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Effect of modulation and magnetic field on the properties of two-dimensional Coulomb systems
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A two-dimensional~2D! electron system in a modulation potential and a weak uniform perpendicular
magnetic field is studied by a molecular-dynamics simulation method. The simulation results clearly demon-
strate some interesting oscillations in the diffusion coefficient, which we interpret in terms of the orbital motion
of the electrons on the modulated 2D system.@S0163-1829~98!07607-3#
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In recent years, there has been growing interest in
effect of electrostatic and magnetic modulation on the tra
port properties of charged carriers in two-dimensional~2D!
electron systems from both an experimental and theore
perspective. Specifically, there have been several inves
tions on the effect of a static field modulation potential
the static, thermodynamic, and dynamical properties of
2D electron system. The reason for the interest in modula
effects is that recent advances in submicron lithography
nanofabrication techniques have made it possible to cr
lateral surface superlattices with modulation periods m
smaller than the elastic mean free path and comparable
the cyclotron radius at low magnetic fields.1–4 This gives rise
to a new class of effects. For example, when a perpendic
magnetic fieldB is applied to a homogeneous 2D electr
gas~EG!, the Shubnikov–de Haas~SdH! oscillations associ-
ated with the filling of successive Landau levels~LL’s ! are
exhibited in the resistivity. If a weak periodic one
dimensional~1D! modulation is applied to a homogeneo
2DEG, a new kind of magnetoresistance oscillations~Weiss
oscillations! are obtained below the SdH oscillations.1 These
oscillations were attributed to the commensurability betwe
the lattice period and the cyclotron radius of the electron
the Fermi energy.2,5–9 Streda and MacDonald10 used a semi-
classical theory to explain the oscillations for a unidirectio
ally modulated 2D electronic system by interpreting these
a consequence of oscillations in the probability of magne
breakdown. Results for a weak periodic 2D modulation ha
also been reported4,11–13. The work of Fleischmann, Geise
and Ketzmerick.14 is devoted to a calculation of the magn
toresistance of an electron system with a strong periodic
modulation to simulate an array of antidots on semicond
tor heterojunctions. The present work is for the diffusi
coefficient with weak bilateral modulation using a classi
approach like Fleischmann, Geisel, and Ketzmerick14 which
neglects quantum coherence effects that would become
nificant in the high-density regime. For antidots, quant
oscillations superimposed on the classical peaks of the m
netoresistance have been observed by Weisset al.15 and ex-
plained theoretically by Hackenbroich and von Oppen.16

Many calculations have used a quantizing magnetic fi
to calculate the transport coefficients of a 2D electron sys
with a modulation potential. However, in this paper, we u
a classical magnetic-field approach that is described by
effect through a Lorentz force for a system with low electr
570163-1829/98/57~7!/3769~4!/$15.00
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density in a weak magnetic field. The strength of the mo
lation potential is chosen so that quantum-mechanical eff
do not change our results. The advantage of our metho
that it allows us to observe the system evolving in real ti
which consequently makes it possible to calculate vari
time correlation functions needed for comparison with e
perimental results. The lateral modulation potential is sim
lated by a product of cosine functions raised to some e
power so that the potential does not change sign. This is
course, just one term in the Fourier expansion of a perio
potential and is taken as the principal contribution. One m
also represent the modulation potential by a sum of cos
functions.11 In this paper, we will report the effect due t
modulation on the properties of a 2D electron system wh
the Coulomb interaction and the magnetic field are includ
directly into the electron dynamics. As far as we know, t
calculated static properties as a function of the magnetic fi
strength and modulation potential that we present are
only simulation results available.

In 2D, the Coulomb interaction between two electrons
charge2e separated by a distancer is given byVe2e(r )5
2e2ln(r/L), whereL is a scaling length chosen as the leng
of the simulation cell. The 2D models of logarithmically in
teracting charges have found widespread application in
derstanding the behavior of many different physical syste
via a mapping to theXY model, Josephson-function arrays

FIG. 1. The pair-correlation function vs particle separation
the following pairs of values of modulation strengthV0 and applied
magnetic fieldB: ~1! V050 andB50, ~2! V050 andB51.0 T, ~3!
V051.0 K andB51.0 T. The value ofb used in Eq.~3! is chosen
asb51.
3769 © 1998 The American Physical Society
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a transverse applied magnetic field. Vortices induced
magnetic fields and other physical systems, such as 2D m
ing, surface roughening, and liquid crystals can also be
scribed in terms of logarithmically interacting topologic
defects. This is why we use the logarithmic potential. B
cause of the long-range nature of the Coulomb interact
we use an Ewald summation to take account of the inte
tion between an electron and an infinite array of perio
images of the other electrons. The Coulomb energy of
system, consisting ofN particles of charge2e, is given by

VC5
e2

2 (
n

(
i 51

N8

(
j 51

N8

lnur i j 1nu

1
Ne2

A (
n

(
j 51

N E
A
dr lnur j2r1nu

2
N2e2

A2 (
n
E

A
drE

A
dr 8lnur2r 81nu, ~1!

where r i j is the vector between electronsi and j , n is a
vector whose components are (nxL,nyL); nx andny are in-
tegers. The first term on the right-hand side of Eq.~1! arises
from the interactions between pairs of electrons. The s
over n is carried out over all lattice vectors. The primes
the summation signs indicate that, whenn50, the terms with
i 5 j have to be excluded. The second term arises from
interaction between the electrons and a uniform positive
lium background. The integrals overr andr 8 are carried out
over the rectangular unit cell of areaA5LxLy . The third
term represents the interaction of the background with its
The sum in Eq.~1! is conditionally convergent and the en
ergy VC depends on the shape of the macroscopically la
periodic system.

We now investigate the effect of a 2D modulation pote
tial, based on the following simple harmonic ansatz for
superlattice potential:

VM~r !5V0FcosS 2px

ax
D cosS 2py

ay
D G2b

, ~2!

whereax anday are the lattice periods andb is an integer.
The reason for choosing the form in Eq.~2! is to ensure that
the potential is either attractive or repulsive, depending
the sign ofV0. Although Eq. ~2! is only one term in the
Fourier expansion of a periodic potential, it could be used
study the effect of the size of the scatterers by varying
value ofb and the strength of the scatterers by changingV0.
Effects from higher-potential harmonics are neglected in
model.

We have carried out a molecular-dynamics~MD! simula-
tion experiments for the 2D Coulomb system in a unifo
perpendicular magnetic fieldB and applied modulation po
tential. Our calculations were done for 256 particles in
rectangular cell with periodic boundary conditions andax

5a, ay5A3a/2. A predictor-corrector method involving u
to five time derivatives of the positions was used to integr
Newton’s equation of motion. The total force on an electr
is the sum of the forces arising from the modulation poten
y
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and the Coulomb interaction, i.e.,F(VM1VC), and the Lor-
entz force so thatFT5F(VM1Vc)2(e/c)(v3B), wherev is
the velocity of the electron.

We have used the following dimensionless unitsr *
5r /a, wave vector k* 5ka and t* 5t/t, where t2

5ma3/e2 andm is the free-electron mass. The reduced el
tron density isNs* 5Nsa

2, which corresponds to a value o
1.4773108 electrons/cm2 and a reduced temperature of 2
K. The runs for the collection of the data presented here
256 electrons extended over 153104 time steps, after an
initial 105 time steps for the system to reach equilibrium. T
results reported here are all in reduced units.

In Fig. 1, we have presented our results for the pa
correlation function g(r ), through the relation^n(r )&
52prdrNsg(r ). Here,^n(r )& is the average number of pa
ticles in an annulus of radiusr and thicknessdr , centered at
a given particle. We choseV050 and 1.0 K and the mag
netic field B50 and 1 T. Our calculations show that, a
expected, the magnetic field has no noticeable effect on
pair-correlation function. However, the modulation potent
has an appreciable effect on the modulatedg(r ), which has
more oscillations. In the presence of a modulation poten
the first peak of the pair-correlation function shifts to
smaller distance as the modulation strength increases, du
the increased confinement in a unit cell by the walls of
potential barrier. The second peak is reduced, which in
cates less confinement at larger distances.

We further analyze the effect of the modulation potent
given by Eq.~2!, in a uniform perpendicular magnetic field
by calculating the static structure factor defined as the F
rier transform of the pair-correlation function. In 2D, it
given by

S~k!5112pNsE
0

`

dr rJ0~kr !„g~r !21…5
1

N
^rkr2k&,

~3!

whereJ0(x) is the Bessel function of order zero. The pa
correlation functiong(r ) that is obtained through MD calcu
lations is for half the length of the box. Here,S(k) in Eq. ~3!
is the zero-time value of the intermediate scattering functi
In Fig. 2, we have plottedS(k) as a function of the wave

FIG. 2. Plot of the static structure factor vs wave number for
following pairs of values of modulation strengthV0 and applied
magnetic fieldB: ~1! V050 andB51 T and ~2! V050.1 K and
B51 T. The value ofb used in Eq.~3! is chosen asb51.
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numberk in the presence and absence of modulation and
an applied magnetic fieldB51 T. The value ofS(k) in the
long- and short-wavelength limits are not apprecia
changed by the modulation potential for a fixed magne
field. However, at intermediate values ofk, S(k) is modified
by the external potential, as we see by comparing our res
when V0 is zero and when it is finite. This means that t
electrons get distributed by the lattice potential over d
tances determined by the magnetic length and the lattice
riod. The modification ofS(k) at intermediate values ofk
means that the density correlations are definitely affected
the modulation potential.

We have calculated the mean square displacem
^R2(t)& as a function of time for several values of the ma
netic field and modulation strength to see what is the ef
of these variables on the diffusion coefficient. We have

^R2~ t !&5
1

NK (
j 51

N

~r j~ t !2r j~0!!2L , ~4!

wherer j (t) is the position vector of thej th electron at time
t. The diffusion coefficientD is defined byD5^R2(t)&/4t as
t→`. Figure 3 is a plot of̂ R2(t)& versus t for a fixed
magnetic fieldB51.0 T and with the modulation strength
set equal toV050.1, 0.5, and 1.0 K. For a uniform homog
neous 2DEG, i.e.,V050.0 K, our results show that in th
absence of modulation,^R2(t)& has a well-established linea
behavior for all magnetic fields. We found that the slopes
the linear increments at large times decrease with increa
magnetic field. Our calculations show that in the presenc
modulation, the nonlinear behavior in^R2(t)& occurs at all
magnetic fields. The diffusion coefficientD is time indepen-
dent and is plotted as a function of the magnetic field in F
4, for V050 and V050.5 K. These results show that th
diffusion constant is drastically affected by the modulati
potential,D has oscillations as a function ofB and is not a
simple decreasing function of the magnetic field, as it is
the absence of modulation. WhenV0 is increased, the elec
trons tend to remain at the potential minima within a u
cell, resulting in a zero diffusion constant. AsV0 is de-
creased, some electrons have enough kinetic energy to o
come the saddle point and move to neighboring cells, lead

FIG. 3. The mean-square displacement vs time for a magn
field B51.0 T and with the modulation strengths set equal toV0

50.1, 0.5 and 1.0 K. The value ofb used in Eq.~3! is chosen as
b51.
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to a finite diffusion constant. The oscillations inD arise
when the orbits become commensurate with the lattice.
minima correspond topinned orbits, unlike the scattered
open orbits, which can contribute to the transport proce
Since the magnetic field introduces another time sc
through the cyclotron motion of an electron, our MD sim
lations were carried out over long-time intervals. For t
magnetic fields used in our calculations, the system of p
ticles was simulated for 200 ps.

The static mobilitym0 can of course be obtained from th
Nernst-Einstein relationD5m0kBT. If we use a relaxation
time approximation form0, we can determine the phenom
enological scattering timet from m05t/m. For a classical
system, the diffusion constant is defined in terms of the
locity autocorrelation function by

D5(
n
E

0

`

dt^Vn~ t !Vn~0!&, ~5!

whereV5( j 51
N ṙ j is the total velocity of the system of par

ticles. It is known that the velocity autocorrelation functio
in 2D has a 1/t long-time decay,17 and thus the diffusion
constant as defined in Eq.~5! is not well defined. However
our data on the mean-square displacement shows that
an initial quadratic behavior,̂R2(t)& is linear so that we
could define a diffusion constant from the slope at lo
times. The variation of the diffusion coefficient with mag
netic field in Fig. 4 is oscillatory. In the absence of modu
tion, ~see the inset of Fig. 4!, the diffusion coefficient de-
creases exponentially with increasing magnetic field.

In summary, we have carried out MD simulations for
2D Coulomb system in the presence of a modulation pot
tial and a uniform perpendicular external magnetic field. O
calculations show that the diffusion constant is not a sim
decreasing function of the magnetic field, but has oscillatio
like those observed experimentally for the longitudinal ma
netoresistance of a modulated 2D electron gas within a se
conductor heterostructure at low magnetic fields. When
Coulomb interaction is neglected the system does not eq
brate and thêR2(t)& curves do not have a constant slope
large time. Our calculations show that the oscillations inD

tic

FIG. 4. The diffusion coefficient is plotted as a function of th
magnetic field forV050.5. The inset is for a homogeneous 2
system. The value ofb in Eq. ~3! was set equal to unity.



m

d

e

ur

nt

art

3772 57BRIEF REPORTS
are classical in nature and are due to the presence of
modulation potential. The oscillations inD arise when the
orbits become commensurate with the lattice. The mini
correspond to pinned orbits, unlike the scattered open orb
which can contribute to the transport process. Our simu
tions were done at low magnetic fields. We do not inclu
quantum interference effects in this Coulomb system.
higher electron densities, exchange and correlation eff
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cts

should be included through a quantizing magnetic field. O
results were based on the modulation potential in Eq.~2! but
our conclusions should not change if we use a differe
model.11

The authors gratefully acknowledges the support in p
from the City University of New York PSC-CUNY-BHE
Grant No. 666414.
s,

,

v.

ett.
*Also at the Graduate School and University Center of the C
University of New York, 33 West 42 Street, New York, NY
10036.

1D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Europhy
Lett. 8, 179 ~1989!; also in High Magnetic Fields in Semicon
ductor Physics II, edited by G. Landwehr, Springer Series
Solid State Sciences,~Springer-Verlag, Berlin, 1989!, p. 357; G.
Müller, P. Streda, D. Weiss, K. von Klitzing, and G. Weiman
Phys. Rev. B50, 8938~1994!.

2R. R. Gerhardts, D. Weiss, and K. von Klitzing, Phys. Rev. Le
62, 1173~1989!; R. Menne and R. R. Gerhardts, inProceedimgs
of the 12th International Conference on Applied High Magne
Fields, Würzburg, 1996~World Scientific, Singapore, 1996!.

3C. G. Smith, M. Pepper, R. Newbury, H. Ahmed, D. G. Hasko,
C. Peacock, J. E. F. Frost, D. A. Ritchie, G. A. C. Jones, and
Hill, J. Phys.: Condens. Matter2, 3405~1990!.

4R. R. Gerhardts, D. Weiss, and U. Wulf, Phys. Rev. B43, 5192
~1991!.

5R. R. Gerhardts and C. Zhang, Phys. Rev. Lett.64, 1473~1990!;
Phys. Rev. B41, 12 850~1990!.
ity

s.

n

n,

tt.

tic

D.
G.

6D. Pfannkuche and R. R. Gerhardts, Phys. Rev. B46, 12 606
~1992!.

7P. Vasilopoulos and F. M. Peeters, Phys. Rev. Lett.63, 2120
~1989!.

8F. M. Peeters and P. Vasilopoulos, Phys. Rev. B47, 1466~1993!.
9C. W. J. Beenakker, Phys. Rev. Lett.62, 2020~1989!.

10P. Streda and A. H. MacDonald, Phys. Rev. B41, 11 892~1990!.
11J. Ma, R. A. Puechner, W. P. Liu, A. M. Kriman, G. N. Manacu

and D. K. Ferry, Surf. Sci.229, 341 ~1990!.
12Granular Nanoelectronics, edited by D. K. Ferry, J. R. Barker

and C. Jacoboni~Plenum, New York, 1990!.
13A. M. Kriman, M. J. Kann, D. K. Ferry, and R. Joshi, Phys. Re

Lett. 65, 1619~1991!.
14R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev. L

68, 1367~1992!.
15D. Weisset al. Phys. Rev. Lett.70, 4118~1993!.
16G. Hackenbroich and F. von Oppen, Europhys. Lett.29, 151

~1995!.
17A. B. J. Alder and T. E. Wainwright, Phys. Rev. Lett.18, 988

~1967!.


