8 spectra yield additional LO2 contributions.
The experimental results for thex(yz) x̄ geometry are some
what unclear. This may be because the quality of the p
ished~100! surface was not as good as for the cleaved~110!
surface, resulting in a relaxation of the selection rules.

The experimental frequencies obtained from t
~GaAs!7~AlAs!7 spectra of Scamarcioet al. are included on
Fig. 1~c!. It can be seen that neither the continuum model
the linear-chain model with no roughness would successf
model the experimental data. When an interface width of
ML is included in the linear-chain model, however, th
agreement is excellent. It thus appears that interface rou
ness is an important parameter in determining the pho
behavior. Note, however, that the repeat unit, as measure
x-ray scattering, was~GaAs!7.5~AlAs!6.8, so the valueW
52.0 for our interface roughness parameter may to so
ra
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extent incorporate the difference between this and the
sumed superlattice~GaAs!7~AlAs!7.

The experimental frequencies for the other samples st
ied by Scamarcioet al. are compared with theory in Fig. 6
We have only shown theoretical curves for the microsco
model with interface roughness, because in all cases con
erably better fits are obtained with roughness included.
each case a best-fit value for interface roughness is u
However, x-ray diffraction has shown that in none of the
samples is each layer an integral number of lattice un
wide. As with the~GaAs!7~AlAs!7 superlattice, therefore, the
modeled interface width may not accurately reflect the tr
value of the roughness.

The above results show that micro-Raman results can
modeled qualitatively using a continuum model in a simp
manner. More quantitative results require the use of a mo
that incorporates interface roughness, and excellent ag
ment with experiment can be obtained in this case. We h
also shown how the use of a number of different scatter
geometries can lead to unequivocal mode assignments.
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FIG. 6. Angular variation of GaAs-like mode frequencies
q→0: ~a! ~GaAs!3~AlAs!3 superlattice (W51.4); ~b!
~GaAs!2~AlAs!4 superlattice (W51.0). The measured frequencie
of Scamarcioet al. ~Ref. 33! are shown as in Fig. 1.
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