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Quantum depinning of a pancake vortex from a columnar defect

D. A. Gorokhov and G. Blatter
Theoretische Physik, ETH-Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland

~Received 14 July 1997!

We consider the problem of the depinning of a weakly driven (F!Fc) pancake vortex from a columnar
defect in a Josephson-coupled superconductor, whereF denotes the force acting on the vortex (Fc is the
critical force!. The dynamics of the vortex is supposed to be of the Hall type. The Euclidean actionSEucl(T) is
calculated in the entire temperature range; the result is universal and does not depend on the detailed form of
the pinning potential. We show that the transition from quantum-to-classical behavior is second-order like with
the temperatureTc of the transition scaling likeF4/3. Special attention is paid to the regime of applicability of
our results, in particular, the influence of the large vortex mass appearing in the superclean limit is discussed.
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I. INTRODUCTION

In recent years, quantum creep of vortices in high-Tc su-
perconductors has attracted considerable interest as, o
one hand, this phenomenon is responsible for the dissipa
of energy and thus is relevant from a technological point
view, while, on the other hand, it represents an interes
example of a macroscopic quantum phenomenon, the t
retical study of which is challenging. A particularly well de
fined and technologically relevant configuration are vortic
trapped by columnar defects introduced into the sample
heavy-ion irradiation. Measurements of the critical curre
density and the magnetic relaxation rate show the strong
fluence these pinning centers have on the vortex dynam1

In this paper we consider the problem of the depinning o
pancake vortex governed by Hall dynamics from a colum
defect in a layered superconductor in the presence of a s
( j ! j c) transport current. The external magnetic field is ch
sen parallel to thec axis of the superconductor. In the lim
j→0 the problem is semiclassical and the Euclidean ac
can be calculated in the whole temperature range. In the l
T50 the problem discussed above has been considere
Ref. 2, however, it appears that the approximations made
too rough, leading to an inexact result for the decay rate.
main goal of the present work is to improve on the analy
of Ref. 2 and to extend the calculations to the entire temp
ture range. We adopt the semiclassical approach instea
the lowest-Landau-level~LLL ! approximation used in Ref. 2
For a general review concerning the decay of metasta
states see the review of Ha¨nggi, Talkner, and Borkovec; se
Ref. 3. The problem of quantum and classical Hall creep
vortices in various geometries and for different drivin
forces F&Fc and F!Fc has been studied by various a
thors; see Refs. 4–10.

The process of quantum tunneling is described by a tim
dependent saddle-point solution. Consequently, the calc
tions of the decay rate require the specification of the vor
dynamics. The different contributions to the dynamics co
sidered traditionally are of the massive, the dissipative,
the Hall type. The~low-frequency! equation of motion of a
single vortex can be written in the form
570163-1829/98/57~6!/3586~7!/$15.00
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c
j`n2¹Upin52hv1mv̇1av`n, ~1!

where the dynamical forces are balanced by the Lorentz
pinning forces. In conventional superconductors one can
glect the contribution of the mass and Hall terms, wherea
high-Tc superconductors the Hall force may become r
evant. In particular, it is widely believed11 that at low tem-
peratures the superclean limit can be reached where the
term is large. In this casev0t*1, wherev0 is the level
spacing inside the vortex core andt is the quasiparticle re-
laxation time. Indeed, recent Hall angle measurements12,13

demonstrate that the limita*h can be realized. On the othe
hand, the large parameterv0t also gives rise to a large vor
tex mass. Microscopic calculations show that the vor
mass is enhanced by a factor (eF /D)2;100 in comparison to
the dirty limit.14–16Still, it can be shown that for frequencie
v,v0 the Hall force wins over the inertial one, whereas
high temperaturesv.v0 the vortex equation of motion can
not be cast into the simple form~1! @an accurate description
produces dispersive transport coefficientsh(v), anda(v)#.
In this situation a good starting point is to ignore the con
bution of the vortex mass and solve the remaining Hall tu
neling problem. The advantage of this treatment lies in
fact that in the limitj ! j c the problem allows for an analyti
cal solution in the whole temperature range with a univer
answer: the Euclidean action depends only on the dept
the pinning potential, the detailed shape of the potential
ing irrelevant. In a second step we establish the consiste
of this approximation in the physically relevant regime
parameters. The outline of the paper is as follows: In Sec
we discuss the model and the qualitative picture of the t
neling process. In Sec. III we calculate the Euclidean act
in the whole temperature range and show that the prob
always exhibits a second-order-like transition from quant
to classical behavior. Furthermore, we provide estimates
the preexponential factors in the various regimes. Finally
Sec. IV we discuss the conditions of applicability of o
results.

II. MODEL AND QUALITATIVE PICTURE

Consider a pancake vortex with a Hall-force dominat
dynamics trapped in a two-dimensional~2D! potential well
3586 © 1998 The American Physical Society
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57 3587QUANTUM DEPINNING OF A PANCAKE VORTEX FROM . . .
U0(Ax21y2) and subject to an external forceF, i.e., the
effective potentialU(x,y) takes the form

U~x,y!5U0~Ax21y2!2Fx. ~2!

The functionU0(r ) is supposed to be monotonously increa
ing, U0(0)50 andU0(`)5U0. At distancesr much larger
than the characteristic radiusa of the pinning potential but
still smaller than the magnetic-field penetration lengthlab in
theab plane,U0(r ) behaves asU02B/r 2 with B a constant
of orderU0a2 ~see Ref. 17!.

The present problem is equivalent to that of the motion
a charged particle in a strong magnetic field. In this case,
appropriate Lagrangian takes the form

L5a ẋy2U~x,y!. ~3!

The precise conditions allowing us to neglect the mass of
particle will be discussed in Sec. IV. The particle who
motion is described by the Lagrangian~3! moves along the
equipotential lines of the potential landscapeU(x,y). The
Euclidean action of the particle as obtained through the s
stitution S5*L dt→2 iS and t→2 i t can be written in the
form

SEucl5E
2\/2T

1\/2T

@2 ia ẋy1U~x,y!#dt. ~4!

Obviously, the imaginary unit appears in the Euclidean
tion, i.e., the saddle-point solution is in general compl
However, in the case studied here it is possible to reduce
complex problem to a real one4,11 via performing the addi-
tional transformationy→ iy . If the potentialU(x,y) satisfies
the condition Im$U(x,iy)%50, we obtain a real-time prob
lem. In addition, if after they→ iy-transformation the La-
grangian~4! exhibits a saddle-point solution, we can find
and calculate the decay rate. One can easily see from Eq~2!
that the condition Im$U(x,iy)%50 is indeed satisfied for ou
potential,18 i.e., we can study the effective problem of th
tunneling of a particle whose dynamics is described by
Euclidean action

SEucl@x~t!,y~t!#5E
2\/2T

1\/2T

@a ẋy1U0~Ax22y2!2Fx#dt.

~5!

In Fig. 1 we show the inverted potential after the transf
mationst→2 i t and y→ iy together with the equipotentia
lines. Obviously, this construction produces a new poten
shape exhibiting a bounce solution~saddle point!. Note that
the inversion affects the potential only in the unstable dir
tion along the force.

As the potential energyU(x,iy) is preserved during mo
tion, the imaginary time trajectories satisfy the equat
U0(Ax22y2)2Fx5const. In Fig. 2 we plot these trajecto
ries for the problem at hand. At zero temperature and in
limit F→0 we obtain U0(Ax22y2)2Fx50, i.e., SEucl
5ary dx5aA, where A is the area encircled during th
periodic motion. One can easily see from Fig. 2 that in
limit F→0 the encircled area is equal to that of a triang
CAA8. With CB.U0 /F,AA8.2U0 /F, we obtain the area
A5(U0 /F)2 and the Euclidean action is given by the e
pression S(0)5a(U0 /F)2 @in Ref. 2 the result S(0)
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5(23/5)a(U0 /F)2 has been obtained, in contradiction wi
the above analysis#. In the next section we shall generaliz
the zero-temperature result to the case of arbitrary temp
tures.

III. DECAY RATE

A. Euclidean action

As has been shown by Volovik19 ~see also Refs. 4,11!, the
motion of a massless particle in a magnetic field subject t
potentialU(x,y) is equivalent to the 1D dynamics of a pa
ticle described by the HamiltonianU(x,p/a). Consequently,
our original 2D problem~3! reduces to the 1D problem with
the Hamiltonian given by the expression

FIG. 1. Inverted potentialU after the transformationt→2 i t,
y→ iy . Note that the inversion affects only the unstable direct
along thex axis. The equipotential lines define the quasiclassi
trajectories. The thick solid line corresponds to the ze
temperature instanton, whereas the thick dotted line is a fin
temperature bounce trajectory.

FIG. 2. Quasiclassical (x,y) trajectories corresponding to th
tunneling of the vortex. The Euclidean action corresponding to
zero-temperature trajectory~thick line! is equal to the encircled
area. The thick dotted line marks a finite-temperature bounce
jectory.
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3588 57D. A. GOROKHOV AND G. BLATTER
H~x,p!5U0@Ax21~p/a!2#2Fx. ~6!

Let us show that in the limitF→0 the problem is semiclas
sical. The semiclassical wave function can be written in
form20

C~x!5
C

Aẋ
expS i

\Ex8

x

p dxD
5C8expXE

x8

x

dxS ip

\
2

1

2

]2H/]p2

]H/]p

dp

dxD C ~7!

with x8 an integration constant. The semiclassical appro
mation is applicable if

upu@\U]2H/]p2

]H/]p

dp

dxU. ~8!

Using Eq.~6! we can write for]p
2H/]pH

U]2H/]p2

]H/]p U5 1

upuU x2

x21~p/a!2
1

~p/a!2

Ax21~p/a!2

]2U0 /]u2

]U0 /]u U ,
~9!

whereu5@x21(p/a)2#1/2. If ux21(p/a)2u!a2, we can use
U0>ku2/2, i.e., u]p

2H/]pHu>1/upu in the above limit. If
ux21(p/a)2u@a2,

]p
2U0 /]pU0;~x21~p/a!2!21/2, ~10!

and we obtainu]p
2H/]pHu,A/upu, with A a constant of order

one. Finally, at ux21(p/a)2u;a2, we obtain again
u]p

2H/]pHu.A8/upu, A8;1. Consequently, a sufficient crite
rion for the applicability of the semiclassical approximati
takes the form

U \

p2

dp

dxU!1, ~11!

which is the same criterion as for a ‘‘usual’’ Hamiltonian
the formH(x,p)5p2/2m1U(x).

Using the standard technique of binding semiclass
wave functions we obtain the following expression for t
imaginary parts of the metastable energy levels:21

Gn5
v~En!

4p
expS 2

2

\Ecn

bnUpUdxD 5
v~En!

4p
expS 2

Sn

\ D ,

~12!

with En the energy levels at zero driving force,v(En) are
the oscillation frequencies, andcn andbn denote the turning
points. The decay rateG can be found by averaging over th
Boltzmann distribution~a general discussion concernin
finite-temperature decay and the role of dissipation is fou
in Ref. 3!

G5~2/Z!(
n

Gne2En /T, ~13!

with Z the partition function for the caseF50. As the semi-
classical approximation is applicable, we can substitute
sum in Eq.~13! by an integral and make use of the method
steepest descent. The extremal equation then takes the
e

i-

l

d

e
f
rm

]S/]E52t(E), with t(E) the imaginary time oscillation
period. Consequently, if one can calculate the functiont(E)
from the solution of the classical equation of motion, t
function S(E) can be reconstructed via simple integratio
S(E)52*Et(E8)dE8. Let us carry out this program for th
present problem.

The semiclassical trajectories can be found as the solu
of the equationH(x,p)5E, with E the energy, i.e.,

p~x!56aAf 2~E1Fx!2x2, ~14!

with f 5U0
21 the inverse function of the potential shapeU0.

There is a regionc<x<b (b.c.0), where the function
p(x) is purely imaginary~the x coordinatesc and b are
associated with the turning pointsC and B in Fig. 2!. The
equationf 2(E1Fx)2x250 has two solutions: At smallx,
f 2(E1Fx)>(2/k)(E1Fx), i.e., c5F/k1AF2/k212E/k.
As x→(U02E)/F, f 2(E1Fx)→`, the equation f 2(E
1Fx)2x250 has another rootb>(U02E)/F ~the expres-
sions forc andb are applicable for any energy not too clo
to U0). The decay rate of a metastable state with an energE
is proportional to exp@2(2/\)*c(E)

b(E)upudx#. Note that every-
where inside the intervalc<x<b, except for the vicinity of
the pointsc and b, upu>ax and the condition~11! is ful-
filled. At the pointsb andc, p50. These points play the role
of turning points in the ‘‘usual’’ semiclassica
approximation.20 Consequently, we have shown that in th
limit F→0 the semiclassical approximation is applicable.

Let us calculate the Euclidean action. Using Eqs.~12! and
~14! we can write forS

S~E!52aE
c

b
Ax22 f 2~E1Fx!dx. ~15!

The oscillation timet(E) satisfies the equationt(E)5
2]S/]E, i.e.,

t~E!5
2a

F E
c

b x dx

Ax22 f 2~E1Fx!
. ~16!

In the limit F→0 almost everywhere inside the interv
@c,b# we havex2@ f 2(E1Fx) and one can write for the
periodt(E)

t~E!5
2a

F
~b2c!1C~c!1C~b!, ~17!

with C(c) andC(b) the contributions of the turning pointsc
andb where the functionx22 f 2(E1Fx) vanishes. It can be
shown thatC(c) is relevant only ifE is close to2F2/2k
~see below! and the contribution of the pointb is always
negligible. CalculatingC(c), substituting the result into Eq
~17!, and taking into account that forE not very close toU0,
b2c.(U02E)/F, we obtain

t~E!.
2a

F2
~U02E!1

2a

k
ln

2 x̃

AF2/k212E/k
, ~18!

where x̃ is anE-independent cutoff parameter arising fro
the integration in the vicinity of the pointc.

Next, we need to solve the equationt(E)5\/T and find
the energyE of the saddle-point trajectory at finite temper
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ture T. The second term in Eq.~18! is relevant only if the
solution of the equationt(E)5\/T is very close to
2F2/2k, i.e., at low temperature where the equati
2a(U02E)/F25\/T has no solution~this is the case when
T,\F2/2aU0), and produces merely an exponentially sm
correction to the zero-temperature result. This behavio
typical for a Hamiltonian problem where the finite
temperature boundary conditions have a vanishingly sm
effect on the bounce solution at small temperatures.22 On the
other hand, ifT.\F2/2aU0, the solution of Eq.~18! is
given byE5U02\F2/2aU0 ~up to exponentially small cor
rections!. After a simple integrationS(E)52*Et(E8)dE8
we obtain the Euclidean actionSEucl5a(U02E)2/F21E/T
@the integration constant is obtained from the condit
S(0)5aU0

2/F2#. In summary, for temperaturesT
,\F2/2aU0 the Euclidean action is constant up to expone
tially small corrections. AtT15\F2/2aU0, SEucl begins to
decrease,SEucl(T)5\U0 /T2\2F2/4aT2. We then can write
the following expression for the Euclidean action in t
whole temperature interval~about the applicability of this
result to the high-temperature regime see below!

SEucl55 aS U0

F D 2

, T,\F2/2aU0[T1 ,

\U0

T
2

\2F2

4aT2
, T.T1 .

~19!

B. Crossover to classical behavior

Next, let us calculate the crossover temperatureTc from
the thermally assisted quantum regime to the purely ther
activation. Below we use the perturbative procedure whic
applicable only for second-order transitions from quantum
classical behavior. For a first-order transition this appro
breaks down. However, we will show that if the potent
U0(r ) satisfies the required conditions@U(r ) is monoto-
nously increasing andU(r ).U02B/r 2,r→`# a second-
order transition takes place. The crossover temperatureTc is
equal to\/t0, where t0 is the imaginary time oscillation
period of the system in the vicinity of the time-independe
thermal saddle-point solution. This solution is given by t
equationx(t)5xmax with xmax the point where the function
U(x,0) takes its maximal value. Near this pointU(x,y)
.U02B/(x21y2)2Fx. For this dependence the functio
t(E) @see Eq.~16!# can be calculated exactly,

t~E!5
2aB

F2

1

~b1d!3/2~b1c!~b2d!1/2

3F ~b1d!FS p

2
,A~b2c!~b1c!

~b2d!~b1d!
D

1~c2d!PS p

2
,
~b2c!~b1c!

~b2d!~b1d!
,A~b2c!~b1c!

~b2d!~b1d!
D G ,
~20!

whereb>c.d are the three roots of the equation
l
is

ll

-

al
is
o
h
l

t

U02
B

x2
2Fx5E. ~21!

Again b and c are the turning points of the imaginar
time trajectory, P(p/2,n,k)5*0

p/2df@(1
2nsin2f)A12k2sin2f#21 is the complete elliptic integral o
third order, andF(p/2,k)5*0

p/2df@12k2cos2f#21/2 is the
complete elliptic integral of second order. Here we consi
only the physically relevant case E<Emax5U0
2(3/22/3)B1/3F2/3. If E5Emax, b5c5xmax5(2B/F)1/3, and
d521/22/3(B/F)1/3. Substituting these values into Eq.~20!
we obtain

Tc5
A3

24/3p

\F4/3

aB1/3
. ~22!

InsertingT.Tc into Eq. ~19! in the limit F→0 we obtain
SEucl(T.Tc).U0 /T, such that we can use the result~19! at
any temperature in this limit. The dependenceSEucl(T) is
plotted in Fig. 3.

Let us show that the problem exhibits a second-order-
transition atT5Tc . The 1D Hamiltonian system produces
smooth transition atTc if its imaginary time oscillation pe-
riod t(E) is a monotonous function of energy.23–26A simple
criterion to verify the monotonicity of the functiont(E) is
given by the derivative]Et evaluated atEmax ~see also Ref.
26!: For ]EtuEmax

,0 the function is monotonous and w

have a second-order-like transition. Ifb.(U02E)/F@c,
~i.e., for smallF andE not too close toEmax), one can use
Eq. ~17! to show that the functiont(E) is monotonous in this
interval. On the other hand, one can use Eq.~20! as long as
the rootsb andc greatly exceed the characteristic radiusa of
the pinning potential. In the limitF→0 and forE close to
Emax, b,c;(B/F)1/3, and the conditionb,c@a is well sat-
isfied.

We reparametrize the energy in the form

E5U02lB1/3F2/3, ~23!

FIG. 3. Euclidean action as a function of temperature. AtT
,T15\F2/2aU0, SEucl is a constant up to exponentially small co
rections. In the regimeT.T1 the Euclidean action begins to de
crease, see Eq.~19!. The temperatureT5Tc @see Eq.~22!# marks
the second-order-like transition from quantum to classical behav
In the vicinity of Tc Eq. ~27! gives an accurate description of th
action.
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3590 57D. A. GOROKHOV AND G. BLATTER
where l5l(E) is a dimensionless parameter. Substituti
this expression into Eq.~21! we obtain for largel (E away
from Emax), c.l21/2(B/F)1/3, andb.l(B/F)1/3, i.e., b@c
for l*5 and Eq.~18! is valid in this region. Consequently,
we show that the oscillation period given by Eq.~20! is a
monotonous function ofl for l,5, a second-order trans
tion from quantum to classical behavior takes place. T
function @ t̃ 5(tF/2a)(F/B)1/3#

t̃ ~l!5
1

~ b̃1 d̃ !3/2~ b̃1 c̃ !~ b̃2 d̃ !1/2

3F ~ b̃1 d̃ !FS p

2
,A~ b̃2 c̃ !~ b̃1 c̃ !

~ b̃2 d̃ !~ b̃1 d̃ !
D

1~ c̃2d̃ !PSp

2
,
~ b̃2 c̃ !~b̃1 c̃ !

~ b̃2d̃ !~b̃1d̃ !
,A~ b̃2 c̃ !~ b̃1 c̃ !

~ b̃2d̃ !~ b̃1d̃ !
DG,

~24!

is plotted in Fig. 4~solid line!; here b̃> c̃. d̃ are the roots
of the equation 1/x21x5l. We can see that the functio
t̃ (l) is monotonously increasing. Surprisingly, even forl

5lmin.3/22/3, the slope oft̃ is close to its asymptotic valu
t̃ (l);l1const,l→`. Close to the pointlmin53/22/3, we
find

t̃ ~l!.
21/3

A3
p1

4A3

27
pS l2

3

22/3D , ~25!

and the derivative]EtuEmax
is indeed negative

FIG. 4. The functiont̃ @solid line, see Eq.~24!#, which is di-
rectly proportional to the imaginary time oscillation periodt(E), as
a function ofl/lmin @see Eq.~23!#, lmin53/22/3. Surprisingly, the

slope of t̃ nearlmin is very close to its asymptotic value at largel.
The dotted line shows the functiong(l)5(21/3/A3)p
1(4A3/27)p(l23/22/3), see Eq.~25!. The dashed line illustrate
the slope of the functionf (l)5l1const corresponding to th
asymptotic expression fort(E), t(E).2a(U02E)/F2. Obvi-

ously, the slope off (l) is very close to those oft̃ (l) andg(l),
indicating that one can use Eq.~18! in almost the whole energy
range.
e

]t/]EuEmax
52

8A3p

27

aB1/3

F4/3
. ~26!

After solving the equationt(E)5\/T in the vicinity of the
point E5Emax we obtain the expression for the action

SEucl~T!.
\

TS U02
3

22/3
B1/3F2/3D

224/3A3p3
a3B

\2F4
~T2Tc!

2u~Tc2T!, ~27!

which improves on the result~19! in the vicinity of Tc .

C. Preexponential factor

Finally, let us estimate the preexponential factor at h
and at low temperatures. AtT.Tc the saddle-point solution
is time independent and is given by the equationx5xmax
with xmax the maximum of the functionH(x,0). In the vicin-
ity of the point (xmax,0),

H~x,p!.U02
3B

xmax
4 ~x2xmax!

21
B

a2xmax
4

p2. ~28!

The imaginary time Hamiltonian corresponding to Eq.~28!
has the form of a harmonic oscillator with the ma
a2xmax

4 /2B and the stiffness 6B/xmax
4 . Consequently, at high

temperatures one can use the result for the decay rate
massive particle~see Refs. 3,27!

G5
A3F4/3

24/3paB4/3

sinh~\k/2aT!

sin@~A3/24/3!~\F4/3/aB4/3T!#
expS 2

U0

T D .

~29!

This expression is applicable at any temperature higher t
Tc except for a narrow temperature interval;\3/2 around
Tc , see Ref. 27. AtT@Tc ,\k/a we obtain the simple resul
G5(\k/2pa)exp(2U0 /T).

At zero temperature the decay involves only tunneli
out of the ground state, i.e., G.@v(E0)/2p#
3exp@2(a/\)(U0 /F)2#, see Ref. 23. Near the metastab
minimum the vortex oscillates with the frequencyv5k/a,
and we arrive at the result

G.
k

2pa
expF2

a

\ S U0

F D 2G . ~30!

However, one should point out that the preexponential fac
in Eq. ~30! is only an order of magnitude estimate as t
quasiclassical approximation is not properly applicable to
ground state.

IV. APPLICABILITY

Let us discuss the conditions for the applicability of t
above results. First of all, we have to account for a nonz
vortex mass. In this case, the system is described by
Hamiltonian
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Ĥ5
P̂x

21~ P̂y
21ax!2

2m
1U0~Ax21y2!2Fx, ~31!

which is equivalent to the Hamiltonian of a massive 2
charged particle in a magnetic field oriented perpendicula
the plane of motion. Let us discuss the conditions wh
should be satisfied in order to use the Hamiltonian~6! in-
stead of that given by Eq.~31!. It is useful to introduce the
four new operators~see also Ref. 28! ĵy52 l 2P̂x /\, X̂5

2 l 2P̂y /\, ĵx5 l 2P̂y/\1x, Ŷ5 l 2P̂x /\1y, where l 5A\/a
is the magnetic length.20 We assume that the conditionl
!a is satisfied~below we will verify this condition using
parameters for high-Tc superconductors!. These new opera
tors satisfy the commutation relations@ ĵy ,ĵx#5@X̂,Ŷ#5 i l 2,

@ ĵx ,Ŷ#5@ ĵx ,X̂#5@ ĵy ,X̂#5@ ĵy ,Ŷ#50. Going over to the
X,jy representation the Hamiltonian~31! can be written in
the form

Ĥ52
\2

2m

]2

]jy
2

1
mvc

2jy
2

2
1E U~k!eikx~ ĵx1X̂!1 iky~ ĵy1Ŷ!d2k.

~32!

In a classical language the problem we study involves
types of motion: A fast rotation of the particle with the c
clotron frequencyvc5a/m superimposed on the slow guid
ing center motion. The term

ĥ52
\2

2m

]2

]jy
2

1
mvc

2jy
2

2
~33!

describes the ‘‘fast’’ part of the Hamiltonian. The lowe
eigenvalue ofĥ is equal to\vc/2. If the characteristic varia
tion of the potential on the lengthl is much smaller than
\vc/2, we can average the Hamiltonian~32! over the
ground-state eigenfunctionx(jy) of the operatorĥ, see Ref.
29. This process corresponds to the averaging over the
rotation with the frequencyvc . After averaging we obtain

Ĥ→^Ĥ& fast5E U~k!expF2
k2l 2

4
1 i ~kxX̂1kyŶ!Gd2k.

~34!

Note that in theX representationŶ52 i l 2]/]X. If l !a, we
can neglect the exponent exp(2k2l 2/4) in Eq. ~34!. On the
other hand, ifl is small, @X̂,Ŷ#→0 and we can easily per
form the integration in Eq.~34! to arrive at the new Hamil-
tonian

Ĥeff5U0~AX̂21Ŷ2!2FX̂ ~35!

describing the guiding center motion. As the operatorsX̂ and
Ŷ obey the commutation relation@X̂,Ŷ#5 i l 2, we can iden-
tify X̂ with the coordinate andŶ with the momentum. This
Hamiltonian is identical to that in Eq.~6!.

In order to carry out the above procedure the characte
tic variation of the potentialU(x,y) on the scalel has to be
much smaller than\vc , i.e., k l 2!\vc , and with k
;U0 /a2 we obtain the conditiona2a2/mU0@1. Conse-
quently, we arrive at the following two conditions for th
applicability of the approach we have used:
to
h

o

st

s-

l !a and
a2a2

mU0
@1. ~36!

Let us estimate the parameters in Eq.~36! appropriate for
high-Tc superconductors:a5p\ns, where n5231021

cm23 is the electron density ands515 Å is the interlayer
spacing in Bi-2:2:1:2. For the magnetic length we then o
tain l 5A\/a.4 Å!a.30 Å. For the second condition in
Eq. ~36! we use the expression for the vortex mass predic
for the superclean limit15 m5me(eF /D)2.100me and the
depth of the potential as given by the equationU0
5(F0/4plab)

2s, with F0 the magnetic-flux quantum an
lab52000 Å being theab-magnetic penetration length. F
nally, we obtaina2a2/mU0.10@1, i.e., we find that both
conditions in Eq.~36! are well satisfied.

The above results should be compared to those in Re
where the condition\a/mU0@1 for the applicability of the
results has been used. Estimating this parameter we ob
\a/mU0.0.1!1. In Ref. 2 an estimate\a/mU0.200 has
been obtained using the vortex mass from the dirty limit,30–32

which is much smaller than the mass in the superclean lim
We see that the LLL approach of Ref. 2 breaks down in
superclean limit if one does not take explicitly the conditi
l !a into account.

Finally, let us show that the second condition in Eq.~36!
can be easily obtained from a simple analysis of the se
classical bounce trajectories: If the Euclidean action is m
larger than unity, we can use the instanton method for
calculation of the imaginary part of the partition functio
which determines the decay rateG}ImZ/Z. In order to de-
termine ImZ within exponential accuracy we have to solv
the classical equation of motion describing the bounce s
tion. If it turns out that the correction of the bounce traje
tory due to the mass term is small, we arrive at an effect
Hall tunneling problem. It is possible to neglect the mass
everywhere along the trajectorymuv̇u!auvu, wherev̇ is the
characteristic acceleration of the vortex during the imagin
time motion andv its characteristic velocity. If a vortex is
moving along the sidesCA, AA8, or A8C of the triangle
CAA8 ~see Fig. 2!, we can make the estimateuv̇u
;v2/(U0 /F), whereas forv the estimatev;U0 /aa holds,
i.e., the following condition should be satisfied:

F

Fc
!

a2a2

mU0
, ~37!

with Fc;U0 /a the critical force. On the other hand, in th
vicinity of the point C, we can writev;U0 /aa and u̇
;v2/a, i.e., the conditiona2a2/mU0@1 has to be satisfied
which is identical to the second condition in Eq.~36!. Com-
paring this result with Eq.~37! we see that the second con
dition in Eq. ~36! is stronger sinceF,Fc .

V. SUMMARY

In Sec. IV we have described how to reduce the dynam
of a massive particle in a magnetic field to the guiding cen
motion along equipotential lines of a smooth potential. C
rying out this procedure for vortices is not entirely unpro
lematic. In fact, we have seen that the averaging proc
over the fast component introduces a frequencyvc5a/m
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.v0 which is at the limit of the applicability of the low
frequency vortex dynamics as described by Eq.~1!. This
problem has been ignored in previous works as the ine
term has been dropped on the classical level of Eq.~1!. As
shown above, both methods produce the same cond
a2a2/mU0@1 for the irrelevance of the mass term, how
ever, starting from the description~31! one obtains that the
frequencyvc5a/m naturally shows up in the quantum d
scription.

Briefly summarizing, we have considered the decay of
metastable state of a massless particle in a magnetic
trapped in a cylindrical attractive potential and subject to
small external force. The above problem is an appropr
model for the depinning of pancake vortices in supercle
Josephson-coupled superconductors for the case of smaj
! j c) transport currents. The Euclidean action as a funct
F

.

it,

. B

,

er

P.
al

on

e
ld

a
te
n
(
n

of temperature is given by Eq.~19!; for T,T1 the action is
constant up to exponentially small corrections and decrea
smoothly aboveT1. At T5Tc , the crossover to the classica
regime takes place. Close to and aboveTc the decay rate can
be accurately described by Eq.~27! which reduces to the
exact classical result aboveTc . For the potential satisfying
the conditions~i! U(r ) is a monotonous function ofr and~ii !
U(r )>U02B/r 2,r→`, the transition from quantum to clas
sical behavior is second-order like and the crossover t
peratureTc is proportional toF4/3; see Eq.~22!.
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