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Time-resolved secondary emission from three-level electron-phonon coupled systems:
Numerical study of radiative and nonradiative transitions
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The spectral structures of the transient resonant secondary emission are investigated in a three-level electron-
phonon coupled system in order to clarify dynamical properties of the nonradiative transitions occurring in the
crossing region of the potential-energy curves. The time-resolved resonant secondary-emission spectra are
calculated for an instantaneous excitation pulse; in the calculation, we take into account the uncertainty relation
between energy and time for emission processes by introducing explicitly a temporal form of the resolution
function of the measurement system. The time evolution of the excited state is solved numerically by using the
real-time Trotter’s formula, without assuming aayriori trajectories. We study how the lattice relaxation and
the nonradiative transition contribute to the processes of secondary emissions by analyzing the temporal
behaviors of the emission spectra. It is found that, in addition to the peaks due to the radiative transitions from
the excited states during the lattice relaxation, the oscillatory structures appear in the spectra in the energy
domain, which is due to the quantum-mechanical interference effects of the excited states in the potential
crossing region[S0163-182@8)09301-1

. INTRODUCTION the emission in Tl-like centers’ In molecular systems,
there are various types of examples; photodissociation, pho-

Recent development of measurement techniques using tlieisomerism, chemical reactions, the elimination of mol-
femtosecond laser has made it possible to investigate vario®sules adsorbed on a solid surface, and so fbfthe essen-
kinds of ultrafast phenomena which occur in condensed matial underlying physics in these phenomena is the same as
ter. The transient resonant secondary emission is one of tHgat in our three-level electron-phonon coupled system.
typical phenomena. The time-resolved spectroscopy of the Let us see the schematic feature of the potential energy
resonant secondary emission provides us with information t§U"ves of the three-level electron-phonon coupled systems.
obtain a deeper understanding of relaxation and dynamic&P"€ Of the typical cases is shown in Fig. 1 as a function of a
processes in the optically excited statebin the present configuration coordinate<Q). Q represents a collective
work, we study the transient resonant secondary emission fotion of atoms. In this flgu_ré0> denotes the initial ground
a three-level electron-phonon coupled system to clarify hoV\;.tate.|1> and|2) are the excited states. We call these poten-
the characteristic features of the dynamical processes which
occur in the level-crossing region are reflected in the spectral
structures of the transient secondary emission. The dynami-
cal aspects of the nonradiative transition in a similar system
have been studied by Nasu and KayandmaThey have
calculated the temporal behavior of the nonradiative transi-
tion and the time-integrated intensity of the secondary emis-
sion, and also clarified the conditions under which the
Landau-Zener formula is valid.

In localized electron-phonon coupled systems such as im-
purity or defect states in solids, the excited state of the lo-
calized electron may interact with other excited states which
belong to a different configuration of atoms in the localized
region. The interaction causes a nonradiative transition from
one electronic state to another in the crossing region of the
respective potential curves with the time interval as short as
the lattice relaxation time; this transition is called the nona-
diabatic transition with the emphasis on the dynamical as-
pects of the nonradiative transitions. The nonadiabatic tran-
sition is one of fundamental mechanisms which govern the F|G. 1. Diabatic potential curves of the three-level system as a
state or structural change of a system in various fields ofunction of a configuration coordinat@ for the parameter values;
physics and chemistry. In condensed matter, the most typical,/w=—100, £, /0=—7, e,/w=0, By/w=98, B;/w=18, and
examples are the luminescence quenching of the F centerg,/w=0. [0) denotes the initial ground statfl) and [2) are the
and the polarization correlation between the absorption anghotoexcited states frong).
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tials diabatic potential curvesThey interact with each other densed matter the typical value of the frequencis of the
in the vicinity of the potential crossing point. Under the limit order of a few hundred cit. V is the interaction Hamil-
of the adiabatic approximation f@, they are split into two tonian, wherein the nonradiative electronic transition is as-
curves which are commonly calleddiabatic potential sumed to occur only in the excited statésis the resonance
curves’ If the Franck-Condon state is created|1) by the  transfer integral of the electron between two excited states.
optical excitation fronj0), it will propagate along the poten- Strictly speaking,T may depend orQ. However, in this
tial curve of|1). Then, it may pass through the crossing pointstudy, its dependence is not taken into account. In the case of
of the potential curvesl) and |2). Around this point, the T having the same order of magnitudeaaghe characteristic
nonradiative electronic transition occurs and the componertime of the nonradiative transition becomes comparable with
of excited statg2) is constructed during the lattice relax- the lattice relaxation time, and then the interaction between
ation. the dynamical motions of electron and lattice plays an essen-
The essential features of such dynamical processes occutial role. The parameterg; give the shift of the equilibrium
ring in the potential crossing systems are summarized as foposition of Q as shown in Fig. 1, which comes from the
lows. (1) Because the change in the electronic states occurslectron-lattice interactions. This effect brings about the
during the motion of atoms described Ry the nonadiaba- change of the equilibrium configuration of atoms when the
ticity plays an important role in every step of the transition.radiative or the nonradiative transition of electrons takes
(2) As discussed above, when the Franck-Condon excite@lace.
state passes through the potential crossing region before the The Schrodinger equation
transition to the ground state emitting the photon, the differ-
ent components of the excited state are created on the poten- Hil®in) = €inl @in)» (2.4
tial curves due to the nonradiative transition. This brings : ) ) , )
about the quantum-mechanical interference effects betwedfn €asily be solved; the vibronic ?tm?n) W'ith the eigen-
these component€3) Because the slopes of the tangents ofValue iy is given by the producti)|xy), |x,) being the
these potentials are different from each other at the crossingih-Phonon state appropriate to théia electronic statgi).
region, the electronic transition is accompanied by thelhe total wave functiorf=|W(t))] is constructed by the
changes in the motion of atoms. Therefore, a back reactiohnear combination of these vibronic states as follows:
from the electronic transition to the atomic motion is also the
essential feature. _
In Sec. Il, we introduce a model Hamiltonian of the three- (¥ (1)) Izr; Cin(D|@in), (2.9
level electron-phonon coupled system, and derive the formal ) ] N
expression for the time-resolved resonant secondaryhereCin(t) is the time-dependent coefficient. _
emission spectrum. In Secs. lll and IV, we carry out the Time deveI(_)pments of the occupancies in eqch electronic
numerical calculation on the basis of the Trotter's formulaState are defined by the trace of the density operator
and investigate how the above-mentioned dynamical featurds=P(1) =¥ ()W (1)[] as
appear in the secondary-emission spectra.

pi()=Tr[p(t)], (2.6)
Il. MODEL HAMILTONIAN OF THREE-LEVEL SYSTEM where Ty means the diagonal sum for all over the phonon
AND EXPRESSION FOR TIME-RESOLVED states in théth electronic state.
SECONDARY-EMISSION SPECTRUM Let us derive the expression for the time-resolved spec-
To describe our system, we adopt a model Hamiltoniantrum of resonant secondary emission ada_pted to our model
(=H) (h=1): system. The general formula has been derived by Aihara and

Kotani! which is given by the four-time correlation function
of the dipole moments. In the derivation, they properly take
H= E H;+V, (2.2 into account the uncertainty relation between energy and
' 2 time by introducing explicitly the temporal forms of the
incident-photon wave packét=F,(t)] and the resolution
t function of the measurement systémF .(t)]. Applying the
aja, (2.2 .
general formula to our model system and decomposing the
correlation function into the correlated absorption and emis-
V=Ta{a2+ H.c. (2.3 sion form, we get the expression for the time-resolved spec-
trum[=S(Q,,0,t.)] as

Hi:

(92
—WHQ—W)Z]

w
8i+§

Here,aiT(ai) denotes the creatiof@nnihilation operator for

theith electronic state with an energy, where the ground o % % ut21g
state is designated biy=0, the excited states by=1 and 2. S(Qq,Q¢,te)= f,mdtsj,xd“jo dTof » do
They satisnyiaiTai =1.Q is the dimensionless coordinate of Koemo

the motion of atoms, along which the lattice relaxation of the XF(tg— 79+ 0l2)F 4(ts— 19— 0/2)
center-of-mass motion of the Franck-Condon excited state

occurs. Since the nonradiative transition is expected to occur XFe(te=ts— ul2)Fe(te—tst ul2)
only in the vicinity of the crossing point, we approximate the X Trlexp(iH 79)B(Qe, 1)

potential forQ to be harmonic with a curvatuke, neglecting
its anharmonicity as shown in Fig. 1; for instance, in con- Xexp( —iH m9)A(Q,,0)], 2.7
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where ) L
Fin( Q=S SUst)
A(Q,,0)=expiHa/2)M] exd —i(H+Q,)0]poM,

. 1 (&imtein 2
Xexp(iH a/2), (2.9 xex;{—?<;—soyr—ﬂe) }

B(Qe,u)=exp(iHu/2)M] exd —i(H+ Qg u]M, (2.13

X . .
exp(iH u/2) 2.9 Fi-20,)=23 S5

Here, (), and(}, are the mean energies of the incident- and '

the detected-photon pulses, respectively. The tigis the 1 [eym+eon 2

mean photon emission time when puttitrg 0 at the mean Xexr{ - (#—sm Qe> }

time of the incident photon pulse, is the density operator e

for the initial state of whole system. The operaté(£},, o) (2.149

andB(Q.,u) represent the absorption and the emission pro- . (i) :
cesses, respectively, ang is associated with the time inter- The functionFy, ,({2e) corresponds to the diagonal part of

val between them. The propagator exiifi,7;) represents the emission intensity, which gives the emission spectra from
. i : ) z .
the time evolution in the excited subspabé, andM, de-  theith electronic statg=S(Qe,te) |- Flon2/(Qe) is the off-

note the dipole moments of absorption and emission, respefiagonal part, which gives the interference effects in the

tively. In our model, both/1) and [2) are assumed to be €Mission associated wifft) and[2) [=S;(Qe,te) .
optically allowed, therM , and M, are written as When the excitation pulse is the white light as supposed
' 2 € above, the initial excited stafe=|¥(0))] is nothing but the

Franck-Condon state, and is given by the coherent state in
MI=M{=2 [@1m Sin(@onl + 2 |@2m Sian( @onl, the Q space. The time development pF(0)) up to t is
mn mn calculated numerically by using the real time Trotter's for-
(210 muia together with Eq(2.1),

where,Sg)’n_denotes the overlap integral of phonon wave W (1)) =exp(—iH)|¥(0))
functions, S5, = (xmlx2, i=1, 2.

Equation(2.7) is simplified by introducing the following = lim {e" H1L x @ HalILxx @~ VULIL | (),
assumptions: (i) The incident pulse is supposed to be the Lo
white pulse, that isk-,(t) = 4(t); (ii) The temporal forms of (2.15
the resolution function of measurement system have the
Gaussian profileF = (8% m)¥* exp(— &t%2), under the as- In general, the initial coherent-state oscillates along the

sumption of the minimum uncertainty between energy andotential curve and will relax down to the equilibrium point.
time; (i) The time interval during the absorption or the We are interested in the dynamical processes which occur
emission process is assumed to be sufficiently short as conefore the relaxation. In order to focus only on such a dy-
pared with the time interval discussed in this study. Therenamical process, we deal with the first period of the recipro-
fore, in Egs.(2.8) and(2.9), V can be ignored and onkl;’s  cating motion of the coherent state, that isB<2n/w. For
contribute to the time evolution of the system during thethe same reason, the damping mechanism of the center-of-
absorption or the emission; arit) We consider the case mass motion of the excited wave packet is not included in
where the temperature of the system is 0 Kpga@an be set our model.
to be|eog){ ®ogl- We can easily see that the present calculation fully takes
Under these assumptions, carrying out the time integralthe aforementioned effects; the nonadiabaticity, the

for tg, u, ando, we arrive at the desired expression of spec-quantum-mechanical interference, and the quantum-
trum[=S(Q,,t.)] as mechanical back reaction from the electronic transition to the

atomic motiont®!

S(Qeyte):4\/;JO d7o exd — 83(7o—te)?] Ill. ONE-LEVEL EXCITATION CASE
X (W (70)|B(2e)|¥ (7)), (211 As one of the typical cases, we have chosen a set of
) parameter values asy/w=—100, ¢;/w=—7, e5,/w=0,
with Bolw=98, B1/w=18, andB,/w=0. The diabatic potential

curves for these parameter values are depicted in Fig. 1. The

_ _ 0 . number of phonon states is taken into account up to 150 in
B(Qe) m,n;:m [#1m)Finn(Qe){ @il each electronic state. Such a size of phonon space is large

enough to construct the excited wave packets and to describe

(1-2) their time propagations.
+mz,n |@1m)Fmn ™ (Qel(@zal, (212 In order to make the analysis clear, at first we discuss the
hypothetical one-level excitation case where the wave packet
where is supposed to be excited only on the potential clityebut
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. FIG. 3. Time evolution of the electron occupancy in the state
0 40 80 120 160 |1, p1(t)[=1—p,(1)], for the case of the one-level excitatiqia)
Franck-Condon energy / ® T/w=0.5,(b) 1.0, (c) 1.5.

FIG. 2. The classical trajectory of center-of-mass motion of theijg| wave packet passes through the relevant potential cross-

excited wave packet on the diabatic potential curves in time anghq region. The classical trajectories for these transitions are
Franck-Condon energy space for one-level excitation case. Soli dicated by the branch poind; in Fig. 2

(dotted line corresponds to the classical trajectory on the potentia In case(a) in Fig. 3, even though a small amount of the

curve of[1) (2). transition from|1) to |2) is observed att~0.77/w and
o 1.37/w, there is no increase @fy(t), that is, no backward

the emission is allowed froni) and |2). Subsequently, on glectron transfer froni2) to |1) takes place. This behavior
the basis of the analysis of the one-level excitation case, Wgeans that the Franck-Condon state excitedljnmoves
will discuss a more actual case where the wave packets afRainly along the potential curvil) and the nonradiative
simultaneously photocreated on both potential cuféeand  transition at the crossing region is well described by the
2). Landau-Zener formul® On the other hand, in casés) and

It is useful for the subsequent discussion to visualize thegc) the backward electron transfer frof2) to |1) becomes
time evolution of the optically excited wave packet in the \amarkable in the vicinity of=1.87/w, and 2.2r/w. These
one-level excitation case. The classical motion of the centekransition points correspond to the classical trajectories indi-
of-mass of the wave packet on the diabatic potential curves iggieq byX, andXg in Fig. 2. The existence of the backward
represented by plotting the corresponding Franck-Condogansfer means that there is a component of the excited wave
energies in the energy-time domain as shown in Fig. 2. Weyacket moving mainly along the adiabatic potential curve.
call the path in the energy-time domainctssical trajec-  Tnat is, the adiabatic picture becomes more adequate as in-
tory. ) ) _ creasingT. Comparing curvesa), (b), and(c), we can see

In Fig. 2, the solid(dotted line represents the classical oy the backward electron transfer increases with increasing
trajectory for the motion of wave packet on the potentialt The set of the parameters used in calculations gives the

curve |1) (|2)). The branch points of the solid and dotted jhtermediate case where the adiabatic and diabatic processes
lines, X1, X, and Xg, indicate the change of electronic cqexist in the nonradiative transitions.

states of the classical trajectories due to the nonradiative
transitions betweefl) and|2) which occur in the potential
crossing region. Quantum mechanically, it is possible for the
wave packet to travel along both trajectories when crossing With using Egs.(2.11) and (2.19, the time-resolved
through the branch point. On the other hand, the crossings &fecondary-emission spectra are computed for various times
the same kind of linesXs and X,, represent the classical up tot=3 7/w. The results are shown in Fig. 4, where the
trajectories for the collision between the two components oparameter values are fixed 8s'=% 7/w andT/w=1.5. As
wave packet belonging to the same electronic state, whichentioned just below Eq2.14), the emission spectra consist
have been created through the nonradiative transitions in thef three components; the emissi&(Q.,ts) (i=1,2), due
crossing region during the reciprocating motion of the waveto the transition fronji ) and that ofS;5(Q.,t.) which comes
packet. from the interference between the two processes via dgtes
and|2). In Fig. 4, the componentS,, S,, andS,, are pre-
sented, respectively, i@, (b), and(c) together with the total
emissionS(Qe,te) =S+ S,+ Sy, in (d).

First, let us study the time evolution of the electron occu- Let us discuss how the dynamical behaviors of the wave
pancy in|1), p1(t)[=1—p,(t)] for the one-level excitation packet is reflected in the spectral structures of the secondary
case. The occupangy(t) computed by using Eq$2.6) and  emission with the help of the classical trajectories discussed
(2.15 is shown in Fig. 3 as a function of time up to above.
=2.57/ w for various values of; T/w=0.5(a), 1.0(b), and From Fig. 4, we can see th& Q.,t.) is mainly deter-
1.5(c). mined by the two componeng; (Q.,te) andS;5(Qe,te). IN

From the figure, we can see that the nonradiative transiaccordance with the motion of the Franck-Condon excited
tion from |1) to |2) occurs at~0.77/w and 1.37/w. These state passing through the potential curvgf the peak of
transition points correspond to the mean times when the inithe emission fronj1) shows the oscillatory behavior in the

B. Time-resolved resonant secondary-emission spectra

A. Nonradiative transition
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B /A It . time. This oscillatory structure directly reflects the backward
e — 54 \: electron transfer fronj2) to |1). The classical trajectories
2 | 1F * N 11V 3 related to the components that give this interference are in-
o N ] 3/4 dicated byXs. It should be noted that the phase of the os-
@ e S— J1/2 cillation around the poinKs is completely reverse from that
E ] 1/4 occurring in X3, which will be discussed in detail in the
ar 1r 1o subsequent section.
o 20 80 120 160 0' 4'0 8‘0 12'0 1;0 Although the emissiors,(Q.,t) has very small inten-

Q.o Q./ o sity, as shown in Eig._ @), it has o_scillator_y_s.tructures with
respect to the emission energy in the vicinity @f=90w
FIG. 4. Time-resolved emission spectra as a functiof gffor andt=2wx/w. This oscillation originates from the interfer-
T/w=1.5 in the one-level excitation cas@) the emission spectra ence in the emission associated with the two components in
from |1)[=S,(Qe,te)], (b) from [2)[=S,(Qe.te)], (c) the inter-  |2) generated through the nonradiative transitions tat

ference spectra in the emitted photon associated |djtland |2) ~0.77/ v andt~1.37/w. These two components propagate
[=S1AQe,te)], (d) the total emission intensify=S(Q,te)]. 55 * separately along the potential curve|®f Then, they collide
is set to bej 7/ w. with each other neafl.=90w andt=2m/w, whose classi-

cal trajectories are indicated ¥ in Fig. 2. Quantum me-
energy-time domain as shown in Figax This oscillation is ~ chanically, it corresponds to the interference between the two
appreciated by the classical trajectory depicted by the thickomponents in the same electronic state. The period of its
curve in Fig. 2. In Fig. &), the spectra have an oscillatory oscillation inS,;(£,te) is approximately one-half of that in
structure with respect to the emission energy in the vicinityS; (€. ,te); the reason of this is also considered in the sub-
of Q,=60w andt=1.57/w. This is considered to originate sequent section. As shown in Fig(d4 these oscillatory
from the interference in the emitted photon associated wittstructures due to the interference effects clearly appear in the
the following two components of the wave packet: one isspectral shape d&({}.,t.) at the corresponding energy-time
created in2) from |1) through the nonradiative transition that regions.

occurs att~1.3m/w, and the other is left ifl) without In order to see the effects #fon the emission spectra, we
making the transition. The classical trajectories correspondshow the total emission intensities for the casesTbb
ing to these propagating components are indicatedbin =0.5 and 1.0 in Fig. & and 8b), respectively. The other

Fig. 2. Because this interference appeared just behind thgarameters are the same as in Fig. 4. As shown in Fig. 3,
nonradiative electronic transition, it should directly reflectwhenT increases from a value of the nearly diabatic case,
the transition occurring in the potential crossing region. Asthe transition fronj1) to |2) increases due to the enlargement
shown in Fig. 4c), the same kind of interference spectrum is of the adiabatic character in the transition, and furthermore
observed in the vicinity of),= 20w andt=2 7/w. The cor-  the backward transition fror2) to |1) becomes significant.
responding classical trajectories for the propagating wavdhese effects make the spectral structures more complicated.
packet are indicated b¥,. Moreover, in Fig. 4c) the other  Especially, the oscillatory structures in the spectra become
oscillatory structure is observed in the vicinity 8f,.=60w  more clear.

andt=2x/w. This structure is due to interference in the Let us show the time-integrated total emission intensity,
emitted photon associated with the following two compo-S[(Qe)=f(2)”"”S(Qe,t)dt, in Fig. 6 for 5;'=%m/w as a
nents of wave packet: one is createdinfrom |2) through  function of Q. for the various values of; T/w=0.5 (a),

the nonradiative transition occurring &t 1.77/w, and the 1.0 (b), and 1.5(c). There are two peaks in the vicinity of
other remains in2) without making the transition at this Q.=5w and 12@, which correspond to the emission from
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FIG. 6. Time-integrated total emission spectrum as a function of
Q, for 5;'=%m/w in the one-level excitation case for various
values ofT. (a) T/w=0.5,(b) 1.0, (c) 1.5. FIG. 7. Schematic curves of the classical trajectories at the re-

gion of X3. t, denotes the emission time, and P, are the posi-
the wave packet propagating near the turning points on th&ons of the center-of-mass of the Components of the wave paCket in
potential curvg1). Near the turning point, the mean velocity the energy-time domain &, andP; andP; are that of the wave
of the center-of-mass motion of the wave packet tends t§ackets in the energy-time domain@t. T, and T, are the cor-
zero and the wave packet stays for a long time in the corre®sPonding times at the positions Bf andP;, respectively.
sponding energy region. This causes the two peaks in the . . , o
emission spectra. On the other hand, two types of oscillatorihe oscillatory behavior with respect to the emission energy
structures are clearly observed in the energy range betwedirough the interference. This is one of the dynamical effects
the peaks. They come from the interference effects whict?" the emission processes,_pecullar to level crossing systems.
occur when the wave packet passes through the potential APPIYINg these assumptions to E@.7), we can derive
crossing region during the lattice relaxation as discussed bdl'® Simple expression for the interference intensity
fore. These facts indicate the possibility that even in thd =!ini({2e te)] that holds for near the potential crossing re-
time-integral emission spectra obtained by stationary megd'on as
surements, we can observe the remarkable structures in the ~ ~ ~ ~
energy domain which reflect the dynamical behavior of the'im(Qe’te)wcf(tl)c2(t2)e MBI (T~ te) Fo(tz— te)
optically excited state. +e.c. (3.)

Emission energy

Here, C,(t) and C,(t) are the time-dependent coefficients
for the electronic statefl) and |2), respectively. They in-
Let us discuss in detail the interference effects on theclude information about the phase of the electron, together
oscillatory structures appearing in the energy-time domainvith the electron occupancy in each electronic state #t
indicated by the classical trajectories n¥ar, X5, andXgin  order to focus on the interference effects, only the phase of
Fig. 2. In general, the presence of the oscillations in théhe electronic state is taken into accountGygt) ~e'"1™ or
emission spectra with respect to the energy means that thef(t) ~€'"2"; n; andn, denote the phases of the electronic
are some characteristic times in the emission process in tigiates of the components of the wave packet. Under these
sense of the Fourier transform between energy and time. Bimplifications,|;({,te) is written as
there is any difference in the emission time associated with _
the different components of the wave packet, the emission lint( Qe te) ~ €27 "7 cogQAt(Qe))
2p§ggiznmeanyerga;\{e oscillatory structures with respect to the KE (Tt Fo(Ty—to). (3.2

Let us discuss the origin of such a time difference in our|, the above equation, the term €¢BsAt(Q,)) determines
system by simplifying the emission processes as follows. I3pe period of the oscillation; with increasinyt(€2,), the
Fig. 7, we schematically show the classical trajectories of th@eriod of the oscillation with respect 0, becomes shorter.
region ofXs; te denotes the emission time, aRd andP,  As seen in Fig. 2At(€,) nearXg is larger than these near
are the positions of the components of wave packet in thg(3 and Xs. This causes the period of the oscillation in
energy-time domain at,. The resolution function of the S,(Qe.te) at Xg to be approximately one-half of that in
measurement system is schematically disp!ay_ed on the timglz(Qe,te) at X5 and Xs. The Fo(T;—to)Fe(t,—to) term
and energy axes. When we observe the emission with energystermines the energy region of the oscillation through the
Q, atte, the photon will be emitted from the energy-time \\iqth of 1/8,. The term ofe' ™2~ "7 in Eq. (3.2) determines

domainP; andP;, because the wave packet can propagatenhe phase of the oscillatory structure in the interference emis-
from P,(P,) to P(P3) within the time interval of5, . This  sjon spectra.

process brings about the two characteristic times in the emis- |n order to see the phase of the electronic state of the
sion processt; andt,; heret; andt, are the times when the propagating wave packet, let us consider the phase change
components of wave packets reach the posit®handP,,  due to the nonradiative transition occurring in the potential
respectively. Under these arguments, we define the time dikerossing region. In Fig. 8, the two diabatic potential curves,
ference in the emitted photdr= At(Q)] by the time inter-  |1) and |2), are depicted schematically by solid lines; they
val betweenP; and P, as shown in Fig. 7At(Q,) causes cross each other &,. When the interlevel interaction is

C. Interference effects
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FIG. 8. Schematic curves for diabatic potential energiefl)of
and |2) (solid lineg, and for adiabatic potential energies [df) ]
+|2) and|1)—12) (dotted line. bl : L
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L

taken into account in the adiabatic approximation, the diaba-

tic potentials are split into the adiabatic potential curves with FIG. 9. The phase of the electronic state of propagating compo-

the energy gap of |2-| at Qo, which are represented by pents of the wave packet on the classical trajectofieis. set posi-
dotted lines. WhefT is a negativepositive) value, the elec-  iive in our numerical calculations.

tronic state of the lower adiabatic curve is constructed by

[1)+]2)(]1)—|2)), and the upper curve bjyl)—|2)(]1) IV. TWO-LEVEL EXCITATION CASE

+12)). In this situation, we consider the case where the

wave packet approaches the crossing region from the left Let us proceed to the two-level excitation case where both
side of the potential offl). If the wave packet passes through |1) and|2) are excited simultaneously frof@) by the white

the crossing region without transition, of course, the phase dfght pulse. We adopt the three-level system with the same
the electronic state should be kept unchanged. Howeveparameter values as in the one-level excitation case.

when the transition fronjl) to |2) occurs, the transferred The time evolution of the electron occupancy |,
components of wave packet may pass through the crossing(t), is shown in Fig. 10 as a function of time, whe@,
region being affected by the upper curve of the adiabati¢b), and(c) correspond to the cases ®fw=0.5, 1.0, and
potential,|1)—|2), and then it tends to the diabatic cuf@e 1.5, respectivelys; ! is set to be} 7/ w. Observing the fig-

In this case, the phase of the st{2eof the adiabatic poten- ure, we can see following facts. The Franck-Condon states
tial curve|1)—|2) is maintained even in the region far from created simultaneously in both) and|2) by the optical ex-

the crossing point. Therefore, the electronic state of the waveitation propagate almost independently along the respective
packet has the phase shift @5 due to the nonradiative potential curves except the potential crossing region. In the
transition. On the other hand, when the wave packet aperossing region, reflecting the nonradiative transition from
proaches the crossing region from the right sid¢lpfthere  |1) to |2) for the photoexcited component @), p,(t) de-

is no such phase shift in the transition frgthto |2), because creases in the vicinity df=0.77/w and 1.3r/w. This is the

the relevant adiabatic potential curve is the lower dd¢, same as discussed in the one-level excitation case. On the
+12). other handp,(t) increases in the vicinity af=0.47/» and

Let us return to the three-level system, and determine th@.67/w. These transition points correspond to the times
phase of the propagating wave packet based on the abowahen the wave packet excited [B) passes through the po-
mentioned argument. In Fig. 9, we write the values of thetential crossing region. The transition probability of the latter
electronic phase of each wave packet propagating on thease is smaller as compared with that of the former case.
classical trajectories depicted in Fig. 2. In this figure, itThis is because, at the crossing region, the mean velocity of
should be noted that in our numerical calculatibris set the wave packet optically excited |B) is larger than that in
positive.

From this figure, we can see that the components of wave
packet propagating in the regions ¥f and Xg have the
same phase, and those Xy and X5 have different phases.
As discussed in Fig. (8), the oscillatory structures of the
interference occurring in the regions ¥§ and Xs have the
inverse phases of each other, becael§& "V is equal to
+1 and—1 in the regions oiX; and Xz, respectively.

As seen above, the oscillatory structures of the emission
spectra due to the interference effects appearingsinXs,
and Xg give information about the dynamical nature of the
nonadiabatic transitions in the excited state. A detailed
analysis of the emission from the wave packet just after FIG. 10. Time evolution of the electron occupancy in the state
and/or before the nonadiabatic transition are subjects for B), p,(t) [=1— p,(t)], for the case of the two-level excitatiot®)
future study. T/w=0.5,(b) 1.0, (c) 1.5.

0.6

ELECTRON OCCUPANCY
in |1>
o
N

TIME/ %t /o
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AN AL DAEARSARARRRERNEN confirmed that these structures are observed evan=i0.

- @: |1> emission |} (): [2> emission | Therefore, they are identified to come from the interference
—_—— ] : 19/4 in the emission associated with the two componentflin
<N ——‘——//\L/\L/\ a ﬁ 2 and |2) whose classical trajectories have the same phase
e A — cross at corresponding points in the energy-time domain. The
% 3 e — L latter oscillatory structures have completely inverted phases
B = e —— from each other and their periods become long as decreasing
Z \% 5/4 s Q.. Referring the energy-time regions of the oscillatory

. 1t 11 %  structures in these spectra, we can conclude that the origin of
% 32 —« the oscillation is the interference in the emitted photon asso-
2~ d 11/2 ciated with the following two components of the wave
Z aN - W packet: one is created id) (|2)) from |2) (|1)) through the
E d N\ i 1o nonradiative transition that occurs &t 1.67/w (2.27/ w),
e TN and the other is left if2) (|1)) without making the transition.
NP B NS The process of the interference is essentially the same as
(©):  Interference (@: Total - emission those occurring inXs and X3 for the one-level excitation
i L WW/H/““—/J\\\“AMN\& 9/4 case discussed in Sec. lll C. In this case, however, the rel-
ol i —— M 2 evant wave packets originate from the Franck-Condon state
E NS ——— % 7/4 created in2) by the excitation pulse.
e s ] S\ — 3/2 In the total emission spectra shown in Fig(d)1 the os-
E N — §/\«_— cillatory structures discussed above are clearly observed in
Z \ 54 & addition to the peak structures coming from the emissions,
L HE 11 ® 5 andS,. From the analysis of the spectral structures, we
% N 3/4 *  are able to obtain detailed information about the dynamical
7B T S ~——— 112 processes occurring during the relaxation.
2 VIV ——/\V‘M 1/4
E - 1t /\A 0 V. CONCLUSIONS
o T TToo T 200 0 o0 200

Using the model Hamiltonian together with the real-time
Qe/w Qe/ o Trotter's formula, we have studied time-resolved resonant
secondary emission in the three-level electron-phonon
coupled system, wherein the radiative and the nonradiative
transitions are competitive each other. Analyzing the time-
resolved secondary-emission spectra consisting of three
|1) as seen in Fig. 1. This is a well-known fact given by theCOmpoNentss, , S, an(.js.lz’ we ha_u_/e found that t_he lattice
Landau-Zener formul% relaxatlpn, the npnradlatlve transition, a_nd. tht_a mterferenc_e
The time-resolved secondary-emission spectra for th ffects in the excited states bring about distinctive features in

two-level excitation case are shown in Fig. 11 as a functior] '€ _EMission spectra.

LA Finally, let us briefly discuss the processes of the optical
of Q. and time;(a), (b), (c), and(d) are the components of L X .
S,, S,, Si, andsS, respectivelyT and 5(;1 are set to be excitation. In this work, we have studied the case where the

150 and t /. respectivel incident pulse is a white light. As a consequence, the wave
' Com ;r;; “’S in FFi) 11(d)y.and that for the one-level ex- packet can travel, keeping its coherency unchanged just after
citation F():asegin Ei gd) we can see that both spectra h‘E“/ephotoexcitation. This is the essential factor to give interfer-
almost the sameg.stru,ctures in the regifi< 15pow and ence effects in the time-resolved emission spectra. If the ef-
T . T . fects of the finite width of the incident pulse is taken int
0.57/w<t<1.57/w. This is because, in this time region ects of the e width of the incident pulse is take N

th t of th ket opticall ited2 ' account in the optical excitation processes, the initial state
€ component of the wave packet oplically excite n excited by the incident pulse is not the Franck-Condon state
moves along the potential curve where it cannot make th

transition to|0) emitting the photon as seen in Fig. 1, and gnd the components of the propagating wave packets relax

h v the € iton f the phot ited own during the optical excitation. This will bring about new
nence only he transition irom the photoexcited component, e yg concerning the correlation between the photoexci-
in |1) takes part in the emission processes.

; L . . tation and the dynamical processes in the excited state,
In the interference component of the emission in Fig. y P

11(c), two different types of oscillatory structures appear;whICh will be studied in a future work.
one is observed in the region 61,>130w at t=37/w,
imlw, and 7w, and the other in the vicinity of),
=100w att=%m/w, 37l w. The former types of oscillation We would like to thank Professor Masaki Aihara for pro-
have not appeared in the one-level excitation case. We hawéding us with valuable information.

FIG. 11. Time-resolved emission spectra as a functiofl ofor
T/w=1.5 in the two-level excitation casé), (b), (c), and(d) are
the same as Fig. 43, ! is set to bef 7/ w.
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