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Thermally activated Hall creep of flux lines from a columnar defect

D. A. Gorokhov and G. Blatter
Theoretische Physik, ETH-Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland
~Received 28 April 1997; revised manuscript received 22 August 1997!

We analyze the thermally activated depinning of an elastic string~line tensione) governed by Hall dynamics
from a columnar defect modeled as a cylindrical potential well of depthV0 for the case of a small external
force F. An effective one-dimensional-field Hamiltonian is derived in order to describe the two-dimensional
string motion. At high temperatures the decay rate is proportional toF5/2T21/2exp@F0 /F2U(F)/T#, with F0 a
constant of order of the critical force andU(F);(eV0)1/2V0 /F the activation energy. The results are applied
to vortices pinned by columnar defects in superclean superconductors.@S0163-1829~98!07105-7#
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I. INTRODUCTION

The search for mechanisms of pinning is both scien
cally challenging as well as an important problem to be st
ied in view of technological applications of high-Tc super-
conductors. Even if the transport current is less than
critical one, energy dissipation takes place due to quantum
thermally activated creep of vortices.1 Recent measuremen
of the critical current and of the magnetization relaxation r
in layered high-temperature superconductors show that
lumnar defects produced by irradiation with heavy ions c
strongly suppress the vortex motion.2 In this paper we
present a theoretical study of the thermally activated de
ning of a vortex from a columnar defect in the presence o
small transport current~classical creep!.

The inverse lifetimeG of a metastable state can be writte
in the form G5Ae2S/\, where S is the Euclidean action
along the extremal trajectory andA is the prefactor deter
mined by the fluctuations around the saddle-point solut
~see Ref. 3 for a general review concerning the decay
metastable states!. At low temperatures the saddle-point s
lution is time dependent and, consequently,S depends on the
dynamics of the system~quantum creep!, whereas at high
temperatures the calculation ofS alone does not involve the
dynamics ~classical creep!. Here, we concentrate on hig
temperatures but go beyond the usual exponential accu
by calculating the prefactorA, a task which does involve th
dynamics of the flux lines as well.

In high-Tc superconductors the dynamics of vortices m
be dominated by either the dissipative or Hall term in t
equation of motion. Microscopic calculations of the dynam
constants4 show that the ratio of Hall and dissipative coef
cientsa/h is approximately equal tov0t, with v0 andt the
level spacing between localized Caroli–de Gennes–Matri
states in the core and the relaxation time, respectively.
cent experimental studies on 90 K crystals of Y-Ba-Cu
~see Ref. 5! have been interpreted as providing evidence
the superclean limit, withv0t;15 below 15 K, in which
case the contribution of dissipative forces can be neglecte
this regime.

Quantum depinning of flux lines governed by Hall d
namics from a columnar defect has been considered by S
and Horovitz6 for the case of a small external force. F
pancake vortices this problem has been studied by Bu
570163-1829/98/57~6!/3577~9!/$15.00
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vskii, Larkin, Maley, and Vinokur.7 The casej c2 j ! j c has
been investigated by Chudnovsky, Ferrera, and Vilenk8

and by Morais-Smith, Caldeira, and Blatter.9 On the other
hand, the problem of the depinning of amassivestring from
a linear object has been solved by Skvortsov in the wh
temperature range10 and the thermal depinning of a flux lin
governed by dissipative dynamics has been considered
Krämer and Kulić.11

The present paper is organized as follows: In Sec. II
reduce the two-dimensional problem of the string motion
an effective one-dimensional~1D! problem. In Sec. III the
decay rate of a trapped string is calculated. In Sec. IV
results are applied to vortices in superclean superconduc

II. 1D EFFECTIVE HAMILTONIAN

Let us consider a string which is pinned by a column
defect in the presence of an external force. Both the cy
drical defect as well as the vortex are directed along thc
axis of the anisotropic superconductor and the external m
netic field is supposed to be sufficiently small, such that
interaction between the vortices can be neglected. Furt
more, we consider the situation where each vortex is pin
by an individual defect, i.e., the concentration of defects
assumed to be larger than that of vortices. The free-ene
density of the string describing this situation is

G~u!5
e

2S ]u

]zD
2

1U~u!, ~1!

where

U~u!5Vcyl~Aux
21uy

2!1Vext~ux!. ~2!

Here,e is the elasticity of the string andux anduy describe
its displacement along thex andy directions, with thez axis
chosen parallel to the defect. In Eq.~2!, Vcyl(Aux

21uy
2)

denotes the cylindrical pinning potential andVext52Fux is
the forcing potential. The functionVcyl(r ) is supposed to be
monotonously increasing and restricted from below a
above. We assume boundary conditionsu(6L/2)50.

If FÞ0, the state of the vortex becomes metastable.
main goal is to investigate the decay rate as a function
temperatureT and forceF, where the external force is as
3577 © 1998 The American Physical Society
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3578 57D. A. GOROKHOV AND G. BLATTER
sumed to be small. The Lagrangian of the vortex~in real
time dynamics! can be written as

L@ux ,uy#5E
2L/2

1L/2

dzS auy

]ux

]t
2G@ux ,uy# D , ~3!

wherea is the Hall coefficient. The corresponding equatio
of motion take the form

a
]ux

]t
5

]U

]uy
2e

]2uy

]z2
, ~4!

a
]uy

]t
52

]U

]ux
1e

]2ux

]z2
. ~5!

Equations~4! and ~5! can be formulated as the equations
motion of the 1D Hamiltonian density

H5FUS x,
p

a D1
e

2S ]x

]zD
2

1
e

2a2S ]p

]zD 2G , ~6!

where we have used the definitionsx[ux andp[auy . Us-
ing the variational procedure for the Hamiltonian densityH
we obtain

ẋ5
]H

]p
2

]

]z

]H

]pz
5

]U~x,p/a!

]p
2

e

a2

]2p

]z2
, ~7!

ṗ52
]H

]x
1

]

]z

]H

]xz
52

]U~x,p/a!

]x
1e

]2x

]z2
, ~8!

and one can easily see that Eqs.~7! and~8! are equivalent to
Eqs. ~4! and ~5! with x5ux and p5auy . Thus we have
reduced the 2D problem of the motion of a vortex govern
by Hall dynamics with an action given by Eq.~3! to the 1D
problem of the motion of a vortex described by the effect
action*dz dt(pẋ2H), with H given by Eq.~6!. The above
idea has been introduced by Volovik12 for the tunneling of
2D vortices in a liquid-helium film, the motion of which i
equivalent to that of a massless particle in a magnetic fi
Later, this idea has been used by Feigel’man, Geshkenb
Larkin, and Levit13 within the context of vortex tunneling in
superclean high-Tc superconductors. Chudnovsky, Ferre
and Vilenkin8 have generalized this idea for the descripti
of the depinning of a flux line governed by Hall dynami
from a columnar defect near criticality. In their ca
U(ux ,uy)5aux

2/22bux
3/31cuy

2/2 and the elasticity along
the y direction can be neglected ifj c2 j ! j c , i.e., the prob-
lem can be reduced to the 1D massive string problem. Ab
we have generalized the problem for the case of an arbit
potential and nonzero elasticity in they direction.

III. DECAY RATE

The decay rateG of an arbitrary metastable Hamiltonia
system at high temperatures is given by the expression14

\G5
\v0

p

Im Z

Z
, ~9!
s

f

d

d.
in,

,

e
ry

where v0 is the unstable mode growth rate andZ is the
partition function of the system under consideration. Eq
tion ~9! is applicable if the temperatureT satisfies the con-
dition T@\v0, otherwise quantum effects become releva
If the transition from quantum to classical behavior in t
decay of the metastable state is of second order, the pa
eter T05\v0/2p determines the temperature of the cros
over. However, in general the transition can be of first ord
in which case the crossover temperature differs fr
\v0/2p ~see Ref. 15!. Note that at low temperatures th
equation for the decay rate can be written as\G
52T ImZ/Z. We emphasize that Eq.~9! can be applied only
if the system is properly equilibrized, i.e., if its characteris
relaxation time is much smaller thanG21.

We assume that the quasiclassical approximation is ap
cable. With the partition function written as a path integra

Z5E $Du%expS 2
SEucl@u#

\ D , ~10!

we can use the steepest descent method for its calculatio
this approximation the partition function is determined by
stationary points. The most significant contribution toZ
arises from the trajectoryu(z,t)50—the position of the
minimum of the potential, whereas the imaginary part of t
partition function is determined by the neighborhood of t
saddle-point solutionu(z,t)5u0(z) which is time indepen-
dent at high temperatures. Hence, the problem is reduce
the calculation of the unstable mode growth ratev0, and of
the real and imaginary parts of the statistical sum. Below
shall calculate all these quantities.

A. Unstable mode growth rate

At high temperatures the saddle-point solution does
depend on time. The stationary extremal trajectoryu0(z) for
the Euclidean action

SEucl@ux ,uy#5E
2L/2

1L/2

dzE
2\/2T

1\/2T

dtS G@ux ,uy#2 iauy

]ux

]t D
~11!

corresponding to the real-time Lagrangian~3! satisfies the
Euler equation

e
]2u

]z2
5

]U~u!

]u
, u5~ux ,uy!. ~12!

The unstable mode growth rate then is determined by
negative eigenvalue of the operatordu

2SEucluu0(z) . Near the

saddle-point solutionu0(z) the perturbed solution can be ex
panded in the form

ux~z,t!5ux0~z!1c~z!exp~ i2pTt/\!, ~13!

uy~z,t!5w~z!exp~ i2pTt/\!, ~14!

with small distortion amplitudesc(z) and w(z) for T&T0.
Substituting Eqs.~13! and ~14! into the equations of motion
for the Euclidean action~11! and expanding, we obtain th
system of equations determining the crossover tempera
T0.
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2e
d2c

dz2
1av0w1

d2Vcyl

dr2
ur 5ux0~z![Ĥxc1av0w50,

~15!

2e
d2w

dz2
2av0c1

1

r

dVcyl

dr
ur 5ux0~z![Ĥyw2av0c50,

~16!

subject to the boundary conditionsc(6L/2),w(6L/2)50.
The ~lowest! eigenvaluev0 is related to the crossover tem
peratureT0 through the conditionv052pT0 /\.

The ‘‘potentials’’ Ux(z) and Uy(z) of the Schro¨dinger
operators defined in Eqs.~15! and~16! are shown in Figs. 1
and 2, respectively.

The operatorĤx has only one negative eigenvalue: it c
be easily seen that in the limitL→` the functiondux0 /dz is

an eigenfunction of the operatorĤx with zero eigenvalue. Its
derivativedux0 /dz can be understood as the ‘‘velocity of
particle’’ moving in the potentialU(ux0 ,uy0) with the ‘‘ve-
locity’’ changing its sign once. Hence,dux0 /dz is an eigen-

function of the 1D Schro¨dinger operatorĤx with one node
and there must be another function corresponding to
ground-state ‘‘wave function’’ with a negative eigenvalu

We conclude that the operatorĤx has one negative and on

zero eigenvalue. The operatorĤy is positive and has only
positive eigenvalues.

Eliminating the functionw from the system of Eqs.~15!

and ~16! we obtain~we denote eigenvalues ofĤxĤy by l̃

and those ofĤx by l)

ĤyĤxc5 l̃c. ~17!

FIG. 1. The ‘‘potential’’Ux(z) for the 1D Schro¨dinger operator

Ĥx @see Eq.~15!#. The characteristic size of the potential is given
D5A2eV0/F and its height is equal tok.

FIG. 2. The ‘‘potential’’Uy(z) for the 1D Schro¨dinger operator

Ĥy @see Eq.~16!#. The characteristic size of the potential is given
D5A2eV0/F and its height is equal tok.
e
.

The unstable mode growth ratev0 is determined by the

negative eigenvaluel̃21 of Eq. ~17!, l̃2152(av0)2. In
Appendix A we derive a variational principle for the prese
problem and show that the negative eigenvalue of Eq.~17!
indeed exists and is unique.~We exploit that the operato

Ĥy
1/2ĤxĤy

1/2 is Hermitian and has the same eigenvalues

ĤyĤx). Furthermore, we derive both upper and lower boun

on the eigenvaluel̃21 of the operatorĤxĤy in Appendix B,
such that we finally arrive at the estimate

T05
\Aul̃21u

2pa
5

j

2p

\F2

aV0
, ~18!

with jP@1.1530,2.7314# a universal constant andV0 denotes
the depth of the potentialVcyl . The result~18! holds inde-
pendently of the details of the pinning potentialVcyl as long
as the driving forceF is small, F!Fc . We note thatT0
;F2; the same dependence holds for a string with dissi
tive dynamics. For a massive string depinning from a line
defectT0;F, see Ref. 10.

B. Ratio ImZ/Z

The most significant contribution to ReZ arises from the
neighborhood of the minimum of the potentialVcyl . In this
region we can write@see Eq.~2!#

U~x,p/a!>
k

2
x21

k

2a2
p2, ~19!

wherek5d2Vcyl /dux
2uu50. The equations of motion~7! and

~8! take the form

a2ẋ5S k2e
]2

]z2D p[Ĥ0p, ~20!

ṗ52Ĥ0x. ~21!

Hence,p5a2Ĥ0
21ẋ and the Euclidean action of the vorte

near the equilibrium position can be written in the form@we
make use of Eq.~6!#

SEucl
0 5

1

2E2\/2T

1\/2T

dtE
2L/2

1L/2

dz xS 2a2
]2

]t2
Ĥ0

211Ĥ0D x.

~22!

The same procedure as above provides the variation of
Euclidean action near the thermal saddle-point solution

SEucl
S 5

1

2E2\/2T

1\/2T

dtE
2L/2

1L/2

dz dxS 2a2
]2

]t2
Ĥy

211ĤxD dx,

~23!

where the operatorsĤx and Ĥy are given by Eqs.~15! and
~16!. Using the usual measures for harmonic oscillators
the path integrals forSEucl

0 andSEucl
S ~see Ref. 16!,

dm05FdetS 2a2
]2

]t2
Ĥ0

21D G 1/2

)
a

dCa
0

A2p\
~24!
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and

dmS5FdetS 2a2
]2

]t2
Ĥy

21D G 1/2

)
b

dCb
S

A2p\
, ~25!

~hereCa
0 andCb

S are expansion coefficients over the syste
of normalized functions! and defining the dimensionless o

eratorsĥ0, ĥx , and ĥy as Ĥ0 /k, Ĥx /k, and Ĥy /k, respec-
tively @k5Vcyl9 (0)#, we obtain for ImZ/Z

ImZ

Z
5

L

2
A k

2pTF E
2L/2

1L/2

dzS ]u0

]z D 2G1/2

3expS 2
U

T D F mx,0~L !

mxy,0~L !G
1/2

3U det@2~a2/k2!~]2/]t2!1ĥ0
2#

det@2~a2/k2!~]2/]t2!1ĥy
1/2ĥxĥy

1/2#
U1/2

,

~26!

where (L→`)

U5eE
2L/2

1L/2S ]u0

]z D 2

dz.
4

3
A2eV0

V0

F
, ~27!

is the activation barrier andL is the length of the string~we
performed standard integration over the shift mode, see R
17,18!. The prime in Eq.~26! indicates that we exclude th

zero eigenvalue of the operator2a2Ĥy
21(]2/]t2)1Ĥx .

mx,0(L) andmxy,0(L) are the ‘‘zero’’ eigenvalues of the op

erators ĥx and ĥy
1/2ĥxĥy

1/2 defined on the interval@2L/2,
1L/2#, L→`.

The eigenvalues of the operators2(a2/k2)(]2/]t2)

1ĥ0
2 and2(a2/k2)(]2/]t2)1ĥy

1/2ĥxĥy
1/2 are equal to

S 2paT

k\
nD 2

1m0,a and S 2paT

k\
nD 2

1mxy,b ,

n50,61,62 . . . , ~28!

with m0,a andmxy,b the eigenvalues of the operatorsĥ0
2 and

ĥy
1/2ĥxĥy

1/2, respectively. Substituting these eigenvalues i
Eq. ~26! and calculating the product overn using )n51

` (1
1x2/n2)5sinh(px)/px we obtain

ImZ

Z
5

aL

4\
A T

2pk
expS 2

U

T D 1

sin~pT0 /T!F mx,0~L !

mxy,0~L !G
1/2

3F E
2L/2

1L/2

dzS ]u0

]z D 2G1/2

3expF \k

2aTS (
a

Am0,a2(
b

9Amxy,bD G ~29!

3

)
a

@12exp„2~\k/aT!Am0,a…#

)
b

9 @12exp„2~\k/aT!Amxy,b…#

.

s

fs.

o

The double-prime sign reminds us that we excluded

negative and zero eigenvalues of the operatorĥy
1/2ĥxĥy

1/2.

C. Result for G

The positive part of the spectrum ofĥx
1/2ĥyĥx

1/2 consists of
M discrete eigenvaluesmxy,b and a continuous partmxy(k)
5(11ek2/k)2 with a spectral densityrS(k). The spectrum

of ĥ0
2 is continuous,m0(k)5(11ek2/k)2 with the spectral

densityr0(k). Using

)
a

f ~m0,a!

)
b

f ~mxy,b!

5expF E dk dr~k!lnf „m~k!…G , ~30!

with dr(k)5r0(k)2rS(k) we arrive at the final expressio
for the decay rate.

G5
aT0

2\2
A T

2pk
expS 2

U*

T D L

sin~pT0 /T!

3F E
2L/2

1L/2

dzS ]u0

]z D 2G1/2F mx,0~L !

mxy,0~L !G
1/2

3expH E
0

`

dk dr~k!lnF12expX2 \k

aTS 11
e

k
k2D CG J

3 )
b51

M F12expS 2
\k

aT
Amxy,b,D G21

, ~31!

with

U* 5U2
\k

2aF E
0

`

dk dr~k!S 11
e

k
k2D2 (

b51

M

Amxy,bG
~32!

the quantum renormalized activation energy. Let us inve
gate the correction to the activation energy~32! arising from
largek values. We will see that the large-k modes lead to an
ultraviolet divergence which we have to cut off by som
physical length scale. It is convenient to rewrite the integ
*0

kdk8dr(k8)(11ek82/k) as

E
0

k

dk8dr~k8!S 11
e

k
k82D5 (

n

N0~k!

~11ekn
2/k2!

2 (
n

NS~k!

~11eqn
2/k2!, ~33!

wherekn andqn are trivially related to the eigenvalues of th

operatorsĥ0
2 and ĥy

1/2ĥxĥy
1/2 andN0(k) andNS(k) denote the

number of eigenvalues inside the interval@0,k#. Note that

N0(`)2NS(`)5M12. The two operatorsĥ0
2 andĥy

1/2ĥxĥy
1/2

define two scattering problems. We define appropriate s
tering statesck(z) andcq(z) with asymptoticseikz andeiqz

(z→2`) andeikz,eiqz1d(q) (z→1`), with d(q) the appro-
priate scattering phase shift. The general solutions of
‘‘Schrödinger’’ equations can be written asCk(z)
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5C1ck(z)1C2c2k(z) and Cq(z)5C18cq(z)1C28c2q(z).
Since we require that the ‘‘wave functions’’ satisfy the co
dition Cp(6L/2)50, L@AeV0/F, we obtain the discrete
levels through the phase equations~see also Ref. 19!

knL5pn, qnL1d~q!5pn, ~34!

and hence

kn
22qn

25S pn

L D 2

2S pn2d~q!

L D 2

.1
2pn

L2
d~q!.1

2q

L
d~q!. ~35!

For q@Ak/e we can make use of the semiclassical appro

mation for the operatorĥy
1/2ĥxĥy

1/2 and calculate the phas
shift directly: With the usual ansatzC(z);ei *q(z)dz the
function q(z) can be found from the equation

@eq2~z!1Ux#@eq2~z!1Uy#5k2Eq , ~36!

whereEq5(11eq2/k)2.e2q4/k2 is the eigenvalue of the

continuous spectrum ofĥy
1/2ĥx

1/2ĥy
1/2. At largeq we obtain

q~z!.Ak

e
Eq

1/4S 12
~Ux1Uy!

4kAEq
D . ~37!

Similarly, for the operatorĥ0
2 we obtain

k~z!.Ak

e
Ek

1/4S 12
1

2AEk
D , ~38!

and we arrive at the difference in the phase shift

d~q!.Ak

e
Eq

1/4E
2L/2

1L/2

dz
~2k2Ux2Uy!

4kAEq

. ~39!

Taking into account that at largeq, Eq.e2q4/k2 and that
Ux(z),Uy(z)!k for uzu,A2eV0/F, we obtain

d~q!.A2V0

e

k

qF
, ~40!

i.e.,kn
22qn

252kA2V0 /e/FL. At largek the number of states
in the intervaldk is equal toL dk/2p and the integral

E
0

k

dk8dr~k8!S 11
ek82

k D.
e

k (
n

N0~k!

~kn
22qn

2!

.E
0

k

dk8
A2eV0

pF
~41!

diverges linearly at largek ~for the case of a massive strin
the correction to the activation diverges as lnk, see Refs.
10,18!. The integral then has to be cut off at some wa
vectork* . For a string the natural cutoff isp/r , with r the
radius of the string. For a vortex parallel to thec axis of an
anisotropic superconductork* ;p/max(jc ,d), with jc the
coherence length in thec direction andd being the distance
between the superconducting layers.
-

i-

e

Cutting off the integral in Eq.~32! at large momentumk*
we obtain

U* .U2
\kk*

A2paF
AV0e. ~42!

The theory is self-consistent if the correction to the activ
tion energy is small as compared toU ~here we have as
sumed the cutoffk* to be large such that we can neglect t
contribution from the bound states!.

In case of a continuous transition from quantum to cl
sical behavior the result Eq.~31! with Eq. ~32! is applicable
for any T.T0 except for a narrow temperature interv
;\3/2 aroundT0 ~see Ref. 20!. An explicit expression for the
decay rate can be obtained only for the case\→0, i.e., in the
classical limit. In this limit we can expand the exponents
Eq. ~31!, 12exp(2\k/aT).\k/aT and the quantum correc
tion to the activation energy~32! tends to zero. Performing
these steps we obtain the result

G5
kL

2pa
A k

2pT
expS 2

U

T D F E
2L/2

1L/2

dzS ]u0

]z D 2G1/2

3F mx,0~L !

mxy,0~L !G
1/2F det~ ĥ0

2!

det9~ ĥy
1/2ĥxĥy

1/2!
G 1/2

. ~43!

Using the same technique as before, see Eq.~26!, we arrive
at the more suitable form

G5
kL

2pa
A k

2pT
expS 2

U

T D F E
2L/2

1L/2

dzS ]u0

]z D 2G1/2

3Aumxy,21u lim
L→`

Amx,0~L !U det~ ĥ0!

det„ĥx~L !…
U1/2Fdet~ ĥ0!

det~ ĥy!
G 1/2

,

~44!

wheremx,0(L) is the zero eigenvalue of the operatorĥx(L).
The calculation of the instanton determinant rati

~44! can be elegantly performed using the Gelfand-Yagl

formula.21 The renormalized21 determinant detĤ of the

Schrödinger operatorĤ52]2/]z21p(z) is the solution of

the differential equationĤ f (z)50 with the initial conditions
f uz52L/250 and d f /dzuz52L/251. The value of the
function f (z5L/2) provides the renormalized determ
nant. As has been shown in Ref. 11, in the lim
F→0, mx,0(L);(Fa/V0)exp@2Ak/e(L22A2eV0/F)#,

det(ĥ0)/udet„ĥx(L)…u;exp(Ak/eL), and det(ĥ0)/det(ĥy)
;(Fa/V0)exp(2A2kV0/F), where the coefficients of pro
portionality depend on the detailed form of the pinning p
tential anda is the characteristic radius of the pinning we
The eigenvaluemxy,2152j2F4/k2V0

2, see Eq.~18!, and we
make use of Eq.~27!. Substituting these dependences in
Eq. ~44! we obtain

G5g
V0L

aa3
AV0

e S F

Fc
D 5/2S T̃

T
D 1/2

expS 2
U

T
1

2A2kV0

F D ,

~45!
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whereg is a dimensionless proportionality coefficient whic

depends on the detailed form of the pinning potential,T̃
5aAeV0, Fc is the critical force, and the activation energ
U is given by Eq.~27!. As an illustration we have explicitly
solved the differential equations for a pinning potential giv
by the equation

Vcyl5V0F12cos2S p

2a
Aux

21uy
2D u~a22ux

22uy
2!G , ~46!

where u(t) is the step-function@u(t)51 if t.0 and u(t)
50 otherwise#. The external force has the formF(ux)
5Fu(uuxu2a).

We find mx,0(L)5(24Fa/pV0)exp@2Ak/e(L

22A2eV0/F)#, det(ĥ0)/udet(ĥx)u5(1/2)exp(Ak/eL), and

det(ĥ0)/det(ĥy)54Fa/pV0exp(2A2kV0/F), and substitut-
ing these expressions into Eq.~44! we obtain g5pj/25/4

.1.32j.
A real physical system will involve a finite cutoffk* ,

which we can account for in Eq.~31! by a restricted integra
tion over the modesk,k* . However, in making use of the
Gelfand-Yaglom formula we actually account for unphysic
fluctuations withk.k* . In order for the classical result~45!
to be valid we then must require the cutoffk* to be suffi-
ciently large such as to validate the Gelfand-Yaglom
proach. On the other hand,k* has to be small enough i
order to arrive at a small quantum correction in Eq.~32!.

IV. CONCLUSION

Let us first specify the regime of applicability of our re
sults. The zero-temperature Euclidean action takes the v
SEucl(T50)5aV, whereV is the volume encircled by the
string in the course of the tunneling motion. In thex andy
directions the characteristic size of the loop isV0 /F and the
length of the string segment along thez direction is of order
AeV0/F, henceSEucl(T50);aAe/V0(V0 /F)3. On the other
hand,SEucl(T5T0)5\U/T0;SEucl(T50), i.e., even if the
transition from quantum to classical behavior atTc.T0 is
first-order like, its temperature will still be of orderTc;T0
and our results are applicable in the regimeT.T0.

Next, we estimate the temperatureT0 using parameters
for the moderately anisotropic superonduc
YBa2Cu3O72d . We choose our columnar defect in the for
of a cylindrical cavity of radiusa.jab(0), wherejab is the
coherence length in theab plane. The expression for th
pinning potential then can be written in the form22

U~r !5n
e0

4

r 2

r 212jab
2

, ~47!

wheree05(F0/4plab)
2 is the relevant energy scale and t

factorn (0,n,1) describes the pinning efficiency factor,23

F0 andlab are the flux quantum and the penetration len
in the ab plane, respectively. For the model potential~47!
the temperatureT0, the critical forceFc , and the temperature
\k/a can be easily calculated~the Hall coefficienta is re-
lated to the electron densityn as a5p\n at T50 in the
superclean limit v0t@1): T05(nj/64p2)(e0 /
njab

2 )(F/Fc)
2, Fc5(A2n/16)e0 /jab , \k/a5n\e0/4ajab

2 .
l

-

ue

r

h

Substituting jab516 Å, lab51400 Å, lc /lab55, a
5p\n, n5231021 cm23, e5e0lab

2 /lc
2 , andj.2, we ob-

tain T050.6 K•n(F/Fc)
2, and \k/a515 K•n. Taking

into account thatn might be;0.1, see Ref. 23, we see that
T;10215 K when the Hall force appears to be large,5 the
conditionsT@T0 ,\k/a are well satisfied.

The ratioa/h.15 for T&15 K ~see Ref. 5! was obtained
from indirect measurements. In Ref. 24 direct measurem
of the Hall angle in 60 K YBa2Cu3O72d are reported to yield
a ratioa/h.1. We wish to point out that even ifa/h&1 it
is still possible to use Eq.~45!: We have shown that the
inverse lifetime of a vortex pinned by a columnar defe
behaves at high temperatures as

G;F5/2T21/2expS 2
U

T
1

2A2kV0

F D . ~48!

It is interesting to note that the same dependence of the
cay rate on the external force and temperature has been
tained in Refs. 11 for a flux line governed by dissipati
dynamics. Moreover, the equation for the decay rate fr
Refs. 11 can be obtained up to a numerical prefactor fr
Eq. ~45! by the substitutiona→h, indicating that in the
regimesa&h or a!h it is possible to use Eq.~45! with
a→max(a,h).

The scaling law~48! for the decay rate leads then to th
resistivity scaling

r~F !;FAF

T
Fexp~2A2kV0/F !GexpS 2

U

T D , ~49!

where the factor in square brackets represents the corre
to the standard result, which arises from the inclusion
classical fluctuations around the saddle point~prefactor!.

We note that Eq.~48! is not valid forT.FU/2A2kV0 as
the quasiclassical approximation is not applicable at th
large temperatures. It is well known that the problem o
vortex pinned by a cylindrical potential is equivalent to th
of a 2D quantum particle trapped in a radially symmetric 2
potential. The latter always has a bound state in 2D, and
the vortex is pinned by the defect at any temperature. Ho
ever, the thermal fluctuations lead to a large downw
renormalization of the pinning energy at sufficiently hig
temperatures.22,23

Finally, let us make an estimate of the cutoff momentu
k* . The theory developed above works well ifk* @Ak/e;
with k* 5p/d, whered512 Å is the distance between su
perconducting layers, we obtaink* /Ak/e.5, such that this
condition is marginally satisfied.

Briefly summarizing, we have considered the problem
the thermally activated depinning of a flux line governed
Hall dynamics from a columnar defect in the presence o
small (F!Fc) external force. We have shown how to redu
the 2D problem of the string motion to a 1D effective pro
lem. The expression for the decay rate has been obtaine
the whole temperature region where the saddle-point solu
is time independent@see Eqs.~31!, ~44!, and ~45! for high
temperatures#. An analytical expression for the classical a
ymptotics ofG has been calculated for a model potential
given by Eq.~46!, and we have discussed possible applic
tions of these results to high-Tc superconductors.
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APPENDIX A: EXISTENCE AND UNIQUENESS

We prove that a solution of Eq.~17! with a negative ei-
genvalue exists. Second, we show the uniqueness of this
lution. We mention that in the limitL→` the boundary con-
dition c→0 for uzu→` is asymptotically satisfied.

Existence. As we already know, the operatorĤx has one

negative eigenvalue. We show that the operatorĤyĤx has a
negative eigenvalue, too. It is possible to rewrite the equa

ĤyĤxc5 l̃c in the form

Ĥy
1/2ĤxĤy

1/2~Ĥy
21/2c!5 l̃~Ĥy

21/2c! ~A1!

~the operatorĤy has only positive eigenvalues, hence, ope

tors likeĤy
11/2 or Ĥy

21/2 are well defined and Hermitian!. The

operatorĤy
1/2ĤxĤy

1/2 is also Hermitian and its lowest eigen
value can be obtained by minimization of the functional

F@x#5
^xuĤy

1/2ĤxĤy
1/2ux&

^xux&
~A2!

in the space of functions with integrable modulus squar
Using the fact thatHy

1/2 is self-conjugate and definingf

5Ĥy
1/2x, the functional can be rewritten as

F@f#5
^fuĤxuf&

^Ĥy
21/2fuĤy

21/2f&
5

^fuĤxuf&

^fuĤy
21uf&

. ~A3!

The operatorĤx has a negative eigenvalue, i.e., there is

function uf& such that̂ fuĤxuf&,0. The operatorĤy has

only positive eigenvalues, i.e., the form̂fuĤy
21uf& is al-

ways positive. Consequently we constructed the Rayle

Ritz principle for the equationĤyĤxc5 l̃c and proved that
there is a function with a negative average value. The eig

value l̃21 is even lower, thus we have demonstrated
existence of a negative eigenvalue for the problem~17!.

Uniqueness. Let us rewrite the operatorĤx in the follow-
ing form:

Ĥx5(
a

laua&^au5 (
aÞ21

laua& ^au1l21u21& ^21u, ~A4!

wherela are the eigenvalues ofĤx , l21 is the lowest ei-

genvalue of the operatorĤx , the vectoru21& denoting the

‘‘ground state’’of the operatorĤx . The operatorĤy
1/2ĤxĤy

1/2

can be rewritten in the form

Ĥy
1/2ĤxĤy

1/25Ĥy
1/2 (

aÞ21
laua&^auĤy

1/2

1Ĥy
1/2l21u21&^21uĤy

1/2[Â1B̂. ~A5!
l

o-

n

-

d.

a

h-

n-

e

The image of the operatorB̂5Ĥy
1/2l21u21&^21uĤy

1/2 is

one-dimensional, i.e.,B̂ is a self-adjoint projector of rank 1
The operator

Â5Ĥy
1/2S (

aÞ21
laua&^au10•u21&^21u D Ĥy

1/2 ~A6!

is a non-negative Hermitian operator with two zero eigenv

ues. We perturb the operatorÂ with a projector of rank 1 and
make use of the following theorem.25

Theorem. Let Â be a self-adjoint operator and Bˆ a self-
adjoint operator of rank 1. Take an interval D on the re

axis and denote by n(D) the number of eigenvalues of Aˆ in

this interval. Then the number m(D) of eigenvalues of Aˆ

1B̂ within D satisfies the estimate:

n~D !21<m~D !<n~D !11. ~A7!

Applying this theorem to the interval (2`,0) ~we exclude

zero! one can easily see that the operatorĤy
1/2ĤxĤy

1/2 has not
more than one negative eigenvalue. But the eigenvalue

this operator are the same as those of the operatorĤyĤx so
that our problem has only one negative eigenvalue.

APPENDIX B: NEGATIVE EIGENVALUE PROBLEM

We construct upper and lower bounds for the negat

eigenvaluel̃21 of the operatorĤxĤy . In the limit F→0 the

lowest eigenvalues of the operatorsĤx andĤy do not depend
on the detailed form of the pinning potential.11 This is due to
the rapid decay of the eigenfunctions in the regionuzu.D,
where the form of the potential is irrelevant. The lowest

genvalue of the operatorĤx is equal tol2152m2F2/2V0,
with m the root ofmtanhm51 ~see Refs. 11!. In the region
uzu,D the normalized ‘‘ground-state’’ wave function of th

operatorĤx is

f21~z!5
cosh~Aul21u/ez!

ADcosh~Aul21u/eD !
. ~B1!

As the characteristic depthk of the ‘‘potential well’’ Uy(z)
is much larger than the ‘‘size quantization energy’’e/D2

~see Fig. 2!, we can approximate the eigenvalues and eig

functions of the operatorĤy by those of the infinitely deep
quantum well

ln85
p2F2

8V0
n2, fn8~z!5

1

AD
cosS pn

2D
z1

p

2
~n21! D ,

n51,2 . . . . ~B2!

Using the variational principle~A3! we can write

l̃21<
^f21uĤxuf21&

^f21uĤy
21uf21&

52
m2F2/2V0

(
m

~ u^f21ufm8 &u2/lm8 !

.

~B3!
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Substituting the eigenvalues and eigenfunctions~B2! into
Eq. ~B3! we obtain

l̃21<2
m2F4/2V0

2

(
m50

`

$8/@m21p2~2m11!2/4#%2

521.3292
F4

V0
2

.

~B4!

In order to obtain a lower estimatel̃21>B.2` @see Eq.
~A3!#, we use the following inequality:

l̃215minfPL2F@f#>minCPD
l21

^fuĤy
21uf&

, ~B5!

where the functions belonging toD satisfy the conditions~i!

^fuf&51, ~ii ! ^fuĤxuf&,0, and ~iii ! f(z)5f(2z). The
last condition is a consequence of the parity symmetry of

operatorĤxĤy . Following the discussion in Sec. III A, th

operatorĤx has one negative eigenvalue with an even eig

function. For any odd functionf, ^fuĤxuf&>0, thus an odd
function cannot minimize the functional~A3!, hence the
eigenfunction corresponding to the lowest eigenvalue of

operatorĤxĤy has to be even. Our goal is to find som

~large! constantb such that̂ CuĤy
21uC&.b.0 for any C

PD. We rewrite

^fuĤy
21uf&5(

m

u^fufm8 &u2

lm8
>

u^fuf18&u
2

l18
~B6!

and expandingf in the eigenfunctions of the operatorĤx ,

f5(n521cnfn[c21f211f̃, we can write

u^fuf18&u
2

5c21
2 u^f218 uf18&u

21u^f̃uf18&u
212c21^f21uf18&^f̃uf18&

>c21
2 u^f21uf18&u

21u^f̃uf18&u
222uc21u u^f21uf18&u u^f̃uf18&u.

~B7!
,

F

e

-

e

As ^fuĤxuf&,0, 2c21
2 ul21u1c1

2l11c2
2l21 •••,0, and

taking into account that(ncn
251 we obtain

1.uc21u.A l1

ul21u1l1
50.9191, ~B8!

where we used the fact thatl21521.4392e/D2 and l1

57.8309e/D2 ~see Refs. 10,11!. As u^f̃uf18&u<uuf̃uuuuf18uu
<A12c21

2 50.3941, we obtain u^fuf18&u
2> f (uc21u,K),

where

f ~ uc21u,K !5c21
2 u^f21uf18&u

21K222uc21uu^f21uf18&uK.
~B9!

We note that uc21uP@0.9191,1# and KP@0,0.3941#. A
simple analysis shows that the minimal value off (uc21u,K)
is equal to f (0.9191,0.3941)50.119 and substituting this
value into Eqs.~B5! and ~B6! we obtain

l̃21>27.4603
F4

V0
2

. ~B10!

Hence, we have shown that in the limitF→0 the lowest

eigenvaluel̃21 of the operatorĤxĤy , l̃21 behaves as
2gF4/V0

2 with gP@1.3292,7.4603#. The temperatureT0 and

the eigenvaluel̃21 are connected by the equationT0

5\Aul̃21u/2pa and we obtain the estimate

T05
j

2p

\F2

aV0
, ~B11!

with jP@1.1530,2.7314#.
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