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Dielectric susceptibility model for optical phonons in superlattices
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The form of the long-wavelength optic-phonon modes in semiconductor superlattices is described using a
dielectric susceptibility model. This model only requires knowledge of the frequencies and eigenvalues for LO
and TO modes propagating along the superlattice growth direztiémom these, the principal-axis dielectric
susceptibilitiess ,{ @) ande,,(w) can be obtained, and so a full description of the optic phonons is possible
for any phonon propagation direction. Calculations of confined LO and TO mode frequencies and displace-
ments are made for GaAs/AlAs superlattices. The susceptibilities and mode displacements are compared using
a simple continuum model and a microscopic linear-chain model. The susceptibilities are also used to model
nonresonant Raman-scattering spectra, and are shown to give results that are in close agreement with published
micro-Raman measuremenf$0163-182608)02007-4

I. INTRODUCTION der to satisfy both the electrostatic boundary conditions in-
volving the macroscopic field® andE and the mechanical
The form of the atomic displacements in the optic-phonorboundary conditions involving the displacementusually
modes of superlattices has been the subject of many investissumed to be zero at an interfadiere is a mixing of the
gations in recent years. The basic problem is easy to formuengitudinal LO optic modes with the transvergénter-
late if the phonons propagate along the growth ditie z  face”) modes:’~2! Continuum models normally assume that
axis normal to the layers of a superlattice such asthe bulk phonon dispersion is quadratic in the wave vector,
(GaAs)nl(AIAs) ny: The optic-phonon bands of adjacent lay- and so they cannot reliably be applied to very-short-period
ers do not usually overlap in frequency, and so the atomiguperlattices, where nonparabolicity is important since the
displacements in the phonon modes of the combined strudnicroscopic wave vectomsiw/d are large and also interface
ture are confined to either one or the other componentisorder is relatively significant.

Therefore, the displacement at a sjtef positionz; within a (c) Dielectric susceptibility models, in which the long-
layer of widthd is approximately range Coulomb forces produced by the macroscbpandE
fields are described by the use of an anisotropic dielectric
Un(z)~sin(maz;/d) for 0<z<d, (1)  functiong. This approach has been the least explored; it was

originally described in principle by Chu and co-workérs,
with m an integer representing the order of the confinementand has been applied in the present context by Dumelow and
The associated polarizatidd~u, so P is also zero at the Smitt?? in order to determine the mode frequencies as a
boundary of the layer. This form is the same whether thdunction of propagation direction in the long-wavelength
phonon modes are transverse or longitudinal, so the problefimit.
is essentially a one-dimensional lattice-dynamical problem. The dielectric susceptibility modét) has certain advan-

The first lattice-dynamical calculations of the modes wereglages over the two other models. In the long-wavelength
performed by Kunc and Martih,and followed by many limit g—0 (whereq is the macroscopic Bloch phonon wave
others?~8 the later ones also showing that interface disordevecton, the lattice-dynamical problem needed to be solved
or roughness has a significant effect on the phonon frequemnly for phonons propagating along tte axis, because
cies in short-period superlattices. However, as soon as thgropagation along other directions can be obtained from this
phonon propagation direction departs from being strictlyby exploiting the properties of the dielectric functien
along thez axis, the situation becomes more complicatedPropagation along theaxis is essentially a one-dimensional
because of the coupling between the polarization and thproblem, which can be solved using either a microscopic or a
macroscopic electric fields. There are then three categories abntinuum method. The dielectric susceptibility model there-
model used to describe the phonon modes. fore permits a combination of the microscog@ and mac-

(@ The full lattice-dynamical microscopic model roscopic(b) approaches without suffering the difficulty in-
calculationd”°~*3in which the long-range electric interac- herent in(a) of doing a full lattice-dynamical calculation at
tions are evaluated explicitly, often using Ewald’s method. arbitrary propagation direction, nor needing the elaborate de-

(b) Continuum models, in which the displacemei(z) is  tailed treatment of the microscopic boundary conditions nec-
treated as a continuous rather than a discrete variable. Suelssary tab).
models started as an extension of the work of Fuchs and In this paper, we describe the dielectric susceptibility ap-
Kliewer* and include the hydrodynamic continuum model proach to long-wavelength phonons in superlattices. We
of Babiker®® The types of displacements associated with theshow how both a continuum and a microscopic model can be
continuum model when the wave vector is normal to the used to describe the dielectric response and to calculate the
axis were substantially clarified by Huang and Zfiln or-  mode displacements as well as the mode frequencies. We
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compare the displacement patterns obtained from these moend Kravtso?®) using the standard condition th&(z) and
els, and also extend the description so that it gives an ad,(z) are continuous at the boundaries of the superlattice
count of mode intensities that have been observed in Ramaiayers, and, in the long-wavelength limit, constant within

scattering experiments on short-period superlattices. each layer. In the far-infrared region in superlattices without
free carriersg,,(w) has poles at the TO frequencies of the
Il. SUPERLATTICE DIELECTRIC SUSCEPTIBILITY two superlattice constituents anrg,(w) has zeros at their

i i ) . LO frequencies.

This paper examines the properties of superlattice \yhen the superlattice layers are thin, the phonon response
phonons from the point of view of the dielectric function 5 sffected by confinement and the bulk slab model is no
g(q, ). This is a macroscopic quantity that we will obtain |onger appropriate. In GaAs/AlAs, the optic-phonon disper-
by considering the form of the microscopic fields, and it will gi5 curves of the two constituents do not overlap, so the
help to begin with a discussion of the relationship betweerbptiC phonons are confined within the individual layers,
the microscopic and macroscopic fields. The superlattice iﬁ)rming standing wave patterns within these layers. For
assumed to be homogeneous in #yeplane but has a peri-  ropagation in the direction, both the TO and the LO re-
odic structure in the direction with superlattice cell length sponse of each constituent is split into a number of medes
L. If the fields have macroscopic wave vectpand angular  each having a different frequenay, and oscillator strength

frequencyw, all microscopic fieldsZ(r.t) must have the s = The general form of the dielectric tensor, ignoring

Bloch form damping, is then
F(r)=F(z)e @y, 2 s,
whereF(z) is periodic inL, i.e., F(z+L)=F(z). The cor- Exx= Exx 1+E 2 . 2},
. - . . . n 07,0
responding macroscopic fiel(r,t) is obtained by simply
averagingF(z) over the superlattice cell: 1 1 s
_ — Eal e P L
F(r,t)=Fe'(q"_“’t>, (3) €2y g(zﬂz 1 % m ) (7)

where the macroscopic field amplitude is . '
P P wherewr, andw, are the frequencies of the confined TO

z+L and LO modes of index, Sy, andS, , are their oscillator
f F(z)dz. (4)  strengths, andj, ande3, are the principal components of
the high-frequency dielectric tensor. The summation qver

This definition of F ensures that so long as the micro- COVers all modes in the phonon bands of both layeyshas
scopic fields satisfy Maxwell's equations, then so do theP0les at each of the confined TO mode frequencies,sand

macroscopic fields. It is appropriate to use the macroscopieas zeros at the confined LO frequencies. Expressions having

fields F(r,t) so long as one does not wish to probe the sys-the general form of Eq.7) can be obtained from any model

tem on a length scale as small as the cell lengthThe of phonon confinement that yields dielectric functions.

dielectric functiong (g, w) describes the relationship between
the macroscopic field® andE: thus, 1. LONG-WAVELENGTH ELECTROSTATIC MODES

=1
L

z

Electromagnetic wave propagation in a uniaxial medium
represented by Eq$6) or (7) includes a polariton region at
In this paper, we are interested in the long-wavelengttmall wave vector {~w/c). If one is merely interested in
limit g—0. The bulk isotropic dielectric function for me- the phonon propagation, the polariton region can be excluded
diumi (i=1 or 2 has the form by using the unretarded limit in whiat—o; the modes are
then simply electrostatic modes. The Maxwell equations
g-D=0 andgXE=0 show thatD is transverse to the wave
ei(w)=¢; Vo2 ) vectorq, wherea<sE is directed along it. The field® andE
' associated with unretarded phonons are therefore orthogonal,
wheremeOi and w g are the bulk LO and TO frequencies, gnq satisfy the conditioB- E=0; although one or the other
and &;" the high-frequency dielectric constant. AB0D-  fie|d must be zero for phonons propagating in special sym-
grown superlattice behaves as a uniaxial medium, an%etry directions, in general both may be nonzero.
g(q,») can be represented by its principal components \ye take the wave vectar in the xz plane, with propaga-
exx(@) =&yy(w) ande,{w) (usually written ag,, ands,,).  tion angled such that targ=aq,/q,. For p polarization(fields

The simplest evaluation of,, and e,, uses the bulk slab . the xz plan .D=0 andaxE=0 then give. respec-
model in which the superlattice layers are assumed to bﬁvely plang, g g gve, P

sufficiently thick to retain their bulk properties. Then

D=¢og(q,)-E.

2 2
» WLoi— W

d18;1+d282*l tanaz—sZZE_Z/eXXEX and tan0=E_X/E_Z, (8

d181+ d282

-1
€ _—1
xx d,+d,

T ard, O

ie.,
where the two constituent layers have thicknessesndd, .
The above equations may be simply derivgdranovich tart 0= —g, w)/ ey w). 9
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This equation relates propagation angle frequencyw for
p-polarized phonons, and can also be obtained by taking the
unretarded limit ¢—«) into the p-polarization polariton
equatio?

U(z)=2, a, sin(#mzd,)E, (0<z<d;). (14

Assuming that each of the functions,(z) is an eigenmode
of the system, the coefficients,,, will have the resonant

Ui/ &5+ Ol e xy= w?IC2. (100 response form

Ins polarization(D_fieIds in they direction, the expression

A
equivalent to Eq(9) is just 1m

alm=—2—_ 7.
Drim™— @

(15

-1_
Exx =0, (12) Here w1y, is the eigenfrequency of the modg which, to a

showing thas-polarized phonons, less interestingly, have nofirst approximation, will be the frequenayro, (k) of a bulk
angular dependence. TO phonon in medium 1 with wave vectork
Equation(9) can be used to describe the angular behavior (0,0mm/dy):
of long-wavelengthp-polarized phonons, using any conve- (16)
nient model for the superlattice dielectric functions. Where
the bulk slab model, represented by E8), is applicable, the The displacements,(z) of the optic-phonon modes cause a
equation describes phonons that are often referred to as ifecal “phonon” polarization P,(z), which we assume is
terface modes. In this paper, we concentrate on confinegroportional tou,(z). The local susceptibility,(z), defined

1M~ 0101(K,=M7/dy).

phonon models that give dielectric functions of the fdifj

as

using two models. The first is a simple continuum model that

assumes that all vibrational amplitudes go to zero at the in-
terfaces. The second is a microscopic linear-chain model that

can be modified to include the effects of interface roughness.

In each case, we calculate the phonon frequencies at gene

propagation angled using Egs.(9) and (11), and calculate
the corresponding phonon displacement patterns.

IV. CONTINUUM MODEL FOR THE DIELECTRIC
FUNCTION

All microscopic fieldsF(r,t) in the superlattice structure
are assumed to have the Bloch fok®). The electric dis-
placementD satisfies the Maxwell equatiovi- D(r,t) =0,
so

dD(2)
Jz

igD(2) + =0. (12
In the long-wavelength limitD(z) can be expanded as a

power series imgL:

D(2)=D(2)+ >, DY (z)q,L+""- . (13
Putting Eq.(13) into Eq.(12), the term of orden=0 in q is
dDgo)/dz=0, so to zero order imL, D,(z) is constant and
equal to the macroscopic averafe over the superlattice
period. Similarly, usingv X £(r,t) = —dB(r,t)/dt, it can be
shown that bothE,(z) and E,(z) are effectively constant
over the superlattice period to zero ordermib.

We now use a simple continuum model to obtain a form 4

for the dielectric function in the long-wavelength limit, in
whichE,, E,, andD, are uniform over the superlattice cell.
First consider the in-plane motion. SinEg is a constant, it

IP«(2)
(D= (17
s the form
r
(D=2 ——— sin(wmzd,), (18)
m OrmT ©

wherer ,,, are coefficients related to the coefficients in Egs.
(14) and(15).

In order to determine values for these coefficients,
we examine the bulk slab limit for largd;, when x,(2)
becomes a constant and equal to the bulk phonon suscepti-
bility x, for layer 1. The relationship between the bulk elec-
trostatic fields is

D(z)=¢1(w)eoE(2)=&7&0E(2) + P(2),

wheree;(w) is given by Eq.(5), P(2) is the phonon polar-
ization, and the high-frequency dielectric functiefi incor-
porates the atomic polarizatid®y=(e; — 1)eoE. The bulk-
phonon polarization susceptibility is therefore

o]
2
g, A
_ w_ E181 - 2_ 2 2
x1=ei(w)—g;=—>——> with A7=wio— w701,
Wr01™ @

(19

In the bulk limitd;—o, x,(z) of Eq.(18) can be cast in the

form of y; in Eq. (19) by replacing the confined mode fre-

quencieswTiy, by the bulk valuewtg; and using the identity
- > in the range &z<d,
T m odd

(20

1
o sin(mmz/d;)=1

is obviously appropriate to treat the in-plane component® Show that the coefficients, have the values

u4(2) of the atomic displacements as a response to this uni-
form field. We make the usual assumption that the atomic
displacements are pinned at the boundary between the two

media, so the displacememt(z) in layer 1 can be written as
a Fourier sum of mode displacementg(z) = sin(mm2d,) of
the form of Eq.(1):

rim=4e5A27m for m odd,

for m even. (21

The modes of evem carry no electric dipole moment, and
do not contribute tgy, .

r1m=0
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Assuming the value§21) for r,,, can be carried over to of the same form as Eq7), with ¢, given by
thin layers, the spatially-dependent susceptibiliyg) be-
comes (e3,) t=(dy/el+d,y/e3)/(d1+dy). (30

4s°1°A§ i Expressiong24) and (30) for &, and ¢,, describe the
sin(mm7d;) (0=<z=di),  |ong-wavelength dielectric behavior of the superlattice, both
(22) in the polariton regiond~ w/c) and in the unretarded pho-
) . . non limit (w/c<q<L 1), with Egs.(9) or (10) providing a
with the average susceptibility for layer 1 given by relation between frequency and angle of propagatiof.
1 4, 8e” A2 Calculations of mode frequenciesas functions of angl®
<Xx>1:_f T Pl Y —— - — and associated displacemar(z) are described in Sec. VI.
di Jo m odd T M(@T1y— @) The displacementa(z) are proportional to the polarization
(23 P(2), whose components af,(z) = x«(2) £oEy andP,(z)
All of the above procedure may be repeated for layer 2.=¢-(2) D;, and the relative amplitudes of the uniform fields
Overall, one can then relate the microscopic polarizatiorPz @dE can be obtained from-D=0:
P.(z) and the electric displacemeit,(z) to the uniform

Z = _—
Xx(2) m§o:dd mﬂ'(w%lm_ wz)

field E, through spatially-dependent susceptibilitigg(z) D,/Ex=—e&xxeo tan 6. (31
andey,(2): Finally, it is worth commenting on the electrostatic potential
=) — E. D _ E W(r,t) associated with the excitations,_in_ the electrostatic
(D =s0x(2)Bx Dul2)=e08:(2)Es (unretardeyland long-wavelengthq— 0) limits. The poten-

wheree,,(2) =]+ x,(2) in layeri. The macroscopic fields tial is related to the electric field bg(r,t)=—VV(r,t), and
are related b, = £,e,,E,, Wheree,, is the spatial average V(rt) takes the Bloch form

<8XX(Z)>:_ V(r,t)=V(z)€'@ =Y with V(z+L)=V(2)
oD .
Sxxzsoé’é =[di(e1+{xx1) +d2(e3+(xx)2) 1/ (d1+dp). whereV(z) is given by
X
(24 ; -1 fz -1 -1
V(z)=iE,/g,— D, dZ z')— .
This is of the same form as E7), with 2) x/Gx™ 80 "Dz 0 Loz, (2') ~ 2z
gxx= (0187 +dpe3)/(dy+dy). (25

V. MICROSCOPIC MODEL OF DIELECTRIC FUNCTION

A similar approach to the above may be used in calculat- |, this section, we briefly review the procedure for calcu-

ing &;. In this caseD, is the appropriate driving field, be- |40 of the susceptibilities in the form of E€7), using the
cause this is uniform throughout the superlattice. The appror,nqom element isodisplacemefREl) model. A full de-

priate local susceptibilit§,(z) represents the response of the scription of this model is given by Samsenal® and also in

z displacements to the field,, and is defined as the review by Dumelowet al,?* so we merely outline the
— 9P D 2 important features here; the moqlel has also been investigated
&2 2)/Dz, 26 by Bechstedt, Gerecke, and GrifftThe REI model evalu-
and the expression analogous to E2p) is ates the propagation of phonons along thaxis of the su-
4A2 perlattice structure, represented as a diatomic linkeB
1 ; chain. TheA sites contain As atoms, while tH sites are
&)= 2 ———— sin(amzdy), (27)

either Ga or Al, or indeed a proportionof Ga and (1-x) of
Al, since the response is effectively that of the plane of at-
oms normal to the axis. By choosing the force constants of
the model to describe as accurately as possible(106)

m odd 7TM( wﬁlm_ ?)

wherew, 1, is the frequency of thenth confined LO mode
in layer 1. The average susceptibility in layer 1 is then

8A2 dispersion curves for bulk GaAs and AlAs and the alloy
(€)= E R — ! >, (29) mode frequencies, the model gives an accurate calculation of
m odd T M (@[3~ ©°) the phonon frequencies in GaAs/AlAs superlattices. Unlike

and similarly for layer 2. One can thus obtain the position-tN€ continuum model, the microscopic model needs no as-
dependent susceptibility sumptions about how the displacements behave at the inter-

face between the two constituent materials.

£09EL(2) Interface roughness has a very important effect on the
-1 092 . . - .
822 (2)= , confined mode frequencies in short-period superlattices. The
aD, 8 i
model of Samsoret al® enables the effects of interface
and the average dielectric tensor component roughnesgor interface alloying to be investigated by pre-

_ scribing values ok for eachB site that are not merely either
. €odE, 1- di /e” 0 or 1. A simple approach is to characterize the roughness by
2z 4D, =[A={&)di /ey a parametewV, such that the concentratiog,; of Ga atoms

. at sitez; monolayers away from an interface has the error
+(1-(&)2)da/e5]/(d1+dy), (29 function form

]
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300 T 300 T 300 T

Wave number (cm™")

260 ! 260 L 260*
0 n/4 n/2 0 n/4 n/2 0 /4 n/2

Angle Angle 6 Angle 8
FIG. 1. Angular variation of GaAs-like mode frequenciegjat0 in a(GaA9,(AlAs), superlattice, calculated according to E8): (a)

continuum model{b) microscopic model with interface broadeniig=0; (c) microscopic model withV=2.0. The measured frequencies

of Scamarcicet al. (Ref. 33 are shown a®, LO,,, modes(m odd) at §=0; X, LO,, modes(m ever; B, TO,, modes(m odd); O, TO
modes.

XGaj™ 5

Zj dZO'
1+erf Wil (32) m~l(aes,q)[n(w)+l],

. . : where
Samsoret al. find the dynamical matrix that couples the

normalized displacements; (= Us;vMgXsj, whereMg is the o i i
atomic mask for atom types in the cellj using a one- (& ’eS'Q):._Z/ eselesef Imj — 2 (@ xn+b"")
dimensional linear-chain model; they obtain a site response e hh

to applied fieldsfs ;. in the form C -
X(@@ " xp, +0MN )Qth'} f

*
. USJ:MUS’j/yM
es;=2 fsijrxsjsrjr With ij,s'j'=z — 72 2 +2 aijhai’j’hxh}.
R

s'j’! " w, —w (34)
(33

] ) ) ) o Here, the(unit) polarization vectors of the incident and scat-
whereus; , is the matrix that diagonalizeg with eigenval- tered light ares andes, with components denoted by indi-
ueswy. The functionsg; , have a very similar form to the cesj andj (=x,y,z). x, denotes the susceptibility
functions singmz/d,) in Eq. (1), with m=u and z;=j,

(with a the lattice constaiptand are identical in the limit of Py,

larged; andd,. Eq. (33) is of the same form as E18), Xh = J3E, (h=xy,2), (39
and to complete the analysis in order to obtain dielectric ) ) )
functionse,, ande,, analogous to Eq€24) and(29), values ~ assumed to be diagonal in the crystallographic axgsz.
for the effective charge®; involved in coupling the site  Xn(«) has poles at the TO frequencies,, . g, is the com-
displacementsy; to the appropriate fields are estimated byPonent of the phonon propagation vector along fthaxis,
recourse to the bulk dielectric functiol®9). andf is the polar mode dielectric function,

f=(q>2<+q§)8xx+Q§szza (36)

in which the dielectric functions,, and the susceptibilities
Hayes and Louddh give an expression for the Raman- xj are related by
scattering differential cross section in polar materials, which .
can be reduced to the following form: Enh=&npt Xn, (37)

VI. RAMAN SCATTERING INTENSITIES
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Continuum
Model

Microscopic
W=0

Microscopic
W=2

XXX =X =X =X ~R =~ —F—A -2~ =R

FIG. 2. Displacement patterns for modesfat0, w/4, and#/2 for modeA of Fig. 1 (the LO, mode atf=0): [, z displacementsy,
x displacements.

with e,,=¢,, because of the tetragonal symmetry of thein the GaAs reststrahl region. The part of the Raman-
superlattice. scattering cross section involving the coefficieatd arises
a'l" is a coupling coefficient, which in principle is differ- from coupling of light to phonon displacements via the de-
ent for each of the modes contributing toy;, and in writing ~ formation potential. The coefficiert!" is the electro-optic
down Eg.(34) we have in effect assumed that the Ramancoefficient that describes coupling to the macroscopic fields
coupling coefficient of each mode is proportional to its in- associated with the phonon, usually described as thieliEho
frared strength. Furthermore, we shall approximai8 by interaction. We make the same symmetry assumpt{88s
assuming that it has the symmetry properties of the bulor theb'!" parameters as fa'!"; for bulk GaAs, Hayes and

zinc-blende structure, namely, Loudon quote
al"=0 unless i#j#h#i, (39
. DCAZ
and we also assume that the nonzero valued/bfcan all be b/a= _0_178 > with  A?2=wl— 03, (39
put equal to a single paramet@mwhen considering phonons @10
6=0 6 =mn/4 0=m/2
| |
Continuum : :
Model | |
[=¢ Jl
| |
| |
| |
Microscopic | |
W=20
i |
| TN : :
[ / \( | |
Microscopic f | / \,L 4
W=2 P B A \
U | o=t | oo |
| | .

FIG. 3. Displacement patterns for modesfat0, =/4, and#/2 for modeB of Fig. 1 (the LO; mode atf=0): [, z displacementsx,
x displacements.
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TABLE I. Definition of axes used in Raman scattering calcula- VII. CALCULATIONS OF MODE FREQUENCIES

tions. AND DISPLACEMENTS

Axes Directions of components In this section we calculate the angular variation of the
mode frequencies and displacements using the two dielectric

(x.y.2) x=(100) y=(010) z=(001) function models outlined above. Where appropriate, our

(x'.y'.2) x'=+%(110) y'=/%(110) z=(001) modeled results are compared with published experimental

(X,y,2) X= @(101) y=(010) 7= \/g(ﬁl) micro-Raman measurements.

(X'y'.Z") ) y'z\/g(EO) z'=11 12) Figure 1 shows the dependence of the GaAs-like mode

frequencies in dGaA9,(AlAs), superlattice on propagation
angle 6. The mode frequencies satisfy Eq9) and (10).

) . . Three different models have been used for the dielectric
Note that the coupling considered here is the same as th@inction: the continuum model outlined in Sec. Il has been
which gives the Raman scattering in the bulk materials, angised to model Fig. (&), and the linear-chain model described
will consequently involve only the odd indem modes. in Sec. IV has been used in Figgbland Xc), without and
Strictly speaking, the superlattice symmetry is lower than th&yith interface roughnes8N=0 andW= 2.0, respectively

bulk (D2 rather thanTy), so neither the restrictio(88) nor  The continuum model derives its confined mode frequencies

the assumption of single parametersand b is rigorously 4, o andwron, from the same bulk phonon dispersion as is
valid. This becomes apparent under resonant excitation cofsed in the linear-chain model.

ditions, when scattering from even index modes is observ- ag 9.0, Eq.(9) has solutions when either, () —0 or

able via a \_/ersion of the Fhtich interactiqn which_acts g4 () 1—0, and the modes are classified correspondingly
through the intrasubband effect of the electric potential assosg LQ, or TO,, with displacements parallel or normal to the
ciated with the phonor&. We ignore this possibility in the axis of propagation, respectively. The modes witheven
present analysis and restrict our attention to nonresonant exshown by dashed lines in Fig) tarry no dipole moment
citation conditions, although the analysis may also be reasonyng so they do not contribute to the dielectric functions and
ably valid for the odd index scattering under resonant condigpow no angular variation. Thes-polarized solutions
tions with the proviso that the parametersand b will be £o(®) " t=0 of Eq.(10) persist regardless of angle, and are
differently affected by the resonance. ~ shown in Fig. 1 as dotted lines. The remaining modes are the
The expressiof34) produces resonances of two typ@:  gipole-activep-polarized modes, and show angular depen-
when the denominatair is zero, the resonances correspondgence required by Eq9). At 6= /2 (propagation in the-y

to thep-polarized modes of Eq9) (sometimes referred to as plane these modes can be classified as,Té LO/, accord-

polar mode}s (b) when there_ are poles in t_he susceptibilitiesing to whether they are solutions of,(w) '=0 or
Xxn. TO resonances appear in both terms in the curly bracket

/ ; éxx(w)zo, and have displacements alomgor along the
|n_Eq. (34), th_ough these resonances can be canceled in C&Vave vector direction, respectively. We have used odd indi-
tain geometries.

We will consider various cases, in which the phononCesm fo label dipole active TQ and LG, modes atf

propagation is described by the usual polar anglesid ¢ =1/2, bu_t unlike the situation a#=0 the indexm does not
Theng is the vectorg(sin  cosé,sin d'sin ¢,cos6), and necessarily represent the number of confined phonon half-

wavelengths, as will be apparent when the mode patterns are
examined.
— 2 The continuum model results are similar to those obtained
F=0%(Sif 0050 £2). 40 from other continuum modef§:'828 The long-wavelength
limit of the model of Chamberlain, Cardona, and Ridféy,
Calculated spectra using E@4) are shown in the next sec- for instance, is equivalent to the model presented here pro-
tion. vided that the phonon dispersion is parabolic, that the modes

TABLE Il. Relative intensity factors for various Raman-scattering geometries, with propagation ahgle
and mode classification type. Definitions of axes are given in Table I.

Scattering Angle Mode
geometry Relative intensity factor 0 type
z(xy)z or Im{— (i, + )5+ X2t 0 LOm
z(y'y')z

Z(Xy)Z IM{ =306 XD (8t 822+ 306+ XD} ml4 mixed
Z'(X'X"Z" IM{— 3(2x— xa+ D) (et €20+ e+ X2t wl4 mixed
Z'(y'y)Z' IM{— (D) (et £2)+ X2} w4 mixed
Z(XX)Z Im{x, wl4 TO,
X' (y'2)x” Im{x. /2 TO,
X' (y'y' )x" Im{x} /2 TO,,

X(y2)x IM{— Ot b) et Xk 2 LOy,




57 DIELECTRIC SUSCEPTIBILITY MODEL FOR OPTICA.. .. 3985

L L B L L roughness appears to affect the results more than whether the
o4 model used is microscopic or continuum in nature. In fact,

a the results of the continuum model shown in Fi¢g)lare in
effect intermediate between the microscopic model results of
Figs. Ab) and Xc), particularly in respect of the higher-
frequency modes.

Figures 2 and 3 show the displacement patterns associated
with the two highest-frequency modésandB of Fig. 1 (the
#=0 LO; and LO; modes. The mode patterns are calculated

5 using each of the three models used in Fig. 1 and are shown
L 531 o 1 ' af[ 0=0, m/4, a_nda-r_/Z. Note that in the contin_uum model the_
250 260 270 280 250 300 310 dlsplapement mewtably falls to zero at the mterfapes, but in
the microscopic model the vibrations more plausibly extend
Wave number (cm"") slightly into the AlAs layer. Consequently, the confinement
is less than in the continuum model with the result that the
P T T T T T microscopic model gives slightly higher mode frequencies
Oy than the continuum model. This effect has long been recog-
nized; some authors using the continuum model extend the
effective width of the active layer by one monolayer unit in
order to model the mode frequencies quantitatively
correctly?® Interface roughness can markedly affect the
mode frequencies and displacements. As can be seen in the
displacement patterns in Figs. 2 and 3, the modes are more
confined when the interfaces are rough. This is because the
o rough interfaces, which can be considered as thin alloy lay-
o L3 ers, are effectively acting as barriers to the phonon vibra-
tions. The inclusion of interface roughness therefore tends to
lower confined mode frequencies, as observed in Fg. 1
LA L L L A and as pointed out by many authdfs?° At lower frequen-

Oy cies, the interface alloy layers no longer act as barriers, and
vibrations extend further into the AlAs layers, decreasing
confinement. These modes appear at a higher frequency than
the equivalent modes for a superlattice having sharp inter-
faces.

Looking in detail at the mode patterns shown in Figs. 2
and 3, it is clear that, while the displacement patterng at
=0 have the basic sinusoidal formy,(z) ~ sin(mmz/d), they

s become much less simple away frofs 0. Here, the cou-
v s ' [\ ' pling between the mode displacements and the macroscopic
250 260 270 280 290 300 310 electrost_atlc_ f@ds causes.the. odd-ingeypolarized mod'es
to contain significant contributions from a number of eigen-
Wave number (cm™") modesu,,, so the mode indem on these modes does not
necessarily directly denote the number of phonon half-

FIG. 4. Calculated nonresonant Raman backscattezring)z ~ Wavelengths confined in the GaAs layer: for example, ¢he

Scattering Intensity

Scattering Intensity

Scattering Intensity

,

spectra for aGaAs,(AlAs), superlattice, obtained using E€R4) = /2 continuum modewy: IS cIearIy composed primarily
for the three models of Fig. 1) continuum modelib) micro- 0of m=1 and m=3 modes. Thex displacements for the
scopic model withW=0; (c) microscopic model with\V=2.0. modes shown in Figs. 2 and 3 appear to have a simpler form

with a single antimode, but at lower frequencies within the

in Eg. (22 and (27) are summed to infinity, and that the bulk TO band thex displacements show more prominent
phonons in the AlAs layer make no contribution. The presenescillatory confinement patterns. The AlAs optic-phonon
model has the advantage over other continuum models ihands are at higher frequencies than the GaAs optic bands,
that none of the above assumptions are necessary. Moreovég all models only show small displacements in the AlAs
it is simpler to use, requiring only numerical substitution into layer at the GaAs-like frequencies.

simple algebraic expressions, although, in the form presented
here, it is restricted to the long-wavelength limit.

The three plots in Fig. 1 show some qualitative differ-
ences. For instance, the curve corresponding tg BO6 We now consider the Raman spectra corresponding to the
=0 extends taw14 in Figs. 1@ and 1b), but extends taw, ; expression(34) in Sec. VI. Over the past few years there has
in Fig. 1(c). This type of behavior depends on the relativebeen a number of publications of Raman spectra from GaAs/
frequencies of the poles and zeroeig, in comparison to the AlAs superlattices with nonzero propagation angtesand
poles and zeros ia,,. It is particularly striking that interface without making an exhaustive comparison with experiment

VIIl. CALCULATIONS OF RAMAN SPECTRA
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Z(xy)z or 2(y'y)z
(6=0)

Scattering Intensity

250 260 270 280 290 300 310

Wave number (cm™")

LN A R A B B A e R B — T T T T} 1 7 T T T T T T T 7T
c A
Z(Xy)Z (6=n/4) Z(X'X)Z' (9=rl4) Zy'Y)Z (0=n/4)
>
Z
=
2
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£
2
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(N 1 [ P AN -
250 260 270 280 290 300 310 250 260 270 280 200 300 310 250 260 270 280 290 300 310
Wave number {cm) Wave number (cm'") Wave number (ecm™")
——r— T T T T T T T — T T T T T T T T —
O - e o’ L
X' (y'2)x' (0=n/2) XYy (0=r/2) x{yz)x (6=n/2)
Pl 1
2 Bry
2
<
>
&
[
g ,
& g
Wrg u)T7' s
W,
il P SR [T T S Lo N T O
250 260 270 280 290 300 310 250 260 270 280 290 300 310 250 260 270 280 290 300 310
Wave number (cm?) Wave number (cm™) Wave number (cm™")

FIG. 5. Nonresonant Raman-scattering_intensities calculated using3Bqfor a (GaAg,(AlAs); superlattice, with the scattering
geometriesi(xy)for z(y’y’)?(ﬁ=_0); Z(Xy)Z (0=ml4); 2/ (X' X")Z' (0=ml4); Z'(y'y")Z" (0= ml4); Z(XX)Z (6=m/4) [equivalent
tox'(y'z")x" (0=m/2)]; X' (y'y')X" (6=m12); x(y2)x (6= m/2). See text for definitions of axes.

we want to point out that our approach gives a simple deguencies corresponding =0 in Fig. 1. In practice, experi-
scription of the intensities as well as the frequencies of thenental investigations often include resonant Raman
modes observed in such experiments. As far as we are awarsgattering, where the scattering also involves thehkeh
no attempt has hitherto been made to model the intensities @flectric potential interaction, which gives an angularly in-
the spectra, which show a remarkably rich variation withvariant contribution from the even-index modes observable
propagation direction and scattering geometry. Scattering gen certain scattering geometries; we do not cover this contri-
ometries that are of particular interest involve the sets of axebution here.
listed in Table I. The following expressions are obtained for In Fig. 5 we compare calculated backscattering spectra for
the relative intensity factorg(g ,es,q) for nonresonant Ra- a number of different geometries correspondingéte 0,
man scattering, using the conventional notatipfe, ,es)qs, /4, and/2. In all cases the dielectric function is the same
in which g, and gs are the propagation directions of the as was used to model Fig(cl, i.e., that obtained from the
incident and scattered photons, with polarizatienandes, microscopic model with interface roughness. It can be seen
respectively. Table Il gives the results calculated from Eqghow different modes arise from the selection rules implicit in
(34) (with a=1) for some backscattering geometries of ex-Eg. (34). In addition, the spectra show that the relative inten-
perimental interest. sities also depend on the scattering geometry. The mode fre-
As an illustration, in Fig. 4 we show the calculated back-quencies, in contrast, depend only on the ar@jle
scatteringz(xy)z nonresonant Raman spectra, obtained us- We now compare our results with those obtained experi-
ing Eq. (34), for the three models of Fig. 1. Mode damping mentally. As yet, there have been fe¥-0 measurements
was obtained for the microscopic model as described byn superlattices with sufficiently thin layers to show appre-
Samsonet al.® using the same parameters. In this orienta-ciable confinement. Hessmet al®° report backscattering
tion, odd-index L@, modes should be observed at the fre-micro-Raman results over a series of angles for superlattices
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having GaAs wells of width about 10 nm. The layers in these = 2% - 290 '
samples are sufficiently thick that a microscopic model is not
required, and the results can be interpreted using the bulk
slab model represented by Eq$) and (2). Similarly Fain- o
steinet al3! have used 90° scattering to investigate a super-
lattice with a GaAs width of 5 nm. Although they interpret I ] o, ]
their results in terms of confined modes using a continuum§ . \
model, represented by Egd) and (2), their results are es-

sentially the same as those obtained using the bulk slatz
model. Haines and Scamartiand Scamarciet al> have
made backscattering measurements on short-period GaAs
AlAs superlattices for botl#=0 andd= 7/2 using a number o
of different scattering geometries. Zunkeal3* have also o
made backscattering measurements, in this case correspon \_"%, om
ing to a series of intermediate values &fbut with the po- o, *

larization of incoming and outgoing radiation restricted to 2600 7'(/4 o 2600 7'“ .
the y’ direction, for which unequivocal mode assignments pngle® pngle

are not possible. Since the assignments of Zuetkal. ap-

pear to differ significantly from those by other authors on
similar samples?33 we restrict ourselves to modeling the

spect[a O(g::amagﬁ\et al. Th? gr."t t(;]el.l of one of thfe (GaA9,(AlAs), superlattice YW=1.0). The measured frequencies
samples 925(AIAs), ; reported in their paper is so far of Scamarcicet al. (Ref. 33 are shown as in Fig. 1.

off stoichiometry as to make microscopic modeling unrea-
sonable, but we have modeled all the other results. ] ) )
Scamarcioet al33 show experimental Raman-scattering extent incorporate the difference between this and the as-
spectra for aGaAs,(AlAs), superlattice with the scattering SUmed superlattic€GaAs,(AIAs);.
geometriesz(xy)z, z(yy)z, x(yy)x, x(y2)x, z(y'y')z, The experimental frequencies for the other samples stud-
X'(y'y )X, and x,’(zy’)W., The géometries,z(yy)z_an;j ied by Scamarciet al. are compared with theory in Fig. 6.
x(yy)x produce no features in nonresonant scattering, bufV® have only shown theoretical curves for the microscopic
show an LQ feature due to the Fhich interaction. Apart model with |ntgrface rough_ness, pecause in all cases consid-
from thex(yZ)x spectrum, there is close agreement betweer‘?rably better fits are obtained \_Nlth roughness mcluded. In
the experimental spectra and those shown in Fig. 4, modelegfch case a bestit value for interface roughness is used.
with an interface width oMW=2.0, although thez(y'y')z However, x-ray diffraction has shown that in none of these

g YT ; i P les is each layer an integral number of lattice units
andx’(y'y’)x' spectra yield additional L9Ocontributions. samp . .
The experimental results for theéyz)x geometry are some- wide. As with the(GaA9,(AlAs), superlattice, therefore, the

what unclear. This may be because the quality of the po|_modeled interface width may not accurately reflect the true

: lue of the roughness.
ished(100) surface was not as good as for the clea{etD) va .
surface, resulting in a relaxation of the selection rules. The above results show that micro-Raman results can be

The experimental frequencies obtained from themodeled qualitatively using a continuum model in a simple

(GaAs-(AlAs), spectra of Scamarciet al. are included on manner. More quantitative results require the use of a model

Fig. 1(c). It can be seen that neither the continuum model nthat tlnqtt)r:porate§ mtc:rfacebrougthr)esZ,' a:'r?. excelle\r;\'; arg]]ree—
the linear-chain model with no roughness would successfull);nen with experiment can be oblained In this case. Vve have
Iso shown how the use of a number of different scattering

model the experimental data. When an interface width of 2.¢ : . )
ML is included in the linear-chain model, however, the geometries can lead to unequivocal mode assignments.
agreement is excellent. It thus appears that interface rough-
ness is an important parameter in determining the phonon
behavior. Note, however, that the repeat unit, as measured by
x-ray scattering, wagGaA9; 5(AlAS)ggs SO the valueW The authors wish to acknowledge useful discussions with
=2.0 for our interface roughness parameter may to som&l. C. Constantinou and M. P. Chamberlain.

umbe:
e

@p

Wave

12

FIG. 6. Angular variation of GaAs-like mode frequencies at
g—0: (@ (GaAg;(AlAs); superlattice YW=1.4); (b)
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