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Quantum depinning of a pancake vortex from a columnar defect

D. A. Gorokhov and G. Blatter
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We consider the problem of the depinning of a weakly drivEr<f.) pancake vortex from a columnar
defect in a Josephson-coupled superconductor, whRedenotes the force acting on the vortel.(is the
critical force. The dynamics of the vortex is supposed to be of the Hall type. The Euclidean Sgfigi) is
calculated in the entire temperature range; the result is universal and does not depend on the detailed form of
the pinning potential. We show that the transition from quantum-to-classical behavior is second-order like with
the temperaturd@ of the transition scaling lik&*2. Special attention is paid to the regime of applicability of
our results, in particular, the influence of the large vortex mass appearing in the superclean limit is discussed.
[S0163-182698)06905-7

I. INTRODUCTION d, .
?j/\n— VU in=— v+ mv+ avAn, (N}
In recent years, quantum creep of vortices in highsu- ,
perconductors has attracted considerable interest as, on thi1ere the dynamical forces are balanced by the Lorentz and

one hand, this phenomenon is responsible for the dissipati jnning forces: In _conventional superconductors one can ne-
' 1g ect the contribution of the mass and Hall terms, whereas in

O.f energy and thus is relevant frqm a technologicgl pOim_Ohlgh—TC superconductors the Hall force may become rel-
view, while, on the other_ hand, it represents an interesting, 2t “|n particular, it is widely believétithat at low tem-
example of a macroscopic quantum phenomenon, the the@eratures the superclean limit can be reached where the Hall
retical study of which is challenging. A particularly well de- term is large. In this caseyr=1, wherew, is the level
fined and technologically relevant configuration are vorticespacing inside the vortex core ands the quasiparticle re-
trapped by columnar defects introduced into the sample bjaxation time. Indeed, recent Hall angle measurenténts
heavy-ion irradiation. Measurements of the critical currentdemonstrate that the limit= » can be realized. On the other
density and the magnetic relaxation rate show the strong irhand, the large parameteg also gives rise to a large vor-
fluence these pinning centers have on the vortex dynaicstex mass. Microscopic calculations show that the vortex
In this paper we consider the problem of the depinning of d"ass IS e'nh'a&c_?g by a factes-(A)“~100 in comparison to
pancake vortex governed by Hall dynamics from a columnafhe dirty limit. s, It can be shO\_/vn that for frequencies
defect in a layered superconductor in the presence of a smeﬁ1<“’0 the Hall force wins over the inertial one, whereas at

(j<j.) transport current. The external magnetic field is cho- igh temperatures > w, the vortex equation of motion can-
I=<Jc P o 9 "~ ' not be cast into the simple forfl) [an accurate description
sen parallel to the axis of the superconductor. In the limit

X . ) : k - produces dispersive transport coefficientsv), anda(w)].
j—0 the problem is semiclassical and the Euclidean actiofy, thjs situation a good starting point is to ignore the contri-
can be calculated in the whole temperature range. In the limution of the vortex mass and solve the remaining Hall tun-
T=0 the problem discussed above has been considered fieling problem. The advantage of this treatment lies in the
Ref. 2, however, it appears that the approximations made arfact that in the limitj <j. the problem allows for an analyti-
too rough, leading to an inexact result for the decay rate. Theal solution in the whole temperature range with a universal
main goal of the present work is to improve on the analysiginswer: the Euclidean action depends only on the depth of
of Ref. 2 and to extend the calculations to the entire tempera€ pinning potential, the detailed shape of the potential be-
ture range. We adopt the semiclassical approach instead 8}9 irelevant. In a second step we establish the consistency
the lowest-Landau-levéLLL ) approximation used in Ref. 2. © this approximation in the physmal!y relevant r.eglme of
For a general review concerning the decay of metastablBarar_neterS' The outline of the paper is as f.OIIOWS' In Sec. Ii
states see the review of Higgi, Talkner, and Borkovec; see we discuss the model and the qualitative picture of the tun-

Ref. 3. The problem of quantum and classical Hall creep 0peling process. In Sec. lll we calculate the Euclidean action
vortices in various geometries and for different driving" the whole temperature range and show that the problem

forces F<F, and F<F, has been studied by various au- always exhibits a second-order-like transition from quantum
thors: see Rcefs 4-10 ¢ to classical behavior. Furthermore, we provide estimates for

The process of quantum tunneling is described by a timelhe preexpone_ntlal factors in th_e; various regimes. Finally, in
. IV we discuss the conditions of applicability of our

dependent saddle-point solution. Consequently, the calcula\s—eC
tions of the decay rate require the specification of the vorteiesuns'
dynamics. The different contributions to the dynamics con-
sidered traditionally are of the massive, the dissipative, and
the Hall type. The(low-frequency equation of motion of a Consider a pancake vortex with a Hall-force dominated
single vortex can be written in the form dynamics trapped in a two-dimension@D) potential well

II. MODEL AND QUALITATIVE PICTURE
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Uo(vX?+y?) and subject to an external forde, i.e., the
effective potentialJ(x,y) takes the form

U(X,y) =Ug(VX*+Yy%) —Fx. 2

The functionU(r) is supposed to be monotonously increas-
ing, Ug(0)=0 andUgy()=U,. At distances much larger
than the characteristic radigs of the pinning potential but
still smaller than the magnetic-field penetration length in
theab plane,Uy(r) behaves asl,— B/r? with B a constant
of orderUya? (see Ref. 1},

The present problem is equivalent to that of the motion of
a charged particle in a strong magnetic field. In this case, the
appropriate Lagrangian takes the form

L=axy—U(x,y). () FIG. 1. Inverted potentiall after the transformation— —ir,

The precise conditions allowing us to neglect the mass of th¥ 1y Note that the inversion affects only the unstable direction
particle will be discussed in Sec. IV. The particle whose@©n9 thex axis. The equipotential lines define the quasiclassical
motion is described by the Lagrangi&®) moves along the trajectories. The thick solid line corresponds to the zero-
equipotential lines of the potential landscapéx,y). The temperature instanton, whereas the thick dotted line is a finite-

Euclidean action of the particle as obtained through the subt—e mperature bounce trajectory.

stitution 5= fL dt— —iS andt— —i7 can be written in the =(23/5)a(U,/F)? has been obtained, in contradiction with

form the above analysjsIn the next section we shall generalize
+hI2T _ the zero-temperature result to the case of arbitrary tempera-
SEucI:f [—iaxy+U(x,y)]dr. (4 tures.
—hi2T
Obviously, the imaginary unit appears in the Euclidean ac- IIl. DECAY RATE

tion, i.e., the saddle-point solution is in general complex.
However, in the case studied here it is possible to reduce the
complex problem to a real ofi&' via performing the addi- As has been shown by Volovik(see also Refs. 4,11the
tional transformatiory—iy. If the potentialU(x,y) satisfies  motion of a massless particle in a magnetic field subject to a
the condition IjU(x,iy)}=0, we obtain a real-time prob- potentialU(x,y) is equivalent to the 1D dynamics of a par-
lem. In addition, if after they—iy-transformation the La- ticle described by the Hamiltonidd(x,p/a). Consequently,
grangian(4) exhibits a saddle-point solution, we can find it our original 2D problen(3) reduces to the 1D problem with
and calculate the decay rate. One can easily see fro2Eq. the Hamiltonian given by the expression

that the condition IfU(x,iy)}=0 is indeed satisfied for our
potential’® i.e., we can study the effective problem of the
tunneling of a particle whose dynamics is described by the
Euclidean action

A. Euclidean action

+hl2T
SeueX(71y(71= | ey + Ug( =) -l
®

In Fig. 1 we show the inverted potential after the transfor- .
mationst— —i7 andy—iy together with the equipotential
lines. Obviously, this construction produces a new potential
shape exhibiting a bounce soluti¢saddle point Note that
the inversion affects the potential only in the unstable direc-
tion along the force.
As the potential energy(x,iy) is preserved during mo-
tion, the imaginary time trajectories satisfy the equation
Uo(VX?—y?) —Fx=const. In Fig. 2 we plot these trajecto-
ries for the problem at hand. At zero temperature and in the 0
limit F—0 we obtain Uy(VX?—y?)—Fx=0, i.e., Sgyq
=afy dx=aA, where A is the area encircled during the X
periodic motion. One can easily see from Fig. 2 that in the £, 2. Quasiclassicalx(y) trajectories corresponding to the

limit F—0 the encircled area is equal to that of a triangletunneling of the vortex. The Euclidean action corresponding to the
CAA’". With CB=U,/F,AA’=2U,/F, we obtain the area zero-temperature trajectorfthick line) is equal to the encircled

A=(Uy/F)? and the Euclidean action is given by the ex- area. The thick dotted line marks a finite-temperature bounce tra-
pression S(0)=a(Uy/F)? [in Ref. 2 the resultS(0) jectory.
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H(X,p)=Uq[ VX2+ (p/a)?]— Fx. (6) aS/_aEz —7(E), with r_(E) the imaginary time oscil_lation
) o ) ) period. Consequently, if one can calculate the functi¢if)
Let us show that in the limiE—0 the problem is semiclas- from the solution of the classical equation of motion, the
sical. The semiclassical wave function can be written in thgynction S(E) can be reconstructed via simple integration,

form?° —_ EEd -
S(E) JE7(E')dE’. Let us carry out this program for the
. present problem.
\If(x)zgex '_JX p dx The semiclassical trajectories can be found as the solution
\/; fi Jx of the equatiorH(x,p) =E, with E the energy, i.e.,
:C'exp(fxdx<i—p— 1 32Higp? d_p)) - p(X) =+ aFA(E+Fx)—x, (14)
x|\ A2 dHIdp dx with f=U, ! the inverse function of the potential shapeg.

with X’ an integration constant. The semiclassical approxi-' "ere is a regiorc<x<b (b>c>0), where the function
mation is applicable if p(x) is purely imaginary(the x coordinatesc and b are

associated with the turning poin@ and B in Fig. 2). The

#*Hlop? dp equationf?(E+Fx) —x?=0 has two solutions: At smak,
P> ren dx- @) f2(E+Fx)=(2/k)(E+FX), i.e., c=F/x+ JFIx2+ 2E/ k.
, , ) As x—(Uy—E)/F, f2(E+Fx)—x, the equationf?(E
Using Eq.(6) we can write fordg;H/d,H +Fx)—x2=0 has another rodt=(U,—E)/F (the expres-
) ) ) ) ) ) sions forc andb are applicable for any energy not too close
9*Hlap?| _1 X n (p/a)”  9°Uglou ’ to U,). The decay rate of a metastable state with an engrgy
dHIap | pl|x2+ (pla)?  Vx2+(pla)? dUo/ou |’ is proportional to exp-(2/4) fo(g]|pldx]. Note that every-

9 where inside the interval<x=<b, except for the vicinity of

the pointsc and b, |p|=ax and the condition(11) is ful-

filled. At the pointsb andc, p=0. These points play the role

of turning points in the “usual’” semiclassical

approximatiorf’ Consequently, we have shown that in the

2 (2 2y-1/2 limit F—0 the semiclassical approximation is applicable.

9pUol dpUo™(x"+ (pla)") 5, (10 Let us calculate the Euclidean action. Using E4®) and

and we obtaidagH/&pH|<A/| p|, with A a constant of order (14) we can write forS

one. Finally, at |x?+(p/a)?|~a% we obtain again

|f9F2,H/(9pH|:A’/|p|, A’~1. Consequently, a sufficient crite- S(E)=2afb\/mdx. (15)

rion for the applicability of the semiclassical approximation c

takes the form

whereu=[x?+ (p/a)?]*2 If |x>+ (p/ a)?|<a?, we can use
Uo=«u?/2, i.e., |05H/d,H|=1/p| in the above limit. If
[x2+ (pl @)?|>a?,

The oscillation time r(E) satisfies the equatiorr(E)=

% dp JSIJE, i.e.,
- <1, (11
p? dx 2a (b x dx
o o . (E)==| ———- (16)
which is the same criterion as for a “usual” Hamiltonian of FJc x> fAE+Fx)

the formH(x,p) = p?/2m+U(X).
Using the standard technigque of binding semiclassic

a{n the limit F—0 almost everywhere inside the interval
wave functions we obtain the following expression for the

c,b] we havex?>f2(E+Fx) and one can write for the

imaginary parts of the metastable energy levéls: period 7(E)
2a
~o(Ey) 2 (bn _w(Ep) Sh 7(E)=—(b—c)+C(c)+C(b), (17
.= yp exp(—%fcn p‘dx)— yp= ex;{—z), F

(120  with C(c) andC(b) the contributions of the turning points

andb where the functiox’?— f2(E+ Fx) vanishes. It can be

shown thatC(c) is relevant only ifE is close to—F?/2«

(see below and the contribution of the poirtt is always

negligible. CalculatingC(c), substituting the result into Eq.
17), and taking into account that f& not very close tdJ,
—c=(Uy—E)/F, we obtain

with E, the energy levels at zero driving force(E,) are
the oscillation frequencies, amg andb,, denote the turning
points. The decay rateé can be found by averaging over the
Boltzmann distribution(a general discussion concerning
finite-temperature decay and the role of dissipation is foun

in Ref. 3
E)="2(Uy—E 2a| —2; 18
r=(2z)§ Ie &'l (13) MB)= Vo Br i e 9

with Z the partition function for the cage=0. As the semi- whereX is anE-independent cutoff parameter arising from
classical approximation is applicable, we can substitute théhe integration in the vicinity of the poira.

sum in Eq.(13) by an integral and make use of the method of Next, we need to solve the equatie(E)=%/T and find
steepest descent. The extremal equation then takes the fotime energyE of the saddle-point trajectory at finite tempera-
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ture T. The second term in Eq18) is relevant only if the
solution of the equationr(E)=#/T is very close to
—F?/2k, ie., at low temperature where the equation
2a(Uy—E)/F?2=4/T has no solutiorithis is the case when
T<#F?2aU,), and produces merely an exponentially small
correction to the zero-temperature result. This behavior is
typical for a Hamiltonian problem where the finite-
temperature boundary conditions have a vanishingly small
effect on the bounce solution at small temperatdfén the
other hand, ifT>%F?/2aU,, the solution of Eq.(18) is
given byE=U,—#F?/2aU, (up to exponentially small cor-
rectiong. After a simple integratior8(E)=— fEr(E')dE’ 0 T T T

we obtain the Euclidean actiof® = a(Uo— E)%/F2+E/T 1 ¢

[the integration constant is obtained from the condition FG. 3. Euclidean action as a function of temperature.TAt
S(0)=aUe¥/F?]. In summary, for temperaturesT — <T,=#F2/2aU,, Se,qis a constant up to exponentially small cor-
<#F?2aU, the Euclidean action is constant up to exponen-ections. In the regimd@>T, the Euclidean action begins to de-
tially small corrections. AfT;=%F2/2aU,, Sg,q begins to  crease, see EqL9). The temperaturd =T, [see Eq.(22)] marks
decreaseSg, o T) =%Uo/T—#%2F2/4aT2. We then can write  the second-order-like transition from quantum to classical behavior.
the following expression for the Euclidean action in theln the vicinity of T, Eq. (27) gives an accurate description of the
whole temperature intervalabout the applicability of this action.

result to the high-temperature regime see bglow

SEucl quantum

thermal assisted

uantum
q 2" order

transition

classical

U2 Uo— EZ—FX=E. (21)
a(%’) , T<#F22aU,=T;, X

Seu™= - (19 Again b and c are the turning points of the imaginary
hUo A7F T>T,. time trajectory, TI(m/2,0,K) = 7% [ (1

T 4aT? —nsirtg)\/1—kZsirtg] 1 is the complete elliptic integral of
third order, andF(7/2k)=JZ"?d¢[1—k?cogp] 12 is the

_ _ complete elliptic integral of second order. Here we consider

B. Crossover to classical behavior only the physically relevant case E<E,,~=U,
Next, let us calculate the crossover temperafiydrom  — (3/2%) B2, If E=E 5, b=C=Xpa= (2B/F)* and

the thermally assisted quantum regime to the purely thermad= — 1/22%(B/F)*3. Substituting these values into EQO)
activation. Below we use the perturbative procedure which igve obtain

applicable only for second-order transitions from quantum to

classical behavior. For a first-order transition this approach J3 KE4B
breaks down. However, we will show that if the potential <=3 s
Uy(r) satisfies the required conditioid)(r) is monoto- 27m aB
nously increasing andJ(r)=U,—B/r?r—o] a second-
order transition takes place. The crossover temperdiyis
equal to#i/ 79, where 7 is the imaginary time oscillation
period of the system in the vicinity of the time-independent
thermal saddle-point solution. This solution is given by the
equationx(7) = Xmax With X,ax the point where the function
U(x,0) takes its maximal value. Near this poibt(x,y)
=U,—B/(x2+y?)—Fx. For this dependence the function
7(E) [see Eq{16)] can be calculated exactly,

(22

Inserting T>T, into Eq. (19) in the limit F—0 we obtain
Seuc(T>T)=U,y /T, such that we can use the restilf) at
any temperature in this limit. The dependergg(T) is
plotted in Fig. 3.

Let us show that the problem exhibits a second-order-like
transition atT=T_.. The 1D Hamiltonian system produces a
smooth transition at, if its imaginary time oscillation pe-
riod 7(E) is a monotonous function of energy.26 A simple
criterion to verify the monotonicity of the function(E) is
given by the derivativedg 7 evaluated aE,,, (see also Ref.
24B 1 26): For 0ET|EmaX<O the function is monotonous and we

B)=— h d-order-lik ition. b= (Uo—E)/F
+d) 32 p+ _q\12 ave a second-order-like transition. (Ug—EBE)/F>c,
P (b+d)™b+e)(b—d) (i.e., for smallF andE not too close tcE,,,,), one can use
7 [(b—c)(b+c)
2’ V(b—d)(b+d)
v Emax b,c~(B/F)Y3 and the conditiorb,c>a is well sat-

Eqg. (17) to show that the functiom(E) is monotonous in this
7 (b—c)(b+c) (b—c)(b+c)
+(C_O')H(E'(b—o|)(b+o|)' N (b—d)(b+d) Ey
isfied.

interval. On the other hand, one can use &) as long as
(20 We reparametrize the energy in the form

X|(b+d)F

the rootsb andc greatly exceed the characteristic radéusf
the pinning potential. In the limiE—0 and forE close to

whereb=c>d are the three roots of the equation E=U,— \BY¥F?3 (23



3590 D. A. GOROKHOV AND G. BLATTER 57
ve 837 aBY3
7.0 semiclassical arl(?EIEmaXZ Y 43 (26)
T s asymptotics F
e {for A>>1) .

semiclassical
result

Pl
-
-
-
-
-
-
-

slope for A/ Amin— 1

1
2.

0

5 3.
k/}bmin

FIG. 4. The functionr [solid line, see Eq(24)], which is di-
rectly proportional to the imaginary time oscillation perie(E), as
a function of\/\ i, [S€e Eq.23)], Amin=3/22". Surprisingly, the
slope of 7 near\ i, is very close to its asymptotic value at large
The dotted line shows the functiong(\)=(2Y¥3)w
+(43127)m(n —31223), see Eq(25). The dashed line illustrates
the slope of the functiorf(\)=N\+const corresponding to the
asymptotic expression for(E), 7(E)=2a(U,—E)/F2. Obvi-
ously, the slope of (\) is very close to those of(\) andg()),
indicating that one can use E(L8) in almost the whole energy
range.

where A=\ (E) is a dimensionless parameter. Substituting
this expression into Eq21) we obtain for largex (E away
from Epa), c=\"Y4B/F)Y3 andb=\(B/F)'? i.e., b>c

for \=5 and Eq(18) is valid in this region. Consequently, if
we show that the oscillation period given by EGO) is a
monotonous function ok for A<<5, a second-order transi-

After solving the equatiom(E)=7#/T in the vicinity of the
point E=E,,,, We obtain the expression for the action

h 3
" _ 13- 2/3
SEUC|(T)_ T( UO 22/3B F )
we 5 3B 2
— 273 ﬁ2F4(T_TC) o(T.—T), (27)

which improves on the resu{tL9) in the vicinity of T,.

C. Preexponential factor

Finally, let us estimate the preexponential factor at high
and at low temperatures. At>T, the saddle-point solution
is time independent and is given by the equatonX,ay
With Xy the maximum of the functiofd (x,0). In the vicin-
ity of the point &,2x0).

3B ) B )
H(X,p)=Uo———(X—Xma) “+——5—P".
o

max

(28)

max

The imaginary time Hamiltonian corresponding to E28)

has the form of a harmonic oscillator with the mass
a?x% /2B and the stiffness B/x,,,. Consequently, at high
temperatures one can use the result for the decay rate of a

tion from quantum to classical behavior takes place. The

function[ 7= (7F/2a)(F/B)*?]

TN=

(b+d)¥b+7¢)(b—d)?

2 1= i)

( Flz (b—d)(b+d)
ccoanlT (B-C)B+7) /(B’—E)(’6+E))
2" (b-d)b+d) V(b—d)(b+d)/|

(24)

is plotted in Fig. 4(solid line); hereb=c>d are the roots
of the equation 32+ x=X\. We can see that the function

‘7(\) is monotonously increasing. Surprisingly, even for
= Nmin=3/223, the slope ofr is close to its asymptotic value
7(N\)~\+consth —. Close to the poink y,=3/2° we

)

and the derivative)g 7| Epna is indeed negative

3

o (25

Uo
T

massive particlésee Refs. 3,27

. J3F43 sinh(# k/2aT)
2% B Sir{ (J312)(hF ¥ aBYT)]
(29

This expression is applicable at any temperature higher than
T. except for a narrow temperature intervati®? around
T., see Ref. 27. AT> T, ,% k/ o we obtain the simple result
I'= (A k27 a)exp(=Uy/T).

At zero temperature the decay involves only tunneling
out of the ground state, i.e., I'=[w(Eq)/27]
x exf —(a/h)(Uy/F)?], see Ref. 23. Near the metastable
minimum the vortex oscillates with the frequeney= «/ «,
and we arrive at the result

il

However, one should point out that the preexponential factor
in Eq. (30) is only an order of magnitude estimate as the
quasiclassical approximation is not properly applicable to the
ground state.

r K
T 27a ex

a

h

Uo

F (30

IV. APPLICABILITY

Let us discuss the conditions for the applicability of the
above results. First of all, we have to account for a nonzero
vortex mass. In this case, the system is described by the
Hamiltonian
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P2+ (P2+ ax)? a’a’
%wo( YY) —Fx. (31 <a and o
which is equivalent to the Hamiltonian of a massive 2DLet us estimate the parameters in E86) appropriate for
charged particle in a magnetic field oriented perpendicular t&igh-T; superconductors:a=mfins, where n=2x10""

the plane of motion. Let us discuss the conditions whichem™ 2 is the electron density ans=15 A is the interlayer
should be satisfied in order to use the Hamilton{ghin-  spacing in Bi-2:2:1:2. For the magnetic length we then ob-
stead of that given by Eq31). It is useful to introduce the tain|=\%/a=4 A<a=30 A. For the second condition in
four new operatorgsee also Ref. 387§y= —12P, 1%, X= Eq. (36) we use the expression for the vortex mass predicted
12D, 1, B=12P I +x, Y=12P,hi+y, wherel = Jiila gor tr;]e sfup(ra]rclean Imﬂ?l m=me(€F/A%221:We and the

is the magnetic lengtf’. We assume that the conditidn _ept of t e2 pot_entla as given by the equatiah,

<a is satisfied(below we will verify this condition using = (Pofdmhap)”s, With o the magnetic-flux quantum and

parameters for higfi-, superconductois These new opera- Nap=2000 A being theab-magnetic penetration length. Fi-

, , R S oon s nally, we obtaina®a?/mU,=10>1, i.e., we find that both
tors satisfy the commutation relatiofg, ,£,1=[X,Y]=il%,  conditions in Eq(36) are well satisfied.

[&.Y]1=[4.X] =.[A§y XK1=, ,.\A(]=_0- Going over to the The above results should be compared to those in Ref. 2
X, ¢, representation the Hamiltonia81) can be written in  where the conditiork «/mU,>1 for the applicability of the

Q= >1. (36)

the form results has been used. Estimating this parameter we obtain
. - halmUy=0.1<1. In Ref. 2 an estimaté a/mUy=200 has
o L s Mwgé, N f U (k) ek Bt 504k By 02k been obtained using the vortex mass from the dirty Iithit?
2m (953 2 ' which is much smaller than the mass in the superclean limit.

(32 We see that the LLL approach of Ref. 2 breaks down in the

i i superclean limit if one does not take explicitly the condition
In a classical language the problem we study involves tWq < into account.

types of motion: A fast rotation .of the particle with the CY-  Finally, let us show that the second condition in E£26)
clotron frequencyw.=a/m superimposed on the slow guid- ¢an pe easily obtained from a simple analysis of the semi-
ing center motion. The term classical bounce trajectories: If the Euclidean action is much
larger than unity, we can use the instanton method for the
y (33) calculation of the imaginary part of the partition function
2m a§§ 2 which determines the decay réfe<ImZ/Z. In order to de-

. o — termine InZ within exponential accuracy we have to solve
describes the “fast” part of the Hamiltonian. The lowest i ¢|assical equation of motion describing the bounce solu-
eigenvalue oh is equal tofi /2. If the characteristic varia- tion. If it turns out that the correction of the bounce trajec-
tion of the potential on the lengthis much smaller than tory due to the mass term is small, we arrive at an effective
hwd2, we can average the Hamiltoniaf82) over the  Hall tunneling problem. It is possible to neglect the mass if
ground-state eigenfunctiop(é,) of the operatoh, see Ref.  everywhere along the trajectony|v|<a|v|, wherev is the
29. This process corresponds to the averaging over the fagharacteristic acceleration of the vortex during the imaginary
rotation with the frequencw, . After averaging we obtain  time motion andv its characteristic velocity. If a vortex is

K212 moving along the side€A, AA", or A'C of the triangle
Ha(ﬂ)mst:f U(k)ex;{— T+i(kxf(+ ky\?)}dzk, CAN (see Fig. 2 we can make the estimatév|
~v4/(Uy/F), whereas fow the estimate ~Ug/aa holds,
(34) i.e., the following condition should be satisfied:
Note that in theX representatiofY = —il 29/9X. If |<a, we 2.2
can neglect the exponent exik?12/4) in Eq. (34). On the i< ﬂ, (37)
other hand, ifl is small,[X,Y]—0 and we can easily per- Fe mUo

form the integration in Eq(34) to arrive at the new Hamil- with F.~U,/a the critical force. On the other hand, in the

tonian vicinity of the point C, we can writev~Ug/aa and u
. S — S ~v?la, i.e., the conditiorm?a?/mUy>1 has to be satisfied,
Her=Uo(VX“+Y%) —FX (35 which is identical to the second condition in E§6). Com-
paring this result with Eq(37) we see that the second con-

describing the guiding center motion. As the opera¥end dition in Eq. (36) is stronger sinc& <F,.

Y obey the commutation relatidiX,Y]=il2, we can iden-

tify X with the coordinate an& with the momentum. This
Hamiltonian is identical to that in Ed6).

In order to carry out the above procedure the characteris- In Sec. IV we have described how to reduce the dynamics
tic variation of the potentiall(x,y) on the scalé has to be of a massive particle in a magnetic field to the guiding center
much smaller thankw., i.e., kl°<fw,, and with motion along equipotential lines of a smooth potential. Car-
~Ugy/a? we obtain the conditiono?a?’mUy>1. Conse- rying out this procedure for vortices is not entirely unprob-
guently, we arrive at the following two conditions for the lematic. In fact, we have seen that the averaging process
applicability of the approach we have used: over the fast component introduces a frequeagy a/m

V. SUMMARY
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=wq Which is at the limit of the applicability of the low- of temperature is given by E@19); for T<T, the action is
frequency vortex dynamics as described by Eb. This  constant up to exponentially small corrections and decreases
problem has been ignored in previous works as the inertismoothly abovel';. At T=T,, the crossover to the classical
term has been dropped on the classical level of #g.As  regime takes place. Close to and abdyehe decay rate can
shown above, both methods produce the same conditiobe accurately described by E(R7) which reduces to the
a?a?/mUy>1 for the irrelevance of the mass term, how- exact classical result abovi,. For the potential satisfying
ever, starting from the descriptid81) one obtains that the the conditiongi) U(r) is a monotonous function afand(ii)
frequencyw.= a/m naturally shows up in the quantum de- U(r)=U,—B/r?,r—o, the transition from quantum to clas-
scription. sical behavior is second-order like and the crossover tem-
Briefly summarizing, we have considered the decay of theperatureT, is proportional toF %> see Eq(22).
metastable state of a massless particle in a magnetic field
trapped in a cylindrical attractive potential and subject to a
small external force. The above problem is an appropriate
model for the depinning of pancake vortices in superclean We thank L. N. Bulaevskii, V. B. Geshkenbein, B. I. Iv-
Josephson-coupled superconductors for the case of spnall {ev, N. B. Kopnin, V. M. Vinokur, and F.-C. Zhang for help-
<j.) transport currents. The Euclidean action as a functiorful discussions.
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