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Time-resolved secondary emission from three-level electron-phonon coupled systems:
Numerical study of radiative and nonradiative transitions

Masato Suzuki and Takeshi Iida
Department of Physics, Faculty of Science, Osaka City University, Sumiyosi-ku, Osaka, 558, Japan

~Received 5 August 1996; revised manuscript received 9 May 1997!

The spectral structures of the transient resonant secondary emission are investigated in a three-level electron-
phonon coupled system in order to clarify dynamical properties of the nonradiative transitions occurring in the
crossing region of the potential-energy curves. The time-resolved resonant secondary-emission spectra are
calculated for an instantaneous excitation pulse; in the calculation, we take into account the uncertainty relation
between energy and time for emission processes by introducing explicitly a temporal form of the resolution
function of the measurement system. The time evolution of the excited state is solved numerically by using the
real-time Trotter’s formula, without assuming anya priori trajectories. We study how the lattice relaxation and
the nonradiative transition contribute to the processes of secondary emissions by analyzing the temporal
behaviors of the emission spectra. It is found that, in addition to the peaks due to the radiative transitions from
the excited states during the lattice relaxation, the oscillatory structures appear in the spectra in the energy
domain, which is due to the quantum-mechanical interference effects of the excited states in the potential
crossing region.@S0163-1829~98!09301-1#
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I. INTRODUCTION

Recent development of measurement techniques using
femtosecond laser has made it possible to investigate var
kinds of ultrafast phenomena which occur in condensed m
ter. The transient resonant secondary emission is one o
typical phenomena. The time-resolved spectroscopy of
resonant secondary emission provides us with informatio
obtain a deeper understanding of relaxation and dynam
processes in the optically excited states.1–4 In the present
work, we study the transient resonant secondary emissio
a three-level electron-phonon coupled system to clarify h
the characteristic features of the dynamical processes w
occur in the level-crossing region are reflected in the spec
structures of the transient secondary emission. The dyna
cal aspects of the nonradiative transition in a similar sys
have been studied by Nasu and Kayanuma.5–7 They have
calculated the temporal behavior of the nonradiative tra
tion and the time-integrated intensity of the secondary em
sion, and also clarified the conditions under which t
Landau-Zener formula is valid.

In localized electron-phonon coupled systems such as
purity or defect states in solids, the excited state of the
calized electron may interact with other excited states wh
belong to a different configuration of atoms in the localiz
region. The interaction causes a nonradiative transition fr
one electronic state to another in the crossing region of
respective potential curves with the time interval as shor
the lattice relaxation time; this transition is called the non
diabatic transition with the emphasis on the dynamical
pects of the nonradiative transitions. The nonadiabatic tr
sition is one of fundamental mechanisms which govern
state or structural change of a system in various fields
physics and chemistry. In condensed matter, the most typ
examples are the luminescence quenching of the F cen
and the polarization correlation between the absorption
570163-1829/98/57~1!/370~9!/$15.00
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the emission in Tl-like centers.5–7 In molecular systems
there are various types of examples; photodissociation, p
toisomerism, chemical reactions, the elimination of m
ecules adsorbed on a solid surface, and so forth.8 The essen-
tial underlying physics in these phenomena is the same
that in our three-level electron-phonon coupled system.

Let us see the schematic feature of the potential ene
curves of the three-level electron-phonon coupled syste
One of the typical cases is shown in Fig. 1 as a function o
configuration coordinate ([Q). Q represents a collective
motion of atoms. In this figure,u0& denotes the initial ground
state.u1& and u2& are the excited states. We call these pote

FIG. 1. Diabatic potential curves of the three-level system a
function of a configuration coordinateQ for the parameter values
«0 /v52100, «1 /v527, «2 /v50, b0 /v598, b1 /v518, and
b2 /v50. u0& denotes the initial ground state.u1& and u2& are the
photoexcited states fromu0&.
370 © 1998 The American Physical Society
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57 371TIME-RESOLVED SECONDARY EMISSION FROM . . .
tials diabatic potential curves. They interact with each othe
in the vicinity of the potential crossing point. Under the lim
of the adiabatic approximation forQ, they are split into two
curves which are commonly calledadiabatic potential
curves.9 If the Franck-Condon state is created inu1& by the
optical excitation fromu0&, it will propagate along the poten
tial curve ofu1&. Then, it may pass through the crossing po
of the potential curvesu1& and u2&. Around this point, the
nonradiative electronic transition occurs and the compon
of excited stateu2& is constructed during the lattice relax
ation.

The essential features of such dynamical processes oc
ring in the potential crossing systems are summarized as
lows. ~1! Because the change in the electronic states oc
during the motion of atoms described byQ, the nonadiaba-
ticity plays an important role in every step of the transitio
~2! As discussed above, when the Franck-Condon exc
state passes through the potential crossing region before
transition to the ground state emitting the photon, the diff
ent components of the excited state are created on the p
tial curves due to the nonradiative transition. This brin
about the quantum-mechanical interference effects betw
these components.~3! Because the slopes of the tangents
these potentials are different from each other at the cros
region, the electronic transition is accompanied by
changes in the motion of atoms. Therefore, a back reac
from the electronic transition to the atomic motion is also
essential feature.

In Sec. II, we introduce a model Hamiltonian of the thre
level electron-phonon coupled system, and derive the for
expression for the time-resolved resonant second
emission spectrum. In Secs. III and IV, we carry out t
numerical calculation on the basis of the Trotter’s formu
and investigate how the above-mentioned dynamical feat
appear in the secondary-emission spectra.

II. MODEL HAMILTONIAN OF THREE-LEVEL SYSTEM
AND EXPRESSION FOR TIME-RESOLVED

SECONDARY-EMISSION SPECTRUM

To describe our system, we adopt a model Hamilton
([H) (\51):

H5 (
i 50,1,2

Hi1V, ~2.1!

Hi5F« i1
v

2 H 2
]2

]Q2 1~Q2A2b i /v!2J Gai
†ai , ~2.2!

V5Ta1
†a21H.c. ~2.3!

Here,ai
†(ai) denotes the creation~annihilation! operator for

the i th electronic state with an energy« i , where the ground
state is designated byi 50, the excited states byi 51 and 2.
They satisfy( iai

†ai51. Q is the dimensionless coordinate
the motion of atoms, along which the lattice relaxation of t
center-of-mass motion of the Franck-Condon excited s
occurs. Since the nonradiative transition is expected to oc
only in the vicinity of the crossing point, we approximate t
potential forQ to be harmonic with a curvaturev, neglecting
its anharmonicity as shown in Fig. 1; for instance, in co
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densed matter the typical value of the frequencyv is of the
order of a few hundred cm21. V is the interaction Hamil-
tonian, wherein the nonradiative electronic transition is
sumed to occur only in the excited states.T is the resonance
transfer integral of the electron between two excited sta
Strictly speaking,T may depend onQ. However, in this
study, its dependence is not taken into account. In the cas
T having the same order of magnitude asv, the characteristic
time of the nonradiative transition becomes comparable w
the lattice relaxation time, and then the interaction betwe
the dynamical motions of electron and lattice plays an ess
tial role. The parametersb i give the shift of the equilibrium
position of Q as shown in Fig. 1, which comes from th
electron-lattice interactions. This effect brings about t
change of the equilibrium configuration of atoms when t
radiative or the nonradiative transition of electrons tak
place.

The Schrodinger equation

Hi uw in&5« inuw in&, ~2.4!

can easily be solved; the vibronic stateuw in& with the eigen-
value « in is given by the productu i &uxn

i &, uxn
i & being the

nth-phonon state appropriate to thei th electronic stateu i &.
The total wave function@[uC(t)&] is constructed by the
linear combination of these vibronic states as follows:

uC~ t !&5(
i ,n

Cin~ t !uw in&, ~2.5!

whereCin(t) is the time-dependent coefficient.
Time developments of the occupancies in each electro

state are defined by the trace of the density operat
@[r(t)5uC(t)&^C(t)u# as

r i~ t !5Tri@r~ t !#, ~2.6!

where Tri means the diagonal sum for all over the phon
states in thei th electronic state.

Let us derive the expression for the time-resolved sp
trum of resonant secondary emission adapted to our m
system. The general formula has been derived by Aihara
Kotani,1 which is given by the four-time correlation functio
of the dipole moments. In the derivation, they properly ta
into account the uncertainty relation between energy
time by introducing explicitly the temporal forms of th
incident-photon wave packet@[Fa(t)# and the resolution
function of the measurement system@[Fe(t)#. Applying the
general formula to our model system and decomposing
correlation function into the correlated absorption and em
sion form, we get the expression for the time-resolved sp
trum @[S(Va ,Ve ,te)# as

S~Va ,Ve ,te!5E
2`

`

dtsE
2`

`

dmE
0

`

dt0E
m22t0

m12t0
ds

3Fa~ ts2t01s/2!Fa~ ts2t02s/2!

3Fe~ te2ts2m/2!Fe~ te2ts1m/2!

3Tr@exp~ iH t0!B~Ve ,m!

3exp~2 iH t0!A~Va ,s!#, ~2.7!
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where

A~Va ,s![exp~ iHs/2!Ma
† exp@2 i ~H1Va!s#r0Ma

3exp~ iHs/2!, ~2.8!

B~Ve ,m![exp~ iHm/2!Me
† exp@2 i ~H1Ve!m#Me

3exp~ iHm/2!. ~2.9!

Here,Va andVe are the mean energies of the incident- a
the detected-photon pulses, respectively. The timete is the
mean photon emission time when puttingt50 at the mean
time of the incident photon pulse.r0 is the density operato
for the initial state of whole system. The operatorsA(Va ,s)
andB(Ve ,m) represent the absorption and the emission p
cesses, respectively, andt0 is associated with the time inter
val between them. The propagator exp(2iHit0) represents
the time evolution in the excited subspace.Ma and Me de-
note the dipole moments of absorption and emission, res
tively. In our model, bothu1& and u2& are assumed to b
optically allowed, thenMa andMe are written as

Ma
†5Me

†5(
m,n

uw1m&Sm,n
~1! ^w0nu1(

m,n
uw2m&Sm,n

~2! ^w0nu,

~2.10!

where, Sm,n
( i ) denotes the overlap integral of phonon wa

functions,Sm,n
( i ) 5^xm

i uxn
0&, i 51, 2.

Equation~2.7! is simplified by introducing the following
assumptions: ~i! The incident pulse is supposed to be t
white pulse, that is,Fa(t)5d(t); ~ii ! The temporal forms of
the resolution function of measurement system have
Gaussian profile,Fe5(de

2/p)1/4 exp(2de
2t2/2), under the as-

sumption of the minimum uncertainty between energy a
time; ~iii ! The time interval during the absorption or th
emission process is assumed to be sufficiently short as c
pared with the time interval discussed in this study. The
fore, in Eqs.~2.8! and~2.9!, V can be ignored and onlyHi ’s
contribute to the time evolution of the system during t
absorption or the emission; and~iv! We consider the cas
where the temperature of the system is 0 K, sor0 can be set
to be uw00&^w00u.

Under these assumptions, carrying out the time integ
for ts , m, ands, we arrive at the desired expression of spe
trum @[S(Ve ,te)# as

S~Ve ,te!54ApE
0

`

dt0 exp@2de
2~t02te!

2#

3^C~t0!uB~Ve!uC~t0!&, ~2.11!

with

B~Ve!5 (
m,n,i 51,2

uw i ,m&Fm,n
~ i ! ~Ve!^w i ,nu

1(
m,n

uw1,m&Fm,n
~122!~Ve!^w2,nu, ~2.12!

where
-

c-

e

d

m-
-

ls
-

Fm,n
~ i ! ~Ve!5(

r
Sm,r

~ i ! Sn,r
~ i !

3expF2
1

de
2 S « i ,m1« i ,n

2
2«0,r2VeD 2G ,

~2.13!

Fm,n
~122!~Ve!52(

r
Sm,r

~1! Sn,r
~2!

3expF2
1

de
2 S «1,m1«2,n

2
2«0,r2VeD 2G .

~2.14!

The functionFm,n
( i ) (Ve) corresponds to the diagonal part

the emission intensity, which gives the emission spectra fr
the i th electronic state@[Si(Ve ,te)#. Fm,n

(122)(Ve) is the off-
diagonal part, which gives the interference effects in
emission associated withu1& and u2& @[S12(Ve ,te)#.

When the excitation pulse is the white light as suppos
above, the initial excited state@[uC(0)&] is nothing but the
Franck-Condon state, and is given by the coherent stat
the Q space. The time development ofuC~0!& up to t is
calculated numerically by using the real time Trotter’s fo
mula together with Eq.~2.1!,

uC~ t !&5exp~2 iHt !uC~0!&

5 lim
L→`

$e2 iH 1t/L3e2 iH 2t/L3e2 iVt/L%LuC~0!&.

~2.15!

In general, the initial coherent-state oscillates along
potential curve and will relax down to the equilibrium poin
We are interested in the dynamical processes which oc
before the relaxation. In order to focus only on such a d
namical process, we deal with the first period of the recip
cating motion of the coherent state, that is 0<t<2p/v. For
the same reason, the damping mechanism of the cente
mass motion of the excited wave packet is not included
our model.

We can easily see that the present calculation fully ta
the aforementioned effects; the nonadiabaticity,
quantum-mechanical interference, and the quantu
mechanical back reaction from the electronic transition to
atomic motion.10,11

III. ONE-LEVEL EXCITATION CASE

As one of the typical cases, we have chosen a se
parameter values as«0 /v52100, «1 /v527, «2 /v50,
b0 /v598, b1 /v518, andb2 /v50. The diabatic potentia
curves for these parameter values are depicted in Fig. 1.
number of phonon states is taken into account up to 150
each electronic state. Such a size of phonon space is l
enough to construct the excited wave packets and to desc
their time propagations.

In order to make the analysis clear, at first we discuss
hypothetical one-level excitation case where the wave pa
is supposed to be excited only on the potential curveu1&, but
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57 373TIME-RESOLVED SECONDARY EMISSION FROM . . .
the emission is allowed fromu1& and u2&. Subsequently, on
the basis of the analysis of the one-level excitation case
will discuss a more actual case where the wave packets
simultaneously photocreated on both potential curvesu1& and
u2&.

It is useful for the subsequent discussion to visualize
time evolution of the optically excited wave packet in t
one-level excitation case. The classical motion of the cen
of-mass of the wave packet on the diabatic potential curve
represented by plotting the corresponding Franck-Con
energies in the energy-time domain as shown in Fig. 2.
call the path in the energy-time domain aclassical trajec-
tory.

In Fig. 2, the solid~dotted! line represents the classic
trajectory for the motion of wave packet on the potent
curve u1& ~u2&!. The branch points of the solid and dotte
lines, X1 , X2 , and X8 , indicate the change of electron
states of the classical trajectories due to the nonradia
transitions betweenu1& and u2& which occur in the potentia
crossing region. Quantum mechanically, it is possible for
wave packet to travel along both trajectories when cross
through the branch point. On the other hand, the crossing
the same kind of lines,X6 and X7 , represent the classica
trajectories for the collision between the two components
wave packet belonging to the same electronic state, wh
have been created through the nonradiative transitions in
crossing region during the reciprocating motion of the wa
packet.

A. Nonradiative transition

First, let us study the time evolution of the electron occ
pancy in u1&, r1(t)@512r2(t)# for the one-level excitation
case. The occupancyr1(t) computed by using Eqs.~2.6! and
~2.15! is shown in Fig. 3 as a function of time up tot
52.5p/v for various values ofT; T/v50.5 ~a!, 1.0 ~b!, and
1.5 ~c!.

From the figure, we can see that the nonradiative tra
tion from u1& to u2& occurs att;0.7p/v and 1.3p/v. These
transition points correspond to the mean times when the

FIG. 2. The classical trajectory of center-of-mass motion of
excited wave packet on the diabatic potential curves in time
Franck-Condon energy space for one-level excitation case. S
~dotted! line corresponds to the classical trajectory on the poten
curve of u1& ~u2&!.
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tial wave packet passes through the relevant potential cr
ing region. The classical trajectories for these transitions
indicated by the branch pointsX1 in Fig. 2.

In case~a! in Fig. 3, even though a small amount of th
transition from u1& to u2& is observed att;0.7p/v and
1.3p/v, there is no increase ofr1(t), that is, no backward
electron transfer fromu2& to u1& takes place. This behavio
means that the Franck-Condon state excited inu1& moves
mainly along the potential curveu1& and the nonradiative
transition at the crossing region is well described by
Landau-Zener formula.12 On the other hand, in cases~b! and
~c! the backward electron transfer fromu2& to u1& becomes
remarkable in the vicinity oft51.8p/v, and 2.2p/v. These
transition points correspond to the classical trajectories in
cated byX2 andX8 in Fig. 2. The existence of the backwar
transfer means that there is a component of the excited w
packet moving mainly along the adiabatic potential cur
That is, the adiabatic picture becomes more adequate a
creasingT. Comparing curves~a!, ~b!, and ~c!, we can see
how the backward electron transfer increases with increa
T. The set of the parameters used in calculations gives
intermediate case where the adiabatic and diabatic proce
coexist in the nonradiative transitions.

B. Time-resolved resonant secondary-emission spectra

With using Eqs. ~2.11! and ~2.15!, the time-resolved
secondary-emission spectra are computed for various ti
up to t5 9

4 p/v. The results are shown in Fig. 4, where th
parameter values are fixed asde

215 1
4 p/v andT/v51.5. As

mentioned just below Eq.~2.14!, the emission spectra consi
of three components; the emissionSi(Ve ,te) ( i 51,2), due
to the transition fromu i & and that ofS12(Ve ,te) which comes
from the interference between the two processes via stateu1&
and u2&. In Fig. 4, the componentsS1 , S2 , andS12 are pre-
sented, respectively, in~a!, ~b!, and~c! together with the total
emissionS(Ve ,te)5S11S21S12 in ~d!.

Let us discuss how the dynamical behaviors of the wa
packet is reflected in the spectral structures of the secon
emission with the help of the classical trajectories discus
above.

From Fig. 4, we can see thatS(Ve ,te) is mainly deter-
mined by the two componentsS1(Ve ,te) andS12(Ve ,te). In
accordance with the motion of the Franck-Condon exci
state passing through the potential curve ofu1&, the peak of
the emission fromu1& shows the oscillatory behavior in th

e
d
lid
l

FIG. 3. Time evolution of the electron occupancy in the st
u1&, r1(t)@512r2(t)#, for the case of the one-level excitation.~a!
T/v50.5, ~b! 1.0, ~c! 1.5.
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374 57MASATO SUZUKI AND TAKESHI IIDA
energy-time domain as shown in Fig. 4~a!. This oscillation is
appreciated by the classical trajectory depicted by the th
curve in Fig. 2. In Fig. 4~c!, the spectra have an oscillator
structure with respect to the emission energy in the vicin
of Ve560v and t51.5p/v. This is considered to originat
from the interference in the emitted photon associated w
the following two components of the wave packet: one
created inu2& from u1& through the nonradiative transition th
occurs att;1.3p/v, and the other is left inu1& without
making the transition. The classical trajectories correspo
ing to these propagating components are indicated byX3 in
Fig. 2. Because this interference appeared just behind
nonradiative electronic transition, it should directly refle
the transition occurring in the potential crossing region.
shown in Fig. 4~c!, the same kind of interference spectrum
observed in the vicinity ofVe520v andt5 3

4 p/v. The cor-
responding classical trajectories for the propagating w
packet are indicated byX4 . Moreover, in Fig. 4~c! the other
oscillatory structure is observed in the vicinity ofVe560v
and t52p/v. This structure is due to interference in th
emitted photon associated with the following two comp
nents of wave packet: one is created inu1& from u2& through
the nonradiative transition occurring att;1.7p/v, and the
other remains inu2& without making the transition at thi

FIG. 4. Time-resolved emission spectra as a function ofVe for
T/v51.5 in the one-level excitation case.~a! the emission spectra
from u1&@[S1(Ve ,te)#, ~b! from u2&@[S2(Ve ,te)#, ~c! the inter-
ference spectra in the emitted photon associated withu1& and u2&
@[S12(Ve ,te)#, ~d! the total emission intensity@[S(Ve ,te)#. de

21

is set to be1
4 p/v.
k

y

h
s

d-

he
t
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time. This oscillatory structure directly reflects the backwa
electron transfer fromu2& to u1&. The classical trajectories
related to the components that give this interference are
dicated byX5 . It should be noted that the phase of the o
cillation around the pointX5 is completely reverse from tha
occurring in X3 , which will be discussed in detail in the
subsequent section.

Although the emissionS2(Ve ,te) has very small inten-
sity, as shown in Fig. 4~b!, it has oscillatory structures with
respect to the emission energy in the vicinity ofVe590v
and t52p/v. This oscillation originates from the interfer
ence in the emission associated with the two component
u2& generated through the nonradiative transitions at
;0.7p/v andt;1.3p/v. These two components propaga
separately along the potential curve ofu2&. Then, they collide
with each other nearVe590v and t52p/v, whose classi-
cal trajectories are indicated byX6 in Fig. 2. Quantum me-
chanically, it corresponds to the interference between the
components in the same electronic state. The period o
oscillation inS2(Ve ,te) is approximately one-half of that in
S12(Ve ,te); the reason of this is also considered in the su
sequent section. As shown in Fig. 4~d!, these oscillatory
structures due to the interference effects clearly appear in
spectral shape ofS(Ve ,te) at the corresponding energy-tim
regions.

In order to see the effects ofT on the emission spectra, w
show the total emission intensities for the cases ofT/v
50.5 and 1.0 in Fig. 5~a! and 5~b!, respectively. The othe
parameters are the same as in Fig. 4. As shown in Fig
when T increases from a value of the nearly diabatic ca
the transition fromu1& to u2& increases due to the enlargeme
of the adiabatic character in the transition, and furtherm
the backward transition fromu2& to u1& becomes significant
These effects make the spectral structures more complica
Especially, the oscillatory structures in the spectra beco
more clear.

Let us show the time-integrated total emission intens
St(Ve)5*0

2p/vS(Ve ,t)dt, in Fig. 6 for de
215 1

4 p/v as a
function of Ve for the various values ofT; T/v50.5 ~a!,
1.0 ~b!, and 1.5~c!. There are two peaks in the vicinity o
Ve55v and 120v, which correspond to the emission from

FIG. 5. Time-resolved total emission spectra as a function ofVe

for de
215

1
4 p/v in the one-level excitation case.~a! T/v50.5, ~b!

1.0.
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the wave packet propagating near the turning points on
potential curveu1&. Near the turning point, the mean veloci
of the center-of-mass motion of the wave packet tends
zero and the wave packet stays for a long time in the co
sponding energy region. This causes the two peaks in
emission spectra. On the other hand, two types of oscilla
structures are clearly observed in the energy range betw
the peaks. They come from the interference effects wh
occur when the wave packet passes through the pote
crossing region during the lattice relaxation as discussed
fore. These facts indicate the possibility that even in
time-integral emission spectra obtained by stationary m
surements, we can observe the remarkable structures in
energy domain which reflect the dynamical behavior of
optically excited state.

C. Interference effects

Let us discuss in detail the interference effects on
oscillatory structures appearing in the energy-time dom
indicated by the classical trajectories nearX3 , X5 , andX6 in
Fig. 2. In general, the presence of the oscillations in
emission spectra with respect to the energy means that t
are some characteristic times in the emission process in
sense of the Fourier transform between energy and tim
there is any difference in the emission time associated w
the different components of the wave packet, the emiss
spectra may have oscillatory structures with respect to
emission energy.

Let us discuss the origin of such a time difference in o
system by simplifying the emission processes as follows
Fig. 7, we schematically show the classical trajectories of
region ofX3 ; te denotes the emission time, andP1 and P2
are the positions of the components of wave packet in
energy-time domain atte . The resolution function of the
measurement system is schematically displayed on the
and energy axes. When we observe the emission with en
Ve at te , the photon will be emitted from the energy-tim
domainP18 andP28 , because the wave packet can propag
from P1(P2) to P18(P28) within the time interval ofde

21. This
process brings about the two characteristic times in the e
sion process,t̃1 and t̃2 ; heret̃1 and t̃2 are the times when the
components of wave packets reach the positionsP18 andP28 ,
respectively. Under these arguments, we define the time
ference in the emitted photon@[Dt(Ve)# by the time inter-
val betweenP18 and P28 as shown in Fig. 7.Dt(Ve) causes

FIG. 6. Time-integrated total emission spectrum as a function
Ve for de

215
1
4 p/v in the one-level excitation case for variou

values ofT. ~a! T/v50.5, ~b! 1.0, ~c! 1.5.
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the oscillatory behavior with respect to the emission ene
through the interference. This is one of the dynamical effe
on the emission processes, peculiar to level crossing syst

Applying these assumptions to Eq.~2.7!, we can derive
the simple expression for the interference intensity
@[I int(Ve ,te)# that holds for near the potential crossing r
gion as

I int~Ve ,te!;C1* ~ t̃1!C2~ t̃2!e2 iVeDt~Ve!Fe~ t̃12te!Fe~ t̃22te!

1c.c. ~3.1!

Here,C1( t̃ ) and C2( t̃ ) are the time-dependent coefficien
for the electronic statesu1& and u2&, respectively. They in-
clude information about the phase of the electron, toget
with the electron occupancy in each electronic state att̃. In
order to focus on the interference effects, only the phase
the electronic state is taken into account asC1(t);ein1p or
C2(t);ein2p; n1 andn2 denote the phases of the electron
states of the components of the wave packet. Under th
simplifications,I int(Ve ,te) is written as

I int~Ve ,te!;ei ~n22n1!p cos„VeDt~Ve!…

3Fe~ t̃12te!Fe~ t̃22te!. ~3.2!

In the above equation, the term cos„VeDt(Ve)… determines
the period of the oscillation; with increasingDt(Ve), the
period of the oscillation with respect toVe becomes shorter
As seen in Fig. 2,Dt(Ve) nearX6 is larger than these nea
X3 and X5 . This causes the period of the oscillation
S2(Ve ,te) at X6 to be approximately one-half of that i
S12(Ve ,te) at X3 and X5 . The Fe( t̃12te)Fe( t̃22te) term
determines the energy region of the oscillation through
width of 1/de . The term ofei (n22n1)p in Eq. ~3.2! determines
the phase of the oscillatory structure in the interference em
sion spectra.

In order to see the phase of the electronic state of
propagating wave packet, let us consider the phase cha
due to the nonradiative transition occurring in the poten
crossing region. In Fig. 8, the two diabatic potential curv
u1& and u2&, are depicted schematically by solid lines; th
cross each other atQ0 . When the interlevel interactionT is

f

FIG. 7. Schematic curves of the classical trajectories at the
gion of X3 . te denotes the emission time.P1 and P2 are the posi-
tions of the center-of-mass of the components of the wave pack
the energy-time domain atte , andP18 andP28 are that of the wave
packets in the energy-time domain atVe . t̃ 1 and t̃ 2 are the cor-
responding times at the positions ofP18 andP28 , respectively.
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taken into account in the adiabatic approximation, the dia
tic potentials are split into the adiabatic potential curves w
the energy gap of 2uTu at Q0 , which are represented b
dotted lines. WhenT is a negative~positive! value, the elec-
tronic state of the lower adiabatic curve is constructed
u1&1u2&(u1&2u2&), and the upper curve byu1&2u2&(u1&
1u2&). In this situation, we consider the case where
wave packet approaches the crossing region from the
side of the potential ofu1&. If the wave packet passes throug
the crossing region without transition, of course, the phas
the electronic state should be kept unchanged. Howe
when the transition fromu1& to u2& occurs, the transferred
components of wave packet may pass through the cros
region being affected by the upper curve of the adiab
potential,u1&2u2&, and then it tends to the diabatic curveu2&.
In this case, the phase of the stateu2& of the adiabatic poten
tial curveu1&2u2& is maintained even in the region far from
the crossing point. Therefore, the electronic state of the w
packet has the phase shift aseip due to the nonradiative
transition. On the other hand, when the wave packet
proaches the crossing region from the right side ofu1&, there
is no such phase shift in the transition fromu1& to u2&, because
the relevant adiabatic potential curve is the lower one,u1&
1u2&.

Let us return to the three-level system, and determine
phase of the propagating wave packet based on the ab
mentioned argument. In Fig. 9, we write the values of
electronic phase of each wave packet propagating on
classical trajectories depicted in Fig. 2. In this figure,
should be noted that in our numerical calculationT is set
positive.

From this figure, we can see that the components of w
packet propagating in the regions ofX3 and X8 have the
same phase, and those inX4 and X5 have different phases
As discussed in Fig. 4~c!, the oscillatory structures of th
interference occurring in the regions ofX3 andX5 have the
inverse phases of each other, becauseei (n22n1)p is equal to
11 and21 in the regions ofX3 andX5 , respectively.

As seen above, the oscillatory structures of the emiss
spectra due to the interference effects appearing inX3 , X5 ,
and X6 give information about the dynamical nature of t
nonadiabatic transitions in the excited state. A detai
analysis of the emission from the wave packet just a
and/or before the nonadiabatic transition are subjects fo
future study.

FIG. 8. Schematic curves for diabatic potential energies ofu1&
and u2& ~solid lines!, and for adiabatic potential energies ofu1&
1u2& and u1&2u2& ~dotted lines!.
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IV. TWO-LEVEL EXCITATION CASE

Let us proceed to the two-level excitation case where b
u1& and u2& are excited simultaneously fromu0& by the white
light pulse. We adopt the three-level system with the sa
parameter values as in the one-level excitation case.

The time evolution of the electron occupancy inu1&,
r1(t), is shown in Fig. 10 as a function of time, where~a!,
~b!, and ~c! correspond to the cases ofT/v50.5, 1.0, and
1.5, respectively.de

21 is set to be1
4 p/v. Observing the fig-

ure, we can see following facts. The Franck-Condon sta
created simultaneously in bothu1& and u2& by the optical ex-
citation propagate almost independently along the respec
potential curves except the potential crossing region. In
crossing region, reflecting the nonradiative transition fro
u1& to u2& for the photoexcited component inu1&, r1(t) de-
creases in the vicinity oft50.7p/v and 1.3p/v. This is the
same as discussed in the one-level excitation case. On
other hand,r1(t) increases in the vicinity oft50.4p/v and
1.6p/v. These transition points correspond to the tim
when the wave packet excited inu2& passes through the po
tential crossing region. The transition probability of the lat
case is smaller as compared with that of the former ca
This is because, at the crossing region, the mean velocit
the wave packet optically excited inu2& is larger than that in

FIG. 9. The phase of the electronic state of propagating com
nents of the wave packet on the classical trajectories.T is set posi-
tive in our numerical calculations.

FIG. 10. Time evolution of the electron occupancy in the st
u1&, r1(t) @512r2(t)#, for the case of the two-level excitation.~a!
T/v50.5, ~b! 1.0, ~c! 1.5.
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57 377TIME-RESOLVED SECONDARY EMISSION FROM . . .
u1& as seen in Fig. 1. This is a well-known fact given by t
Landau-Zener formula.12

The time-resolved secondary-emission spectra for
two-level excitation case are shown in Fig. 11 as a funct
of Ve and time;~a!, ~b!, ~c!, and~d! are the components o
S1 , S2 , S12, and S, respectively.T and de

21 are set to be
1.5v and 1

4 p/v, respectively.
ComparingS in Fig. 11~d! and that for the one-level ex

citation case in Fig. 4~d!, we can see that both spectra ha
almost the same structures in the regionVe,150v and
0.5p/v<t<1.5p/v. This is because, in this time region
the component of the wave packet optically excited inu2&
moves along the potential curve where it cannot make
transition to u0& emitting the photon as seen in Fig. 1, an
hence only the transition from the photoexcited compon
in u1& takes part in the emission processes.

In the interference component of the emission in F
11~c!, two different types of oscillatory structures appea
one is observed in the region ofVe.130v at t5 1

4 p/v,
7
4 p/v, and 9

4 p/v, and the other in the vicinity ofVe
5100v at t5 7

4 p/v, 9
4 p/v. The former types of oscillation

have not appeared in the one-level excitation case. We h

FIG. 11. Time-resolved emission spectra as a function ofVe for
T/v51.5 in the two-level excitation case.~a!, ~b!, ~c!, and~d! are
the same as Fig. 4.de

21 is set to be1
4 p/v.
e
n

e

t
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ve

confirmed that these structures are observed even ifT50.
Therefore, they are identified to come from the interferen
in the emission associated with the two components inu1&
and u2& whose classical trajectories have the same ph
cross at corresponding points in the energy-time domain.
latter oscillatory structures have completely inverted pha
from each other and their periods become long as decrea
Ve . Referring the energy-time regions of the oscillato
structures in these spectra, we can conclude that the orig
the oscillation is the interference in the emitted photon as
ciated with the following two components of the wav
packet: one is created inu1& ~u2&! from u2& ~u1&! through the
nonradiative transition that occurs att51.6p/v (2.2p/v),
and the other is left inu2& ~u1&! without making the transition.
The process of the interference is essentially the same
those occurring inX5 and X3 for the one-level excitation
case discussed in Sec. III C. In this case, however, the
evant wave packets originate from the Franck-Condon s
created inu2& by the excitation pulse.

In the total emission spectra shown in Fig. 11~d!, the os-
cillatory structures discussed above are clearly observe
addition to the peak structures coming from the emissio
S1 and S2 . From the analysis of the spectral structures,
are able to obtain detailed information about the dynam
processes occurring during the relaxation.

V. CONCLUSIONS

Using the model Hamiltonian together with the real-tim
Trotter’s formula, we have studied time-resolved reson
secondary emission in the three-level electron-phon
coupled system, wherein the radiative and the nonradia
transitions are competitive each other. Analyzing the tim
resolved secondary-emission spectra consisting of th
components,S1 , S2 , andS12, we have found that the lattice
relaxation, the nonradiative transition, and the interfere
effects in the excited states bring about distinctive feature
the emission spectra.

Finally, let us briefly discuss the processes of the opti
excitation. In this work, we have studied the case where
incident pulse is a white light. As a consequence, the w
packet can travel, keeping its coherency unchanged just a
photoexcitation. This is the essential factor to give interf
ence effects in the time-resolved emission spectra. If the
fects of the finite width of the incident pulse is taken in
account in the optical excitation processes, the initial st
excited by the incident pulse is not the Franck-Condon s
and the components of the propagating wave packets r
down during the optical excitation. This will bring about ne
problems concerning the correlation between the photoe
tation and the dynamical processes in the excited st
which will be studied in a future work.
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