
PHYSICAL REVIEW B 1 JANUARY 1998-IVOLUME 57, NUMBER 1
Thermodynamics of isotropic and anisotropic layered magnets:
Renormalization-group approach and 1/N expansion

V. Yu. Irkhin and A. A. Katanin*
Institute of Metal Physics, Ekaterinburg 620219, Russia

~Received 28 April 1997!

The O(N) model of layered antiferromagnets and ferromagnets with a weak interlayer coupling and/or
easy-axis anisotropy is considered. A renormalization-group~RG! analysis in this model is performed, the
results forN53 being expected to agree with those of the 1/M expansion in theCPM21 model atM52. The
quantum and classical cases are considered. A crossover from an isotropic two-dimensional~2D!-like to a
three-dimensional Heisenberg~or 2D Ising! regime is investigated within the 1/N expansion. Analytical results
for the temperature dependence of the~sublattice! magnetization are obtained in different regimes. The RG
results for the ordering temperature are derived. In the quantum case they coincide with the corresponding
results of the 1/N expansion. The numerical calculations, based on the equations obtained, yield a good
agreement with experimental data on the layered perovskites La2CuO4, K 2NiF4, and Rb2NiF4, and the Monte
Carlo results for the anisotropic classical systems.@S0163-1829~97!03946-5#
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I. INTRODUCTION

The problem of layered magnetic systems is of inter
both from theoretical and practical point of view. Here b
long, e.g., quasi-two-dimensional~quasi-2D! perovskites,1

ferromagnetic monolayers and ultrathin films.2 Such systems
possess magnetic transition temperatures that are low
comparison with the intralayer exchange parameterJ and are
determined by magnetic anisotropy and/or interlayer c
pling.

The crucial role in the thermodynamic behavior of sy
tems with small interlayer coupling~or anisotropy! belongs
to the temperature crossover from a ‘‘2D-like’’~isotropic!
regime to the critical 3D~or 2D Ising! regime, respectively
~see, e.g., Refs. 1 and 3!. In the general case where bo
interlayer coupling and anisotropy parameter are present
situation is more complicated: with increasing temperat
the 2D-like Heisenberg behavior changes to the 2D-Ising
3D-Heisenberg one depending on that anisotropy or in
layer coupling dominate, and finally the system passes to
3D Ising behavior.

There exist a number of approximations that treat therm
dynamics of layered systems. The standard spin-wave th
~SWT! describes satisfactorily the region of rather low te
peratures only. Somewhat better results can be obtaine
taking into account the temperature renormalization of
interlayer coupling parameter and the anisotropy parame
The temperature dependence of the anisotropy param
within the spin-wave theory was considered in Refs. 4–6
more systematic way to consider such renormalizations is
self-consistent spin-wave theory~SSWT! ~Refs. 7 and 8!,
which was applied to quasi-2D and anisotropic 2D magn
in Refs. 9–12.

SSWT takes into account the interaction between s
waves in the lowest Born approximation. However, at n
too low temperatures this approximation is insufficient.
particular, the values of the ordering temperature in SS
are still too high in comparison with experimental ones, a
570163-1829/98/57~1!/379~13!/$15.00
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the critical behavior is quite incorrect. Thus the summat
of leading contributions in all orders of perturbation theo
should be performed. At the same time, to describe the
havior of the order parameter in the critical region one has
take into consideration fluctuation~non-spin-wave! contribu-
tion to thermodynamic quantities. Ising-like excitations in
classical anisotropic model were considered in Ref. 13.
the same time, in the quantum anisotropic case this treatm
meets with difficulties,14 and 3D fluctuations in the critica
region of quasi-2D magnets cannot be considered in
approach13,14 too.

A possible way to sum up an infinite sequence of pert
bation contributions is the renormalization group~RG!
analysis. The RG approach was successfully used to cons
the classical isotropic magnets with the space dimensiona
d52 ~Ref. 15! andd521«.16,17 In the latter case the renor
malized coupling constant at the fixed point is small~of or-
der of «!, and the standard technique of the« expansion can
be applied. Physically, this means that the excitatio
spectrum picture differs somewhat from the spin-wave o
~as discussed in Ref. 3, the fluctuation corrections to
excitation spectrum readdEq;« lnq). The RG method was
applied also to quantum 2D isotropic magnets in Ref. 18

The scaling behavior in the quasi-2D or anisotropic 2
systems is expected to differ from the isotropicd521«
magnet. In these cases the renormalized value of the
pling constant at the stability point of the RG transformati
is not small, which corresponds to above-discussed cross
from the 2D-like Heisenberg to 3D Heisenberg~or 2D Ising!
critical regime. Thus the RG method does not work wh
passing to the true critical region. The latter region should
considered with account of essentially non-spin-wave~fluc-
tuation! excitations.

To take into account non-spin-wave effects it is conv
nient to use, instead of the original Heisenberg model, m
els with large degeneracy, which enables one to introduc
formal small parameter in the theory. In Ref. 3 an isotro
quantum quasi-2D antiferromagnet was investigated wit
379 © 1998 The American Physical Society
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the 1/N expansion in the quantumO(N) model19 ~in the
Heisenberg model,N53). It was demonstrated that th
renormalizations of the interlayer coupling parameter
comparison with the usual spin-wave theory~and also
SSWT! determine considerable lowering of the transiti
point. The same situation should be expected for 2D an
tropic magnets. At the same time, the 1/N expansion meets
with some difficulties at the description of the 2D-like regio
where the series expansion is performed in powers
1/(N22) rather than 1/N.19,3

Thus the RG approach and 1/N expansion in theO(N)
model are expected to have advantages in different temp
ture regions. Whereas the first method describes well
2D-like regime, the 1/N expansion treats satisfactorily th
critical region. An advantage of the RG approach in co
parison with the technique of the 1/N expansion in theO(N)
model is that it enables one to consider the quantum fe
magnet case where the partition function cannot be gene
ized to arbitraryN. The RG analysis permits also to treat t
classical case, which is difficult within the 1/N expansion.
~In the classical case, there is no natural upper cutoff
quasimomenta, which is the temperature in the quan
case, and the original lattice version of the partition funct
should be considered.!

The Heisenberg model can be also considered as a
ticular case of theSU(M ) model ~or of its continuum ana-
log, CPM21 model! with M52 ~see, e.g., Ref. 20!. Since the
M→` limit corresponds to SSWT~see, e.g., Ref. 8!, at finite
M thermodynamics is described in terms of spin-wave p
ture of the excitation spectrum. The correspond
1/M -expansion contains in the 2D case infrared-diverg
terms21 and is rather inconvenient. Ford not close to 2, this
expansion does not enable one to obtain correct values o
critical exponents.22 Thus, as well as in RG approach, on
the 2D-like isotropic Heisenberg region can be conside
within the 1/M expansion. Furthermore, the results
CPM21 model tonth order in 1/M are expected to coincid
at M52 with the (n11)-loop RG analysis forO(3) or,
equivalently,CP1 model~we do not know a general proof o
this statement, but this is true in thed521« case for
n50,1; see Ref. 22!.

The simplest one-loop RG analysis was applied earlie
calculation of the Curie temperature of anisotropic 2
ferromagnets.23 As we shall see below, the results of th
work become considerably modified by the two-loop corr
tions, which were not taken into account in Ref. 23. T
momentum-shell version of the one-loop RG approach in
classical quasi-2D magnets was considered in Ref. 24. H
ever, the authors of this paper passed to continuum limi
the direction perpendicular to layers, so that results of R
24 at small interlayer coupling have qualitative rather th
quantitative character.

In the present paper we consider thermodynamics of
quantum and classical layered magnets with small interla
coupling and anisotropy within the consistent two-loop R
approach and first-order 1/N expansion in theO(N) model.

The plan of the paper is as follows. In Sec. II we consid
the continuum and lattice versions of theO(N) model for
anisotropic layered ferromagnets and antiferromagnets
Sec. III we apply the renormalization-group approach16,18 to
the quantumO(N) model in the~isotropic! 2D-like region
o-
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~the classical case is considered in Appendix B!. In Sec. IV
we investigate the same problem within the 1/N expansion in
the O(N) model up to the first order and treat the crosso
from the 2D-like to 3D Heisenberg~or 2D Ising! behavior. In
Sec. V we summarize our results and compare them w
experimental data on layered antiferromagnets.

II. CONTINUUM AND LATTICE MODELS
FOR THE SPIN SYSTEM

We consider the Heisenberg model with small interlay
coupling and easy-axis anisotropy,

H52
J

2(id i

SiSi 1d i
1H3D1Hanis, ~1!

H3D52
aJ

4 (
id'

SiSi 1d'
, ~2!

Hanis52
Jh

2 (
id i

Si
zSi 1d i

z 2uJuz(
i

~Si
z!2, ~3!

whereJ.0 for a ferromagnet,J,0 for an antiferromagnet
d i and d' denote nearest neighbors within a layer and
different layers,a.0 is the interlayer coupling paramete
and h,z.0 are the parameters of the exchange anisotr
and single-site anisotropy, respectively. The partition fu
tion of the model~1! can be represented in terms of a pa
integral over coherent states~see, e.g., Refs. 25 and 8!:

Z5E DnDlexpH JS2

2 E
0

1/T

dt(
i

F 2i

JS
A~ni !

]ni

]t

1nini 1d i
1

a

2
nini 1d'

1hni
zni 1d i

z 1sgn~J! z̃ ~ni
z!21hni

z

1 il i~ni
221!G J ~4!

with ni(t) the three-component unit-length vector fiel
A(n) the vector potential of the unit magnetic mon
pole, which satisfies the equation“3A(n)•n51, z̃
52z(121/2S) and the summation overd i ,d' in Eq. ~4! is
assumed. We have also introduced in Eq.~4! the external
magnetic fieldh to perform the calculation of spin correla
tion functions. The term with the time derivative correspon
to the Berry-phase contribution.26 Depending on the value o
T/JS, two cases are possible:~a! the classical caseT@JS
and ~b! the quantum caseT!JS.

Consider first the classical case. The main contribution
Eq. ~4! comes from time-independent paths, and the partit
function reduces to
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Zcl5E DnDlexpH rs
0

2T(
i

Fnini 1d i
1

a

2
nini 1d'

1hni
zni 1d i

z

1 z̃ ~ni
z!21hni

z1 il~ni
221!G J ~5!

with rs
05uJuS2 the bare spin stiffness. To derive Eq.~5! in

the antiferromagnetic case we have replac
ni→2ni ,l i→2l i at one of two sublattices. Thus in th
classical case the results forZ are identical for a ferromagne
and antiferromagnet. In the continuum limit the partitio
function ~5! coincides with that of the well-known classic
nonlinear-s model.8 However, if one is interested in thermo
dynamics in a wide temperature interval~not only in the
critical region!, the continuum limit cannot be used since n
only long-wave excitations contribute thermodynamic pro
erties.

Now we treat the quantum case. Then the tempera
plays the role of a natural upper limit cutoff for frequenci
of the fluctuations. Thus we may pass to the continuum li
within each layer. For a ferromagnet we use the represe
tion

A~n!5
z3n

11~zn…

~6!

(z is the unit vector along thez axis!. Then we obtain

ZF5E Dp

A12p2
expH 2

rs
0

2 E
0

1/T

dtE d2r

3(
i z

F 2i

JS

12A12p i z
2

p i z
2 S p i z

x
]p i z

y

]t
2p i z

y
]p i z

x

]t
D 1~¹pi z

!2

1
a

2
~pi z112pi z

!21~¹A12pi z
2 !21

a

2

3~A12pi z11
2 2A12pi z

2 !21 f pi z
2 1hA12pi z

2 G J , ~7!

where i z is the number of a layer,p5n2(nz)z is the two-
component vector field,

f 5 z̃ 14h[2z~121/2S!14h, ~8!

and we have made the shiftil→ il1 f before integrating
over l.

In the antiferromagnetic quantum case we use
Haldane mapping26 ~see also Ref. 8! to integrate over the
‘‘fast’’ components ofn. Thus we pass to the partition func
tion of the quantum nonlinears model

ZAF5E DsDlexpH 2
rs

0

2 E
0

1/T

dtE d2r

3(
i z

F 1

c0
2 ~]tsi z

!21~“si z
!21

a

2
~si z112si z

!2 ~9!

2 f ~s i z
z !21hs i z

z 1 il~si z
2 21!G J , ~10!
d

t
-
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it
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where si z
is the three-component unit-length field an

c05A8JS is the bare spin-wave velocity. Unlike the qua
tum ferromagnet case, this model can be trivially extende
theO(N) symmetry with arbitraryN, theN-component vec-
tor field s i5$s1 . . . sN% being introduced andsz being re-
placed by sN . Writing down s5$p1 . . . pN21 ,sN% we
have

ZAF5E Dp

A12p2
expH 2

rs
0

2 E
0

1/T

dtE d2r(
i z

F ~]mpi z
!2

1~]mA12pi z
2 !21

a

2
~pi z112pi z

!21 f p2

1
a

2
~A12pi z11

2 2A12pi z
2 !21hA12pi z

2 G J , ~11!

where]m5@]/](c0t),¹#, and we have performed the shi
il→ il1 f .

III. RENORMALIZATION-GROUP ANALYSIS
IN THE 2D-LIKE REGIME FOR THE QUANTUM CASE

Using the above expressions for the partition function
can develop a scaling approach. We use the field theory
mulation of RG transformation.28,16 To develop this ap-
proach we pass to the renormalized theory with the use of
relations16

g5gRZ1 , u5uRZu

p5pRZ, h5hRZ1 /AZ ~12!

f 5 f RZ2 , a5aRZ3 ,

where the indexR corresponds to the renormalized quan
ties, the bare coupling constantg, and the dimensionless in
verse temperatureu are determined by

g51/S, u5JS/T ~FM! ~13!

g5c0 /rs
0 , u5c0 /T ~AFM!. ~14!

The renormalization constantsZi are chosen from the condi
tion that the thermodynamic quantities are independent o
upper cutoff. Since the nonlinear-s model is renormalizable
~see Ref. 28!, five renormalization constants for five inde
pendent parameters of the model are sufficient to this end
calculate renormalization constants it is sufficient to cal
late the renormalization of the one-particle Green’s funct
in an external magnetic field.28,16

Consider first the case of an antiferromagnet. The per
bation theory in the coupling constant for the partition fun
tion ~11! can be developed in a standard way.16–18 After
expanding the square roots in a series in the fieldp, the bare
Green’s function of this field takes the form

G~0!~p,ivn!5
1

g
@vn

21pi
21a~12cospz!1 f 1h#21,

~15!

where pi5(px
21py

2)1/2, vn52pn/u are the dimensionles
Matsubara frequencies. In each order of perturbation the
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382 57V. YU. IRKHIN AND A. A. KATANIN
one has to take into account all the possible connected
grams with the fixed number of loops.

We consider only the ‘‘renormalized classical’’ regime

T@~max$ f ,a%!1/2c, ~16!

since in the intervalT,(max$f,a%)1/2c the staggered magne
tization is well described by SSWT~see a more detailed
discussion of different temperature regimes in Ref. 3!. Since
in this regime the quasimomentum cutoff parameter
quantum fluctuations is the boundary of the Brillouin zo
L, while for thermal ones this isT/c, effects of quantum and
thermal fluctuations can be separated~see, e.g., Refs. 19 an
3!. Thus it is useful to perform the renormalization in tw
steps. At the first step the ground-state quantum renorma
tions are performed, and the second step is the tempera
renormalization. To this end we represent the renormal
tion constants as

Zi~g,u,L!5ZQi~g,L! Z̃i~gr ,ur !, ~17!

where ZQi(g) contain ground-state quantum renormaliz
tions, andZ̃i all the others, and

gr5ZQ1
21g, ur5ZQu

21u ~18!

are the quantum-renormalized coupling constant and dim
sionless inverse temperature, respectively. Note that the
ter is renormalized due to the renormalization of the sp
wave velocity,c5ZQuc0. For further convenience we als
introduce the quantum-renormalized anisotropy and in
layer coupling parameters,

f r5ZQ2
21f , a r5ZQ3

21a, ~19!

which are just experimentally observed. Up to one-loop
der we have

ZQ512~N21!
gL

4p
1O~g2!

ZQ1512~N22!
gL

4p
1O~g2!, ZQu511O~g2! ~20!

ZQ2511
gL

2p
1O~g2!, ZQ3511

3gL

4p
1O~g2!.

Since the renormalization constantsZQi are nonuniversal, the
continuum limit is insufficient to calculate them, an
quantum-renormalized parameters can be determined
from the consideration of the original lattice partition fun
tion ~4! in the ground state. For the square-lattice antifer
magnet this can be performed within the spin-wave theo
which is in fact a series expansion ing (g;1/S!. The results
of the spin-wave theory are presented in Appendix A. W
have to first order in 1/S,

ZQ51/ZQ15ZQ25ZQ3
1/25120.197/S,

ZQu5110.079/S. ~21!

After performing the ground-state quantum renormalizatio
~20! in the continuum model@or, equivalently, renormaliza
tions ~21! in the original lattice model# the theory becomes
ia-

r
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completely universal, i.e., thermodynamic properties do
depend on the cutoff parameterL.

Now we pass to the consideration of the temperat
renormalizations. The calculation of the renormalization co
stantsZ̃i is performed in the same way as in Ref. 16 a
leads toZ̃u[1,

Z̃511t r~N21!ln~urm!1t r
2~N21!~N23/2!ln2~urm!

1O~ t r
3!,

Z̃1511t r~N22!ln~urm!1t r
2~N22!ln2~urm!1O~ t r

3!,

Z̃25122t r ln~urm!1O~ t r
2!,

Z̃3512t r ln~urm!1O~ t r
2!, ~22!

wherem is an infrared cutoff parameter with the dimensio
ality of the inverse length andt r5gr /(2pur). The only dif-
ference from the results of Ref. 16 is that the ultravio
cutoff parameter in Eq.~22! is ur ~rather thanL in the clas-
sical case!, and two new renormalization constants,Z̃2 and
Z̃3, for the anisotropy and interlayer coupling paramet
occur.

The infinitesimal change ofm generates the renormaliza
tion group transformation, and the derivatives ofZ factors
with respect tom determine the renormalized-paramete
flow functions ~see, e.g., Ref. 28!. Since quantum-
renormalization constants~20! are invariant under RG trans
formation, it is sufficient to calculate the derivatives ofZ̃. To
the two-loop order we have~cf. Refs. 16 and 28!

b~ t r ![m
dtr
dm

52~N22!t r
22~N22!t r

31O~ t r
4!, ~23!

§~ t r ![m
dlnZ

dm
5~N21!t r1O~ t r

3! ~24!

~to one-loop order, these expressions were obtained ea
by Polyakov15!.

The flow functions for the interlayer coupling and aniso
ropy parameters will be needed only to the one-loop appro
mation:

g f~ t r ![m
dlnZ2

dm
522t r1O~ t r

2!, ~25!

ga~ t r ![m
dlnZ3

dm
52t r1O~ t r

2!. ~26!

Using Eqs.~23!–~26! we find the scaling laws for the Hamil
tonian parameters under RG transformation. The equat
for the coupling constanttr and renormalization factorZr at
the scalemr are well known:16

r5expF E
tr

tr dt

b~ t !G5S tr

t r
D 1/~N22!

expF 1

N22S 1

tr
2

1

t r
D G

3@11O~ tr!#, ~27!
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Zr5expF2E
tr

tr §~ t !

b~ t !
dtG

5S tr

t r
D ~N21!/~N22!F11

N21

N22
~ t r2tr!1O~ tr

2!G . ~28!

The expressions for the effective-anisotropy and interla
coupling parametersf r ,ar at the scalemr have the form

f r5 f rexpF2E
tr

trg f~ t !

b~ t !
dtG5 f r S tr

t r
D 22/~N22!

@11O~ tr!#,

~29!

ar5a rexpF2E
tr

trga~ t !

b~ t !
dtG5a r S tr

t r
D 21/~N22!

@11O~ tr!#.

~30!

Now we are ready to calculate the relative sublattice m
netizations r5s/s0, wheres5 S̄/S ( S̄5^SQ

z & is the stag-

gered magnetization! and s̄0[s(T50). The perturbation
result in the zero magnetic field up to terms of the order ot r

2

reads

s r512
t r~N21!

4
ln

2

ur
2D~ f r ,a r !

1
t r
2~32N!~N21!

32
ln2

2

ur
2D~ f r ,a r !

2
t r
2~N21!~B222!

8
ln

2

ur
2D~ f r ,a r !

, ~31!

where

D~ f ,a!5 f 1a1Af 212a f , ~32!

B2531 f r /Af r
212a r f r . ~33!

Note that the last term in Eq.~31! corresponds to temperatur
renormalizations of the interlayer coupling and anisotro
parameters:

f̃ r5 f rF12t r ln
2

ur
2D~ f r ,a r !

G , ~34!

ã r5a rF12
t r

2
ln

2

ur
2D~ f r ,a r !

G . ~35!

Within the RG approach we obtain from Eq.~28! the follow-
ing scaling law for the sublattice magnetization:

s r~ t r , f r ,a r ,m r !5Zr
21/2s r~ tr , f r ,ar ,mr!, ~36!

or, equivalently,

s̄ r~ t r , f r ,a r ,m!

s̄ r~ tr , f r ,ar ,mr!
5S t r

tr
D b2

@12b2~ t r2tr!1O~ tr
2!#,

~37!

where
r

-

y

b25
N21

2~N22!
~38!

is the sublattice-magnetization ‘‘critical exponent’’ in th
temperature interval under consideration. This coincides w
the «→0 limit of the critical exponentb21« for d521«
~Ref. 16!. The equation fortr /t r is given by Eq.~27!, which
can be rewritten as

t r

tr
511t r lnS t r

tr
rN22D1t rO~ tr!. ~39!

Finally, the scaler is fixed by the condition that the argu
ments of logarithms in Eq.~31! on this scale are equal t
unity, i.e., by s r(tr , f r ,ar ,mr)51. Taking into account
that u scales in a trivial way,ur5ur /r, we obtain the addi-
tional equation forr:

2r25ur
2D~ f r ,ar! ~40!

We have from Eqs.~37!, ~39!, ~29!, ~30!, and~40! the equa-
tion for the relative sublattice magnetization in the two-lo
RG analysis,

s r
1/b2512

t r

2F ~N22!ln
2

ur
2D~ f t ,a t!

1
2

b2
ln~1/s r !

12~12s r
1/b2!1O~ t r / s̄ r

1/b2!G , ~41!

wheref t anda t are the temperature-renormalized paramet
of the anisotropy and interlayer coupling. We derive f
these quantities

f t / f r5s r
4/~N21!@11O~ t r /s r

1/b2!#, ~42!

a t /a r5s r
2/~N21!@11O~ t r /s r

1/b2!#. ~43!

The leading logarithmic term in the square brackets of E
~41! corresponds to SSWT, while the other two terms d
scribe corrections to this theory. As it should be expected
low temperatures the RG results Eqs.~41!, ~42!, and ~43!
reduce to corresponding perturbation expressions~31!, ~34!,
and~35!. We have to bear in mind that the quantityt r /s r

1/b2

is a formal rather than real estimate for neglected terms s
higher order terms also yield a contribution at not too lo
temperatures. Physically, neglecting such terms is equiva
to neglecting 3D~or Ising-like! fluctuations in the RG ap-
proach.

As already pointed out, the Ne´el temperature cannot b
calculated directly in the RG approach since essentially n
spin-wave fluctuations contribute to it and a consideration
diagrams with an arbitrary number of loops is require
However, one can obtain a general expression for the N´el
temperature in the following way. Consider first the tempe
ture t r* of the crossover to the true critical region. This
determined by the conditiontr;1, i.e., t r* ;s r

1/b2 @the scale
r is determined by Eq.~40!#. Substituting this into Eq.~41!
one obtains
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t r* 52YF ~N22!ln
2

ur
2D~ f * ,a* !

12ln~2/t r* !1CAFG ,

~44!

where f * 5 f r(t r* )2/(N22), a* 5a r(t r* )1/(N22), and CAF is
some constant of order of unity. With further flow of R
parameters, 3D Heisenberg~or 2D Ising! fluctuations change
only the constantCAF which is replaced by the universa
function FAF(a r / f r);1. Thus for the Ne´el temperature we
have

tNéel52YF ~N22!ln
2

ur
2D~ f c ,ac!

12ln~2/tNéel!

1FAF~a r / f r !G , ~45!

where

f c5 f r tNéel
2/~N22! , ac5a r tNéel

1/~N22! ~46!

@recall thatt5T/(2prs), ur5c/T#. The functionF is deter-
mined by non-spin-wave fluctuations and cannot be ca
lated within the RG approach. Note that the equation~45! is
analogous to the result for the correlation length in the ren
malized classical regime in the 2D case,18,19 which may be
rewritten in the same manner:

t r52/@~N22!ln~j2/ur
2!12ln~2/t r !1 lnCj#, ~47!

where Cj is an universal numerical preexponential fact
Comparing Eqs.~45! and~47! we see that the only differenc
is that in the quasi-2D anisotropic case the logarithms are
at D1/2 ~rather than at 1/j in the isotropic 2D case!. In the
quasi-2D isotropic case the quantityF can be calculated
within the 1/N expansion~see the next section!, and a more
general case requires numerical analysis~e.g., the quantum
Monte Carlo method!.

Three limiting cases may be considered.

~i! The anisotropic 2D casea50. The equation for
magnetization~41! takes the form
il
io

e

-

r-

.

ut

sr
1/b2512

t r

2F ~N22!ln
1

ur
2fr

1
4

b2
ln~1/s r !

12~12s r
1/b2!1O~ t r /s r

1/b2!G . ~48!

The equation for the Ne´el temperature~45! reads

tNéel52YF ~N22!ln
1

ur
2fr

14ln~2/tNéel!1FAF~`!G .

~49!

~ii ! The isotropic quasi-2D casef 50. We obtain

sr
1/b2512

t r

2F ~N22!ln
2

ur
2ar

1
3

b2
ln~1/s r !12~1

2s r
1/b2!1O~ t r /s r

1/b2!G , ~50!

tNéel52YF ~N22!ln
2

ur
2ar

13ln~2/tNéel!1FAF~0!G .

~51!
~iii ! The large-N case. To retain the structure of th

equation~40! at finiteN, it is convenient to expand
Eq. ~40! in 1/(N22) rather than in 1/N. To first
order we obtain

r2.
D~ f r ,a r !

2 F11
B222

N22
ln

t r

tr
G

.
D~ f r ,a r !

2 S t r

tr
D ~B222!/~N22!

. ~52!

Then we have

s r
1/b2512

t r

2F ~N22!ln
2

ur
2D~ f r ,a r !

1B2ln~1/s r
2!

12~12s r
2!1O~ t r / s̄ r

2,1/N!G ~53!

and
tNéel52YF ~N22!ln
2

ur
2D~ f r ,a r !

1B2ln~2/tNéel!1FAF~a r / f r !G . ~54!
The ferromagnetic case can be considered in a sim
way. In this case the quantum ground-state renormalizat
are absent and the ‘‘classical’’ regime~an analogue of the
‘‘renormalized classical’’ one in the antiferromagnetic cas!
is determined by

T@JSmax$ f ,a%. ~55!

To develop perturbation theory for the partition function~7!
we pass from the real fieldspx ,py to the cyclic components
ar
ns

p65px6 ipy ~56!

and expand again square roots inp1,p2. The bare Green’s
function of the fieldsp1,p2 takes the form

G~0!~p,ivn!5
1

g
@ ivn1pi

21a~12cospz!1 f 1h#21.

~57!
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Due to absence of quantum renormalizations we h
ZQi[1 and the indicesr may be dropped. The factorsZ̃i has
the same form~22! as in the antiferromagnetic case wi
N53 and the replacement ln(urm)→ln(um)/2.

The relative magnetizations[ S̄/S ( S̄5^Sz&) to the two-
loop approximation reads

s512
t

2
ln

2

uD~ f ,a!
2

t2

4
~B222!ln

2

uD~ f ,a!
~58!

(t5g/u). The scaling equation~37! is valid in the ferromag-
netic case too. The equation forr in this case takes the form

2r25uD~ f r ,ar!. ~59!

Thus we obtain the equation for the magnetization in
form

s512
t

2F ln
2

uD~ f t ,a t!
12ln~1/s!12~12s!1O~ t/s!G .

~60!

The results for the temperature renormalization of the ani
ropy and interlayer coupling parameters have the same f
~42!, ~43!. The Curie temperature is determined in the sa
way as the Ne´el temperature in the antiferromagnetic ca
The result reads

tCurie52YF ln
2

uD~ f c ,ac!
12ln~2/tCurie!1FF~a/ f !G .

~61!

The calculation of the magnetization and ordering te
perature of a classical magnet is performed in Appendix

Thus the RG approach is sufficient to calculate the m
netization in the spin-wave and the 2D-like regions and
calculate the Ne´el ~Curie! temperature up to some univers
constant. The crossover temperature region of the quan
antiferromagnet can be considered within the 1/N expansion.
Besides that, in the case of quantum quasi-2D antiferrom
net, this expansion enables one to describe the true cri
region and to evaluate the quantityFAF(0).

IV. COMPARISON WITH THE 1/ N EXPANSION
IN THE QUANTUM O„N… MODEL

AND THE CROSSOVER TO THE CRITICAL REGIME

The 1/N expansion gives a possibility to develop anoth
perturbation theory for the partition function~11!. Unlike the
renormalization group approach, this method works satis
torily at arbitrary temperatures. As well as in Sec. III, w
consider only the ordered phase.

Consider first the case of the antiferromagnet. We be
with the generalization of the results of Ref. 3 to the ca
where anisotropy is present. To develop perturbation the
in 1/N we integrate outs fields from Eq.~11!. Thus we have

ZAF5E Dlexp~NSeff@l,h# ! ~62!
e

e

t-
m
e
.

-
.
-

o

m

g-
al

r

c-

in
e
ry

Seff@l,h#5
1

2
ln detĜ01

1

2g
~12 s̄2!Sp~ il!

1
1

2g
Sp@~ ils2h/rs

0!Ĝ0~ ils2h/rs
0!#,

~63!

where

Ĝ0
mm5@]t

21¹21aDz1 f ~12dmN!#21,

Dzs i z
~r ,t…5s i z11~r ,t…2s i z

~r ,t… ~64!

ands5^sN(r ,t)& is the relative staggered magnetization
SinceN enters Eq.~62! only as a prefactor in the expo

nent, expanding near the saddle point generates a seri
1/N. To zeroth order in 1/N the excitation spectrum, which i
given by the poles of the unperturbed longitudinal and tra
verse Green’s functions, contains a gapf 1/2 for all the com-
ponentssm except form5N:

Gt
0~q,vn!5@vn

21qi
21a~12cosqz!1 f #21 ~65!

Gl
0~q,vn!5@vn

21qi
21a~12cosqz!#

21. ~66!

The absence of the gap for theNth ~longitudinal! mode in the
ordered phase is anexactproperty of the model under con
sideration in any order in 1/N.

The sublattice magnetization atT,TNéel is determined by
the constraint equation̂s2&51. To first order in 1/N the
constraint takes the form

12s25gT
N21

N (
vm

E d2ki

~2p!2E2p

p dkz

2p
Gt

0~k,vm!

1g@F~T,s!2R~T,s̄ !#, ~67!

where

R~T,s!5T(
vm

E d2ki

~2p!2E2p

p dkz

2p
@Gt

0~k,vm!#2@S t~k,vm!

2S l~0,0!#, ~68!

F~T,s!5
2T

N (
vm

E d2ki

~2p!2E2p

p dkz

2p
Gl

0~k,vm!
P~k,vm!

P̃~k,vm!
.

~69!

The longitudinal and transverse mode self-energies are g
by

S t,l~k,vm!5
2T

N (
vn

E d2qi

~2p!2E2p

p dqz

2p

Gt,l
0 ~k2q,vm2vn!

P̃~q,vn!
,

~70!

where

P̃~q,vn!5P~q,vn!1
2s2

g
Gl

0~q,vn!, ~71!
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P~q,vn!5T(
v l

E d2pi

~2p!2E2p

p dpz

2p FN21

N
Gt

0~p,v l !

3Gt
0~q1p,vn1v l !

1
1

N
Gl

0~p,v l !Gl
0~q1p,vn1v l !G . ~72!

Since the polarization operatorP(q,vn) enters only the
first-order corrections in Eq.~67!, the contribution from lon-
gitudinal Green’s functions toP influences thermodynami
quantities in order of 1/N2 and can be formally neglected
However, one should bear in mind that for finiteN this cor-
rections may be large. Physically, the neglection of the l
gitudinal part ofP corresponds to neglecting the contrib
tion of Ising-like ~spin-flip! excitations. However, thes
excitations are negligible only at wave vectorsq@ f 1/2 ~see,
e.g., Ref. 29!. As follows from Eq.~72!, such quasimomenta
yield a dominant contribution atT!2s2@(a1 f )/ f #1/2/g.
The opposite caseT@2s2@(a1 f )/ f #1/2/g corresponds to
the Ising critical region, which cannot be treated within t
1/N expansion.

As well as in the previous section, we consider only t
caseT@(max$f,a%)1/2c. The procedure of integration an
frequency summation in Eq.~67! is analogous to that o
Refs. 19 and 3. We obtain

12
T

4prs
F ~N22!ln

2T2

c2D
1B2ln

ln~T2/c2D!1xs

xs

22
ln~2T2/c2D!

ln~2T2/c2D!1xs

2I 1~xs!G
5s r

2F11
1

N
ln

ln~2T2/c2D!1xs

xs
2I 2~xs!G , ~73!

whereD[D( f r ,a r) @see Eq.~32!#; B2 is determined by Eq.
~33!,

xs5
4prs

~N22!T
s r

2 , ~74!

and we have introduced the quantum-renormalized par
eters

f r5 f ~122QL!, a r5a~12QL! ~75!

rs5~114QL!rs
N5` , s r

25grs~12QL!/N ~76!

with rs
N5`5Nc(1/g2L/2p2) the renormalized spin stiff-

ness in zeroth order in 1/N, QL5(8/3p2N)ln(NLc/16rs) ~in
this section we use the relativistic cutoffvn

21k2,L2 of fre-
quency summations and quasimomentum integrations;
this regularization scheme the bare spin wave velocityc0 is
replaced by the quantum-renormalized one,c). Since another
regularization scheme is used, the expressions~75!, ~76! are
different from the corresponding results of Sec. III. As w
as in Sec. III, the quantum-renormalized parameters are
universal and, therefore, should be determined from the s
wave theory~see Appendix A! rather than from the con
tinuum model. The functionsI 1,2(x) are some functions with
-

e

-

or

l
ot
n-

the asymptotics 1/x at largex, so that atxs@1 their contri-
butions are small. For the isotropic quasi-2D case these fu
tions were calculated in Ref. 3.

Consider first the case of not too high temperatures

T~N22!/4prs,s r
2 , ~77!

where I 1,2(xs) are small enough. Using the identit
ln(T2/c2D)1xs54prs/(N22)T, which holds to zeroth orde
in 1/N, we transform the logarithmic term in the right-han
side of Eq.~73! into a power to obtain

@12I 2~xs!#s r
1/b2512

T

4prs
F ~N22!ln

2T2

c2D
1B2ln~1/s r

2!

2212s r
22I 1~xs!G . ~78!

Note that in the quasi-2D case (f 50) the equation~78!
slightly differs from the equation~54! of Ref. 3 by the re-
placement

ln~2T2/a r !/@ ln~2T2/a r !1xs̄ #→12s r
2 ,

which leads to errors of order of 1/N2.
At temperaturesT(N22)/4prs!s r

2 the contribution of
I 1 ,I 2 can be neglected and the fluctuations in this tempe
ture region have a 2D-like Heisenberg nature. In particu
in the low-temperature regionT(N22)ln(2T2/D)/4prs! s̄ r

2

the result of SSWT~Refs. 9,11,12!,

s r512
T~N21!

8prs
ln

2T2

c2D
, ~79!

is reproduced. One can see also that atI 15I 250 the result
~78! coincides with the large-N limit of the RG result~41!
@see Eq.~53!#. However, at finiteN the renormalization
group provides a more correct description of the sublat
magnetization atT(N22)/4prs!s r

2 .
In the temperature regions r

2;T(N22)/4prs , which
corresponds to the crossover to the true critical behavior,
situation changes. In this case the large-N result demon-
strates a sharper decrease ofs than the RG approach. In th
quasi-2D case3 the result~78! is smoothly joined with the 3D
temperature dependence~see below!. Thus in the quasi-2D
case the result of the 1/N expansion should be considered
an interpolation between the low-temperature and critical
gions. One could expect that this holds also in the prese
of the anisotropy where critical behavior cannot be descri
within the 1/N expansion.

In the regionxs!1, i.e., s̄ r
2!T(N22)/4prs , the true

critical behavior takes place. In the isotropic quasi-2D ca
( f 50) the result for the staggered magnetization reads~see
Ref. 3!

s r
25F 4prs

~N22!TNéel
Gb3 /b221F 1

12A0
S 12

T

TNéel
D G2b3

,

~80!

whereb35(128/p2N)/2 is the true 3D critical exponent fo
the order parameter~for N53 we have b3.0.36),
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A052.8906/N. The result of the 1/N expansion forTNéel

~Ref. 3! satisfies the general formula~51! with

FAF~0!520.0660. ~81!

In the anisotropic 2D case (a50) the temperature depen
dence of magnetization in the critical region is determined
the Ising-like excitations~domain walls!, which cannot be
considered within the 1/N expansion. The universality hy
pothesis predicts the same temperature behavior ofs as in
Ising systems,

s r
85A~12T/TNéel!, ~82!

whereA is some constant. As numerical calculations de
onstrate~see the next section!, the temperature dependen
of s determined from Eq.~78! is smoothly joined with Eq.
~82!, A andTNéel being considered as fitting parameters.

In the presence of both anisotropy and interlayer c
pling, the situation in the critical regionxs,1 is more com-
plicated. Consider first the casef ,a. Then at
1.xs̄.@ f /(a1 f )#1/2 the ~sublattice! magnetization has the
3D Heisenberg behavior~80! with some coefficient
1/@12A0( f /a)#; at xs,@ f /(a1 f )#1/2 the behaviors(T)
changes to the 3D Ising one. Atf ;a the 3D Heisenberg
region disappears, and in the whole critical region the
Ising behavior takes place. With further increase off ~at
f .a), the 2D Ising critical region occurs fo
1.xs̄.x0( f /a), while atxs,x0( f /a) the 3D Ising behav-
ior still takes place. However, the dependencex0( f /a) can-
not be calculated within the approaches under considera

Now we turn to the case of a ferromagnet. As alrea
mentioned, in this case the dynamical part of the action c
not be generalized to arbitraryN. Thus the expressions~67!–
~72! of the first order in 1/N ~where we setN53) should be
considered as physically reasonable rather than strict res
The dynamical part of the action in Eq.~7! results in cutting
the quasimomentum integrals atq;(T/JS)1/2. The indicesr
can be dropped, since the quantum renormalizations are
sent. Thus we have, instead of Eq.~78!, for T@JSmax$f,a%

s512
T

4prs
0F ln

2T

JSD
1B2ln~1/s2!2212s2

1O~4prs
0/s2!G , ~83!

whereO(4prs
0/s2) terms cannot be calculated within such

consideration. For the Curie temperature we reproduce
RG result~61!.

V. DISCUSSION AND COMPARISON
WITH EXPERIMENTAL DATA

The above consideration provides a description of
long-range order of quantum and classical magnets in dif
ent temperature regions. Let us summarize the results
tained in the practically interesting caseN53. In the spin-
wave and 2D-like regions, i.e., at

s r@T/4prs , G@D, ~84!
y

-

-

n.
y
n-

lts.

b-

he

e
r-
b-

we have the RG result for the relative~sublattice! magneti-
zation,

s r512
T

4prs
F ln

2G~T!

D~ f t ,a t!
12ln~1/s̄ r !12~12s r !G ,

~85!

where the functionD( f ,a) is determined by Eq.~32!, the
temperature-renormalized values of interlayer coupling a
anisotropy parameters are

f t / f r5~a t /a r !
25s r

2 ~86!

and the quantitiesG(T),s r , f r ,a r ,rs are given in Table I
~see also Appendix A!.

The corresponding equation for the magnetic order
temperatureTM has the form

TM54prs Y F ln
2G~TM !

D~ f c ,ac!
12ln

4prs

TM
1F~ f /a!G ,

~87!

whereF(x) is some function of order of unity~in the quan-
tum case it is universal, i.e., does not depend on the up
cutoff parameter!, f c and ac are the temperature
renormalized interlayer coupling and anisotropy parame
at T5TM that are determined by

f c / f r5~ac /a r !
25~TM/4prs!

2. ~88!

SinceTM/4prs;1/ln(1/D)!1 the temperature renormaliza
tions are important when treating experimental data. In p
ticular, the parameters, which are measured at different t
peratures, may differ considerably.

In the casea50 we have

s r512
T

4prs
F ln

G~T!

f r
14ln~1/s r !12~12s r !G , ~89!

TM54prs Y F ln
G~TM !

f r
14ln

4prs

TM
1F~0!G . ~90!

In the casef 50 we obtain

s r512
T

4prs
F ln

2G~T!

a r
13ln~1/s r !12~12s r !G ,

~91!

TM54prs Y F ln
2G~TM !

a r
13ln

4prs

TM
1F~`!G . ~92!

The results of solving the SSWT equations11,12 differ from
Eqs. ~89!–~92! by the replacement4(3)→2(1) for the co-

TABLE I. Parameters of the equations for the~sublattice! mag-
netization @Eqs. ~85! and ~94!# for different cases,
ZL15ZL25ZL3512T/8prs

0 .

G(T) s̄ r
rs f r a r

Quantum AFM T2/c2
S̄/ S̄0 gS S̄0 f S̄0

2/S2 a S̄0 /S
Quantum FM T/JS S̄/S rs

0 f a

Classical FM, AFM 32 S̄/S rs
0ZL1 f ZL2

21 aZL3
21
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efficient at the second term in the square brackets~which
yields the double-logarithmic correction to the standa
SWT! in the anisotropic 2D~isotropic quasi-2D! case, re-
spectively. Thus the role of the corrections to SSWT is m
important in the isotropic quasi-2D case than in the 2D
isotropic one.

As discussed in the Introduction, the results~85! and~87!
are expected to hold in the first order of the 1/M expansion
in the CPM21 model ~at M52).

In the temperature interval outside the critical region

s r
2.T/4prs , G@D ~93!

the result of the 1/N expansion in theO(N) model to the first
order in 1/N reads

@12I 2~xs!#s r512
T

4prs
F ln

2G~T!

D~ f r ,a r !

12B2ln~1/s r !12~12 s̄ r
2!1I 1~xs!G ,

~94!

where xs54prss r
2/T, B2, and D are determined by Eqs

~33! and ~32!, and I 1,2(x) are some functions with the as
ymptotics 1/x at largex; other quantities are given in th
Table I. In particular casesa50 and f 50 the coefficient at
the second term in the square brackets in Eq.~94! is two
times larger than for the RG results~89! and ~91!. In the
spin-wave and 2D-like temperature regions this is an arti
of the first-order 1/N expansion. At the same time, the 1/N
expansion provides a more correct description of the cro
over temperature region. Due to the difference in the cro
over conditions~93! and~84!, the equations forTM have the
same form@Eqs.~90! and ~92!# in both approaches.

Now we discuss the experimental situation. First we c
sider the temperature dependence of the sublattice mag
zation in La2CuO4 ~Ref. 31!, which is shown in Fig. 1. This
figure presents also the results of spin-wave approximat
~SWT, SSWT, and the Tyablikov theory,30 see a more de
tailed discussion in Ref. 3!, the RG approach, and the resu
of 1/N expansion~94!. The valueg.1850 K was calculated
by using the experimental data32 while a r5131023 was
obtained from the best fit of experimental dependences r(T)
to the spin-wave theory at low temperatures. The resul
the 1/N expansion to first order in 1/N is TNéel5345 K,
which is considerably lower than for all the spin-wave a
proximations and is in a good agreement with the experim
tal value,TNéel

exp 5325 K. The RG approach describes correc
the dependences r(T) in the spin-wave region (T,300 K!
and 2D-like region~which is very narrow sincea is very
small! while at higher temperatures this approach overe
matess̄ . At the same time, the 1/N expansion curve is clos
est to the experimental data and demonstrates a correct
cal behavior. The results of the numerical solution of E
~94! in the temperature region~93! and the dependence~80!
in the critical region turn out to be smoothly joined at t
point T5330 K ~marked by a cross!.

In the crossover region (320,T,340 K! the theoretical
O(3) curve lies slightly higher than the experimental on
One may speculate that this is due to the influence of ani
d

e
-

ct

s-
s-

-
eti-

ns

f

-
n-

i-

iti-
.

.
t-

ropy. FixingD in Eq. ~94! and determiningB2 from the best
fit at intermediate temperatures~see Fig. 1! one finds the
valuesa r5131024, f r5531024. This value ofa is more
close to the experimental data of Ref. 33. Thus our appro
gives a possibilty to estimate the relative role of interlay
coupling and magnetic anisotropy in layered compounds

In the layered perovskites K2NiF 4 , Rb2NiF 4, and
K2MnF4 the magnetic anisotropy is known to be more im
portant than the interlayer coupling. K2NiF 4 has spinS51,
and neutron scattering data yielduJu5102 K andTNéel

exp 597.1
K ~see Ref. 1!. Figure 2 shows the experimental dependen
s(T) ~Ref. 27! and the results of the spin-wave approach
the RG approach and the numerical solution of Eq.~94!. The
value f r50.0088 was obtained from the best fit of the res
of SSWT to experimental data at low temperatures~this
value coincides well with the experimental onef r50.0084,
Ref. 1!. In the spin-wave and 2D-like temperature interva
~84! (T,80 K! the curves corresponding to the 1/N expan-
sion and RG approach lie somewhat higher than the exp
mental points sinceT2/ f rc

2 in this region is not large, and
the renormalized-classical description is not too good~a
more accurate calculation can be performed by carrying
exact summation over the Matsubara frequencies!. Bearing
in mind this correction, the RG approach gives a more c
rect qualitative tendency than the 1/N expansion in the 2D-
like region. At the same time, the 1/N expansion curve is in
a good numerical agreement with experimental data. T
joining procedure with the Ising critical behavior~82! may
be performed in a rather wide temperature reg
0.85TNéel,T,0.9TNéel and givesA50.01, TNéel591.4 K.
The width of the critical ‘‘Ising’’ region makes up about 1 K

FIG. 1. The theoretical temperature dependences of the rela

sublattice magnetizations̄ r from different spin-wave approxima
tions, RG approach@Eq. ~91!#, and 1/N expansion in theO(N)
model @Eqs. ~78! and ~80!#, and the experimental points fo
La2CuO4 ~Ref. 31!. The RG curve is shown up to the temperatu
where the derivative]s r /]T diverges. The curve denoted by 1/N8
is the best fit in the crossover temperature region to the experim
tal data with the anisotropy being the fitting parameter~see discus-
sion in the text!.
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Note that an account of the terms of order of 1/xs in Eq.
~78!, which can be performed by analogy with the calcu
tions of Ref. 3, givesTNéel592.7 K.

In the crossover region (80,T,90 K! the theoretical
O(3) curve for K2NiF 4 lies, in contrast with the case o
La2CuO4, slightly lower than the experimental one. Th
fact may be attributed to the influence of interlayer couplin
The fitting in the crossover region yields the valu
a r50.0017, f r50.0069, which correspond toTNéel597 K
and the bare parametersauJu50.1 K, zuJu50.76 K. Direct
experimental data fora are absent, but our estimation seem
to be reasonable.

Rb2NiF 4 has a larger magnetic anisotropy. According
Ref. 1, one hasuJu582 K, uJu f r53.45 K, TNéel

exp 594.5 K.
From the best fit of SSWT to the dependences r(T) at low
temperatures one obtainsf r50.046, which is also in good
agreement with the above experimental value. Then one
tains from~94! TNéel595.5 K.

K 2MnF4 has spinS55/2 and therefore represents a sit
ation that is intermediate between the quantum and clas
cases. Figure 3 shows a comparison of the results of diffe
approaches with experimental data for this compound.
parameters used areuJu58.4 K, uJu f r50.13 K ~see Ref. 1!.
One can see that the 1/N expansion yields good results, an
the experimental points lie between the quantum and cla
cal RG curves, the quantum approximation being consid
ably more satisfactory. This confirms once more that it
difficult to realize the classical limit~see Appendix B!. Note
that SSWT, which correctly takes into account lattice effec
provides in this case better results in comparison with
RG approach. Thus an accurate treatment of such situa

FIG. 2. The relative staggered magnetizations r(T) for K 2NiF4

~points! as compared to the standard spin-wave theory~long-dashed
line!, SSWT ~dot-dashed line!, RG approach, and result of the s
lution of Eq.~78! in the intermediate-temperature region~93! ~solid
line!. The short-dashed line shows the extrapolation of
1/N-expansion result to the Ising-like critical region according
Eq. ~82!. The boundary of the 2D-like and crossover regions
marked by an arrow.
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within continuum models requires numerical calculations
quasimomentum integrals and sums over Matsubara freq
cies in Eq.~67!.

Figure 4 shows a comparison of the results of SSWT a
the RG approach for the magnetization of a classical mag
with the Monte Carlo calculations.13 One can see that, excep
for a very narrow critical region, the RG curve is rath
accurate although topological excitations are neglected. N
that the region of applicability of the RG approach in t
classical case is more broad than in the quantum case, so
we need not use the large-N approach for describing the
crossover to the critical region.

e

FIG. 3. The dependences r(T) for K 2MnF4 ~points! as com-
pared to the results of SSWT~dashed line!, RG analysis in the
quantum~dot-dot-dashed line!, and classical~dot-dashed line! limits
and solution of Eq.~78! ~solid line!.

FIG. 4. The renormalization group~solid line! and SSWT
~dashed line! results for the relative magnetizations of a classical
anisotropic 2D magnet (z50, h50.001) as compared to the resu
of the Monte Carlo calculation.13 The RG and SSWT curves ar
shown up to the temperature where]s/]T5`.
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Thus the RG approach@or, equivalently, the 1/M expan-
sion in theSU(M ) model# and the 1/N expansion in the
O(N) model turn out to give good results in different tem
perature regions. Whereas the first method describes wel
2D-like regime, the 1/N expansion describes successfully t
crossover to the critical region and, in the absence of ani
ropy, the critical behavior. Both methods give the same
sults for the ordering point up to the terms of order
ln(1/D). Besides that, the 1/N expansion permits us to calcu
late nonsingular terms in the quasi-2D case.

To conclude, our results give a possibility to descri
magnetic properties of real layered magnets with a ra
high accuracy. The approaches applied may be useful
treating magnetic and structural phase transitions in syst
with more complicated order parameters.34

APPENDIX A: SPIN-WAVE RESULTS
FOR THE GROUND-STATE RENORMALIZATIONS

IN A QUANTUM ANTIFERROMAGNET

The ground-state thermodynamic quantities of the qu
tum antiferromagnet can be calculated within the spin-w
theory. The result for the ground-state staggered magne
tion reads35

S̄05S2
1

2(k
F 1

A12fk
2

21G.S20.1966, ~A1!

wherefk5 1
2 (coskx1cosky). The ground-state spin stiffnes

and spin-wave velocity to first order in 1/S are given by36,8

rs5gS S̄0 , c5A8gS ~A2!

with g being the quantum-renormalized intralayer exchan
parameter determined by

g/uJu511
1

2S(k
@12A12fk

2#'11
0.0790

S
. ~A3!

For the quantum-renormalized coupling constant we h
gr5c/rs . The quantum-renormalized interlayer couplin
and anisotropy parameters can be determined from the
order 1/S corrections to the excitation spectrum. We have
T50 and for small in-plane wave-vector components12

Ek
2.8~gS!2Fki

21
2g8

g
~12coskz!1

d

gSG , ~A4!

where

g85
a

2
~ S̄0 /S!uJu ~A5!

is the renormalized interlayer coupling and

d5~ S̄0 /S!2@~2S21!z14hSuJu/g#uJu ~A6!

is the renormalized anisotropy. Note that in the casez,h!1,
which is considered only, single- and two-site anisotrop
lead to the same effects. Comparing the spectrum~A4! with
the bare spin-wave spectrum determined from Eq.~15!,

Ek
25c2@ki

21a~12coskz!1 f #, ~A7!
he
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we obtain the relation between the bare and the quant
renormalized parameters:

f r5
d

gS
5~ S̄0 /S!2F ~2S21!zuJu

gS
1

4hJ2

g2 G , ~A8!

a r5
2g8

g
5a S̄0 /S. ~A9!

However, it should be noted that since the spectrum~A4!
contains solely renormalized parameters rather than the
ones, (a/2)uJu and @2z(121/2S)14h#uJu, only g8 and d
can be determined experimentally.

APPENDIX B: RENORMALIZATION-GROUP ANALYSIS
IN THE LATTICE O„N… MODEL AND THE LIMIT

OF CLASSICAL SPINS

The treatment of the partition function for the classic
anisotropic quasi-2D anisotropic magnets~5! is similar to the
isotropic 2D case.18 In this case the relative temperatu
t5T/(2prs

0) plays the role of a coupling constant, and w
have instead of the first line of Eq.~12! the scaling relation

t5Z1tR , ~B1!

wheretR is the renormalized temperature. The bare Gree
function of the fieldp5n2(nz)z has the form

G~0!~q!5
1

2pt
@2~22cosqxa2cosqya! ~B2!

1a~12cosqza!1 f 1h] 21, ~B3!

wherea is the lattice constant. The renormalization consta
can be calculated from the two-point vertex function. It
useful to represent these constants as

Zi~ t,a!5ZLi~ t ! Z̃i~ tL ,a!, ~B4!

where tL5tZL1
21, ZLi contain nonlogarithmic terms that ar

not changed under RG transformations, andZ̃i contain all
the other terms. We have

ZL15ZL25ZL3512pt/21O~ t2!,

ZL51. ~B5!

The results forZ̃i read

Z̃511tL~N21!ln~64am!1tL
2~N21!~N23/2!ln2~64am!

1O~ tL
3!, ~B6!

Z̃1511tL~N22!ln~64am!1tL
2~N22!ln2~64am!1O~ tL

3!,

Z̃25122tLln~64am!1O~ tL
2!,

Z̃3512tLln~64am!1O~ tL
2!. ~B7!

The expression for the magnetization to two-loop appro
mation is
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s512
tL~N21!

4
ln

64

D~ f L ,aL!

1
tL
2~32N!~N21!

32
ln2

64

D~ f L ,aL!

2
tL
2~N21!

8 F11
f L

Af L
212aL f L

G ln
64

D~ f L ,aL!
,

where we have defined the renormalized quantities in
lattice case,

f L5 f ZL2
21 , aL5aZL3

21 . ~B8!

The equation for the magnetization can be derived in t
same way as in Sec. II to obtain

s1/b2512
tL

2 F ~N22!ln
64

D~ f t ,a t!
1

2

b2
ln~1/s!

12~12s1/b2!1O~ tL /s1/b2!G . ~B9!

Then the ordering temperature satisfies the equation
he

he

tM52YF ~N22!ln
64

D~ f c ,ac!
12ln~1/tM !1Fcl~a/ f !G .

~B10!

Note that in the casea50 a similar expression was obtaine
in Ref. 23. However, the result of this work contains wron
coefficient at the second term in the square brackets of
~B10! since not all two-loop corrections were taken into a
count.

Comparing the result for the magnetization~B9! with
those of Sec. II, Eqs.~41! and ~60!, we can write down the
criteria of applicability of the classical limit~see Sec. II! with
the correct numerical factors,

T2@32c2 ~AFM!,

T@32JS ~FM!. ~B11!

It is difficult to satisfy these criteria in the ordered pha
T,TM;1/ln(1/D) at not too smallD and 1/S due to the
large value of the numerical factor in Eq.~B11!.
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