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Effect of modulation and magnetic field on the properties of two-dimensional Coulomb systems
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A two-dimensional(2D) electron system in a modulation potential and a weak uniform perpendicular
magnetic field is studied by a molecular-dynamics simulation method. The simulation results clearly demon-
strate some interesting oscillations in the diffusion coefficient, which we interpret in terms of the orbital motion
of the electrons on the modulated 2D syst¢80163-182808)07607-3

In recent years, there has been growing interest in théensity in a weak magnetic field. The strength of the modu-
effect of electrostatic and magnetic modulation on the transhation potential is chosen so that quantum-mechanical effects
port properties of charged carriers in two-dimensiof2i)) do not change our results. The advantage of our method is
electron systems from both an experimental and theoreticdhat it allows us to observe the system evolving in real time
perspective. Specifically, there have been several investigathich consequently makes it possible to calculate various
tions on the effect of a static field modulation potential ontime correlation functions needed for comparison with ex-
the static, thermodynamic, and dynamical properties of th@erimental results. The lateral modulation potential is simu-
2D electron system. The reason for the interest in modulatiofted by a product of cosine functions raised to some even
effects is that recent advances in submicron lithography angower so that the potential does not change sign. This is, of
nanofabrication techniques have made it possible to crea®ourse, just one term in the Fourier expansion of a periodic
lateral surface superlattices with modulation periods muctpotential and is taken as the principal contribution. One may
smaller than the elastic mean free path and comparable witdlSO represent the modulation potential by a sum of cosine
the cyclotron radius at low magnetic fiel This gives rise ~ functions'* In this paper, we will report the effect due to
to a new class of effects. For example, when a perpendiculdnodulation on the properties of a 2D electron system when
magnetic fieldB is applied to a homogeneous 2D e|ectronthe Coulomb interaction and the magnetic field are included
gas(EG), the Shubnikov—de Hag$dH) oscillations associ- directly into the electron dynamics. As far as we know, the
ated with the filling of successive Landau levéld's) are calculated static properties as a function of the magnetic field
exhibited in the resistivity. If a weak periodic one- strength and modulation potential that we present are the
dimensional(1D) modulation is applied to a homogeneous only simulation results available.
2DEG, a new kind of magnetoresistance oscillationeiss In 2D, the Coulomb interaction between two electrons of
oscillations are obtained below the SdH oscillatioh§hese charge—e separated by a distances given byV,_¢(r) =
oscillations were attributed to the commensurability betweerr €°In(r/L), whereL is a scaling length chosen as the length
the lattice period and the cyclotron radius of the electrons a@f the simulation cell. The 2D models of logarithmically in-
the Fermi energy®~° Streda and MacDonaltlused a semi- teracting charges have found widespread application in un-
classical theory to explain the oscillations for a unidirection-derstanding the behavior of many different physical systems
ally modulated 2D electronic system by interpreting these a¥ia a mapping to th&Y model, Josephson-function arrays in

a consequence of oscillations in the probability of magnetic 4 —
breakdown. Results for a weak periodic 2D modulation have

also been reportéd'~*® The work of Fleischmann, Geisel, ®

and Ketzmerick? is devoted to a calculation of the magne- 3 f) = .
toresistance of an electron system with a strong periodic 2D ®

modulation to simulate an array of antidots on semiconduc-
tor heterojunctions. The present work is for the diffusion
coefficient with weak bilateral modulation using a classical
approach like Fleischmann, Geisel, and Ketzméfiokhich 1+ .
neglects quantum coherence effects that would become sig-

nificant in the high-density regime. For antidots, quantum

oscillations superimposed on the classical peaks of the mag- 0
netoresistance have been observed by Wetiss!® and ex-

plained theoretically by Hackenbroich and von Opp&n.

Many calculations have used a quantizing magnetic field FiG. 1. The pair-correlation function vs particle separation for
to calculate the transport coefficients of a 2D electron systenhe following pairs of values of modulation strength and applied
with a modulation potential. However, in this paper, we usemagnetic fieldB: (1) Vo=0 andB=0, (2) V,=0 andB=1.0 T,(3)

a classical magnetic-field approach that is described by it¥,=1.0 K andB=1.0 T. The value of3 used in Eq(3) is chosen
effect through a Lorentz force for a system with low electronasg=1.
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a transverse applied magnetic field. Vortices induced by 5 T T
magnetic fields and other physical systems, such as 2D melt-
ing, surface roughening, and liquid crystals can also be de- 4 +
scribed in terms of logarithmically interacting topological
defects. This is why we use the logarithmic potential. Be- 3+
cause of the long-range nature of the Coulomb interaction, 3
we use an Ewald summation to take account of the interac- Dol
tion between an electron and an infinite array of periodic
images of the other electrons. The Coulomb energy of the 1+
system, consisting dfl particles of charge-e, is given by
0
2_ N N 1 2 3 4
Ve=75 > > Injrjj+n| K

n i=1j=1
N FIG. 2. Plot of the static structure factor vs wave number for the
+ Ez 2 dr In|r-—r+n| following pairs of values of modulation strengi, and applied
AT i=1Ja ! magnetic fieldB: (1) Vo=0 andB=1 T and(2) V,=0.1 K and
NP B=1 T. The value ofg used in Eq(3) is chosen ag=1.

A? zn: fAer\dr Infr=r"+nl, @ and the Coulomb interaction, i.&=(V,,+V¢), and the Lor-
entz force so thaE;=F(Vy+V,) —(e/c)(vX B), wherev is
wherer;; is the vector between electronsand j, n is a  the velocity of the electron. . . _
vector whose components ame,L,n,L); n, andn, are in- We have used the following dimensionless units
tegers. The first term on the right-hand side of E.arises =f/a, wave vector k*=ka and t*=t/7, where 7
from the interactions between pairs of electrons. The sunFma®/e* andm is the free-electron mass. The reduced elec-
overn is carried out over all lattice vectors. The primes ontron density isN} =Ng?, which corresponds to a value of
the summation signs indicate that, when 0, the terms with ~ 1.477x 10® electrons/cr and a reduced temperature of 2.0
i=] have to be excluded. The second term arises from th&. The runs for the collection of the data presented here for
interaction between the electrons and a uniform positive jel256 electrons extended over X80* time steps, after an
lium background. The integrals overandr’ are carried out initial 10° time steps for the system to reach equilibrium. The
over the rectangular unit cell of are@=L,L,. The third results reported here are all in reduced units.
term represents the interaction of the background with itself. In Fig. 1, we have presented our results for the pair-
The sum in Eq(1) is conditionally convergent and the en- correlation function g(r), through the relation{n(r))
ergy V¢ depends on the shape of the macroscopically larges 271 SrNgg(r). Here,(n(r)) is the average number of par-
periodic system. ticles in an annulus of radiusand thicknessr, centered at

We now investigate the effect of a 2D modulation poten-a given particle. We chos€,=0 and 1.0 K and the mag-
tial, based on the following simple harmonic ansatz for thenetic field B=0 and 1 T. Our calculations show that, as
superlattice potential: expected, the magnetic field has no noticeable effect on the

pair-correlation function. However, the modulation potential

{wa S(zwy 28 has an appreciable effect on the modulagéd), which has
co§ —|co§ ——

ay ay

Vu(r) =V, , (2)  more oscillations. In the presence of a modulation potential,
the first peak of the pair-correlation function shifts to a

) ) ] . smaller distance as the modulation strength increases, due to

wherea, anda, are the lattice periods anél is an integer.  the increased confinement in a unit cell by the walls of the

The reason for choosing the form in E@) is to ensure that potential barrier. The second peak is reduced, which indi-

the potential is either attractive or repulsive, depending orates less confinement at larger distances.

the sign ofV,. Although Eq.(2) is only one term in the We further analyze the effect of the modulation potential

Fourier eXpanSion ofa periOdiC potential, it could be used tcgiven by Eq(Z), in a uniform perpendicu|ar magnetic field,

study the effect of the size of the scatterers by varying thgy calculating the static structure factor defined as the Fou-

value of 3 and the strength of the scatterers by chandiBg rier transform of the pair-correlation function. In 2D, it is
Effects from higher-potential harmonics are neglected in thigiven by

model.

We have carried out a molecular-dynamit4D) simula- o 1
tion experiments for the 2D Coulomb system in a uniform S(k)=1+ ZWNSJ dr rdo(kr)(g(r)—1)= N<Pkpfk>,
perpendicular magnetic fielB and applied modulation po- 0 3)
tential. Our calculations were done for 256 particles in a
rectangular cell with periodic boundary conditions aamd whereJy(x) is the Bessel function of order zero. The pair-
=a, ay= \J3a/2. A predictor-corrector method involving up correlation functiorg(r) that is obtained through MD calcu-
to five time derivatives of the positions was used to integratdations is for half the length of the box. Herg(k) in Eq. (3)
Newton’s equation of motion. The total force on an electronis the zero-time value of the intermediate scattering function.
is the sum of the forces arising from the modulation potentialn Fig. 2, we have plotte®(k) as a function of the wave
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FIG. 3. The mean-square displacement vs time for a magnetic
field B=1.0 T and with the modulation strengths set equaVo B
=0.1, 0.5 and 1.0 K. The value ¢ used in Eq.3) is chosen as

s=1 FIG. 4. The diffusion coefficient is plotted as a function of the

magnetic field forVy=0.5. The inset is for a homogeneous 2D

] ] system. The value g8 in Eq. (3) was set equal to unity.
numberk in the presence and absence of modulation and for

an applied magnetic fiels=1 T. The value ofS(k) inthe {5 5 finite diffusion constant. The oscillations I arise
long- and short-wavelength limits are not appreciablyyyhen the orbits become commensurate with the lattice. The
changed by the modulation potential for a fixed magnetigninima correspond teinned orbits, unlike the scattered
field. However, at intermediate valueslafS(k) is modified  gpen orbits, which can contribute to the transport process.
by the external potential, as we see by comparing our resuli§ince the magnetic field introduces another time scale
when Vo is zero and when it is finite. This means that theyrough the cyclotron motion of an electron, our MD simu-
electrons get distributed by the lattice potential over disqations were carried out over long-time intervals. For the
tances determined by the magnetic length and the lattice penagnetic fields used in our calculations, the system of par-
riod. The modification ofS(k) at intermediate values &  ticles was simulated for 200 ps.

means that the density correlations are definitely affected by Tne static mobilityu, can of course be obtained from the

the modulation potential. _ Nernst-Einstein relatio = uokgT. If we use a relaxation
¥Ve have calculated the mean square displacemerime approximation foru,, we can determine the phenom-
(R°(t)) as a function of time for several values of the mag-engjogical scattering time from o= /m. For a classical

netic field and modulation strength to see what is the effectystem, the diffusion constant is defined in terms of the ve-
of these variables on the diffusion coefficient. We have locity autocorrelation function by

1/ X 2
<R2(t)>zﬁ<z (r;(t)—r,-<0>)2>. @ 0-3 [ “auv.v.0) ®)
j=1 v 0

wherer;(t) is the position vector of th¢th electron at time  whereV=ZX]_,r; is the total velocity of the system of par-

t. The diffusion coefficienD is defined byD =(R?(t))/4t as ticles. It is known that the velocity autocorrelation function
t—oo. Figure 3 is a plot ofR%(t)) versust for a fixed in 2D has a 1/ long-time decay; and thus the diffusion
magnetic fieldB=1.0 T and with the modulation strengths constant as defined in E¢p) is not well defined. However,
set equal to/y=0.1, 0.5, and 1.0 K. For a uniform homoge- our data on the mean-square displacement shows that after
neous 2DEG, i.e.V,=0.0 K, our results show that in the an initial quadratic behaviofR?(t)) is linear so that we
absence of modulatiogR?(t)) has a well-established linear could define a diffusion constant from the slope at long
behavior for all magnetic fields. We found that the slopes oftimes. The variation of the diffusion coefficient with mag-
the linear increments at large times decrease with increasingetic field in Fig. 4 is oscillatory. In the absence of modula-
magnetic field. Our calculations show that in the presence dfion, (see the inset of Fig.)4the diffusion coefficient de-
modulation, the nonlinear behavior {iR?(t)) occurs at all creases exponentially with increasing magnetic field.
magnetic fields. The diffusion coefficiebt is time indepen- In summary, we have carried out MD simulations for a
dent and is plotted as a function of the magnetic field in Fig2D Coulomb system in the presence of a modulation poten-
4, for Vo=0 andV,=0.5 K. These results show that the tial and a uniform perpendicular external magnetic field. Our
diffusion constant is drastically affected by the modulationcalculations show that the diffusion constant is not a simple
potential,D has oscillations as a function & and is not a decreasing function of the magnetic field, but has oscillations
simple decreasing function of the magnetic field, as it is inlike those observed experimentally for the longitudinal mag-
the absence of modulation. Whé&fy is increased, the elec- netoresistance of a modulated 2D electron gas within a semi-
trons tend to remain at the potential minima within a unitconductor heterostructure at low magnetic fields. When the
cell, resulting in a zero diffusion constant. A% is de- Coulomb interaction is neglected the system does not equili-
creased, some electrons have enough kinetic energy to ovdrrate and théR?(t)) curves do not have a constant slope at
come the saddle point and move to neighboring cells, leadintarge time. Our calculations show that the oscillation®in
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are classical in nature and are due to the presence of trehould be included through a quantizing magnetic field. Our
modulation potential. The oscillations ID arise when the results were based on the modulation potential in(Egbut

orbits become commensurate with the lattice. The minimaur conclusions should not change if we use a different
correspond to pinned orbits, unlike the scattered open orbitgnodel!?

which can contribute to the transport process. Our simula-

tions were done at low magnetic fields. We do not include The authors gratefully acknowledges the support in part
quantum interference effects in this Coulomb system. Afrom the City University of New York PSC-CUNY-BHE
higher electron densities, exchange and correlation effectsrant No. 666414.
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