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Two-dimensional dynamical model for step bunching and pattern formation induced
by surface reconstruction

Hyeong-Chai Jeong and John D. Weeks
Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

~Received 19 September 1997!

Surface reconstruction on sufficiently wide terraces on a vicinal surface can cause the formation of step
bunches. We consider this process in the nucleation regime using a two-dimensional~2D! dynamical model
that describes both surface reconstruction and the effects of the growth of a reconstructed facet on the motion
of neighboring steps. When there is local mass transport, we show that the growth of a reconstructed facet can
induce the growth of a similar facet nearby, leading to regular arrangements of flat facets separated by step
bunches and to other characteristic 2D step patterns.@S0163-1829~98!02108-0#
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I. INTRODUCTION

Surface reconstruction can often cause a vicinal surf
with a single macroscopic orientation to rearrange or fac1

into ‘‘flat’’ reconstructed terraces and much more shar
inclined unreconstructed regions with closely bunch
steps.2–6 In this paper, we study the dynamics of this faceti
and the resulting step patterns that form using a tw
dimensional~2D! model that describes the coupling of th
reconstruction process to the motion of individual steps. T
generalizes our previous work, which considered a 1D s
model7 and treated the reconstruction in a less general w8

In most cases the reconstruction occurs on a partic
low-index ‘‘flat’’ face, and lowers its free energy relative t
that of an unreconstructed surface with the same orienta
However, the same reconstruction that produces the lo
free energy for the flat face generallyincreasesthe energy of
surface distortions such as steps that disturb the recons
tion. Thus on vicinal surfaces reconstruction is often favo
only on terraces wider than somecritical terrace width wc .
When steps are initially distributed with average step sp
wa much smaller than the critical widthwc , step fluctuations
leading to the formation of a sufficiently wide terrace —
‘‘critical nucleus’’ — are required for the reconstruction
begin. Continued growth of the reconstruction will make t
vicinal surface facet into distinct regions consisting of reco
structed terraces and closely bunched steps.

In agreement with this picture, experiments on seve
systems including the 737 reconstruction on the Si~111!
surface2 and the formation of (n31) oxygen chains on the
O/Ag~110! surface4 show reconstruction only on sufficientl
wide terraces. However, faceting experiments on these
some other systems such as GaAs~100!, Pt~111!, and
Au~111!, show a noticeable regularity in the size and spac
of the flat facets2,3,5,6 though the extent of regularity is dif
ferent depending on the system. These regularities seem
to reconcile with a picture of random nucleation of the fa
eted regions. While a number of different factors can c
tribute to the facet spacing in particular experiments,
show here that there exists a rather generalkinetic mecha-
nism that can lead to regular features in the faceting proc

In the following section, we introduce an effective 2
570163-1829/98/57~7!/3939~10!/$15.00
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Hamiltonian that describes the energetics of individual s
configurations and the effects of reconstruction on the
races. The dynamical equations for step motion and rec
struction are then given in terms of a step chemical poten
and an effective local reconstruction field as determined fr
the effective Hamiltonian. These equations of motions can
numerically integrated; the results are presented in Sec.
We first study the lateral and normal growth rate of an is
lated nucleated facet. Then we show how aninduced nucle-
ation mechanism7,8 can produce a regular array of ste
bunches in the faceted surface and other 2D patterns.
also shown here that when thermal fluctuations are taken
account the induced nucleation mechanism leading to reg
features in the faceted surface can occur under even m
general conditions than what the previously studied de
ministic models7,8 would predict.

II. MESOSCOPIC MODEL

Several different representations of a given surface
possible depending on the scale at which the surface
investigated.9 On amicroscopic scale, one can try to specify
the surface by focusing on the positions of individual ato
and study the evolution of morphology from the motions
individual atoms on the surface.10 In practice, this is possible
only numerically and is usually limited to very small system
and for very short times. Hence, in most microscopic stud
one considers a model Hamiltonian that simplifies the p
sible configurations and the interactions of atoms at the
face and that incorporates only the most relevant excitati
for the morphology changes under consideration. This
proach usually leads todiscretedescriptions of the surface a
illustrated in Fig. 1~a!, which shows a typical surface con
figuration of a terrace-step-kink model along with a critic
width model7,8 for reconstruction. In the critical width
model, terraces with width wider than somewc ~represented
by the shaded area! are assumed to be reconstructed.

On a coarse-grained continuum scale, the surface con-
figurations are specified by smooth variables that are
tained by integrating out or averaging over short-wavelen
fluctuations at the atomic scale. For example, Fig. 1~c! illus-
trates a surface represented bycontinuoussurface height
variables, z(x,y), and a continuous reconstruction fiel
3939 © 1998 The American Physical Society
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3940 57HYEONG-CHAI JEONG AND JOHN D. WEEKS
R(x,y), obtained by averaging the results of a discrete mo
using some appropriately chosen ‘‘smearing kernel.’’ He
z(x,y)5(kKxy(x2xk ,y2yk)hk , and R(x,y)5(kKxy(x
2xk ,y2yk)Rk , with a smearing kernelKxy(urWu);e2urWu,
wherehk is the height of thekth column at (xk ,yk) in Fig.
1~a! andRk51 (Rk50) if the kth column is reconstructed
~unreconstructed!. The physical properties of these coars
grained surfaces are investigated~often analytically! in a
continuum approach using a phenomenological Hamilton
~free-energy functional! of the Landau-Ginzburg type.11 This
approach is known to describe well the long-wavelen
properties of the surfaces in many cases, especiallyabovethe
roughening transition temperatureTR .12

However, continuous height variables may not yield t
best description for the surface belowTR . One loses the
information about properties of individual steps, which a
some of the main features of the surface at low temperat
Furthermore, a reconstructed region is expected to hav
sharp boundary near the step if reconstruction happens
on sufficiently wide terraces. Thus it is difficult to represe
the reconstruction properly using an isotropic coarse grain
like that illustrated in Fig. 1~c!. On these surfaces, it seem
better to focus on the properties ofindividual steps and their
interactions. Figure 1~b! illustrates a surface configuration i
a mesoscopicapproach where individual steps are identifi
with a discrete step indexn, but the behavior of each step
investigated from a continuum approach. A continuum
scription of the step positions can be obtained by averag
over short-wavelength fluctuations such as kinks in the s
configurations. For example, the continuum step posit
xn(y) shown in Fig. 1~b! is obtained byxn(y)5( j xn, jKy(y
2yj ), with a smearing kernelKy(r );e2ur u wherexn, j is the
discrete step position in Fig. 1~a! andyj is they coordinate
of the j th segment.

A continuous description of terrace reconstruction, d
scribed byRn(y), is obtained in a similar manner. The kine
ics of the reconstruction is believed to be much faster t

FIG. 1. Schematic surface configurations on different scales~a!
A typical step configuration in the terrace-step-kink model with
reconstructed facet nucleus when reconstruction occurs on al
terraces~shaded area! wider thanwc . The surface and reconstruc
tion profiles are specified by discrete variables,xn, j and Rn, j . ~b!
By coarse graining along the nominal step direction, we get c
tinuum step and reconstruction configurations described byxn(y)
andRn(y). However, the surface height still takes on discrete v
ues and the reconstruction profile changes discretely between n
boring terraces.~c! The surface is described by a continuous hei
variable,z(x,y) if it is coarse grained over several terraces inclu
ing steps. The small squares indicate grid lines. The reconstruc
profile R(x,y) is continuous over the surface.
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the kinetics of the step rearrangements.13 Once reconstruc-
tion happens on some part of a terrace, the expansion o
reconstructed region in a terrace to the full terrace width
thought to happen much faster than the step movemen
further expand the terrace width in they direction. When we
describe the reconstruction dynamics on the time scale of
movement of a typical step segment, it thus seems rea
able to consider a~whole! terrace segment as the unit o
reconstruction or deconstruction. Therefore, in a discrete
scription of reconstruction we can assign discrete val
Rn, j51 or 0 to thej th segment of thenth terrace depending
on whether it is reconstructed or not. The continuous va
ableRn(y) representing reconstruction on thenth terrace in
the mesoscopic model is then given byRn(y)5( jRn, jK(y
2yj ) just as for the step positions.

A. Effective Hamiltonian

To describe the evolution of surface morphology and
construction in terms of these continuum variables,$xn(y)%
and $Rn(y)%, we need to provide an effective Hamiltonia
for arbitrary configurations of these coarse-grained variab
We can think of at least two formal ways of obtaining th
effective Hamiltonian from microscopic models. First, w
can imagine summing over all microscopic configuratio
consistent with a given coarse-grained step and recons
tion configuration,$Xn(y)%5„$xn(y)%,$Rn(y)%…. As in real-
space renormalization-group calculations,14 we could get an
effective Hamiltonian in principle by calculating the loga
rithm of the partial sum of Boltzmann factors:

2H„$Xn~y!%…/k
B
T[ lnF (

$Xn, j
m %P$Xn~y!%

expS 2
Hm~$Xn, j

m %!

k
B
T D G ,

~1!

where$Xn, j
m %5($xn, j

m %,$Rn, j
m %) is a configuration in the micro-

scopic model with HamiltonianHm.
Alternatively, in analogy with density-functional method

for inhomogeneous fluids,15 we can consider auxiliary exter
nal fields $fx(x,y)% and $fR(x,y)% that couple linearly to
the step positions and reconstructed regions such that a g
arbitrary configuration of$xn(y)% with $Rn(y)% will be the
equilibrium state. The free energy of this system, calcula
by taking the trace over all configurations in the presence
the external fields, will be a functional of$fx(x,y)% and
$fR(x,y)%, and includes the direct linear contribution fro
the external fields. If we subtract these linear terms in
field we get the ‘‘intrinsic’’ free energy of the nonuniform
system, which we use as our effective Hamiltonian. Tech
cally, this generates a Legendre transform giving the f
energy as a functional of the configurations$xn(y)% and
$Rn(y)% rather than the auxiliary fields.

In practice, both formal methods are not easy to carry
for general step configurations, though the second met
has been successfully applied to calculate the edge energ
nonuniform, quasi-1D configurations.16 Here we will not
consider such formal development further. Rather, we in
duce a mesoscopic model Hamiltonian that incorporates
known results for two simpler systems, a 1D fluctuati
interface17,18and a 2D array of fluctuating steps with unifor
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average spacing,19,20 and use heuristic arguments to descr
the contribution from reconstruction:

H5(
n
E dyFV„wn~y!,Rn~y!…1

b̃

2
~]yxn!2

1
Dr

2
wn~y!~]yRn!2G . ~2!

Here wn(y)[xn11(y)2xn(y) is the local terrace width o
the nth terrace at positiony, b̃ is the line tension that con
trols the extent of fluctuation of anisolatedstep, and the sum
is over all steps~other symbols are defined below!.

In our previous studies7,8,21of reconstruction-driven face
ting, we used an even simpler model Hamiltonian without
explicit reconstruction field. This was defined in terms
step configurations only through the assumption that ev
terrace segment with width wider than the critical widthwc
is reconstructed. Clearly, this minimal model for reconstr
tion does not take proper account of the interface ene
associated with adomain boundarybetween reconstructe
and unreconstructed regions on the same terrace. How
in the earlier work we focused on the growth of a previou
formed reconstructed nucleus where the interface energy
mains essentially constant and hence does not affect the
namics.

In this paper we consider the more general case and
account of both the interfacial energy and the reconstruc
profile explicitly. In particular, the third term of the Hami
tonian of Eq.~2!, 1

2 Drwn(y)@]yRn(y)#2 represents the inter
face energy between reconstructed and unreconstructe
gions on the nth terrace. This term makes the initia
formation of an isolated reconstructed nucleus more diffic
than the growth of reconstruction on a local terrace adjac
~in the y direction! to an already reconstructed region.

The first term,V„wn(y),Rn(y)… describes the effective
step-step interactions between thenth step and the (n
11)th step whereRn(y) represents the ‘‘fractional coverag
of reconstruction’’ on the terrace between them. As in
previous studies,7,21 we assume that the appropriate form
this step-step interaction can be obtained from a 1D~pro-
jected! free-energy density with the slopes51/w equal to
the local width. The standard form19,20 ~for unreconstructed
vicinal surfaces! is given by f u(s)5 f 01bs1gs3, where f 0

is the surface free-energy density of the reference plane,b is
the free-energy cost per unit length for creating an isola
step, and gs3 is the free energy due to step-ste
interactions.22 For the surface with uniform reconstructio
coverageR, with 0<R<1, we assume that the 1D free
energy density still has the same functional form,

f ~s,R!5 f 0~R!1b~R!s1g~R!s3, ~3!

but with R-dependent coefficients.
The experimental fact that reconstruction occurs only

sufficiently wide terraces can be understood within a mo
with straight steps by assuming that the free energy of
reconstructed flat surface has a lower energy (2eR per unit
area! than the unreconstructed one but effectively a hig
energy cost (es per unit length! for forming an isolated
step.23 The free energy of the fully reconstructed surfac
n
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f (s,R51)5( f 02eR)1(b1es)1gs3, is lower than that of
the unreconstructed surface,f (s,R50)[ f u(s) when the
slope s is less thansc[e r /es . With a proper smoothing
scheme, the effect of reconstruction is expected to be pro
tional to R; hence, we usef 0(R)5 f 02eRR and b(R)5b
1esR in the continuum approach.24 We now follow our pre-
vious arguments7,8 and approximate the interaction ter
V(w,R) in the 2D model Hamiltonian in Eq.~2! by the in-
teractionf (1/w,R)w of a 1D model at thelocal width w:

V~w,R!5~ f 02eRR!w1~b1esR!1g/w2. ~4!

This local approximation ignores smaller edge ene
terms.16 These can be important in some cases, but no m
error will arise in the applications considered here.

This completes the description of the effective Ham
tonian in Eq.~2!, which determines the equilibrium prope
ties of our model. We now define the terms that will contr
the step and reconstruction dynamics.

B. Step chemical potential and local reconstruction field

In a step approach, surface motion results from adsorp
or emission of atoms at the step edge. Adatom attachmen
detachment at a step corresponds to a small variation of
continuous step position. Therefore, the free-energy cha
due to an atom attachment on the step is proportional to
functional derivative with respect to the step position fie
xn(y), of the effective step Hamiltonian of Eq.~2!. We de-
fine thestep edge chemical potential,25 mn(y), as the change
in the free energy when we add an atom to thenth step at
position y. If V is the area occupied by an atom,mn(y) is
given by

mn~y![2V
dH

dxn~y!

'V@]wV~w,R!uwn~y!

Rn~y!

2]wV~w,R!uwn21~y!

Rn21~y!

#1b̃V]y
2xn .

~5!

For simplicity, we have ignored the functional derivative
the third term in Eq.~2!, which is of the same order as th
previously ignoredR dependence ofb̃ . However, no new
problems arise if both effects are taken into account, a
they may be important in some applications.

The term]wV(w,R)uwn(y),Rn(y) in Eq. ~5! has dimensions
of force per unit length and can be interpreted as an effec
pressureon the step associated with terracen. Thusmn(y)
depends on the local~linearized! curvature]y

2xn of the step
and on the difference in pressure from terraces behind an
front of the step. For the step interactions of Eq.~4!, the
effective pressure on the step has two sources: reconstru
(eRR), and step repulsions (2g/w3). Thus the step chemica
potential is written as

mn~y!52V$eR@Rn21~y!2Rn~y!#

12g@wn21
23 ~y!2wn

23~y!#1b̃]y
2xn~y!%. ~6!
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3942 57HYEONG-CHAI JEONG AND JOHN D. WEEKS
To describe the dynamics of reconstruction, we defin
local reconstruction field Bn(y) that couples linearly to the
reconstruction coverage at positiony, given bywn(y)Rn(y).
Formally this is defined by

Bn~y![2
1

wn~y!

dH

dRn~y!
. ~7!

For the effective Hamiltonian of Eq.~2!, we have

Bn~y!5eR2es /wn~y!1Dr]y
2Rn~y!. ~8!

If the terrace size goes to infinity (wn→`) and Rn is uni-
form in a terrace (]y

2Rn50), Bn(y) takes on the constan
value of eR as expected. In a finite width terrace, there a
boundary effects from the steps. Since a step on a re
structed surface costs more energy,es per unit length, than
on an unreconstructed one, steps at the boundary of a te
provide an effective field, with average valuees /wn(y), op-
posing the reconstruction.

The third term,Dr]y
2Rn , in Eq. ~8! tends to make recon

struction uniform in a terrace to reduce the interface ene
in the y direction. The magnitude of the interface energy
parametrized byDr . WhenDr tends to zero~small interface
energy!, local terraces with widthsw(y) larger thanwc
[es /eR have a net positive field for the reconstruction@eR
.es /wn(y)#. Hence a terrace with local widthw(y).wc
will increase its reconstruction coverage regardless of
coverage of the neighboring regions in they direction. This
reduces to the previously studied model for reconstructio7

However, for largeDr , the nucleation of reconstruction at
local terrace region with width aroundwc is unlikely unless
a sufficiently long lateral region of widthwc or wider is
formed. In contrast, a local terrace with widthwc adjacent
~in y direction! to an already reconstructed region will b
more easily reconstructed. In this sense,wc is the ‘‘critical
width for lateral growth’’ in they direction8 and is in general
smaller than the critical width for the initial nucleation o
reconstruction for the model with non-zeroDr .

C. Models for reconstruction and step dynamics

To model the dynamics of reconstruction and step moti
we make a linear kinetics approximation, assuming that
rates of change of perturbations in the reconstruction
step position fields are proportional to the associated cha
in free energy as calculated from the effective Hamilton
in Eq. ~2!. The kinetic equation for the reconstruction is ea
to write down since the extent of reconstruction is no
conserved quantity. We simply assume that the reconst
tion rate is proportional to the local reconstruction field:

] tRn~y!5GRBn~y!,

5GR@eR2es /wn~y!1Dr]y
2Rn~y!#, ~9!

whereGR is the inverse of the ‘‘friction’’ coefficient relating
the ‘‘velocity’’ ] tR to the ‘‘force’’ B.

However, since the step motion results from the mo
ment of atoms at steps, the kinetics of step motion depe
on the mechanism of mass transport on the surface. Be
considering general fluctuating 2D step arrays, let us c
sider a quasi-1D array of straight steps. There are two lim
a
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ing cases of mass transport depending on whether the a
exchange is limited to neighboring steps~local movement! or
not ~global movement!. Mass movement isglobal if atoms at
a step edge are exchanged with a vapor reser
~evaporation-condensation! or with a terrace reservoir tha
forms by fast direct adatom hops between different terrac
In the latter case, steps move according to the chemical
tential difference between the step and the reservoir:

] txn5
GA

Vk
B
T

@mn2m res#, ~10!

where GA is the mobility of the step edge as defined
Bartelt et al.26 It is given asGA5G11G2 whereG1 (G2)
is the mobility of the step edge from mass exchange with
upper~lower! terrace when the global reservoir is formed
terraces.

When the mass movement islocal, as in mass movemen
through surface diffusion without direct adatom hops b
tween terraces, the motion of neighboring steps is stron
coupled together. The step velocity is then assumed to
controlled by the chemical potential difference between
step and its nearest neighbors:

] txn5
Ge~wn!

Vk
B
T

@mn2mn11#1
Ge~wn21!

Vk
B
T

@mn2mn21#.

~11!

Here Ge(w) is some effective adatom exchange coefficie
between neighboring steps, which in general depends on
distance between the steps.27 In the quasistatic approxima
tion, one can obtainGe(w) by considering the diffusion
equation on the terrace under the boundary conditions at
n arising from the mass conservation.28 As shown in the
Appendix, this result can be also obtained intuitively by co
sidering an analogy with the conductivity in a series elec
circuit, and we find

Ge~w!5F 1

G1
1

w

Dsc0V2
1

1

G2
G21

, ~12!

whereDs is the surface diffusion constant andc0 is the equi-
librium adatom density on the terrace far from the step
which the terrace chemical potential is set to be zero. T
adatom exchange coefficient becomes terrace w
independent29 when the rate-limiting process is adato
attachment/detachment at the step (G6w!Dsc0V2) and we
then have

] txn5
G1G2

Vk
B
T~G11G2!

@2mn2mn112mn21#. ~13!

In the opposite diffusion limited case (G6w@Dsc0V2) Eq.
~11! becomes

] txn5
VDsc0

k
B
T Fmn2mn21

wn21
1

mn2mn11

wn
G , ~14!

as suggested by Rettori and Villain.27

Now let us consider the motion of a fluctuating step in
2D step array. The step velocity in this general case can
written as
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] txn5 (
n851

Ns E
0

Ly
dy8D„xn~y!;xn8~y8!…@mn~y!2mn8~y8!#,

~15!

assuming first-order kinetics with an adatom exchange c
ficient matrix,D„xn(y);xn8(y8)… between two points on the
steps. In principle, to test the validity of the above equat
and to find the matrix element,D„xn(y);xn8(y8)…, one
should solve the adatom diffusion equation on a terrace w
boundary conditions at the fluctuating steps. However, s
a solution is extremely difficult in general. Here, we discu
some limits that may yield good approximations in som
experimentally relevant cases.

First, let us consider the case ofglobal mass movement
in which adatom exchange between any two points on s
occurs through a global~constant chemical potential! reser-
voir. In this case, the adatom exchange coefficient is c
stant,D„xn(y);xn8(y8)…5GA /(VNsLykB

T), and the step ve-

locity of Eq. ~15! becomes

] txn5
GA

Vk
B
TFmn~y!2

1

NsLy
(

n851

Ns E
0

Ly
dy8mn8~y8!G

5
GA

Vk
B
T

@mn~y!2m res#, ~16!

where the reservoir chemical potential is given as
overall average step chemical potential,m res

5(1/NsLy)(n51
Ns *0

Lydymn(y). This is identically zero when
the step chemical potential of Eq.~5! is used. This effective
global adatom exchange mechanism is physically relev
when the attachment/detachment rate at steps is very
compared to the surface diffusion and adatom hopping ra
so that the adatom can freely diffuse to any place on
surface in a typical attachment/detachment interval.

If the attachment/detachment at the step is the r
limiting process but there are no direct adatom hops betw
different terraces, then locally conserved kinetics should
used29 and the motions of neighboring steps are coupled
gether. In this case, rapid diffusion on a terrace ensures
each terrace has a spatially uniform adatom chemical po
tial, though its value is not the same, in general, on differ
terraces. Using the quasistatic approximation, the chem
potential on thenth terrace,mn

t , can be obtained from ada
tom conservation on the terrace,29

mn
t 5~G1m̄n1G2m̄n11!/~G11G2!, ~17!

where m̄n5(1/Ly)*0
Lydymn(y) is the averagenth step

chemical potential. Since steps move according to the che
cal potential difference between the step and the terrace
step velocity is given by
f-

n

th
h

s

ps

n-

e

nt
w
s,
e
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] txn~y!5
G1

Vk
B
T

@mn~y!2mn
t #1

G2

Vk
B
T

@mn~y!2mn21
t #

5
G1

2 1G2
2

Vk
B
T~G11G2!

@mn~y!2m̄n#

1
G1G2

Vk
B
T~G11G2!

@2mn~y!2m̄n112m̄n21#

~18!

and reduces to the velocity of the quasi-1D case with the
diffusion case@Eq. ~13!# in the 1D limit of mn(y)5m̄n .

Since Ly is much larger than the terrace widthw in a
typical vicinal surface system, it is conceivable that the a
toms on the terrace may not diffuse along the step direc
all the way to the end of the system in a typical attachme
detachment time interval, even when it is much slower th
the diffusion time to the neighboring step across the terra
i.e., whenDsc0V2/w@G6.Dsc0V2/Ly . In this case, the
local chemical potential on the terrace should be obtained
averaging the step chemical potential over the diffusion d
tancel d in the y direction and will show a weaky depen-
dence. Therefore, Eq.~17! should be replaced by

mn
t ~y!5

G2

G11G2
m̄n

2~y!1
G1

G11G2
m̄n11

1 ~y!, ~19!

with

m̄n
6~y!5E

0

Ly
mn~y8!K~ l d

6 ;y2y8!dy8, ~20!

where the normalized smearing kernelK( l d
6 ;r ) has the cut-

off distance l d
65Dsc0V2/G6 @for example, K( l d ;r )

;e2ur u/ l d#.
If the surface diffusion is slow enough~or the attachment/

detachment rate is fast enough! that the diffusion length on
the terrace during a typical attachment/detachment inte
becomes of orderw or less, i.e.,Dsc0V2/w<G6 , then the
adatom exchange rate becomes a function of the dista
between two points. To obtain a step velocity, we should
principle include mass transport modes between two po
with differenty positions on the steps. However, for the st
bunching or unbunching dynamics in which steps rem
nearly straight, the variation of step chemical potential in
y direction is much smaller than in thex direction and can be
ignored. Thus we approximate the step velocity by

] txn~y!5
Ge„wn~y!…

Vk
B
T

@mn~y!2mn11~y!#

1
Ge„wn21~y!…

Vk
B
T

@mn~y!2mn21~y!#, ~21!

with the effective adatom exchange coefficient of Eq.~12!.

III. NUMERICAL CALCULATIONS AND RESULTS

We consider faceting in the nucleation regime where
critical width wc is larger than the average step spacingwa
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~saywc'2wa). Initially we create a nucleus of reconstructe
terrace by hand and first calculate the deterministic time e
lution of its growth.

For the reconstruction dynamics, we use Eq.~9!, while for
step dynamics we consider three limiting mass transp
cases: global mass movement~caseA) of Eq. ~16!, local
mass movement with attachment/detachment rate-limi
kinetics ~caseB) of Eq. ~18!, and the diffusion rate-limiting
case~caseC) of Eq. ~21!. The possible effect of a Schwoeb
barrier30 is not considered, i.e., we always setG15G25G.
The kinetic parameterG and the reconstruction energy p
rametereR andes are adopted from Liuet al. for the Si~111!
surface.21 For the step dynamics with global mass exchan
caseA, we assume that a global reservoir is formed on
terrace and setGA52G. For caseB (Dsc0V2/w@G6), we
consider the case when the length of each terrace,Ly , is
much larger than the diffusion length,l d

65Dsc0V2 and use
Eq. ~19! to calculate the terrace chemical potential. W
choosel d /wa520 while Ly /wa is typically chosen to be
around 500. For caseC, we chooseDsc0V25Gwa such that
the diffusion time across the terrace~with width wa) is of the
order of a typical attachment/detachment interval.

Figure 2 shows typical step configurations in the ea
stage of the faceting in all three cases. In caseA, with non-
local mass transport, as the reconstructed facet grow
causes neighboring terraces to becomesmaller. There is a
smooth relaxation to the average width far from the fac
Step spacings in casesB and C, with local mass transport
show more interesting behavior because of the correla
step motion. While a region of step bunching is again o
served close to the facet, on the other side of the bunch t
are also some terraces that arewider than average. As the
facet continues to grow, the number of steps in the bunc
region increases but the widths of the wider terraces in fr
of the step bunch also increase. One of these may bec
sufficiently wide to serve as new nucleus for reconstructi

FIG. 2. Top view of step configurations near a growing nucle
with global mass transport in caseA ~a! and local mass transport i
caseB ~b! and caseC ~c!. In all cases,wc /wa51.8 andwb /wa

51/4 with wa510 in atomic units. The reconstruction energyeR ,

line tensionb̃ , and the kinetic parameterG are adopted from Ref

21; eR50.006, Gs51.53104 sec21, and b̃5100 in units of
atomic size and thermal energyk

B
T. Each panel shows a 16

33000 size configuration. The starting seed nuclei sizes are
same (25370). The configurations shown are when the lateral s
of the reconstructed region is around 2000, which is obtainedt
57.531023 sec for ~a!, at t57.631023 sec for ~b!, and at t
54.431022 sec for~c!.
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This induced nucleation process7 can repeat itself many
times, producing a rather regular pattern of faceted a
bunched regions that may be relevant for experiment.31,32We
will discuss this mechanism in more detail later.

A. Isolated facet growth

Before doing this, let us first consider the growth rate
an isolated facet. We artificially prevent the formation o
other ~induced! nuclei on all other terraces by settingRn to
zero except on the terrace on which the original nucleat
occurred. We then measure the time dependence of the
length and width during growth. We adopted paramet
from Ref. 21 and choseeR50.006, b̃5100, andG51.5
3104 sec21 where the atomic size and thermal energyk

B
T

are set to unity. We assume fast dynamics for reconstruc
and set the response for the reconstruction to be fifty tim
faster than step motion. (GR550G when they are represente
in terms of dimensionless quantities.! In all three cases
shown in Fig. 2, the average terrace width iswa510. es and
g are chosen such that the critical widthwc5es /eR and the
terrace width in the step bunchwb5(2g/eR)1/3 ~Ref. 7! will
be 1.8wa and (1/4)wa , respectively. In all cases the reco
structed region propagates in they direction with aconstant
velocity ~after an initial transient where it forms the elon
gated shape! of vy52.73105 sec21 for caseA, vy52.6
3105 sec21 for caseB, andvy54.53104 sec21 for caseC.
Linear growth along the step direction has been seen
experiment2 and there are general theoretical arguments
constant facet tip velocity.21

On the other hand, the growth rate of thenormalwidth of
the caseA ~without local conservation! is different from that
of casesB or C ~with local conservation!. Figure 3 shows the
growth of the facet width versus time in a log-log plot. A
data in each case fall into a straight line, indicating that
reconstructed terrace width increases asw;ata. In caseA,
the facet grows ast1/2, while it grows ast1/4 for casesB and
C. These results agree with the predictions of the classic

s

he
e

FIG. 3. Measured time dependences of the facet widths for th
cases are shown in a log-log plot. All data in each case fall on a
indicating that the reconstructed terrace width increases aw
;ata. The a values of the fitting lines are 1/2 for caseA and 1/4
for casesB andC.
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continuum model of Mullins.33 Note that the surface con
figurations of caseC in Fig. 2 are similar to those of caseB
when two configurations with the same lateral size are co
pared, though it takes much longer to grow to the same
eral size in caseC. It takes the same order of magnitude
time for casesA andB to form the reconstruction shown i
the figure while it takes around 6 times longer for caseC.

B. Induced nucleation

Let us now relax the constraint forbidding other nuc
from forming. Even if thermal fluctuations were include
this should produce essentially no change in caseA. Since all
terraces near the original facet become smaller on aver
other thermally nucleated facets areless likely to occur
nearby.

The story is quite different in casesB and C with local
mass transport, whereinducednuclei can form and inhibit
the further growth of the original facet. In these cases,
motion of a step is directly coupled to the motion of neig
boring steps. Initially, as the step bounding the reconstruc
terrace moves forward to increase the reconstructed terra
width, the neighboring step must move backward to conse
adatoms locally. Thus both the original reconstructed terr
and the terrace in front of the step that moves backward
wider. When the two steps that move in opposite directio
come sufficiently close to each other for step repulsions
become important~with spacing approaching that of th
equilibrium step bunch!, they ‘‘collide’’ and both begin to
move forward together as a bunch because of the driv
force from the reconstructed terrace behind. Then the lo
conservation process repeats itself, causing new step
front of the advancing step bunch to move backward a
making the terraces in front of those steps wider. As
original facet grows, the number of steps in the bunch
creases and the widths of the widest terraces in front of
step bunch also increase. Such sufficiently wide terraces
be nuclei for the reconstruction of another facet.

A quantitative treatment of this induced nucleati
mechanism using a 1D model was carried out by
authors.7 When the typical distance between steps in a s
bunchwb;(2g/e r)

1/3 is much smaller than the average te
race widthwa , it was shown that only one other terrac
aside from the original facet, is larger thanwa at any given
time. In the limit thatwb /wa goes to zero, the maximum
width of the induced wide terrace increaseslinearly with the
number of stepsnb in the bunch, separating it from the orig
nal facet. Moreover it remains as the widest terrace for
increasing long time interval,Dt;nb

3 . Once it gets larger
than wc , reconstruction will occur. Further growth of th
original facet essentially stops, but the new facet can ind
another nucleus on the other side as it continues to gr
Then this new nucleus can induce another one and so
The velocity of the nucleation front islinear in time because
it always takes the same amount of time to induce a nucl
Hence the faceted surfaces arising from this idealized p
cess have a periodic distribution of reconstructed terra
separated by step bunches.

Figure 4 illustrates the propagation of nucleation throu
the induced nucleation mechanism in caseC as given by the
present 2D model.~A similar result is expected for caseB
-
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since the surface configurations of caseB in Fig. 2 are simi-
lar to those of the caseC except for the time scale.! The left
panels are the top views of step configurations at three
ferent times in the deterministic case while the right pan
are those with thermal noise.~The effects of thermal noise
are discussed in Sec. III C.! A nucleus of reconstructed ter
race is created by hand at the middle terrace. From the u
panel, one can see that some terraces in front of the
bunch become wider as mentioned. As time goes on,
widths of the wider terraces increase and, at some point,
of the wider terraces becomes wide enough to become a
nucleus as shown in the middle panel. As this nucleus gro
it induces another nucleus~lower panel! and the process re
peats itself.

A few remarks should be made on the difference
growth of an induced facet and the initial isolated fac
First, the propagation in they direction of an induced
nucleus is initially faster than the original isolated one sin
mass conservation induces an elongated wider terrace re
even before the reconstruction on the region takes place.
ond, an induced facet grows essentially only on one side
the x direction while the original one grows on both side
This asymmetric propagation, together with the faster ini
y-direction growth, cause the induced nuclei to grow mo
rapidly. However, as discussed below, these differences
not as noticeable when thermal noise is taken into accou

C. Effects of thermal noise on induced nucleation

When thermal fluctuations are considered, these reg
patterns, selected by a kinetic mechanism, would be

FIG. 4. Propagation of nuclei through induced nucleation. S
configurations at three different times are shown for both determ
istic ~left panels! and Langevin~right panels! dynamics. The times
shown are in units of milliseconds from the creation of the init
nucleus. Left panel sizes are 320312800 in atomic units and the
right ones are 32038000. The same parameters as in Fig. 2
used.
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3946 57HYEONG-CHAI JEONG AND JOHN D. WEEKS
pected to be less sharp. Particularly whenwb /wa is not so
small, the effects of mass conservation are spread out
many terraces and several terraces in front of the step bu
become larger thanwa . Since there are then many larg
terraces on which thermal nucleation could occur, nuclea
sites and times are less precisely determined in this c
However, in general, the number of stepsnb in a bunch when
induced nucleation takes place is expected to be smaller
the value predicted by the 1D model or the determinis
case.

With the parameters given in Fig. 2 but with a smal
wa , for example,wa58, it may take very long to create a
induced wide terrace with width greater thanwc . However,
in the presence of noise, step fluctuations leading to
nucleus can happen on terraces whose averaged wid
smaller than wc . The required time for this thermally as
sisted nucleation decreases rapidly with increasing ave
terrace width. As the number of steps in a bunchnb in-
creases, the average width of terraces in the induced w
terrace region also increases, and hence the nucleation t
on these terraces decrease. Moreover, the time intervalDt in
which the terrace in front of the step bunch remains as
widest one before it joins the step bunch, increases withnb .
Therefore, as bunching proceeds, there will be a bunch
nb such thatDt(nb) becomes larger than the nucleation tim
leading to the formation of an induced nucleus. In gene
this bunch size will be smaller than the critical bunch s
predicted by the 1D model. Since bothDt and the nucleation
time vary rapidly with the number of steps in the bunc
faceted surfaces produced under conditions of local m
conservation may show rather strong regularities even w
the nuclei are created in part by thermal step fluctuation

The final periodicity dependence on the slope of the v
nal surface is shown in Fig. 5. The predicted number of st
in a step bunch, both in the deterministic case and the c
with thermal fluctuations, are numerically calculated for fi
different values ofwa , with the samewc and wb . For the
case with thermal fluctuations~open diamond!, step-bunch
sizes are obtained by averaging the results of five indep

FIG. 5. Number of steps in a step bunch vs the slope of
vicinal surface with~cross! and without~open diamond! noise. As
in the previous figures we choose the parameter setwc518, wb

52.5. The number of steps in a bunch are numerically calcula
for different values ofwa .
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dent runs. The noise strengths are given by the fluctuat
dissipation theorem; we used conserved noise for the
fluctuations and nonconserved noise for the reconstruct
As expected, the periodicities are always smaller and
sensitive to change of the average slope of the vicinal sur
when we consider thermal fluctuations. In future work w
plan to study the dependence of the expected final period
on other parameters and under more general condition
particularly interesting case arises when induced nucleat
a dynamical process, cooperates with some energetic ef
like a surface-stress-induced elastic energy, which also co
favor periodic structures.34

D. 2D patterns from induced nucleation

An interesting 2D pattern arises from induced nucleat
using Eq.~21! when two~thermal! nuclei form that are close
in the x direction but separated by a large distance in thy
direction. Figure 6 shows a step configuration in caseC in
the deterministic limit arising from two such nuclei~created
by hand on the terraces marked byX). As time goes on, each
nucleus grows ast1/4 in the normal direction until it produce
its own induced nucleus. In the lateral direction, nuclei gr
essentially linearly int until they ‘‘collide’’ with each other
and trap a bunch ofcrossing stepsbetween them. After such
an encounter, the growth of the nuclei in they direction
essentially stops. The number of steps in the crossing
bunch is determined by how many steps initially separa
the two nuclei when they formed. Once this configurati
forms, induced nuclei from the two original facets will pro
duce new crossing steps at essentially the samey position as
the original crossing steps. Hence, analignmentof crossing
step bunches is formed as shown in Fig. 6. The numbe
steps in the induced crossing bunches are expected to b
same as that in the original crossing step bunch when
idealized induced nucleation mechanism of the 1D mode
accurate.

A strong tendency for alignment of crossing steps h
been found in some step bunching experiments on vic
GaAs~001!.3 At present it is not clear whether this is a pure
kinetic phenomenon as our model would suggest, or an e
librium phenomenon from some energetic~probably elastic!
effect, though the strong regularity favors the latter hypo
esis. It is also possible that these patterns of regular

e

d

FIG. 6. Top view of step configurations in caseB arising from
interaction between two nuclei through an induced nucleat
mechanism is shown. The initial positions of the nuclei~created by
hand! are on the terraces marked byX but outside the figure.
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57 3947TWO-DIMENSIONAL DYNAMICAL MODEL FOR STEP . . .
bunches can be formed on the surfaces of real mate
through the cooperation of the two effects.

IV. CONCLUSION

In summary, we have studied a 2D model of coupled s
motion and reconstruction for reconstruction-driven facet
in the nucleation regime. An isolated nucleated facet gro
linearly with time in the step direction. Its width grows ast1/2

when the mass movement is global. With local mass flo
the facet width grows ast1/4 asymptotically, as the previ
ously studied 1D models predicted.

When the mass transport is local, the motions of nei
boring steps are directly coupled in such a way that a gr
ing nucleus can induce the formation of another nucl
nearby. This can create a propagation of nucleation ev
leading to regular arrangements of reconstructed facets s
rated by step bunches. When thermal fluctuations are ta
into account, this induced nucleation mechanism will p
duce less sharp regularities in the faceted surface. Neve
less, when thermal fluctuations are incorporated into the
duced nucleation model, the qualitative features of
induced nucleation mechanism as discussed here re
valid and are expected to be observed under more ro
conditions than the deterministic models would pred
While there are a number of different factors~including in
particular elastic interactions5,6! that can contribute to the
facet spacing in particular systems, induced nucleation
resents a very generalkineticmechanism that should be con
sidered in analyzing experimental data.
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APPENDIX: DERIVATION OF THE EFFECTIVE
ADATOM EXCHANGE COEFFICIENT

BETWEEN STEPS †EQ. „12…‡

Equation~12! can be easily derived from an analogy wi
the conductance in a series electrical circuit. The change
step velocity due to adatom exchange between two steps
linearly proportionalto the adatomcurrentbetween the two
steps. Hence the effective adatom exchange coefficient g
by Eq. ~12! is inversely proportional to the effective ‘‘resis
tance’’ Re between the two steps, defined byRe5Dm/ j ,
where j is the current andDm is the step chemical potentia
difference. When an atom moves from one step to the ne
boring step, it goes through three processes: a detach
from the step, surface diffusion on the terrace, and an att
ment to the other step. In other words, during an exchang
an atom between two neighboring steps, it passes thro
three resistors in series:Rt associated with surface diffusio
and R1 and R2 associated with attachment/detachment
the left and the right steps. This analogy with a series elec
circuit becomes exact in the quasistatic approximati
where the step motions are much slower than the ada
movements. Then mass conservation guarantees that the
rents through the three ‘‘resistors’’ are the same.

Here, we calculateR6 andRt in terms of the usual kinetic
ls
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parameters, step mobilityG6 , and surface diffusion constan
Ds and obtainGe by calculating the currentj in the quasi-
static approximation. Without loss of generality, let us a
sume ascending steps and denote the step chemical pote
at the left and the right steps asms

2 andms
1 . Let m t(x) be

the chemical potential on the terrace andm t
2 andm t

1 be the
terrace chemical potential at the boundaries, i.e.,m t

6

5 limx→x6
m t(x) wherex2 @x1# is the position of the left

~right! step. When we assume small excess adatom con
tration, dc(x)5c(x)2c0!c0 on the terrace such tha
dc(x)5c0(em t(x)/k

B
T21)'(c0 /k

B
T)m t(x), the current on

the terrace,j t is proportional to (m t
22m t

1):

j t52Ds]xc'2
Dsc0

k
B
T

]xm t5
Dsc0

k
B
Tw

~m t
22m t

1!. ~A1!

In the last step, we used the linearity of the terrace chem
potential profile ]xm t5(m t

22m t
1)/w, which came from

]x
2c(x)50 with m t(x);c(x). From Eq.~A1!, we see that the

terrace resistanceRt[(m t
22m t

1)/ j t is given by

Rt5k
B
Tw/Dsc0 . ~A2!

On the other hand, at the boundaries, adatom currentsj 6

56] tx6 /V are given by

j 657
G7

V2k
B
T

~ms
62m t

6! ~A3!

and the resistances at the stepsR6[7(ms
62m t

6)/ j 6 are,
therefore, given by

R65V2k
B
T/G7 . ~A4!

To obtain the total effective exchange coefficientGe , defined
by

j [
Ge

V2k
B
T

~ms
22ms

1!, ~A5!

we need to calculate the current across the two steps,j . This
can be easily done in the quasistatic approximation wh
three currents of Eqs.~A1! and ~A3! should be the same
This requirement fixesm t

6 :

m t
65ms

66R6 j ~A6!

with j 5(ms
22ms

1)/(R11Rt1R2) as expected from the
analogy with a series circuit and we have

Ge5@V2k
B
T~R11Rt1R2!#21

5F 1

G1
1

w

Dsc0V2
1

1

G2
G21

. ~A7!
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