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Two-dimensional dynamical model for step bunching and pattern formation induced
by surface reconstruction
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Surface reconstruction on sufficiently wide terraces on a vicinal surface can cause the formation of step
bunches. We consider this process in the nucleation regime using a two-dimeri2idhdynamical model
that describes both surface reconstruction and the effects of the growth of a reconstructed facet on the motion
of neighboring steps. When there is local mass transport, we show that the growth of a reconstructed facet can
induce the growth of a similar facet nearby, leading to regular arrangements of flat facets separated by step
bunches and to other characteristic 2D step patt¢B&163-18208)02108-7

[. INTRODUCTION Hamiltonian that describes the energetics of individual step
configurations and the effects of reconstruction on the ter-
Surface reconstruction can often cause a vicinal surfaceaces. The dynamical equations for step motion and recon-

with a single macroscopic orientation to rearrange or facetstruction are then given in terms of a step chemical potential
into “flat’ reconstructed terraces and much more Sharp|yand an effective local reconstruction field as determined from

inclined unreconstructed regions with C|Ose|y bunchedhe effective Hamiltonian. These equations of motions can be

step2~®In this paper, we study the dynamics of this facetinghumerically integrated; the results are presented in Sec. lll.
and the resulting step patterns that form using a twoWe first study the lateral and normal grovyth rate of an iso-
dimensional(2D) model that describes the coupling of the |&t€d nucleated facet. Then we show howirtiuced nucle-
reconstruction process to the motion of individual steps. Thi tion mephamsﬁ'ﬁ can produce a regular array of step.
generalizes our previous work, which considered a 1D ste unches in the faceted surface and other. 2D patterns. !t IS
model and treated the reconstruction in a less general‘i/vay.aISO shown here that when thermal quctyanons are taken into
. ._“7"account the induced nucleation mechanism leading to regular
Heatures in the faceted surface can occur under even more
eneral conditions than what the previously studied deter-

inistic modelé® would predict.

low-index “flat” face, and lowers its free energy relative to
that of an unreconstructed surface with the same orientatio
However, the same reconstruction that produces the lower
free energy for the flat face generalhcreaseshe energy of
surface distortions such as steps that disturb the reconstruc-
tion. Thus on vicinal surfaces reconstruction is often favored Several different representations of a given surface are
only on terraces wider than sorcétical terrace width w. possible depending on the scale at which the surface is
When steps are initially distributed with average step spac@vestigated. On amicroscopic scaleone can try to specify
w, much smaller than the critical widtl,, step fluctuations the surface by focusing on the positions of individual atoms
leading to the formation of a sufficiently wide terrace — aand study the evolution of morphology from the motions of
“critical nucleus” — are required for the reconstruction to individual atoms on the surfac¢@In practice, this is possible
begin. Continued growth of the reconstruction will make theonly numerically and is usually limited to very small systems
vicinal surface facet into distinct regions consisting of recon-and for very short times. Hence, in most microscopic studies,
structed terraces and closely bunched steps. one considers a model Hamiltonian that simplifies the pos-

In agreement with this picture, experiments on severasible configurations and the interactions of atoms at the sur-
systems including the X7 reconstruction on the @i11) face and that incorporates only the most relevant excitations
surfacé and the formation of i{x 1) oxygen chains on the for the morphology changes under consideration. This ap-
O/Ag(110 surfacé show reconstruction only on sufficiently proach usually leads wiscretedescriptions of the surface as
wide terraces. However, faceting experiments on these antlustrated in Fig. 1a), which shows a typical surface con-
some other systems such as GHAY), Pt111), and figuration of a terrace-step-kink model along with a critical
Au(111), show a noticeable regularity in the size and spacingvidth model® for reconstruction. In the critical width
of the flat facets®>>6though the extent of regularity is dif- model, terraces with width wider than someg (represented
ferent depending on the system. These regularities seem hapyt the shaded argare assumed to be reconstructed.
to reconcile with a picture of random nucleation of the fac- On a coarse-grained continuum scaléhe surface con-
eted regions. While a number of different factors can configurations are specified by smooth variables that are ob-
tribute to the facet spacing in particular experiments, wetained by integrating out or averaging over short-wavelength
show here that there exists a rather genkiaktic mecha-  fluctuations at the atomic scale. For example, Fig) illus-
nism that can lead to regular features in the faceting procestrates a surface represented bgntinuoussurface height

In the following section, we introduce an effective 2D variables, z(x,y), and a continuous reconstruction field,

Il. MESOSCOPIC MODEL
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the kinetics of the step rearrangemehit©nce reconstruc-
tion happens on some part of a terrace, the expansion of the
reconstructed region in a terrace to the full terrace width is
thought to happen much faster than the step movement to
further expand the terrace width in tadirection. When we
describe the reconstruction dynamics on the time scale of the
movement of a typical step segment, it thus seems reason-
able to consider dwhole) terrace segment as the unit of
reconstruction or deconstruction. Therefore, in a discrete de-
scription of reconstruction we can assign discrete value,
FIG. 1. Schematic surface configurations on different scais. Rnj=1 or O to thejth segment of thath terrace depending
A typical step configuration in the terrace-step-kink model with aOn whether it is reconstructed or not. The continuous vari-
reconstructed facet nucleus when reconstruction occurs on all th@ble R,(y) representing reconstruction on théh terrace in
terracesshaded argawider thanw, . The surface and reconstruc- the mesoscopic model is then given By(y) =R, ;K(y
tion profiles are specified by discrete variables; andR, ;. (b) —y;) just as for the step positions.
By coarse graining along the nominal step direction, we get con-
tinuum step and reconstruction configurations described,y)
andR,(y). However, the surface height still takes on discrete val-
ues and the reconstruction profile changes discretely between neigh- To describe the evolution of surface morphology and re-
boring terraces(c) The surface is described by a continuous heightconstruction in terms of these continuum variables(y)}
variable,z(x,y) if it is coarse grained over several terraces inc'“d‘and{Rn(y)}, we need to provide an effective Hamiltonian
ing steps. The small squares indicate grid lines. The reconstructiogy grpjtrary configurations of these coarse-grained variables.
profile R(x,y) is continuous over the surface. We can think of at least two formal ways of obtaining the
effective Hamiltonian from microscopic models. First, we
R(x,y), obtained by averaging the results of a discrete modetan imagine summing over all microscopic configurations
using some appropriately chosen “smearing kernel.” Hereconsistent with a given coarse-grained step and reconstruc-
Z(X,y) =Z Ky (X=X, y =y he,  and R(x,y)=2K, (x  tion configuration{X,(y)}=({xn(¥)}.{Rn(¥)}). As in real-
—X.Y=Y)R¢, Wwith a smearing kerneK,(|r|)~e"l, ~ space renormalization-group calculatidfisye could get an
whereh, is the height of thekth column at &,y,) in Fig.  €ffective Hamiltonian in principle by calculating the loga-
1(a) andR,=1 (R,=0) if the kth column is reconstructed 'ithm of the partial sum of Boltzmann factors:

(unreconstructed The physical properties of these coarse-
grained surfaces are investigatéoften analytically in a Hm({Xnmj})
continuum approach using a phenomenological Hamiltonian—H({X,(y)})/k T=In > exp( - ?) 1
(free-energy functionalof the Landau-Ginzburg typ€.This {Xqjre X} B
approach is known to describe well the long-wavelength (1)
properties of the surfaces in many cases, espedaalhyethe
roughening transition temperatuife .12 where{X{';} = ({x7;}.{RY;}) is a configuration in the micro-
However, continuous height variables may not yield thescopic model with Hamiltoniaitd™.
best description for the surface belolig. One loses the Alternatively, in analogy with density-functional methods
information about properties of individual steps, which arefor inhomogeneous fluidS,we can consider auxiliary exter-
some of the main features of the surface at low temperaturaal fields{®,(x,y)} and{¢r(x,y)} that couple linearly to
Furthermore, a reconstructed region is expected to have the step positions and reconstructed regions such that a given
sharp boundary near the step if reconstruction happens onbrbitrary configuration ofx,(y)} with {R,(y)} will be the
on sufficiently wide terraces. Thus it is difficult to representequilibrium state. The free energy of this system, calculated
the reconstruction properly using an isotropic coarse grainingpy taking the trace over all configurations in the presence of
like that illustrated in Fig. ). On these surfaces, it seems the external fields, will be a functional dfé,(x,y)} and
better to focus on the propertiesiofividual steps and their  {#g(x,y)}, and includes the direct linear contribution from
interactions Figure Xb) illustrates a surface configuration in the external fields. If we subtract these linear terms in the
a mesoscopi@pproach where individual steps are identifiedfield we get the “intrinsic” free energy of the nonuniform
with a discrete step indew, but the behavior of each step is system, which we use as our effective Hamiltonian. Techni-
investigated from a continuum approach. A continuum de<ally, this generates a Legendre transform giving the free
scription of the step positions can be obtained by averagingnergy as a functional of the configuratiofs,(y)} and
over short-wavelength fluctuations such as kinks in the stepr(y)} rather than the auxiliary fields.
configurations. For example, the continuum step position In practice, both formal methods are not easy to carry out
Xn(y) shown in Fig. 1b) is obtained byx,(y) =2 ;x,jK,(y  for general step configurations, though the second method
—Y;), with a smearing kerné{y(r)~e‘|r‘ wherex, ; is the  has been successfully applied to calculate the edge energy of
discrete step position in Fig(d andyj; is they coordinate  nonuniform, quasi-1D configuration8.Here we will not
of the jth segment. consider such formal development further. Rather, we intro-
A continuous description of terrace reconstruction, de-duce a mesoscopic model Hamiltonian that incorporates the
scribed byR,,(y), is obtained in a similar manner. The kinet- known results for two simpler systems, a 1D fluctuating
ics of the reconstruction is believed to be much faster tharnterfacé’*8and a 2D array of fluctuating steps with uniform

(a) (b) (©

A. Effective Hamiltonian
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average spacint;?°and use heuristic arguments to describef(s,R=1)=(f°— eg) + (B+ €5) +gs°, is lower than that of
the contribution from reconstruction: the unreconstructed surfacé(s,R=0)=f (s) when the
slope s is less thans,=¢,/es. With a proper smoothing
B 5 scheme, the effect of reconstruction is expected to be propor-
H=2> f dy| V(Wn(y),Ra(¥)) + 5 (9yXn) tional to R; hence, we usd’(R)=f"—ezR and B(R)=5
" + €R in the continuum approaci.We now follow our pre-
vious arguments® and approximate the interaction term
. (2 V(w,R) in the 2D model Hamiltonian in Eq2) by the in-

D
+ 5 W) (9,Rn)?
teractionf (1Aw,R)w of a 1D model at thdéocal width w:

Here w,(y) =X+ 1(Y) —X,(y) is the local terrace width of

the nth terrace at positioy, 2 is the line tension that con- V(w,R)=(f— egR)W+ (8+ €;R) + g/w?. 4
trols the extent of fluctuation of a@solatedstep, and the sum
is over all stepgother symbols are defined belpw This local approximation ignores smaller edge energy

In our previous studié$?! of reconstruction-driven face- terms® These can be important in some cases, but no major
ting, we used an even simpler model Hamiltonian without arerror will arise in the applications considered here.
explicit reconstruction field. This was defined in terms of This completes the description of the effective Hamil-
step configurations only through the assumption that everyonian in Eq.(2), which determines the equilibrium proper-
terrace segment with width wider than the critical width  ties of our model. We now define the terms that will control
is reconstructed. Clearly, this minimal model for reconstructhe step and reconstruction dynamics.
tion does not take proper account of the interface energy
associated with alomain boundarybetween reconstructed
and unreconstructed regions on the same terrace. However,
in the earlier work we focused on the growth of a previously In a step approach, surface motion results from adsorption
formed reconstructed nucleus where the interface energy r@r emission of atoms at the step edge. Adatom attachment or
mains essentially constant and hence does not affect the dgetachment at a step corresponds to a small variation of the
namics. continuous step position. Therefore, the free-energy change

In this paper we consider the more general case and takdue to an atom attachment on the step is proportional to the
account of both the interfacial energy and the reconstructiofunctional derivative with respect to the step position field,
profile explicitly. In particular, the third term of the Hamil- X,(y), of the effective step Hamiltonian of E(). We de-
tonian of Eq.(2), %D,wn(y)[&an(y)]2 represents the inter- fine thestep edge chemical potentf&lu,(y), as the change
face energy between reconstructed and unreconstructed rig-the free energy when we add an atom to itk step at
gions on thenth terrace. This term makes the initial positiony. If Q is the area occupied by an atom,(y) is
formation of an isolated reconstructed nucleus more difficulgiven by
than the growth of reconstruction on a local terrace adjacent
(in they direction to an already reconstructed region.

The first term,V(w,(y),R,(y)) describes the effective Mn(y)E_ng
step-step interactions between timh step and the rn( n(Y)
+1)th step wherd&?,(y) represents the “fractional coverage - _ Z0 A2
of reconstruction” on the terrace between them. As in the Q[(?WV(W’R”VFZ”E;’; ﬁWV(W’R”g”*%;HBQayX”'
previous studie$?! we assume that the appropriate form of " "
this step-step interaction can be obtained from a(pf- (5
jected free-energy density with the slope=1Av equal to o ) ) o
the local width. The standard fof$° (for unreconstructed ~For simplicity, we have ignored the functional derivative of
vicinal surfacesis given byf(s)=f%+ Bs+gs?, wheref® the third term in Eq(2), which is ofihe same order as the
is the surface free-energy density of the reference plarie, previously ignoredR dependence oB. However, no new
the free-energy cost per unit length for creating an isolategiroblems arise if both effects are taken into account, and
step, and gs® is the free energy due to step-stepthey may be important in some applications.
interactions’® For the surface with uniform reconstruction  The termawv(W,R)IWn(y),Rn(y) in Eq. (5) has dimensions
coverageR, with O<R=<1, we assume that the 1D free- of force per unit length and can be interpreted as an effective

B. Step chemical potential and local reconstruction field

energy density still has the same functional form, pressureon the step associated with terraceThus u,(y)
o 5 depends on the locdlinearized curvatureaf,xn of the step
f(s,R)=f"(R)+ B(R)s+g(R)s”, (3 and on the difference in pressure from terraces behind and in

front of the step. For the step interactions of E4), the
effective pressure on the step has two sources: reconstruction

erR), and step repulsions (2w?). Thus the step chemical
otential is written as

but with R-dependent coefficients.

The experimental fact that reconstruction occurs only o
sufficiently wide terraces can be understood within a mode
with straight steps by assuming that the free energy of th&
reconstructed flat surface has a lower energyg per unit
area than the unreconstructed one but effectively a higher n(Y)=—Q{er[Ry-1(Y) —Ra(Y)]
energy cost € per unit length for forming an isolated 3 3 ~
step” The free energy of the fully reconstructed surface, +29[W, 21 (Y) =W, *(Y) 1+ BayXa(Y)}.  (6)
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To describe the dynamics of reconstruction, we define ang cases of mass transport depending on whether the atom
local reconstruction field B(y) that couples linearly to the exchange is limited to neighboring stefi@cal movementor
reconstruction coverage at positigngiven byw,(y)R,(y).  not(global movement Mass movement iglobal if atoms at

Formally this is defined by a step edge are exchanged with a vapor reservoir
(evaporation-condensatipor with a terrace reservoir that
B, (y)= oH 0 forms by fast direct adatom hops between different terraces.
Ay)=

In the latter case, steps move according to the chemical po-
tential difference between the step and the reservoir:

Wy(y) SR(Y)
For the effective Hamiltonian of Eq2), we have

r
Bi(Y) = €r— es/Wo(y) + Dy 3Ry(Y). ®) 0= e LA~ Hred: (10
B

If the terrace size goes to infinitym;—o0) and R, is uni-
form in a terrace &iRn=O), B,(y) takes on the constan
value of eg as expected. In a finite width terrace, there are

+ whereI', is the mobility of the step edge as defined by
Barteltet al?® It is given asl'p,=T", +T_ whereT', (I'_)

boundary effects from the steps. Since a step on a recors the mobility of the step edge from mass exchange with the

structed surface costs more energy,per unit length, than upper(lower) terrace when the global reservoir is formed on
on an unreconstructed one, steps at the boundary of a terratgraces.

: - ; When the mass movementl@al, as in mass movement
provide an effective field, with average valag/w,(y), op- e . 'Y
posing the reconstruction. through surface diffusion without direct adatom hops be-

; 2 ; _ tween terraces, the motion of neighboring steps is strongly
The third termD, )R, , in Eq. (8) tends to make recon coupled together. The step velocity is then assumed to be

;truction gnifqrm in a terrace_ to reduce t_he interface ENeT9¥ ontrolled by the chemical potential difference between the
in they direction. The magnitude of the interface energy |sStep and its nearest neighbors:

parametrized by, . WhenD, tends to zerdsmall interface

energy, local terraces with widthsv(y) larger thanw, To(w,) To(Wy o)
=e¢€./eg have a net positive field for the reconstructiosy &txnzm [fn— Mnsr]t+ W[Mn—ﬂn—ﬂ-
>es/w,(y)]. Hence a terrace with local widttv(y)>w, B B

will increase its reconstruction coverage regardless of the (11
coverage of the neighboring regions in telirection. This  HereI'(w) is some effective adatom exchange coefficient
reduces to the previously studied model for reconstruction.petween neighboring steps, which in general depends on the
However, for largeD, , the nucleation of reconstruction at a distance between the steffsin the quasistatic approxima-
local terrace region with width around, is unlikely unless  tion, one can obtail’o(w) by considering the diffusion

a sufficiently long lateral region of widthv, or wider is  equation on the terrace under the boundary conditions at step
formed. In contrast, a local terrace with width, adjacent n arising from the mass conservatihAs shown in the

(in y direction to an already reconstructed region will be Appendix, this result can be also obtained intuitively by con-
more easily reconstructed. In this sengg,is the “critical  sidering an analogy with the conductivity in a series electric
width for lateral growth” in they directiorf and is in general circuit, and we find

smaller than the critical width for the initial nucleation of

reconstruction for the model with non-zey . -t

: (12

1 w 1

Fe(W): ﬁ+m+f

C. Models for reconstruction and step dynamics

whereDg is the surface diffusion constant aoglis the equi-

librium adatom density on the terrace far from the step at
hich the terrace chemical potential is set to be zero. This

To model the dynamics of reconstruction and step motion
we make a linear kinetics approximation, assuming that th
rates of change of perturbations in the reconstruction an datom exchange coefficient becomes terrace width
step position fields are proportional to the associated Chanqﬁdependeﬁf’ when the rate-limiting process is adatom
in free energy as calculated from the effective Ham"tonianattachment/detachment at the stéh.w<D.c,02) and we
in Eq. (2). The kinetic equation for the reconstruction is €aSYy on have - S0
to write down since the extent of reconstruction is not a
conserved quantity. We simply assume that the reconstruc- r,.r_

tion rate is proportional to the local reconstruction field: &txnzm[zﬂn—unﬂ—un,ﬂ. (13

IRn(Y)=TrBn(Y), In the opposite diffusion limited casd’(w>Dc,Q?) Eq.
=Trler—es/Wy(Y) + D GyRy(y)], (9 (1D becomes

wherel'y is the inverse of the “friction” coefficient relating QDSCO[Mn—,un_l Mn™ Mn+1

the “velocity” ;R to the “force” B. IXn= kT [ Wh_1 + Wi,
However, since the step motion results from the move- 8

ment of atoms at steps, the kinetics of step motion dependas suggested by Rettori and Villgih.

on the mechanism of mass transport on the surface. Before Now let us consider the motion of a fluctuating step in a

considering general fluctuating 2D step arrays, let us con2D step array. The step velocity in this general case can be

sider a quasi-1D array of straight steps. There are two limitwritten as

: (14)
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NeoorLy Iy R .
dxn= 2, fo dy' D (Xn(Y):Xn (Y ) n(Y) = nr(Y')], I%n(Y) = G Len(Y) — sl + G [an(Y) = sn-4]
n'=1 B B

15
(19 r’+r2 _
= m[my) — fn]
assuming first-order kinetics with an adatom exchange coef- B

ficient matrix,D (X, (Y);Xy(y")) between two points on the r,r_ — _
steps. In principle, to test the validity of the above equation T m[zﬂn(y)_ﬂnﬂ_ﬂnfﬂ
and to find the matrix elementD(x,(y);x,/(y')), one &

should solve the adatom diffusion equation on a terrace with (18

boundgry (;onditions at thg flucjtuating steps. HoWGVe'ﬂ SUchnd reduces to the velocity of the quasi-1D case with the fast
a solution is extremely difficult in general. Here, we dlscussdiffusion casdEq. (13)] in the 1D limit of z,(y) = zr
some limits that may yield good approximations in some SincelL, is ml:ICh larger than the tergr(]:e Widl;a.in a

expe_nmentally rele\{ant cases. typical vicinal surface system, it is conceivable that the ada-
~ First, let us consider the case giobal mass movement, y,nq on the terrace may not diffuse along the step direction
in which adatom exchange between any two points on stepg| the way to the end of the system in a typical attachment/
occurs through a globgkonstant chemical potentjaleser-  getachment time interval, even when it is much slower than
voir. In this case, the adatom exchange coefficient is conthe diffusion time to the neighboring step across the terrace,
stant,D (xn(y): X (Y))=Ta/(2NgL K T), and the step ve- j.e., whenDcoQ2/w>T . >DoQ%/L,. In this case, the
locity of Eq. (15) becomes local chemical potential on the terrace should be obtained by
averaging the step chemical potential over the diffusion dis-
tancely in they direction and will show a wealy depen-

N dence. Therefore, E17) should be replaced by

1 S
Mn(y)— mnzl

L

y ! i
0 dy’ un(y )l

P L
X:—
YTk T t ro_ r. o
mn(y)= T (y)+ m—Rﬂn+1(y): (19

L'
= WB-I—[/J«n(y)_Mres]- (16) with

— Ly +
S(y)= NDK(g;y—y)dy’, 20
where the reservoir chemical potential is given as the #n () fo pnly K g5y =yidy 20

overall average step chemical potential, e

where the normalized smearing keril 5 ;r) has the cut-
=(1NGL,)=Ns | [ovdypun(y). This is identically zero when g kerillq ;1)

n=1 ‘ _ ) " off distance |;=DgQ¥T. [for example, K(l4;r)

the step chemical potential of E(p) is used. This effective ~Irlna),
global adatom exchange mechanism is physically relevant i ihe syrface diffusion is slow enougbr the attachment/
when the attachment/detachment rate at steps is very slogstachment rate is fast enoyghat the diffusion length on
compared to the surface diffusion and adatom hopping rateghe terrace during a typical attachment/detachment interval
so that the adatom can freely diffuse to any place on thecomes of ordew or less, i.e.DCoQ%W=T. , then the
surface in a typical attachment/detachment interval. adatom exchange rate becomes a function of the distance

If the attachment/detachment at the step is the ratebetween two points. To obtain a step velocity, we should in
limiting process but there are no direct adatom hops betweeprinciple include mass transport modes between two points
different terraces, then locally conserved kinetics should bevith differenty positions on the steps. However, for the step
used® and the motions of neighboring steps are coupled tobunching or unbunching dynamics in which steps remain
gether. In this case, rapid diffusion on a terrace ensures thaearly straight, the variation of step chemical potential in the
each terrace has a spatially uniform adatom chemical potery- direction is much smaller than in thedirection and can be
tial, though its value is not the same, in general, on differenignored. Thus we approximate the step velocity by
terraces. Using the quasistatic approximation, the chemical
potential on thenth terraceuy,, can be obtained from ada- Ce(Wi(y))
tom conservation on the terrat®, IXn(y) = W[Mn(y)_ﬂn+l(y)]

B

Fe(an )
* T}r(y)[ﬂn()’) —un—1(y)], (22

= (T o+ T )/(F T ), (17)
with the effective adatom exchange coefficient of Exf).

where ,Lan(l/Ly)ngdy,un(y) is the averagenth step
chemical potential. Since steps move according to the chemi-
cal potential difference between the step and the terrace, the We consider faceting in the nucleation regime where the
step velocity is given by critical width w,, is larger than the average step spaowng

IIl. NUMERICAL CALCULATIONS AND RESULTS
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a b (c) 200 T T

100

width

50

30
FIG. 2. Top view of step configurations near a growing nucleus

with global mass transport in cage(a) and local mass transport in ,

caseB (b) and cageC (c)._ln aI_I casesw./w,= 1.8_ andw, /w, 0.001 0.01 0.1

=1/4 with w,=10 in atomic units. The reconstruction energy, time

line tensiong, and the kinetic parametdt are adopted from Ref.

21; eg=0.006, I';=1.5x10" sec’!, and =100 in units of FIG. 3. Measured time dependences of the facet widths for three

atomic size and thermal enerdy T. Each panel shows a 160 cases are shown in a log-log plot. All data in each case fall on a line

A S ; .

%3000 size configuration. The starting seed nuclei sizes are th@d'cft'ng that the reconstructed terrace width increasesvas

same (25 70). The configurations shown are when the lateral size " at"- The a values of the fitting lines are 1/2 for caseand 1/4

of the reconstructed region is around 2000, which is obtained at Of casesB andC.

=7.5x10"2 sec for (a), at t=7.6x10"2 sec for (b), and att

=4.4x10"? sec for(c). This induced nucleation proceSsan repeat itself many
times, producing a rather regular pattern of faceted and

(sayw.~2w,). Initially we create a nucleus of reconstructed Punched regions that may be relevant for gxpenrﬁéf’ﬁWe

terrace by hand and first calculate the deterministic time evoWill discuss this mechanism in more detail later.

lution of its growth.

For the re_construction _dynamics, we use &4, while for A. Isolated facet growth

step dynamics we consider three limiting mass transport

cases: global mass movemeaseA) of Eq. (16), local X . :

mass movement with attachment/detachment rate-limiting" iSolated facet. We artificially prevent the formation of

kinetics (caseB) of Eq. (18), and the diffusion rate-limiting °ther (induced nuclei on all other terraces by settifg, to

case(caseC) of Eq.(21). The possible effect of a Schwoebel 2670 except on the terrace on which the original nucleation
barrief® is not considered, i.e., we always det=I"_=T. occurred. We then measure the time dependence of the facet

The kinetic parametel’ and the reconstruction energy pa- length and width during growth. We adopted parameters

rametereg ande are adopted from Liet al. for the S{111)  from Ref. 21 and choser=0.006, =100, andl'=1.5
surface?! For the step dynamics with global mass exchangeX 10* sec'* where the atomic size and thermal enekg¥
caseA, we assume that a global reservoir is formed on theare set to unity. We assume fast dynamics for reconstruction
terrace and sef ,=2TI". For caseB (D.o0%/w>T.), we and set the response for the reconstruction to be fifty times
consider the case when the length of each terrage,is  faster than step motionl'g=50I" when they are represented
much larger than the diffusion lengthy, =D.c,Q2? and use in terms of dimensionless quantitiedn all three cases
Eg. (19 to calculate the terrace chemical potential. Weshown in Fig. 2, the average terrace widtiwig=10. ¢, and
choosely/w,=20 while L,/w, is typically chosen to be ¢ are chosen such that the critical width= €/er and the
around 500. For casg, we choosé .c,Q2=Tw, such that terrace width in the step bunei,= (2g/eg) ™ (Ref. 7) will
the diffusion time across the terrageith width w,) is of the ~ be 1.8v, and (1/4Ww,, respectively. In all cases the recon-
order of a typical attachment/detachment interval. structed region propagates in thelirection with aconstant
Figure 2 shows typical step configurations in the earlyvelocity (after an initial transient where it forms the elon-
stage of the faceting in all three cases. In cAsevith non-  gated shapeof v,=2.7X 10° sec ! for caseA, vy=2.6
local mass transport, as the reconstructed facet grows i 10° sec * for caseB, andv,=4.5X 10* sec ! for caseC.
causes neighboring terraces to becosnealler There is a Linear growth along the step direction has been seen in
smooth relaxation to the average width far from the facetexperimert and there are general theoretical arguments for
Step spacings in cas&s and C, with local mass transport, constant facet tip velocit$*
show more interesting behavior because of the correlated On the other hand, the growth rate of thermalwidth of
step motion. While a region of step bunching is again ob-the caseA (without local conservations different from that
served close to the facet, on the other side of the bunch therf casesB or C (with local conservation Figure 3 shows the
are also some terraces that avieler than average. As the growth of the facet width versus time in a log-log plot. All
facet continues to grow, the number of steps in the bunchedata in each case fall into a straight line, indicating that the
region increases but the widths of the wider terraces in fronteconstructed terrace width increasesnasat®. In caseA,
of the step bunch also increase. One of these may becontlee facet grows at"?, while it grows ast* for casesB and
sufficiently wide to serve as new nucleus for reconstructionC. These results agree with the predictions of the classic 1D

Before doing this, let us first consider the growth rate of
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continuum model of MullinS® Note that the surface con- Deterministic Thermal Noise

figurations of cas€ in Fig. 2 are similar to those of cag —48. >%< t=24.0 ((

8
when two configurations with the same lateral size are com-
pared, though it takes much longer to grow to the same lat-

;<

eral size in cas€. It takes the same order of magnitude of
time for caseA andB to form the reconstruction shown in
the figure while it takes around 6 times longer for c&se

B. Induced nucleation t=50.

Let us now relax the constraint forbidding other nuclei
from forming. Even if thermal fluctuations were included,
this should produce essentially no change in das8ince all ¢
terraces near the original facet become smaller on average,
other thermally nucleated facets akess likely to occur
nearby.

The story is quite different in casé® and C with local t=9,§-2 |
mass transport, wheri@ducednuclei can form and inhibit
the further growth of the original facet. In these cases, the
motion of a step is directly coupled to the motion of neigh-
boring steps. Initially, as the step bounding the reconstructed
terrace moves forward to increase the reconstructed terrace’s
width, the neighboring step must move backward to conserve
adatoms locally. Thus both the original reconstructed terrace
and the terrace in front of the step that moves backward get FIG. 4. Propagation of nuclei through induced nucleation. Step

wider. W#eh thle W\Ilo steps thar': m(r)lve ;n opposite dl'r(.acuOn%onfigurations at three different times are shown for both determin-
come su ,'C'enty c O_Se to eaF: other for S,tep repuisions t(?stic (left panel$ and Langevin(right panel$ dynamics. The times
become importantwith spacing approaching that of the shown are in units of milliseconds from the creation of the initial

equilibrium step bunch they “collide” and both begin to  cleys. Left panel sizes are 3202800 in atomic units and the
move forward together as a bunch because of the drivinggnt ones are 3208000. The same parameters as in Fig. 2 are

force from the reconstructed terrace behind. Then the localseqd.

conservation process repeats itself, causing new steps in . . o o
front of the advancing step bunch to move backward angince the surface configurations of c&seén Fig. 2 are simi-
making the terraces in front of those steps wider. As thdar to those of the case except for the time scaleThe left
original facet grows, the number of steps in the bunch infanels are the top views of step configurations at three dif-
creases and the widths of the widest terraces in front of thferent times in the deterministic case while the right panels

step bunch also increase. Such sufficiently wide terraces catf€ those with thermal nois€The effects of thermal noise
be nuclei for the reconstruction of another facet. are dllscussed in Sec. Il CA nuqleus of reconstructed ter-
A quantitative treatment of this induced nucleation race is created by hand at the middle terrace. From the upper

mechanism using a 1D model was carried out by th anel, one can see that some terraces in front of the step

authord When the tvpical distance between steps in a ste unch become wider as mentioned. As time goes on, the
u ‘ l/3y.p' : W bS | Rvidths of the wider terraces increase and, at some point, one
bunchw,~(2g/€,)*"* is much smaller than the average ter-

; - of the wider terraces becomes wide enough to become a new
race widthw,, it was shown that only one other terrace, nycleus as shown in the middle panel. As this nucleus grows,

aside from the original facet, is larger than at any given it induces another nucleutower panel and the process re-
time. In the limit thatw,/w, goes to zero, the maximum peats itself.

width of the induced wide terrace increasiegarly with the A few remarks should be made on the difference in
number of stepsy, in the bunch, separating it from the origi- growth of an induced facet and the initial isolated facet.
nal facet. Moreover it remains as the widest terrace for arFirst, the propagation in the direction of an induced
increasing long time intervalAt~n?. Once it gets larger nucleus is initially faster than the original isolated one since
than w,, reconstruction will occur. Further growth of the mass conservation induces an elongated wider terrace region
original facet essentially stops, but the new facet can inducgven before the reconstruction on the region takes place. Sec-
another nucleus on the other side as it continues to growpnd, an induced facet grows essentially only on one side in
Then this new nucleus can induce another one and so off}€ X direction while the original one grows on both sides.
The velocity of the nucleation front imear in time because ~This asymmetric propagation, together with the faster initial
it always takes the same amount of time to induce a nucleug/-direction growth, cause the induced nuclei to grow more
Hence the faceted surfaces arising from this idealized protapidly. However, as discussed below, these differences are
cess have a periodic distribution of reconstructed terraceR0t as noticeable when thermal noise is taken into account.
separated by step bunches.

Figure 4 illustrates the propagation of nucleation through
the induced nucleation mechanism in c&sas given by the When thermal fluctuations are considered, these regular
present 2D model(A similar result is expected for cadg®  patterns, selected by a kinetic mechanism, would be ex-
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C. Effects of thermal noise on induced nucleation
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> N S T S T R interaction between two nuclei through an induced nucleation
0.08 0.1 0.13 mechanism is shown. The initial positions of the nu¢teeated by

Slope hand are on the terraces marked Bybut outside the figure.

_ FIG. 5. Number of steps in a step bunch vs the slope of thejeny 1yns. The noise strengths are given by the fluctuation-
vicinal surface with(cross and without(open diamoniinoise. AS  jiggination theorem; we used conserved noise for the step
thhs pTLeV'OUS Egurefs we Choosi thehparametemgetﬁs, \lel fluctuations and nonconserved noise for the reconstruction.
; > The number of steps in a bunch are numerically calcu ate%\s expected, the periodicities are always smaller and less
or different values ofw, . i .

sensitive to change of the average slope of the vicinal surface
pected to be less sharp. Particularly wheg/w, is not so when we consider thermal fluctuations. In future work we
small, the effects of mass conservation are spread out ovétan to study the dependence of the expected final periodicity
many terraces and several terraces in front of the step bun@n other parameters and under more general conditions. A
become larger thamv,. Since there are then many large particularly interesting case arises when induced nucleation,
terraces on which thermal nucleation could occur, nucleatio@ dynamical process, cooperates with some energetic effect,
sites and times are less precisely determined in this castike a surface-stress-induced elastic energy, which also could
However, in general, the number of stepsin a bunch when  favor periodic structure¥’
induced nucleation takes place is expected to be smaller than
the value predicted by the 1D model or the deterministic
case.

With the parameters given in Fig. 2 but with a smaller  An interesting 2D pattern arises from induced nucleation
w,, for examplew,=8, it may take very long to create an using Eq.(21) when two(therma) nuclei form that are close
induced wide terrace with width greater than. However, in the x direction but separated by a large distance inythe
in the presence of noise, step fluctuations leading to alirection. Figure 6 shows a step configuration in c&si
nucleus can happen on terraces whose averaged width tise deterministic limit arising from two such nucl@reated
smaller than w.. The required time for this thermally as- by hand on the terraces markedXy. As time goes on, each
sisted nucleation decreases rapidly with increasing averagaucleus grows as”*in the normal direction until it produces
terrace width. As the number of steps in a bunghin- its own induced nucleus. In the lateral direction, nuclei grow
creases, the average width of terraces in the induced widessentially linearly irt until they “collide” with each other
terrace region also increases, and hence the nucleation timaad trap a bunch afrossing stepbetween them. After such
on these terraces decrease. Moreover, the time intAtved ~ an encounter, the growth of the nuclei in thedirection
which the terrace in front of the step bunch remains as thessentially stops. The number of steps in the crossing step
widest one before it joins the step bunch, increases mjth  bunch is determined by how many steps initially separated
Therefore, as bunching proceeds, there will be a bunch sizéhe two nuclei when they formed. Once this configuration
N, such thatAt(n,) becomes larger than the nucleation time,forms, induced nuclei from the two original facets will pro-
leading to the formation of an induced nucleus. In generabluce new crossing steps at essentially the saipesition as
this bunch size will be smaller than the critical bunch sizethe original crossing steps. Hence, @ignmentof crossing
predicted by the 1D model. Since bath and the nucleation step bunches is formed as shown in Fig. 6. The number of
time vary rapidly with the number of steps in the bunch,steps in the induced crossing bunches are expected to be the
faceted surfaces produced under conditions of local massame as that in the original crossing step bunch when the
conservation may show rather strong regularities even wheitlealized induced nucleation mechanism of the 1D model is
the nuclei are created in part by thermal step fluctuations. accurate.

The final periodicity dependence on the slope of the vici- A strong tendency for alignment of crossing steps has
nal surface is shown in Fig. 5. The predicted number of stepbeen found in some step bunching experiments on vicinal
in a step bunch, both in the deterministic case and the cag@aAg001).3 At present it is not clear whether this is a purely
with thermal fluctuations, are numerically calculated for fivekinetic phenomenon as our model would suggest, or an equi-
different values ofw,, with the samew,; andwy. For the librium phenomenon from some energefrobably elastic
case with thermal fluctuation®pen diamony step-bunch effect, though the strong regularity favors the latter hypoth-
sizes are obtained by averaging the results of five indeperesis. It is also possible that these patterns of regular step

D. 2D patterns from induced nucleation
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bunches can be formed on the surfaces of real materiajgarameters, step mobilify.. , and surface diffusion constant

through the cooperation of the two effects. D¢ and obtainl’ by calculating the current in the quasi-
static approximation. Without loss of generality, let us as-
IV. CONCLUSION sume ascending steps and denote the step chemical potentials

at the left and the right steps ag and u. . Let u(x) be

In summary, we haV(_a studied a 2D model oflcoupled S‘.te'?he chemical potential on the terrace agd andy, be the
motion and reconstruction for reconstruction-driven facetmgﬁerrace chemical potential at the boundariets ez
’ Mty

in the nucleation regime. An isolated nucleated facet grows . . I
linearly with time in the step direction. Its width growst% :_“mxﬂxr'“t(x) wherex_ [x.] is the position of the left
when the mass movement is global. With local mass flow(fight) step. When we assume small excess adatom concen-
the facet width grows as** asymptotically, as the previ- tration, 6c(x)=c(x)—co<co on the terrace such that
ously studied 1D models predicted. Sc(x) =co(esT—1)~(co/k T)py(x), the current on
When the mass transport is local, the motions of neighthe terracej, is proportional to ft; — u,):

boring steps are directly coupled in such a way that a grow-
ing nucleus can induce the formation of another nucleus
nearby. This can create a propagation of nucleation events C_ o % _ DsCo -+

; Jt=—Dgsdyxc~ Iyt = (pe —m¢). (AL
leading to regular arrangements of reconstructed facets sepa- kBT kBTw
rated by step bunches. When thermal fluctuations are taken
into account, this induced nucleation mechanism will pro-In the last step, we used the linearity of the terrace chemical
duce less sharp regularities in the faceted surface. Neverthpotential profile dyu;=(u; —u, )/W, which came from
less, when thermal fluctuations are incorporated into the ing2c(x) =0 with u,(x)~c(x). From Eq.(A1), we see that the
duced nucleation model, the qualitative features of theerrace resistancﬁtz(,u{—,ut*)/jt is given by
induced nucleation mechanism as discussed here remain
valid and are expected to be observed under more robust
conditions than the deterministic models would predict. Ri=Kk,TW/DCo. (A2)
While there are a number of different factdiacluding in . .
particular elastic interactiof§ that can contribute to the ©On the other hand, at the boundaries, adatom currents
facet spacing in particular systems, induced nucleation rep= = 9X= /{} are given by
resents a very generkinetic mechanism that should be con-

sidered in analyzing experimental data. r
je=F (s — ) (A3)
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APPENDIX: DERIVATION OF THE EFFECTIVE R.=Q% T/ . (A4)
ADATOM EXCHANGE COEFFICIENT

BETWEEN STEPS [EQ. (12)] To obtain the total effective exchange coeffici€nt defined

by

Equation(12) can be easily derived from an analogy with
the conductance in a series electrical circuit. The changes in
step velocity due to adatom exchange between two steps are . Te -
linearly proportionalto the adatonturrentbetween the two 1= 02k T('“S Hs ),
steps. Hence the effective adatom exchange coefficient given B

by Eq.(12) is inversely proportional to the effective “resis- we need to calculate the current across the two sjed@is
tance” R, between the two steps, defined Bke=Au/j,  can be easily done in the quasistatic approximation where

wherej is the current and 1 is the step chemical potential three currents of EqgA1) and (A3) should be the same.
difference. When an atom moves from one step to the neighrpis requirement fixeg” :

boring step, it goes through three processes: a detachment
from the step, surface diffusion on the terrace, and an attach-
ment to the other step. In other words, during an exchange of ,uf =,u§ TR (AB)
an atom between two neighboring steps, it passes through
three resistors in serieR, associated with surface diffusion With j=(us —pug)/(R.+R+R_) as expected from the
and R, and R_ associated with attachment/detachment a@halogy with a series circuit and we have
the left and the right steps. This analogy with a series electric
circuit becomes exact in the quasistatic approximation,
where the step motions are much slower than the adatom
movements. Then mass conservation guarantees that the cur-
rents through the three “resistors” are the same. —
Here, we calculat®.. andR; in terms of the usual kinetic

(A5)

Ie=[0% T(R,+R+R)]™*

1 w 17t

— = A7
r+ DSCOQZ F* ( )
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