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Thermodynamics of isotropic and anisotropic layered magnets:
Renormalization-group approach and 1N expansion
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The O(N) model of layered antiferromagnets and ferromagnets with a weak interlayer coupling and/or
easy-axis anisotropy is considered. A renormalization-grd@) analysis in this model is performed, the
results forN=3 being expected to agree with those of thiel xpansion in th&€ PM "1 model atM =2. The
guantum and classical cases are considered. A crossover from an isotropic two-dime(+ike to a
three-dimensional Heisenbefor 2D Ising regime is investigated within theM/expansion. Analytical results
for the temperature dependence of {sablattice magnetization are obtained in different regimes. The RG
results for the ordering temperature are derived. In the quantum case they coincide with the corresponding
results of the M expansion. The numerical calculations, based on the equations obtained, yield a good
agreement with experimental data on the layered perovskitgSu@,, K,NiF,, and R3NiF ,, and the Monte
Carlo results for the anisotropic classical syste[5§163-18207)03946-3

[. INTRODUCTION the critical behavior is quite incorrect. Thus the summation
of leading contributions in all orders of perturbation theory
The problem of layered magnetic systems is of interesshould be performed. At the same time, to describe the be-
both from theoretical and practical point of view. Here be-havior of the order parameter in the critical region one has to
long, e.g., quasi-two-dimensionatjuasi-2D perovskites, take into consideration fluctuatignon-spin-wavecontribu-
ferromagnetic monolayers and ultrathin filfSuch systems tion to thermodynamic quantities. Ising-like excitations in a
possess magnetic transition temperatures that are low iclassical anisotropic model were considered in Ref. 13. At
comparison with the intralayer exchange paramétend are  the same time, in the quantum anisotropic case this treatment
determined by magnetic anisotropy and/or interlayer coumeets with difficulties;* and 3D fluctuations in the critical

pling. region of quasi-2D magnets cannot be considered in the
The crucial role in the thermodynamic behavior of sys-approach®*too.
tems with small interlayer couplingpr anisotropy belongs A possible way to sum up an infinite sequence of pertur-

to the temperature crossover from a “2D-likgfsotropig bation contributions is the renormalization groyRG)
regime to the critical 30(or 2D Ising regime, respectively analysis. The RG approach was successfully used to consider
(see, e.g., Refs. 1 and.3n the general case where both the classical isotropic magnets with the space dimensionality
interlayer coupling and anisotropy parameter are present, thé=2 (Ref. 15 andd=2+¢.1%In the latter case the renor-
situation is more complicated: with increasing temperaturenalized coupling constant at the fixed point is sniafl or-

the 2D-like Heisenberg behavior changes to the 2D-Ising oder of &), and the standard technique of thexpansion can
3D-Heisenberg one depending on that anisotropy or interbe applied. Physically, this means that the excitation-
layer coupling dominate, and finally the system passes to thgpectrum picture differs somewhat from the spin-wave one
3D lIsing behavior. (as discussed in Ref. 3, the fluctuation corrections to the

There exist a number of approximations that treat thermoexcitation spectrum readE,~¢Ing). The RG method was
dynamics of layered systems. The standard spin-wave theogpplied also to quantum 2D isotropic magnets in Ref. 18.
(SWT) describes satisfactorily the region of rather low tem- The scaling behavior in the quasi-2D or anisotropic 2D
peratures only. Somewhat better results can be obtained tsystems is expected to differ from the isotrogle=2+¢
taking into account the temperature renormalization of thenagnet. In these cases the renormalized value of the cou-
interlayer coupling parameter and the anisotropy parametepling constant at the stability point of the RG transformation
The temperature dependence of the anisotropy parametirnot small, which corresponds to above-discussed crossover
within the spin-wave theory was considered in Refs. 4—6. Afrom the 2D-like Heisenberg to 3D Heisenbény 2D Ising
more systematic way to consider such renormalizations is theritical regime. Thus the RG method does not work when
self-consistent spin-wave theofsSWT) (Refs. 7 and 8  passing to the true critical region. The latter region should be
which was applied to quasi-2D and anisotropic 2D magnetsonsidered with account of essentially non-spin-wéflgc-
in Refs. 9-12. tuation excitations.

SSWT takes into account the interaction between spin To take into account non-spin-wave effects it is conve-
waves in the lowest Born approximation. However, at notnient to use, instead of the original Heisenberg model, mod-
too low temperatures this approximation is insufficient. Inels with large degeneracy, which enables one to introduce a
particular, the values of the ordering temperature in SSWTormal small parameter in the theory. In Ref. 3 an isotropic
are still too high in comparison with experimental ones, andquantum quasi-2D antiferromagnet was investigated within
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the 1N expansion in the quantur®(N) model® (in the (the classical case is considered in Append)xIB Sec. IV
Heisenberg modeIN=3). It was demonstrated that the we investigate the same problem within th&l Hxpansion in
renormalizations of the interlayer coupling parameter inthe O(N) model up to the first order and treat the crossover
comparison with the usual spin-wave theofgnd also from the 2D-like to 3D Heisenber@r 2D Ising behavior. In
SSWT) determine considerable lowering of the transitionSec. V we summarize our results and compare them with
point. The same situation should be expected for 2D aniscexperimental data on layered antiferromagnets.
tropic magnets. At the same time, théNléxpansion meets
with some difficulties at the description of the 2D-like region
where the series expalrggion is performed in powers of Il. CONTINUUM AND LATTICE MODELS
1/(N—2) rather than ™.™ o FOR THE SPIN SYSTEM

Thus the RG approach andNLiexpansion in theD(N)
model are expected to have advantages in different tempera- We consider the Heisenberg model with small interlayer
ture regions. Whereas the first method describes well theoupling and easy-axis anisotropy,
2D-like regime, the M expansion treats satisfactorily the
critical region. An advantage of the RG approach in com-
parison with the technique of theNLiexpansion in th&©(N) J
model is that it enables one to consider the quantum ferro- H=- EZ SSi+ 6T Hapt Hanis, 1)
magnet case where the partition function cannot be general- 9
ized to arbitraryN. The RG analysis permits also to treat the
classical case, which is difficult within the Nl/expansion.
(In the classical case, there is no natural upper cutoff for H :_0‘_32 SS @)
guasimomenta, which is the temperature in the quantum 3D 4 13 +o
case, and the original lattice version of the partition function
should be considered.

The Heisenberg model can be also considered as a par- Iy
ticular case of the&SU(M) model (or of its continuum ana- Hanis= — 72 SIZSﬁZMH— 912> (S92, 3
log, CPM~ mode) with M =2 (see, e.g., Ref. 20Since the 19 [
M —co limit corresponds to SSWTsee, e.g., Ref.)8at finite
M thermodynamics is described in terms of spin-wave pic-

ture of the excitation spectrum. The CorrespondingwhereJ>0foraferromagnet.J<0foran antiferromagnet,

1/M-expansion contains in the 2D case infrared-divergen?l\ and 9, denote nearest neighbors within a layer and for
term&! and is rather inconvenient. Fdrnot close to 2, this different layers,>0 is the interlayer coupling parameter,

expansion does not enable one to obtain correct values of yfd 7,£>0 are the parameters of the exchange anisotropy
critical exponent& Thus, as well as in RG approach, only and single-site anisotropy, respectively. The partition func-

the 2D-like isotropic Heisenberg region can be considere&"?{n of Ithe mOdﬁI(l) c:mt bte represent;dfln ;%rms (?f8a path
within the 1M expansion. Furthermore, the results of INtegral over coneren statésee, €.g., Refs. and:

CPM~1 model tonth order in 1M are expected to coincide
at M=2 with the (h+1)-loop RG analysis foilO(3) or,

; 1 IS ram
equivalently,C P~ model(we do not know a general proof of sz DnD)\exp{—f er
this statement, but this is true in thé=2+¢ case for 2 Jo i
n=0,1; see Ref. 22 N

The simplest one-loop RG analysis was applied earlier to . = n. z 7 (22 z
calculation of the Curie temperature of anisotropic 2D M5 Mo, NG5S £ A
ferromagnet$® As we shall see below, the results of this
work become considerably modified by the two-loop correc- 4 j);(n?- 1)” (4)
tions, which were not taken into account in Ref. 23. The
momentum-shell version of the one-loop RG approach in the
classical quasi-2D magnets was considered in Ref. 24. How- ) )
ever, the authors of this paper passed to continuum limit ifVith ni(7) the three-component unit-length vector field,
the direction perpendicular to layers, so that results of RefA(n) the vector potential of the unit magnetic mono-
24 at small interlayer coupling have qualitative rather tharpole, which satisfies the equatioW XA(n)-n=1, ¢
guantitative character. =2{(1-1/29) and the summation ovef,s, in Eq. (4) is

In the present paper we consider thermodynamics of thassumed. We have also introduced in E4). the external
guantum and classical layered magnets with small interlayemagnetic fieldn to perform the calculation of spin correla-
coupling and anisotropy within the consistent two-loop RGtion functions. The term with the time derivative corresponds
approach and first-order N/expansion in th@©(N) model.  to the Berry-phase contributidfi.Depending on the value of

The plan of the paper is as follows. In Sec. Il we considerT/JS, two cases are possibléa) the classical cas&>JS
the continuum and lattice versions of tN) model for and(b) the quantum casé<JS.
anisotropic layered ferromagnets and antiferromagnets. In Consider first the classical case. The main contribution to
Sec. lll we apply the renormalization-group appro4cfito  Eq.(4) comes from time-independent paths, and the partition
the quantumO(N) model in the(isotropig 2D-like region  function reduces to

2iA an;
s (ni)E
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with p2=1J|S? the bare spin stiffness. To derive E§) in
the  antiferromagnetic case we have

Z.Z
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dynamics in a wide temperature interv@aot only in the

critical region, the continuum limit cannot be used since not
only long-wave excitations contribute thermodynamic prop-

erties.

381

where g, is the three-component unit-length field and

co=/8JS is the bare spin-wave velocity. Unlike the quan-
tum ferromagnet case, this model can be trivially extended to
the O(N) symmetry with arbitranyN, the N-component vec-

tor field oy={0 . . . oy} being introduced and* being re-
placed byoy. Writing down o={my ... m\y_1,0n} We
have

replaced
ni——n;,\j— —\; at one of two sublattices. Thus in the
classical case the results f8rare identical for a ferromagnet
and antiferromagnet. In the continuum limit the partition
function (5) coincides with that of the well-known classical
nonlineare- model® However, if one is interested in thermo-

D

O rur
Zpr= ﬁex%_%fo dTJ dzriE

(@[T )2t S (= m )2

(aﬂﬂ-iz)z

+ (== I-@2+h 1=

] , (11)

Now we treat the quantum case. Then the temperaturehered,=[d/d(cy7),V], and we have performed the shift
plays the role of a natural upper limit cutoff for frequenciesiA—iN+f.
of the fluctuations. Thus we may pass to the continuum limit

within each layer. For a ferromagnet we use the representa-

tion
_zXn
~ 1+(zn) ©

A(n)

(z is the unit vector along the axis). Then we obtain

D pg T ’
Zg= ﬁex - ?jo d’rf der
2i 1— 1—7Ti22( g, g ,
X — X — Y + .
~ | JS w2 \ ™27 'z o7 (Vi)

X(J1=m = l-m)?+fa +hl-a |+, (7)

wherei, is the number of a layerr=n—(nz)z is the two-
component vector field,

f=7+49=20(1-1/25)+47, (8)

and we have made the shifi —i\N+f before integrating
overA\.

Ill. RENORMALIZATION-GROUP ANALYSIS
IN THE 2D-LIKE REGIME FOR THE QUANTUM CASE

Using the above expressions for the partition function we
can develop a scaling approach. We use the field theory for-
mulation of RG transformatioff'® To develop this ap-
proach we pass to the renormalized theory with the use of the
relationg®

g=0grZ1, U=URZ,
m=mgZ, h=hgZ;/\Z (12)
f=fRZZ! a=aRZ3,

where the indexR corresponds to the renormalized gquanti-
ties, the bare coupling constagt and the dimensionless in-
verse temperature are determined by

g=1/S, u=J9T

(FM) (13

g=co/pl, u=cy/T (AFM). (14)

The renormalization constanfs are chosen from the condi-
tion that the thermodynamic quantities are independent of an
upper cutoff. Since the nonlinear-model is renormalizable
(see Ref. 28 five renormalization constants for five inde-
pendent parameters of the model are sufficient to this end. To
calculate renormalization constants it is sufficient to calcu-

In the antiferromagnetic quantum case we use theyte the renormalization of the one-particle Green’s function

Haldane mappin§ (see also Ref. 8to integrate over the
“fast” components ofn. Thus we pass to the partition func-

tion of the quantum nonlinear model

0

Ps 1T
ZAsz DoDAex zf de d?r
0

X2

1 2 2, @ 2
?(fﬁﬂiz) H(Vo )+ 5 (0141-0)° (9
0

— f(of)*+hot +iN(of — 1)} ] (10)

in an external magnetic fiefd:*®

Consider first the case of an antiferromagnet. The pertur-
bation theory in the coupling constant for the partition func-
tion (11) can be developed in a standard wiy'® After
expanding the square roots in a series in the fielthe bare
Green’s function of this field takes the form

1
GOp,iw,)= a[w§+ pf+a(1-cop,)+f+h] ™2,
(15

where pj=(p;+p2)*?, w,=2mn/u are the dimensionless
Matsubara frequencies. In each order of perturbation theory
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one has to take into account all the possible connected di@ompletely universal, i.e., thermodynamic properties do not

grams with the fixed number of loops. depend on the cutoff parametér.
We consider only the “renormalized classical” regime Now we pass to the consideration of the temperature
o renormalizations. The calculation of the renormalization con-
T>(maxf,a}) ', (16)

stantsZ; is performed in the same way as in Ref. 16 and
since in the interval <(maxf,a})"%c the staggered magne- |eads toZ =1,
tization is well described by SSWTisee a more detailed

discussion of different temperature regimes in Ref.S3nce Z=1+t,(N=1)In(u, ) +t3(N—1)(N—3/2)In%(u, x)
in this regime the quasimomentum cutoff parameter for '
guantum fluctuations is the boundary of the Brillouin zone +(’)(tf’),

A, while for thermal ones this i¥/c, effects of quantum and

thermal flgc_tuanons can be separatede, e.g., _Ref_s. 19 and Z,= 1+tr(N—2)In(ur,u)+t,2(N—2)In2(u,/L)+O(tf),
3). Thus it is useful to perform the renormalization in two
steps. At the first step the ground-state quantum renormaliza-
tions are performed, and the second step is the temperature
renormalization. To this end we represent the renormaliza- _
tion constants as Z3=1-t,In(u,pu)+O(t?), (22

Z,=1-2t,In(u,u)+ O(t?),

Zi(9,u,A)=Z0i(9,M)Zi(gr ,Up), (17)  Whereu is an infrared cutoff parameter with the dimension-
ality of the inverse length ang=g,/(27u,). The only dif-

where Zq;(g) contain ground-state quantum renormaliza-ference from the results of Ref. 16 is that the ultraviolet
tions, andz; all the others, and cutoff parameter in Eq.22) is u, (rather thamA in the clas-
sical casg and two new renormalization constan, and
Z,, for the anisotropy and interlayer coupling parameters
are the quantum-renormalized coupling constant and dimereccur.
sionless inverse temperature, respectively. Note that the lat- The infinitesimal change g generates the renormaliza-
ter is renormalized due to the renormalization of the spintion group transformation, and the derivativesdffactors
wave velocity,c=Zq,Co. For further convenience we also with respect tou determine the renormalized-parameters
introduce the quantum-renormalized anisotropy and interflow functions (see, e.g., Ref. 28 Since quantum-
layer coupling parameters, renormalization constant®0) are invariant under RG trans-

formation, it is sufficient to calculate the derivativeszfTo

0=Z0i9, U =Zguu (18)

—7-1 _>-1
fi=2q2f,  ar=Zg3a, (19 the two-loop order we havef. Refs. 16 and 28
which are just experimentally observed. Up to one-loop or- dt
der we have Blt)=pgr=-(N-2- (N-2)}+0(t), (29
z =1—(N—1)%+O( ?)
Q 47 9 dinz ,
g(tr)E/‘LW:(N_l)tr—'—o(tr) (24
gA 2 2
Zlel_(N_z)EJFO(g )i Zqu=1+0(g%) (20 (to one-loop order, these expressions were obtained earlier
by Polyakov®).
gA 3gA The flow functions for the interlayer coupling and anisot-
Zop=1+5—+ 0(9%), Zgz=1+ T O(g?). ropy parameters will be needed only to the one-loop approxi-

mation:
Since the renormalization constailg; are nonuniversal, the
continuum limit is insufficient to calculate them, and nZ, 5
quantum-renormalized parameters can be determined only %(tr)EMW=—2tr+O(tr), (25)
from the consideration of the original lattice partition func-
tion (4) in the ground state. For the square-lattice antiferro- InZs
magnet this can be performed within the spin-wave theory, Va(tr)E,U«d—I —t,+0O(td). (26)
which is in fact a series expansiongn(g~ 1/S). The results M

of the spin-wave theory are presented in Appendix A. Weygjng Egs(23)—(26) we find the scaling laws for the Hamil-
have to first order in B, tonian parameters under RG transformation. The equations
for the coupling constartt, and renormalization factdt,, at

_ > _l2_a_
2Q=12q1=2q2=203=1~0.1975, the scaleup are well known'®

Zqu=1+0.0796. (21)

t, dt ] [t,\ N2 1 (1 1
After performing the ground-state quantum renormalizations P~ &X ft B(1) :<E) ex N—2<t__ E)
(20) in the continuum moddlor, equivalently, renormaliza- ' g
tions (21) in the original lattice modelthe theory becomes X[1+0(t,)], (27
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. ﬂg(t)
Zp—exr{ . B ——dt

t (N=1)/(N—-2)

N—1

Bz=m (39)

N—-1 ’ is the sublattice-magnetization “critical exponent” in the
1+ ot +O(t) | (28 temperature interval under consideration. This coincides with
the e—0 limit of the critical exponentB,, . for d=2+¢
The expressions for the effective-anisotropy and interlaye(Ref. 16. The equation fot,/t, is given by Eq.(27), which

t,

coupling parameter§, ,«/, at the scalgup have the form can be rewritten as
tys(t) t,| N2 t t
f,="fexg — B dt|=f, [1+0(t,)], Z=1+tIn| ZpN 2| +t,0(t,). (39
' (29) tp p

N2 Finally, the scalep is fixed by the condition that the argu-
_ t_p ( [1+0(t)] ments of logarithms in Eq(31) on this scale are equal to
r t, pr unity, i.e., by o(t,,f,,a,,up)=1. Taking into account
(30)  thatu scales in a trivial wayy,=u,/p, we obtain the addi-
tional equation forp:
Now we are ready to calculate the relative sublattice mag-
netizationo, = o/ oy, Whereo= S/S (S= (Sp) is the stag- 2p%=U2A(f

gered magnetizationand oo—o(T 0). The perturbation
result in the zero magnetic field up to terms of the ordenzof

tﬂya(t)
t, B(1)

a,= a exg —

(40)

p1Qp)

We have from Eqs(37), (39), (29), (30), and(40) the equa-
tion for the relative sublattice magnetization in the two-loop

reads RG analysis,
— t,(N—-1) 2
=1- In — 2 2 _
' 4 ulA(f, ,a,) oPe=1 (N 2)In—————+ —In(Llo,)
U?A(fy, ) 2
+t?(s—N)(N—l) ) 2
n _
32 urA(f, ) +2(1-0, ")+ Ot /a2 |, (41)
t2A(N—1)(B,—2) 2 .
- s — (31 wheref, anda; are the temperature-renormalized parameters
urA(fr,ar) of the anisotropy and interlayer coupling. We derive for
where these quantities
A(f,@)=f+a+f2+2af, (32) fo/f,=o NV 1+ O(t, 102)], (42
82:3+ fl’/\/fr2+ 2arfr. (33) at/ar:;rﬂ(N*l)[l_}_O(tr /;:-/182)] (43)

Note that the last term in E¢31) corresponds to temperature

renormalizations of the interlayer coupling and anisotropy! e leading logarithmic term in the square brackets of Eq.
parameters: (41) corresponds to SSWT, while the other two terms de-

scribe corrections to this theory. As it should be expected, at

_ low temperatures the RG results E¢41), (42), and (43)
fr=f 1-tiIno0——|, (34  reduce to corresponding perturbation expressiGis (34)
urA(fr.ar) and(35). We have to bear in mind that the quanmtya
r is a formal rather than real estimate for neglected terms since
a1 t—rln _ (35) higher order terms also yield a contribution at not too low
ror 2 UEA(fr L) temperatures. Physically, neglecting such terms is equivalent

o _ to neglecting 3D(or Ising-like) fluctuations in the RG ap-
Within the RG approach we obtain from E@8) the follow-  proach.

ing scaling law for the sublattice magnetization: As already pointed out, the ¥etemperature cannot be
_ g calculated directly in the RG approach since essentially non-
oty froar,u) =2, o (t,.f,,a,,up),  (36)  spin-wave fluctuations contribute to it and a consideration of

diagrams with an arbitrary number of loops is required.
However, one can obtain a general expression for thel Ne
— 85 temperature in the following way. Consider first the tempera-
ot froa,u) t; 2 * o . ..
= =l =Bt =t) T O], ture tf of the crossover to the true critical region. This is
or(ty.fpap,mp) 3 determined by the conditior)~1, i.e.,tf ~ar1/'82 [the scale
(37 p is determined by Eq40)]. Substituting this into Eq41)

where one obtains

or, equivalently,

p
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t*:2/ (N=2)In 2 +2In(2t*)+C g (N—2)|ni+iln(1/3)
' U?A(f*,a*) ' ol ' 2 w>t, B2 '
(44)
where f* =f,(t¥)2MN-2) 4% = o (t*)Y(N-2) and Cue is +2(1-a"P)+ ot 10| (49
some constant of order of unity. With further flow of RG _
parameters, 3D Heisenbefay 2D Ising fluctuations change The equation for the Net temperaturé45) reads
only the constanC,r which is replaced by the universal 1
function ® se(a, /f,)~1. Thus for the Nel temperature we tnee= 2/ (N—2)Ian +AIN(2 ge) + P ar(©) |
have P Tr
(49
2 . . . ._ .
el = 2/ (N=2)In— 1 2I0(2hty ) (i)  The isotropic quasi-2D case=0. We obtain
Afeac) Guse_g T (N=2)In 2 . 3|n(1/_)+2(1
g =1— = - — - g
' 2 urzcvr B2 '
+ D (e, /) |, (45)
—a P10t 10772 |, (50)
where
2[(N—-2 1/(N—-2 = 2
fC: frtNéEI ) , aC: artNéel ) (46) tNéeI_ 2 (N_ 2)'”% +3|n(2/tNee|) +(DAF(O) .
[recall thatt="T/(2mps), u,=c/T]. The functiond is deter- _ (51)
mined by non-spin-wave fluctuations and cannot be calcu- (i) The largeN case. To retain the structure of the
lated within the RG approach. Note that the equati¢h) is equation(40) at finite N, it is convenient to expand
analogous to the result for the correlation length in the renor- Eq. (40) in 1/(N—2) rather than in M. To first
malized classical regime in the 2D cd&e® which may be order we obtain

rewritten in the same manner:

- A(f, ,a,)[l B,—2 nt_r
t,=2[(N—2)In(¢2/u?)+2In(2Kt,) +InC,],  (47) P 2 |77 N-2%,
where C; is an universal numerical preexponential factor. A(f, ) [ t, | (B272/(N=2)
Comparing Eqgs(45) and(47) we see that the only difference = 2 E (52
is that in the quasi-2D anisotropic case the logarithms are cut
at AY2 (rather than at ¥ in the isotropic 2D cageln the  |hen we have
quasi-2D isotropic case the quantify can be calculated _ ¢ _
within the 1N expansion(see the next sectighand a more oP2=1- _1 (N=2)In 5 +B,In(1/0?)
general case requires numerical analygig., the quantum 2 UrA(Ty, o
Monte Carlo methoqd
Three limiting cases may be considered. +2(1_;r2)+0(tr/;r211/'\|) (53
(i)  The anisotropic 2D case=0. The equation for
magnetization(41) takes the form and
|
2
tN'ee|:2 (N_2)|n2—+len(ZItN'ee|)+(I)A|:(ar/fr) . (54)
urA(f, o,
|
The ferromagnetic case can be considered in a similar Tri:wxiiﬂy (56)

way. In this case the quantum ground-state renormalizations

are absent and the “classical” regiman analogue of the

“renormalized classical” one in the antiferromagnetic dase and expand again square rootssifi, 7. The bare Green’s
is determined by function of the fieldsr™, 7~ takes the form

T>JSmaxf,a}. (55) .

0)(n i — i 2 _ -1

To develop perturbation theory for the partition functia G (p.iwn) g[I @nt Pt a(l=cop,)+f+h]
we pass from the real fields, ,, to the cyclic components (57
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Due to absence of quantum renormalizations we have 1 . 1 — .

Zqi=1 and the indices may be dropped. The factoZs has Ser A,h]=3In deGﬁE(l— o)Sp(iN)

the same form(22) as in the antiferromagnetic case with
N=3 and the replacement p)—In(uw)/2.

1 _ L
e + =S (ixa—h/pd)Go(ino—hi/p?)],
The relative magnetizatiom= S/S (S=(S?)) to the two- 29 H(iro=hlpg)Goliho—hips)]

loop approximation reads (63)
_ t 2 t2 2 where
o=l A 2By 9

GM=[02+V2+ aA,+f(1— 6mn] %,

(t=g/u). The scaling equatio(87) is valid in the ferromag-
netic case too. The equation fprin this case takes the form Ayoi (r,1)=0i 44(r,7) =0 (1,7) (64)

2p2=uA(f ) (59 ando={oy(r,7)) is the relative staggered magnetization.
SinceN enters Eq(62) only as a prefactor in the expo-
Thus we obtain the equation for the magnetization in the’ent, expanding near the saddle point generates a series in
form 1/N. To zeroth order in M the excitation spectrum, which is
given by the poles of the unperturbed longitudinal and trans-
t 2 _ _ _ verse Green'’s functions, contains a gaff for all the com-
0=1- 5| IN———+2In(llo)+2(1— o)+ O(tlo)|. ponentso, except form=N:
2| UuA(fi, )
(50 GY(q,wp) =[wi+ P+ a(1-cox,) +1] 71 (65

The results for the temperature renormalization of the anisot- G0 s .

ropy and interlayer coupling parameters have the same form Gi(g,05)=[wy+ g+ a(l—cox,)] . (66)
(42), (43). The Curie temperature is determined in the sam
way as the Nel temperature in the antiferromagnetic case.
The result reads

teurie= 2/

eI'he absence of the gap for thigh (longitudina) mode in the
‘ordered phase is aexactproperty of the model under con-
sideration in any order in .
2 The sublattice magnetization & Ty iS determined by
the constraint equatiofo?)=1. To first order in IN the
IN———— +2In(2/cyie) + P(alf)|.
UA(fg,ac) (2htcue) + Pr(all) constraint takes the form

(61)
d? kH = dk,
The calculation of the magnetization and ordering tem- 1-0? —E > o GP(K, )
perature of a classical magnet is performed in Appendix B. (2m)
Thus the RG approach is sufficient to calculate the mag- +g[F(T,0)— R(T,O'_)], 67)

netization in the spin-wave and the 2D-like regions and to
calculate the Nel (Curie) temperature up to some universal where
constant. The crossover temperature region of the quantum

antiferromagnet can be considered within thid &kpansion. d2k; [
Besides that, in the case of quantum quasi-2D antiferromag-R(T 2 HZ —Z[G?(k,wm)]Z[Et(k,wm)
net, this expansion enables one to describe the true critical (2m)
region and to evaluate the quantiby,-(0). ~3,(00] (69)
IV. COMPARISON WITH THE 1/ N EXPANSION d2 K dk, : (K, o)
IN THE QUANTUM O(N) MODEL = E J 5 O =,
AND THE CROSSOVER TO THE CRITICAL REGIME (2m)* ) —mem H(k,wm)(sg)

The 1N expansion gives a possibility to develop another o ) ]
perturbation theory for the partition functigtl). Unlike the The longitudinal and transverse mode self-energies are given
renormalization group approach, this method works satisfac?y
torily at arbitrary temperatures. As well as in Sec. lll, we

consider only the ordered phase. K 2 d? dqy (7 dqg, GS,(k—q,wm—wn)
Consider first the case of the antiferromagnet. We beg|r§t (K, om) = (2m)2 _.2m ﬁ(q o)
with the generalization of the results of Ref. 3 to the case rn (70)

where anisotropy is present. To develop perturbation theory
in 1/N we integrate outr fields from Eq.(11). Thus we have where

- 202
Zpr= f DAexp(NS\,h]) (62 (g, wp) =H(q,wn)+%GP(q,wn), (71)
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d2p dp,/N—1 the asymptotics ¥/at largex, so that ax;>1 their contri-
11(q, wn) TE H2 2—Z[TG (p,w)) butions are small. For the isotropic quasi-2D case these func-
(2m)° ) —mem™ tions were calculated in Ref. 3.

Consider first the case of not too high temperatures
XG?(q+p,wn+w|) 9 P

T(N-2)/4mps<o?, (77)

—GX(p,w)G(q+p,wp+tw)|. (72

where |, o(x3) are small enough. Using the identity
In(T2/C2A) +x5=4mps/(N—2)T, which holds to zeroth order

in 1/N, we transform the logarithmic term in the right-hand
side of Eq.(73) into a power to obtain

Since the polarization operatdi(qg,w,) enters only the
first-order corrections in Eq67), the contribution from lon-
gitudinal Green'’s functions tél influences thermodynamic

quantities in order of N? and can be formally neglected. T2
However, one should bear in mind that for finlethis cor-  [1—1,(x;)Jo2=1— —— (N=2)In——+ B,In(1/0?)
rections may be large. Physically, the neglection of the lon- Amps c°A

gitudinal part ofIl corresponds to neglecting the contribu-
tion of Ising-like (spin-flip) excitations. However, these
excitations are negligible only at wave vectas f12 (see,
e.g., Ref. 29 As follows from Eq.(72), such quasimomenta ) ) )
yield a dominant contribution aT<2c?[(a+f)/f]¥%g. ~ Note that in the quasi-2D casd +£0) the equation(78)
The opposite casé’>2;2[(a+f)/f]1’2/g corresponds to slightly differs from the equatiort54) of Ref. 3 by the re-

the Ising critical region, which cannot be treated within theplacement

1/N expansion. —
As vr\J/eII as in the previous section, we consider only the IN(2T2 )/ [IN(2T? @) + X1 1= 07,

case T>(maxf,a})¥%. The procedure of integration and which leads to errors of order of NE.

frequency summation in Eq67) is analogous to that of At temperaturesT(N—2)/4mp <o? the contribution of

Refs. 19 and 3. We obtain I,,l, can be neglected and the fluctuations in this tempera-

ture region have a 2D-like Heisenberg nature. In particular,

—2420%—1,(x> (78)

2 22 —
(N_2)|n2T +Bz|n|n(T [eA) x5 in the low-temperature regioi“i(N—2)In(2T2/A)/47-rps<;,2
4m c’A Xy the result of SSWTRefs. 9,11,12
In(2T?/c?A) T(N-1) 2T?
-2 —11(x5 [P N Sl M
IN(2T2/c?A) + x5 1(%3) or=1 87pe |nC2 N (79
e PN £|P|n(2T2/02A)+X;_I o)l @3 is reproduced. One can see also thakatl,=0 the result
r N X5 20 (78) coincides with the largéd limit of the RG result(41)

[see Eq.(53)]. However, at finiteN the renormalization

whereA=A(f,,«) [see Eq(32)]; B is determined by EQ.  41oun provides a more correct descr|pt|on of the sublattice

(33), magnetization aT (N— 2)/47Tps<cr
4mps —, In the temperature reglomr ~T(N—2)/4mpg, which
X5= N=2)T%" (74)  corresponds to the crossover to the true critical behavior, the

situation changes. In this case the laieresult demon-

and we have introduced the quantum-renormalized paranmstrates a sharper decreasesothan the RG approach. In the

eters quasi-2D castthe result(78) is smoothly joined with the 3D
temperature dependen¢see below. Thus in the quasi-2D

fi=f(1-2Q4), a=a(1-Q,) (79 case the result of the l/expansion should be considered as

_ an interpolation between the low-temperature and critical re-
ps=(1+4Q)ps af:gps(l—QA)/N (76) gions. One could expect that this holds also in the presence
] _ ] ) ) of the anisotropy where critical behavior cannot be described
with pl~"=Nc(1/g—A/27?) the renormalized spin stift- \yithin the 1N expansion.
NEess in z_eroth order in Q’}:_(S/%ZN)In('\IZAC/l?pS) (in In the regionx;<1, i.e., o <T(N 2)/4mpg, the true
this section we use the relativistic cut@fﬁ+k <A* of fre- critical behavior takes place. In the isotropic quasi-2D case

quency sur_nmgtions and quasimomer_ltum integratipns; fo(rf 0) the result for the staggered magnetization rgads
this regularization scheme the bare spin wave velazjtys Ref. 3

replaced by the quantum-renormalized orle,Since another

regularization scheme is used, the expressi{@bs (76) are _ Amps [Pl 1 T \1283
different from the corresponding results of Sec. lll. As well ol= N=2)Tum: 1A (1— T—) ,
as in Sec. lll, the quantum-renormalized parameters are not Neel 0 ACs (80)

universal and, therefore, should be determined from the spin-
wave theory(see Appendix A rather than from the con- whereB;=(1—8/7?N)/2 is the true 3D critical exponent for
tinuum model. The functionk, 5(x) are some functions with the order parameter(for N=3 we have B3=0.36),
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A,=2.8906N. The result of the N expansion forT g TABLE |. Parameters of the equations for tfseblattice mag-

(Ref. 3 satisfies the general formu(&1) with ;etiiaztion_ Z[E(isi—g?/g) Oand (94] for different cases,
L1= 42T 413™ TPs -

® pr(0) = —0.0660. 81 —
(T g, Ps f; ar
In the anisotropic 2D casexE=0) the temperature depen- > 2 — —
dence of magnetization in the critical region is determined by2Ua"tuM AFM Tle” SIS, 8§ 1SS’ aSe/s

the Ising-like excitationgdomain wall3, which cannot be Quantum FM TS Sis pe f @
considered within the N expansion. The universality hy- Classical FM, AFM 32 /s p3Zi;  fZ;  aZg3
pothesis predicts the same temperature behavier a in
Ising systems,

we have the RG result for the relatiysublattice magneti-

o =AL=T/Tyee), (82  zation,
whereA is some constant. As numerical calculations dem- — T N 2I°(T) +2In(1/_)+2(1__)
onstrate(see the next sectignthe temperature dependence o= drpg "A(Fr @) o, o)l
of o determined from Eq(78) is smoothly joined with Eq. (85

(82), A and Ty being considered as fitting parameters. |\ hare the functiom (f,«) is determined by Eq(32), the

_In the presence of both anisotropy and interlayer couyemperature-renormalized values of interlayer coupling and
pling, the situation in the critical regiox;<<1 is more com- anisotropy parameters are

plicated. Consider first the casef<a. Then at

1>x,>[f/(a+f)]"? the (sublattice magnetization has the fo/f,= (o) )= 02 (86)

3D Heisenberg behavior(80) with some coefficient _

1[1-Ay(fla)]; at x<[f/(a+f)]¥2 the behaviora(T) and the quantitied’(T),o.f,,a;,ps are given in Table |
changes to the 3D Ising one. At-a the 3D Heisenberg (Se€ also Appendix A _ _ _
region disappears, and in the whole critical region the 3D The corresponding equation for the magnetic ordering
Ising behavior takes place. With further increasefofat ~ temperaturely has the form

f>a), the 2D Ising critical region occurs for 2T(Ty) 4
1>%,>Xo(f/a), while atx;<x,(f/a) the 3D Ising behav- TM=47rps/ In M oI PS o (fla) |,
ior still takes place. However, the dependemgéf/a) can- Afe,ac) Tm

not be calculated within the approaches under consideration. (87)

Now we turn to the case of a ferromagnet. As alreadyyhered(x) is some function of order of unitgin the quan-
mentioned, in this case the dynamical part of the action canum case it is universal, i.e., does not depend on the upper
not be generalized to arbitral. Thus the expressio87)—  cutoff parameter f. and a. are the temperature-

(72) of the first order in I (where we seN=23) should be  renormalized interlayer coupling and anisotropy parameters
considered as physically reasonable rather than strict result§tT:TM that are determined by

The dynamical part of the action in E€f) results in cutting
the quasimomentum integrals @t- (T/JS)Y2 The indicesr folf =(acla,)?=(Tyldmps)>. (88)
can be dropped, since the quantum renormalizations are a

sent. Thus we have, instead of Eg@8), for T>JSmax(f,a} glnCeTM/47TpS~ 1/In(1/A) <1 the temperature renormaliza-

tions are important when treating experimental data. In par-
ticular, the parameters, which are measured at different tem-

o=1— —— In—= + B,In(1/0?) — 2+ 202 peratures, may differ considerably.
4mpdl JSA In the casen=0 we have
—_ _ (T _ _
+0(4mpdl a?) |, (83 o =1- In ( )+4|n(l/0'r)+2(l—a'r) , (89
Amps f;

Where(’)(47-rp2/32) terms cannot be calculated within such a T(Ty) 4mp
consideration. For the Curie temperature we reproduce the TM=47TpS/ In - +4In T SﬂLCID(O)}. (90)

r M

RG result(61).
In the casef =0 we obtain

— T 2I'(T) _ _
o,=1- In +3In(Yo,)+2(1—0ay) |,
. . . . 47pg ay
The above consideration provides a description of the (91)
long-range order of quantum and classical magnets in differ-
ent temperature regions. Let us summarize the results ob-

TM=4TrpS/

V. DISCUSSION AND COMPARISON
WITH EXPERIMENTAL DATA

oT(T 4
2 gy ATPs L g
Tm

ay

tained in the practically interesting cabe=3. In the spin- . (92

wave and 2D-like regions, i.e., at

B The results of solving the SSWT equatioh¥ differ from
o >TlAmps, T'>A, (84) Egs. (89—(92) by the replacememt(3)—2(1) for the co-
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efficient at the second term in the square bracketsich 1.20 T
yields the double-logarithmic correction to the standard
SWT) in the anisotropic 2D(isotropic quasi-2D case, re-
spectively. Thus the role of the corrections to SSWT is more
important in the isotropic quasi-2D case than in the 2D an-
isotropic one.
As discussed in the Introduction, the resyR8) and(87)
are expected to hold in the first order of théMléxpansion
in the CPM~! model(at M =2). e
In the temperature interval outside the critical region

0.80

||||\||||||||||\|||||||I
/,
‘,/

_ N . N
o2>Tlamps, T>A (93) 0.40 o N
_ N
the result of the M expansion in th©(N) model to the first T TN
order in 1N reads RG analysis \\
[ ( )]_ T [I 2I'(T) ——— 1/N expansion 1/N .
1_|2 X; (Trzl_ n 0.00 | | 1 11 | [ 11| | Il ) | | | | 1 11
Amps At ar) 0 100 200 300 400 500 600
+2ByIn(Lo,) +2(1— a?) +14(x3) |, T(K)

FIG. 1. The theoretical temperature dependences of the relative
(94) sublattice magnetiza’[iom—ir from different spin-wave approxima-
where x;=4mpo?/T, B,, and A are determined by Egs. tions, RG approachiEq. (91)], and 1N expansion in theO(N)
(33) and (32), and |, (x) are some functions with the as- model [Egs. (78 and (80)], and _the experimental points for
ymptotics 1% at largex: other quantities are given in the -22CuCas (Ref. 3D. The RG curve is shown up to the temperature
Table 1. In particular cases=0 andf=0 the coefficient at Where the derivativéo, /JT diverges. The curve denoted byNI/
the second term in the square brackets in &) is two is the best fit in the crossover temperature region to the experimen-

times larger than for the RG resul(89) and (91). In the t?(')g?:]aﬂ‘?’e'trt‘ege anisotropy being the fitting paramétme discus-
spin-wave and 2D-like temperature regions this is an artifact

of the first-order IN expansion. At the same time, theNl/ o5y FixingA in Eq. (94) and determiningg,, from the best
expansion provides a more correct description of the cross;i at intermediate temperaturdsee Fig. 1 one finds the
over temperature region. Due to the difference in the Croszaluesa, =1X 104, f,=5x 10 4. This value ofa is more
over condition493) and(84), the equations fol'y have the  ¢jose to the experimental data of Ref. 33. Thus our approach
same form{Egs. (90) and (92)] in both approaches. gives a possibilty to estimate the relative role of interlayer
~ Now we discuss the experimental situation. First we CONtoupling and magnetic anisotropy in layered compounds.
sider the temperature dependence of the sublattice magneti- |, ihe layered perovskites #iF,, Rb,NiF,, and
zation in La,CuO, (Ref. 3, which is shown in Fig. 1. This  k_mnF, the magnetic anisotropy is known to be more im-
figure presents also the results of splnéwave approximationsotant than the interlayer coupling.,KiF , has spinS=1,
(SWT, SSWT, and the Tyablikov theo?{.see a more de- and neutron scattering data yiéllj =102 K andTy%,=97.1

tailed discussion in Ref.)3the RG approach, and the result . :
: K (see Ref. L Figure 2 shows the experimental dependence
f 1/N 4). Th luey=1 K Iculat —
of /N expansior(94). The valuey=1850 K was calculated o(T) (Ref. 27 and the results of the spin-wave approaches,

- . . — >< 73
?k;t:iilgg figtran fﬁgirgtefri]ttilf gffzvzml:ngl di e?w?jeﬁ,c\ga)s the RG approach and the numerical solution of ©d). The
b P Yaluefr=0.0088 was obtained from the best fit of the result

to the spin-wave theory at low temperatures. The result oLt SSWT to experimental data at low temperatutdsis

the_ 1N expansion to first order in W is TNée':. 345 K, value coincides well with the experimental ofie=0.0084,
which is considerably lower than for all the spin-wave ap- : . X
Ref. 1). In the spin-wave and 2D-like temperature intervals

prOX|mat|0|e:1X.?J ind is in a good agreement with the exper|men(—84) (T<80 K) the curves corresponding to theNléxpan-
tal value, Tyee = 325 K. The RG approach describes correctly i, 504 RG approach lie somewhat higher than the experi-
the dependence(T) in the spin-wave regionT<300 K} mental points sincd?/f,c? in this region is not large, and
and 2D-like region(which is very narrow sincer is very  the renormalized-classical description is not too gdad
smal) while at higher temperatures this approach overestimgre accurate calculation can be performed by carrying out
mateso. At the same time, the il expansion curve is clos- exact summation over the Matsubara frequenciBsaring

est to the experimental data and demonstrates a correct criih mind this correction, the RG approach gives a more cor-
cal behavior. The results of the numerical solution of Eq.rect qualitative tendency than theNLExpansion in the 2D-

(94) in the temperature regiof®3) and the dependend80)  like region. At the same time, theN/expansion curve is in
in the critical region turn out to be smoothly joined at thea good numerical agreement with experimental data. The
point T=330 K (marked by a crogs joining procedure with the Ising critical behavi(82) may

In the crossover region (320T <340 K) the theoretical be performed in a rather wide temperature region
O(3) curve lies slightly higher than the experimental one.0.85T y<T<<0.9T\z and givesA=0.01, Tyx=91.4 K.
One may speculate that this is due to the influence of anisotFhe width of the critical “Ising” region makes up about 1 K.
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' | ' I ' | 1.00
1.00 _| i |
i 0.80 _
0.80 | i |
) 0.60 |— S
0.60 _| _ .
e lo - \‘ i
0.40 — I
4 |
T | — — - SSWT ' ° \ |
i : i — - - - quantum RG o '
- . ' 0.20 | d |
020 = T sswr ; ] — - — classical RG o
B o . T ———— 1/N expansion .
0.00 | L [ | 0.00 . L 2|0 ! 4\0 . "
0 40 80 120 O

T(K)

FIG. 3. The dependence,(T) for K,MnF, (points as com-
pared to the results of SSWildashed ling RG analysis in the
guantum(dot-dot-dashed lineand classicaldot-dashed linglimits
and solution of Eq(78) (solid line).

FIG. 2. The relative staggered magnetizatigdT) for K,NiF ,
(points as compared to the standard spin-wave thélonyg-dashed
line), SSWT (dot-dashed ling RG approach, and result of the so-
lution of Eq.(78) in the intermediate-temperature regi@3) (solid

line). The short-dashed line shows the extrapolation of theyithin continuum models requires numerical calculations of

1/N-expansion result to the Ising-likg critical region accorc!ing tp quasimomentum integrals and sums over Matsubara frequen-
Eqg. (82). The boundary of the 2D-like and crossover regions iScies in Eq.(67)

marked by an arrow. Figure 4 shows a comparison of the results of SSWT and

the RG approach for the magnetization of a classical magnet
Note that an account of the terms of order o%zlin Eq.  with the Monte Carlo calculation's.One can see that, except
(78), which can be performed by analogy with the calcula-for a very narrow critical region, the RG curve is rather
tions of Ref. 3, gives ye=92.7 K. accurate although topological excitations are neglected. Note

In the crossover region (80T<90 K) the theoretical that the region of applicability of the RG approach in the
O(3) curve for K,NiF, lies, in contrast with the case of classical case is more broad than in the quantum case, so that
La,CuO,, slightly lower than the experimental one. This We need not use the lardé-approach for describing the
fact may be attributed to the influence of interlayer coupling Cr0SSoVer to the critical region.

The fitting in the crossover region vyields the values 1.00
a,=0.0017,f,=0.0069, which correspond tdye=97 K .

and the bare parameterdJ|=0.1 K, ¢|J|=0.76 K. Direct B -\.\ 7
experimental data fos are absent, but our estimation seems 0.80
to be reasonable. \

Rb,NiF, has a larger magnetic anisotropy. According to B .
Ref. 1, one hadJ|=82 K, |J|f,=3.45 K, Ty2,=94.5 K. 0.60 — _
From the best fit of SSWT to the dependengéT) at low
temperatures one obtairis=0.046, which is also in good lo B "
agreement with the above experimental value. Then one ob 0.40 .
tains from(94) Tye=95.5 K. .

K ,>MnF, has spinS=5/2 and therefore represents a situ- B _ \ .
ation that is intermediate between the quantum and classice — RGanalysis \
cases. Figure 3 shows a comparison of the results of differen — — - 8SWT '
approaches with experimental data for this compound. The = " -
parameters used af@|=8.4 K, |J|f,=0.13 K (see Ref. 1 | | |
One can see that theNl/expansion yields good results, and 0.00 ' ' ' '
the experimental points lie between the quantum and classi 0.00 0.20 OT';"JO 0.60 0.80
cal RG curves, the quantum approximation being consider-
ably more satisfactory. This confirms once more that it is FIG. 4. The renormalization grougsolid line) and SSWT
difficult to realize the classical limitsee Appendix B Note  (dashed lingresults for the relative magnetizatienof a classical
that SSWT, which correctly takes into account lattice effectsanisotropic 2D magnet/= 0, »=0.001) as compared to the result
provides in this case better results in comparison with thef the Monte Carlo calculatiof® The RG and SSWT curves are
RG approach. Thus an accurate treatment of such situatiossown up to the temperature whete/dT=co.
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Thus the RG approadfor, equivalently, the M expan- we obtain the relation between the bare and the quantum-

sion in the SU(M) model and the 1IN expansion in the renormalized parameters:

O(N) model turn out to give good results in different tem-

perature regions. Whereas the first method describes well the — o (25— 1) 47J?

2D-like regime, the M expansion describes successfully the fr:y_sz (So/9) ¥S | (A8)
crossover to the critical region and, in the absence of anisot- L4

ropy, the critical behavior. Both methods give the same re- 2

sults for the ordering point up to the terms of order of ar=l=a§0/S. (A9)
In(1/A). Besides that, the I/ expansion permits us to calcu-

late nonsingular terms in the quasi-2D case. However, it should be noted that since the spectiidw)

To conclude, our results give a possibility to describecontaing solely renormalized parameters rather than the bare
magnetic properties of real layered magnets with a rathe()nes’ @/2)|3] ‘and[2£(1—1/29)+47]|3], only ¥' and 6

high accuracy. The approaches applied may be useful f{qf5 pe determined experimentally.
treating magnetic and structural phase transitions in systems

with more complicated order parametéfs. APPENDIX B: RENORMALIZATION-GROUP ANALYSIS

IN THE LATTICE O(N) MODEL AND THE LIMIT

APPENDIX A: SPIN-WAVE RESULTS OF CLASSICAL SPINS
FOR THE GROUND-STATE RENORMALIZATIONS
IN A QUANTUM ANTIFERROMAGNET The treatment of the partition function for the classical

) . anisotropic quasi-2D anisotropic magné&isis similar to the
The ground-state thermodynamic quantities of the quanigionic 2D casé® In this case the relative temperature
tum antiferromagnet can be calculated within the spln-wave[:-r/(zwpg) plays the role of a coupling constant, and we

theory. The result for the ground-state staggered magnetizzﬁ—ave instead of the first line of E¢L2) the scaling relation
tion reads®

t:Z]_tR, (Bl)
— 1
So=S-52

2%

—1|=S-0.1966, (Al)  wheretg is the renormalized temperature. The bare Green’s

function of the fieldm=n—(nz)z has the form

1
NS

where ¢>k=%(cod<x+cod<y). The ground-state spin stiffness

1
and spin-wave velocity to first order inQare given by°>® G9(q)= 5 -;12(2—cox,a—cox,a) (B2
=ySS, ©=18vS A2
Ps= 7SR vy (A2 +a(1—cogpa)+f+h] L, (B3)
with y being the quantum-renormalized intralayer exchange ) i o
parameter determined by wherea is the lattice constant. The renormalization constants
can be calculated from the two-point vertex function. It is

0.0790 useful to represent these constants as

1
y/|J|=1+2—S; [1-V1-¢Z]~1+ s A3

Zi(t,a)=Z,(HZ(t, ,a), (B4)
For the quantum-renormalized coupling constant we have 1 _ L
9,=Cl/ps. The quantum-renormalized interlayer coupling wheret, =tZ ;, Z,; contain nonlogarithmic terms that are

and anisotropy parameters can be determined from the firsgot changed under RG transformations, afjdcontain all
order 16 corrections to the excitation spectrum. We have athe other terms. We have

T=0 and for small in-plane wave-vector componéhts )
ZLl: ZL2:ZL3: 1_ 7Tt/2+ O(t ),

E28(79)2 K2 2L (1 cos,) + — Ad
k=8(7S) H+7( —co z)+y—s, (A4) Z,=1. (B5)
where The results foiZ; read

,_Q Z=1+1t (N-1)In(6dau)+t3(N—1)(N—3/2)In*(64a

¥ :E(SO/S)|J| (A5) L( )In( ) L( )( ) In“( )
+0(t}), (B6)

is the renormalized interlayer coupling and

Z,=1+t (N—2)In(64au) +t>(N—2)In?(64au) + O(t3),

5=(So/9(25-1)¢+4733|1¥13|  (A6)
is the renormalized anisotropy. Note that in the casg<1, 22:1_2tL|n(64aM)+0(tE)v
which is considered only, single- and two-site anisotropies
lead to the same effects. Comparing the spectté#) with 'Zgzl—tLIn(64aM)+O(tE). (B7)

the bare spin-wave spectrum determined from @§),

2 oo The expression for the magnetization to two-loop approxi-
Ei=cTkj+ a(1—cosk,) +f], (A7) mation is
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gop- 7D, o4 tw=2 / | (N=2)In—— 4 2In(Lhyy) + D al
o= 2 " e M= ( )nm n(1fty) +Pg(alt)|.
t{(3-N)(N-1) 64 (B10)
+ n
32 A(fL,ay) Note that in the case=0 a similar expression was obtained
2 in Ref. 23. However, the result of this work contains wrong
_ tL(N_l)[1+ f In 64 coefficient at the second term in the square brackets of Eq.
8 [ VEZ+2a, f, A(f,a)’ (B10) since not all two-loop corrections were taken into ac-

count.
where we have defined the renormalized quantities in the comparing the result for the magnetizati¢B9) with
lattice case, those of Sec. Il, Eqg41) and (60), we can write down the
PR R criteria of applicability of the classical lim{see Sec. )lwith
fL=1Z, a=aZs. B8 the correct numerical factors,
The equation for the magnetization can be derived in the

same way as in Sec. Il to obtain T2>322 (AFM)

RIS (N=2)In—e—— + 3|n(1/3)
2 A(fy o) B2 T>321JS (FM). (B11)
+2(1—oYB2)+ Ot oVP2) |. (B9) It is difficult to satisfy these criteria in the ordered phase
T<Ty~1/In(1/A) at not too smallA and 15 due to the

Then the ordering temperature satisfies the equation large value of the numerical factor in E@11).
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