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Thermally activated Hall creep of flux lines from a columnar defect
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We analyze the thermally activated depinning of an elastic stfing tensione) governed by Hall dynamics
from a columnar defect modeled as a cylindrical potential well of d&fhior the case of a small external
force F. An effective one-dimensional-field Hamiltonian is derived in order to describe the two-dimensional
string motion. At high temperatures the decay rate is proportionBPET ~*%ex F,/F—U(F)/T], with F, a
constant of order of the critical force at{F)~ (eV,) ¥/, /F the activation energy. The results are applied
to vortices pinned by columnar defects in superclean supercondu@es53-182608)07105-1

I. INTRODUCTION vskii, Larkin, Maley, and Vinokuf. The casg.—j<j. has
been investigated by Chudnovsky, Ferrera, and Viléhkin
The search for mechanisms of pinning is both scientifi-and by Morais-Smith, Caldeira, and BlatteOn the other
cally challenging as well as an important problem to be studhand, the problem of the depinning ohzassivestring from
ied in view of technological applications of high- super- a linear object has been solved by Skvortsov in the whole
conductors. Even if the transport current is less than théemperature rand®and the thermal depinning of a flux line
critical one, energy dissipation takes place due to quantum agoverned by dissipative dynamics has been considered by
thermally activated creep of vorticéfRecent measurements Kramer and Kulic'*
of the critical current and of the magnetization relaxation rate The present paper is organized as follows: In Sec. Il we
in layered high-temperature superconductors show that caeduce the two-dimensional problem of the string motion to
lumnar defects produced by irradiation with heavy ions caran effective one-dimension&lD) problem. In Sec. Il the
strongly suppress the vortex motibnin this paper we decay rate of a trapped string is calculated. In Sec. IV the
present a theoretical study of the thermally activated depinresults are applied to vortices in superclean superconductors.
ning of a vortex from a columnar defect in the presence of a
small tr_ansport -CUr.rer(tlaSSical Cl’ee}) Il. 1D EFEECTIVE HAMILTONIAN
The inverse lifetimd” of a metastable state can be written
in the form'=Ae 5% where S is the Euclidean action Let us consider a string which is pinned by a columnar
along the extremal trajectory andl is the prefactor deter- defect in the presence of an external force. Both the cylin-
mined by the fluctuations around the saddle-point solutiorfirical defect as well as the vortex are directed alongche
(see Ref. 3 for a general review concerning the decay o@xis of the anisotropic superconductor and the external mag-
metastable statpsAt low temperatures the saddle-point so- netic field is supposed to be sufficiently small, such that the
lution is time dependent and, consequerfiylepends on the interaction between the vortices can be neglected. Further-
dynamics of the systenfquantum creep whereas at high more, we consider the situation where each vortex is pinned
temperatures the calculation 8falone does not involve the by an individual defect, i.e., the concentration of defects is
dynamics (classical creep Here, we concentrate on high assumed to be larger than that of vortices. The free-energy
temperatures but go beyond the usual exponential accuraéignsity of the string describing this situation is
by calculating the prefactok, a task which does involve the
dynamics of the flux lines as well. Gu) = €/ du
In high-T; superconductors the dynamics of vortices may (u)_i
be dominated by either the dissipative or Hall term in the
equation of motion. Microscopic calculations of the dynamicwhere
constants show that the ratio of Hall and dissipative coeffi-
cientsa/ 7 is approximately equal tey7, with w, andr the U () = Vey(VUg+ ) + Vey(Uy). 2
level spacing between localized Caroli—de Gennes—Matricon
states in the core and the relaxation time, respectively. Redere, e is the elasticity of the string angl, andu, describe
cent experimental studies on 90 K crystals of Y-Ba-Cu-Oits displacement along theandy directions, with thez axis
(see Ref. Fhave been interpreted as providing evidence forchosen parallel to the defect. In E(R), Ve, (Vu®+uy?)
the superclean limit, withoy7~15 below 15 K, in which  denotes the cylindrical pinning potential ang,= —Fuy is
case the contribution of dissipative forces can be neglected ithe forcing potential. The functioW,(r) is supposed to be
this regime. monotonously increasing and restricted from below and
Quantum depinning of flux lines governed by Hall dy- above. We assume boundary conditiorfs-L/2)=0.
namics from a columnar defect has been considered by Sonin If F#0, the state of the vortex becomes metastable. Our
and Horovit? for the case of a small external force. For main goal is to investigate the decay rate as a function of
pancake vortices this problem has been studied by Bulagemperaturel and forceF, where the external force is as-
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sumed to be small. The Lagrangian of the vortexreal where w, is the unstable mode growth rate addis the

time dynamicg can be written as partition function of the system under consideration. Equa-
tion (9) is applicable if the temperaturE satisfies the con-

U] J+L/2d2( u %—G[u 0] 3 dition T>ﬁc'ulo, otherwise quantum effeqts become_ rel_evant.

X2 =y L2 Yoot xRy If the transition from quantum to classical behavior in the

decay of the metastable state is of second order, the param-

wheree is the Hall coefficient. The corresponding equationseter To=%wo/27 determines the temperature of the cross-
of motion take the form over. However, in general the transition can be of first order,
in which case the crossover temperature differs from
hwol2m (see Ref. 15 Note that at low temperatures the
equation for the decay rate can be written &§
=2T ImZ/Z. We emphasize that E(Q) can be applied only
if the system is properly equilibrized, i.e., if its characteristic
o _ (5) relaxation time is much sma!ler th_«'Ih‘l. S _

ot Uy 9z° We assume that the quasiclassical approximation is appli-
cable. With the partition function written as a path integral,

duy U duy .
Yt Tou, a2 @

2
%: du Uy

Equations(4) and (5) can be formulated as the equations of

motion of the 1D Hamiltonian density u
Z=f {Du}ex;{— SEU;;[ ]), (10
p\ e/ox\? € [ap\?
H=|U X + ol 92 + ﬁ a2 (6)  we can use the steepest descent method for its calculation. In

this approximation the partition function is determined by its
where we have used the definitioxs: u, andp=au, . Us- stationary points. The most significant contribution Zo
ing the variational procedure for the Hamiltonian density ~arises from the trajectory(z,t) =0—the position of the

we obtain minimum of the potential, whereas the imaginary part of the
partition function is determined by the neighborhood of the
JH 9 oH JU(x,pla) € 3?p saddle-point solutionu(z,t) =uy(z) which is time indepen-
X=—— == —, (7) dent at high temperatures. Hence, the problem is reduced to
Jp  dz dp, p a? 9z°

the calculation of the unstable mode growth ratg and of
the real and imaginary parts of the statistical sum. Below we
. dH 9 oH u(x,pla) &% shall calculate all these quantities.
P=""ox "oz ax, x € 972 ®

A. Unstable mode growth rate
and one can easily see that E(8.and(8) are equivalent to
Egs. (4 and (5) with x=u, and p=au,. Thus we have
reduced the 2D problem of the motion of a vortex governe
by Hall dynamics with an action given by E(B) to the 1D
problem of the motion of a vortex described by the effective L2 [ 4B2T au
action fdz d{{px—H), with H given by Eq.(6). The above Seucl Ux,Uy]= dzf dT(G[ux,uy]—iauy&—X
idea has been introduced by VoloWkor the tunneling of sLz Al ’
2D vortices in a liquid-helium film, the motion of which is (1D
equivalent to that of a massless particle in a magnetic ﬁe|d(.;orresponding to the real-time Lagrangié8) satisfies the
Later, this idea has been used by Feigel'man, Geshkenbeiguler equation
Larkin, and Levit® within the context of vortex tunneling in
superclean higfi-, superconductors. Chudnovsky, Ferrera, U dU(u)
and Vilenkirf have generalized this idea for the description € =g+ U=(Uoly). (12)
of the depinning of a flux line governed by Hall dynamics 0z

from a columnar defect near criticality. In their caseThe unstable mode growth rate then is determined by the
U(uy,uy) =au/2—buy/3+cui/2 and the elasticity along negative eigenvalue of the Operatﬁ’fﬁSEucduo(z)- Near the

they direction can be neglected jf—j<j., i.e., the prob- o . ; i
lem can be reduced to the 1D massive string problem. AbovégggfdﬂglT;gc;gjrtrlr?“‘)(z) the perturbed solution can be ex

we have generalized the problem for the case of an arbitrar
potential and nonzero elasticity in tlyedirection. Ug(Z,7) = Uyo(2) + Y(Z)expli 2T 7l 1) (13)

At high temperatures the saddle-point solution does not
epend on time. The stationary extremal trajeciayfz) for
he Euclidean action

lll. DECAY RATE uy(z,7)=@(2)expi2nT/h), (14

The decay ratd’ of an arbitrary metastable Hamiltonian \ith small distortion amplitudes/(z) and ¢(z) for T<T,.
system at high temperatures is given by the expre$sion  sypstituting Eqs(13) and (14) into the equations of motion
for the Euclidean actiofll) and expanding, we obtain the
_hwgImZ system of equations determining the crossover temperature
==z ® 1
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U, The unstable mode growth rate, is determined by the
negative eigenvalué._, of Eq. (17), A_;=—(awg)?. In
< Appendix A we derive a variational principle for the present

problem and show that the negative eigenvalue of (£d)
indeed exists and is uniquéWe exploit that the operator

i
Y I H1’2H H1’2 is Hermitian and has the same eigenvalues as
H HX) Furthermore, we derive both upper and lower bounds

on the e|genvaluﬁ_1 of the operatoHXHy in Appendix B,
such that we finally arrive at the estimate

Vo

—
D

FIG. 1. The “potential” U,(z) for the 1D Schrdinger operator
I:|X [see Eq(15)]. The characteristic size of the potential is given by

D=2€V,/F and its height is equal ta. ﬁx/ 4l € hF?
To= 2T« 277' aVy' (18
d2¢ C|2chl .
—e— tawgpt——7F | = U (2= z/;+ awoe=0, with £ e[1.1530,2.7314a universal constant and, denotes
dz? dr (15 the depth of the potential,. The result(18) holds inde-

pendently of the details of the pinning potential, as long
as the driving forceF is small, F<F.. We note thatT,
d%e 1 chy| ~F?; the same dependence holds for a string with dissipa-

42 awop+ g lr=u@= =Hyo—awey=0, tive dynamics. For a massive string depinning from a linear
defectTy~F, see Ref. 10.
(16)
subject to the boundary conditiong +L/2),¢(*=L/2)=0. B. Ratio Imz/Z

The (lowes) eigenvaluew is related to the crossover tem-
peratureT, through the conditionwy=27Ty/%.

The “potentials” Uy(z) and U,(z) of the Schrdinger
operators defined in Egél5) and(16) are shown in Figs. 1
and 2, respectively.

The operatoH, has only one negative eigenvalue: it can U(x,pla)= —X +—P : (19
be easily seen that in the limit— the functiondu,qy/dzis

an eigenfunction of the operatbt, with zero eigenvalue. Its where k=d?Vy;/duZ|,—o. The equations of motioi7) and
derivativedu,,/dz can be understood as the “velocity of a (8) take the form
particle” moving in the potential (u,g,Uyo) with the “ve-

The most significant contribution to Rearises from the
neighborhood of the minimum of the potentil;. In this
region we can writ¢see Eq.(2)]

locity” changing its sign once. Henceu,,/dz i eigen- : 9
|¥ o] g|55|g" : Uxo z_|s an eigen eV k—e|p= Hop, 20
function of the 1D Schrdinger operatoH, with one node Fria
and there must be another function corresponding to the
ground-state “wave function” with a negative eigenvalue. p=—Hox. (21)

We conclude that the operatékx has one negative and one

zero eigenvalue. The operatli;ry is positive and has only
positive eigenvalues.
Eliminating the functionp from the system of Eqs{_’LS)

and (16) we obtaln(we denote eigenvalues tb‘f H by x +h/2T +L/2 92 ~
EucI Zj f dz X.

Hence,p=a2I:|51§< and the Euclidean action of the vortex
near the equilibrium position can be written in the fowe
make use of Eq(6)]

and those oH, by \) —a’—Hy* +Ho

hi2T L/2 Fra

(22

HyHxp=\y. 17) The same procedure as above provides the variation of the

Y Euclidean action near the thermal saddle-point solution
y

r 1 (+ri2T +L/2
SEUC| 2 J d TJ d Z OX

hi2T —L/2

2

2‘3 -1,
—a —Hy +H, | ox,
72

(23

where the operatorélx and I:|y are given by Egs(15) and
s (16). Using the usual measures for harmonic oscillators in
D 0 - Dz the path integrals foB2, and g, (see Ref. 1§

FIG. 2. The “potential”U,(z) for the 1D Schrdinger operator

2 1/2 0
H y [see Eq(16)]. The characteristic size of the potential is given by dul=|detl —a? 3_|:|51) H dca (24)
=2€V,/F and its height is equal ta. ar? a \27h
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and

1/2
d S_

(29)

(92
defl —« ﬁHy
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The double-prime sign reminds us that we excluded the
negative and zero eigenvalues of the operaifsh,h;/.

C. Result for I

(hereC2 andCj, are expansion coefficients over the systems The positive part of the spectrum bi’zh h1/2 consists of
of normalized funct|on)sand deflnmg the dimensionless op- M discrete eigenvalueg,,, and a continuous paft,,(k)

eratorsho, hx, andh asH /K, H Ik, andH /k, respec-
tively [ «=Vg,(0)], We obtaln for IrrZ/Z

ImZ L [« j+uzd Ao\ 2
7_5 27T —L/2 ZE

y p(_g)vx,o(u 12
PR T) |ty D)

1/2

def — (a2 k) (92 +h2] |
def — (a?/x?)(5%197%) + hEh,h Y2
(26)
where L — )
U=ej+u2(%) dezf zevo\ﬁ, (27)
—Lp2\ 0z 3 F

is the activation barrier and is the length of the stringwe

performed standard integration over the shift mode, see Refs.
17,18. The prime in Eq(26) indicates that we exclude the

zero eigenvalue of the OperatOFazﬁ;]'(é’Z/é’Tz)'Fl:'X.

Mxo(L) and u,y o(L) are the “zero” eigenvalues of the op-

eratorsh, and hY%h,hl? defined on the interval —L/2,
+L/2] L—oo,
The eigenvalues of the operators (a?/k?)(9%/97°)

+h2 and — (a¥ k?) (821 97%) + ﬁ;’zﬁxﬁyz are equal to

27aT \? 27aT \?
prall +umoa and prall + My s
n=0,+1,+2..., (28

with wo, and u,y , the eigenvalues of the operatd% and

=(1+ €k®/ k)? with a spectral densitpS(k). The spectrum

of hZ is continuous uo(k) = (1+ ek? x)2 with the spectral
densityp°(k). Using

1} f(10a)
:epr dk Sp(k)Inf(w(k))|, (30

l_b[ f(:U“xy,b)

with 8p(k) = p°(k) — pS(k) we arrive at the final expression
for the decay rate.

aTO F{ U* )
" op2 N 2wk sin(wTy/T)

L2 gua) 2]V L) 122
XJ’ dz(—o) 2[Mx,o( )}
—-L/2 Jz /“xy,O(L)
fwdka K)in| 1 p( i 1+6k2)
X ex . p(k)In[ 1—ex o7 P
xﬂ 1 he - 31
ok —ex AT Mxy,bs , (31
with
fik| (= € M
U*=U-— J dk Sp(k)| 1+ —k?| = 2 Visyo
2a| Jo K b=1 '
(32

the quantum renormalized activation energy. Let us investi-
gate the correction to the activation ene(8®) arising from
largek values. We will see that the lardemodes lead to an
ultraviolet divergence which we have to cut off by some
physical length scale. It is convenient to rewrite the integral

h1’2h hl’2 respectively. Substituting these eigenvalues intofkqk’ p(k’)(1+ ek’?/x) as

Eq (26) and calculating the product over using I1,_,(1
+x2/n?) = sinh(mx)/x we obtain

Imz aL\/> p(
Z

L2 2
f—L/Zd ( 32)

oz 3 o3 " |

[ o MM
Sm(WTO/T)[Mxy olL)

1/2

X

(29

1;[ [1—exp(— (Al aT)Vioa)]

X

fb["[l—exp(—mxlan Vitxyp)]

No(k)
1+ — k’z)—z (1+ ek?/ k?)

fkdk'ap(k )
0

Ng(k)
- > (1+eg?/x?), (33
n

wherek, andq,, are trivially related to the eigenvalues of the

operatorshd andh;*h,h}? andNy(k) andNsg(k) denote the
number of eigenvalues inside the intery@k]. Note that
No(%) —Ng() =M +2. The two operators} andh}*hh;
define two scattering problems. We define appropriate scat-
tering states/,(z) and 4(z) with asymptoticse'*? ande'9?
(z— — ) ande'k? gld4z+ 9 o{a) (z— + ), with 8(q) the appro-
priate scattering phase shift. The general solutions of the
“Schrodinger” equations can be written asV,(z)
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=Ci(D+Co_(2) and W (2)=Ciyq(2)+Coy_q(2). Cutting off the integral in Eq(32) at large momenturik*
Since we require that the “wave functions” satisfy the con-we obtain

dition W,(£L/2)=0, L>\eV/F, we obtain the discrete

H *
levels through the phase equatidsse also Ref. 19 U*=U— fikk \/V_Oe. 42
k,L=mn, qnL+d8(q)=mn, (34 V2maF
and hence The theory i_s self-consistent if the correction to the activa-
tion energy is small as compared tb (here we have as-
n mn—48(q)\? sumed the cutofk* to be large such that we can neglect the
qn ( L ) (f) contribution from the bound states

In case of a continuous transition from quantum to clas-
q sical behavior the result E¢31) with Eq. (32) is applicable
=+ )=+ "40a). (85  for any T>T, except for a narrow temperature interval
L ~#3%2 aroundT, (see Ref. 2D An explicit expression for the
For g \x/e we can make use of the semiclassical approxi-decay rate can be obtained only for the case0, i.e., in the
mation for the operatohl’zhxhl’z and calculate the phase classical limit. In this limit we can expand the exponents in
shift directly: With the usual ansat® (z) ~'/4@92 the Eq. (31), 1~ exp( AidaT)=fi/aT and the quantum correc-

f : be found f h . tion to the activation energgB2) tends to zero. Performing
unction g(z) can be found from the equation these steps we obtain the result

4

MX,0<L>F’2 de(h?) |
xyoL)] | det(h¥%h,hY3)|

[€0%(2)+U,J[€q%(2) + U,]= k%Eq, (36) 112

where E=(1+ eq?/ k)2~ €2q*/x? is the eigenvalue of the T oma szeX

continuous spectrum dAf)l,’zﬁi’zﬁyz. At large g we obtain
(UctU |

K14
q(z)= \ﬁE1
e ¢ K\/— ' . .
. Using the same technique as before, see(E§), we arrive
Similarly, for the operatoh3 we obtain at the more suitable form
+LI2 (&uo)z 12
L/2 Jz

K 1 /
k(z)= \[;EI%M 1- TE—k) ) (39) " 2ma ZWTeX% B _)
de(ﬁ ) ‘l/2|: de'(ﬁ ) 12
0 0

+|_/2 ﬁUo 2
4%z

L/2

(43

1- (37

and we arrive at the difference in the phase shift

|
X \/|/u*xy,fl| lim \/#X,O(L)

L/2 (zK (26=U,—Uy) Lo ‘de(hx(l-))‘ dethy)
8(q)= E1’4 f . (39
L/2 4K\/_ (44)
Taklng into account that at largg, Eq=e¢ 2q*/ k? and that whereuy o(L) is the zero eigenvalue of the operafq(l(L).
Ux(2),Uy(2)<« for |z] < 2eV/F, we obtain The calculation of the instanton determinant ratios
(44) can be elegantly performed using the Gelfand-Yaglom
8(q)= /%i (40) formula?! The renormalizett determinant deH of the
€ aF Schralinger operatoH = — 9%/9z>+ p(z) is the solution of
i.e. ki—qg2=2k+\2V,/elFL. Atlargek the number of states the differential equatioi f(z) =0 with the initial conditions
in the intervaldk is equal toL dk/27 and the integral fl,-_p=0 and df/dZ,-_,,=1. The value of the
Nk function f(z=L/2) provides the renormalized determi-
k-, , k') No® > nant. As has been shown in Ref. 11, in the limit
fodk (k)| 1+ ——|=—2> (Ki—ap) F—0,  pyo(l)~(Fa/Vo)ex —xle(L - 2\/2ev0/|:)]

det(ho)/|deI(hX(L))|~exp(\/:</ L), and detho)/det(hy)
(% V2€Vo ~(FalVp)exp(2/2kVy/F), where the coefficients of pro-
= | dk (41
wF portionality depend on the detailed form of the pinning po-
tential anda is the characteristic radius of the pinning well.
diverges linearly at largk (for the case of a massive string The eigenvalugy,, 1= — £2F4k?V2, see Eq(18), and we

the correction to the activation diverges a%,lisee Refs. P :
. make use of Eq(27). Substituting these dependences into
10,18. The integral then has to be cut off at some waveEq_ (44) we obtz?i(n 7 g P

vectork*. For a string the natural cutoff is/r, with r the

radius of the string. For a vortex parallel to tbexis of an 50/ =\ 12 —
anisotropic superconductde® ~ 7/max(;,d), with &. the Fng &(i) I ex;{ — E + 2 ZKVO) ,
coherence length in the direction andd being the distance aa® vV €\Fe) \T T F

between the superconducting layers. (45)
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whereg is a dimensionless proportionality coefficient which Substituting £,,=16 A, \,p;=1400 A, N /\gp=5, «

depends on the detailed form of the pinning potenﬁf’:\l,

=7hin, n=2X10P* cm 3, e=eo\2 /A2, and£=2, we ob-

—ayeVy, F, is the critical force, and the activation energy f&in To=0.6 K- v(FIF)?, and fik/a=15 K-v. Taking

U is given by Eq.(27). As an illustration we have explicitly

into account that might be~0.1, see Ref. 23, we see that at

solved the differential equations for a pinning potential given! ~10—15 K when the Hall force appears to be lafgene

by the equation

T
1- co§(2—a\/u§+ uy

where 6(t) is the step-functior 6(t)=1 if t>0 and 6(t)
=0 otherwisg. The external force has the forrR(uy)
:F0(|ux|_a)-

We find mxo(L)=(24Fal mVo)exd — vkl e(L

—2\2eV,/F)], det(hy)/|deth,)|=(1/2)expg/x/eL), and
det(ho)/det(hy) =4Fa/ mVoexp(2/2«Vo/F), and substitut-
ing these expressions into E¢4) we obtaing= 7£/2%
=1.3%.

A real physical system will involve a finite cutoft*,
which we can account for in E¢31) by a restricted integra-

Veyn=Vo o(a?—uz—uj)|, (46)

conditionsT>T,,A «x/a are well satisfied.

The ratioa/ =15 for T=<15 K (see Ref. bwas obtained
from indirect measurements. In Ref. 24 direct measurements
of the Hall angle in 60 K YBaCu;O;_ 5 are reported to yield
aratioa/ n=1. We wish to point out that even if/ p=<1 it
is still possible to use Eq45): We have shown that the
inverse lifetime of a vortex pinned by a columnar defect
behaves at high temperatures as

] U 20

T (48)

It is interesting to note that the same dependence of the de-
cay rate on the external force and temperature has been ob-
tained in Refs. 11 for a flux line governed by dissipative
dynamics. Moreover, the equation for the decay rate from

tion over the mode&<k*. However, in making use of the Refs. 11 can be obtained up to a numerical prefactor from
Gelfand-Yaglom formula we actually account for unphysicalgq. (45) by the substitutiona— 7, indicating that in the

fluctuations withk>k* . In order for the classical resui5)
to be valid we then must require the cutdff to be suffi-

ciently large such as to validate the Gelfand-Yaglom ap-

regimesa=<y or a<y it is possible to use Eq45) with
a—max(a, 7).
The scaling law(48) for the decay rate leads then to the

proach. On the other han’ has to be small enough in resistivity scaling

order to arrive at a small quantum correction in E2p).

IV. CONCLUSION

Let us first specify the regime of applicability of our re-

p(F)~

\/EFeXFXZ\/ZKVOIF) exp( — ¥) (49)

where the factor in square brackets represents the correction

sults. The zero-temperature Euclidean action takes the valyg {he standard result, which arises from the inclusion of
Seuc(T=0)= ), where() is the volume encircled by the |assical fluctuations around the saddle pepTefactoy.

string in the course of the tunneling motion. In theandy
directions the characteristic size of the loop/ig/ F and the
length of the string segment along thelirection is of order
JVeVo/F, henceSg o T=0)~ aye/Vo(V,/F)3. On the other
hand, Sg,o(T=Tg) =AU/Ty~Sec(T=0), i.e., even if the
transition from quantum to classical behaviorTat-T, is
first-order like, its temperature will still be of ord@r.~T,
and our results are applicable in the regifie T,

Next, we estimate the temperatufg using parameters
for the moderately anisotropic

of a cylindrical cavity of radiuga=£&,,(0), whereé&,, is the

We note that Eq(48) is not valid forT>FU/2y2«V, as

the quasiclassical approximation is not applicable at these
large temperatures. It is well known that the problem of a
vortex pinned by a cylindrical potential is equivalent to that
of a 2D quantum particle trapped in a radially symmetric 2D
potential. The latter always has a bound state in 2D, and thus
the vortex is pinned by the defect at any temperature. How-
ever, the thermal fluctuations lead to a large downward
renormalization of the pinning energy at sufficiently high

superonductortemperature§2_23
YBa,Cu;O;_ 5. We choose our columnar defect in the form

Finally, let us make an estimate of the cutoff momentum
k*. The theory developed above works wellkif > /«/€;

coherence length in thab plane. The expression for the \ith k* = 7/d, whered=12 A is the distance between su-

pinning potential then can be written in the fdfm

€p r2

un=v— ——,
( 4 124282,

(47)

perconducting layers, we obtakf/\/x/e=5, such that this
condition is marginally satisfied.

Briefly summarizing, we have considered the problem of
the thermally activated depinning of a flux line governed by
Hall dynamics from a columnar defect in the presence of a

whereeg=(Po/4m\4p)? is the relevant energy scale and the small (F<F,) external force. We have shown how to reduce

factor v (0<w<1) describes the pinning efficiency facfdr,

the 2D problem of the string motion to a 1D effective prob-

®, and Ay, are the flux quantum and the penetration lengthlem. The expression for the decay rate has been obtained for

in the ab plane, respectively. For the model potenti4V)

the temperaturé&,, the critical forceF ., and the temperature

fikla can be easily calculate@he Hall coefficienta is re-
lated to the electron density as a=m#An at T=0 in the
superclean  limit  wor>1):  To=(vél64m?)(eo!
né2 ) (FIFQ)?, Fo=(N2v/16)eyl éap, Tkl a=vheglbats,.

the whole temperature region where the saddle-point solution
is time independenitsee Eqgs(31), (44), and (45) for high
temperaturels An analytical expression for the classical as-
ymptotics of" has been calculated for a model potential as
given by Eq.(46), and we have discussed possible applica-
tions of these results to highs superconductors.
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APPENDIX A: EXISTENCE AND UNIQUENESS A= Hy a;_1 )\a|a><a| +0 | 1>< 1| Hy (A6)
We prove that a solution of Eq17) with a negative ei- is a non-negative Hermitian operator with two zero eigenval-

lgenval\t;\t/a eX'StS: Sec;}onq, vg]e ?hoi\LN trloe L;‘m%uenejss of this Sfes. we perturb the operatérwith a projector of rank 1 and
ution. We mention that in the limit — < the boundary con- make use of the following theorefd

dition ¢— 0 for |z|]— is asymptotically satisfied. - o N
£ A ready Kk h br h Theorem. Let A be a self-adjoint operator and B self-
xistence As we already know, the operat as one adjoint operator of rank 1. Take an interval D on the real

negative eigenvalue. We show that the oper&tgﬁx has a axis and denote by (D) the number of eigenvalues ofiA
neganve e|genvalue too. It is possible to rewrite the equation

this interval. Then the number (@) of eigenvalues of A
H wa )up in the form

+B within D satisfies the estimate:

HPHHH 20 =X (H; Yy) (A1) n(D)—1<m(D)<n(D)+ 1. (A7)

(the operatoH, has only positive eigenvalues, hence, opera-Applying this theorem to the interval(=,0) (we exclude

tors Iikel:| 12 or ﬁ Sz are well defined and HermitianThe Zer@ one can eas"y see that the oper&ﬁéFH Hl/2 has not
operatorH 1’ZH Hl’2 is also Hermitian and its lowest eigen- More than one negative eigenvalue. But the elgenvalues of

value can be obtalned by minimization of the functional this operator are the same as those of the opeH;g;ka so

U that our problem has only one negative eigenvalue.
(xIHJ?HH 2 x)

(xx)

in the space of functions with integrable modulus squared. We construct upper and lower bounds for the negative
Using the fact thatHl’2 is self-conjugate and defining  gjgenvaluen _, of the operatoH H _In the limit F—0 the

Flx]= (A2)

APPENDIX B: NEGATIVE EIGENVALUE PROBLEM

= Hsl/z , the functional can be rewritten as lowest eigenvalues of the operatdﬂ§ andH, do not depend
- - on the detailed form of the pinning potentfalThis is due to
[6]= (olHd ) (SIH ) (A3) the rapid decay of the eigenfunctions in the regjgj>D,
0 - N - : here the form of the potential is irrelevant. The lowest ei-
(HyYglH, g)  ($IH; ) W

) genvalue of the operatdt, is equal tox _; = — u2F2/2V,,
The operatoH, has a negative eigenvalue, i.e., there is awith u the root of utanhu=1 (see Refs. 1} In the region

function |¢) such that<¢|ﬁx|¢)<0. The operaton:ly has 12I<D the normalized “ground-state” wave function of the

only positive eigenvalues, i.e., the for(mﬁ|l2|;1|d>) is al- operatorH, is

ways positive. Consequently we constructed the Rayleigh-
. o A ~ cosh I\ _4|/€2)
Ritz principle for the equatioiH,#=\¢ and proved that d_1(2)= (B1)
there is a function with a negative average value. The eigen- VDcost(\[\_4|/eD)
value X_; is even lower, thus we have demonstrated theas the characteristic deptk of the “potential well” U,(z)
existence of a negative eigenvalue for the problém. is much larger than the “size quantization energyl’D2
UniquenessLet us rewrite the operatdt, in the follow-  (see Fig. 2 we can approximate the eigenvalues and eigen-
ing form: functions of the operata, by those of the infinitely deep
quantum well

I%X:; Nala)al= 2 Nolapal+r-D(=1,  (Ad)

=T g s( + 5 1))
A n=—=o—n%, n(z)= —z n—-1)],
where\ , are the eigenvalues ol,, A_, is the lowest ei- 8Vo ‘/— 2D

genvalue of the operatdflx, the vector] — 1) denoting the n=12....(B2)

“ground state”of the operatoH, . The operatoHl/ZH Hl/2

can be rewritten in the form Using the variational principl€A3) we can write

<¢ 1|Hx|¢ 1> . MZFZ/ZVO

G-l S (ool
A |- 1)(-1A=A+B. (A5) " (83)

AU L= A2 5 (ol 122 X<
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Substituting the eigenvalues and eigenfuncti¢Bg) into
Eqg. (B3) we obtain

4

~ w2F42V3 F
A< —— =—1.3292.
> {8 u2+ wA(2m+1)%/4])2 0
m=0
(B4)

In order to obtain a lower estimaﬂal; B> —x [see Eq.
(A3)], we use the following inequality:

X,lzmin(bEczF[(ﬁ]zminwep (B5)

Ay
(glH, [ ¢)
where the functions belonging @ satisfy the conditionsi)

(Bldy=1, (ii) (¢|H,$)<O0, and(iii) ¢(2)=¢(—2). The

last condition is a consequence of the parity symmetry of the

operatorI:|XI:|y. Following the discussion in Sec. Il A, the

operatorH, has one negative eigenvalue with an even eigen

function. For any odd functio, <¢>|I:|X| #)=0, thus an odd
function cannot minimize the functiondlA3), hence the

D. A. GOROKHOV AND G. BLATTER

As (p|Hy$)<0, —c? |\_4|+C2\;+CBNy+ ---<0, and
taking into account thak c2=1 we obtain

[ A\
1>|c_q|>\/———=0.9191,
el IN_al+ Ny

where we used the fact that_;=—1.4392/D? and \,
=7.830%/D? (see Refs. 10,91 As [(¢| 1) <||o|l||¢1l|

<\1-cZ,=0.3941, we obtain|(¢|¢;)|?=F(|c_,|,K),
where

(B8)

f(lc_1],K)=c® 1[(p_1lp1)|>+KZ=2[c_1]|(p_41|1)IK.
(B9)

We note that|c_;/[0.9191,] and Ke[0,0.394]. A
simple analysis shows that the minimal valuef ¢fc_,|,K)
is equal t0f(0.9191,0.394150.119 and substituting this

value into Eqs(B5) and(B6) we obtain

eigenfunction corresponding to the lowest eigenvalue of the

operatorH,H, has to be even. Our goal is to find some

(large constantb such that(\lf|l:|;1|‘lf)>b>0 for any ¥
e D. We rewrite

1)1

, (B6)
)\1

- (plom® (b
(Bl p)=2 —==—=
and expandingp in the eigenfunctions of the operatl;r ,
¢>=En=,1cn¢nzc,1¢,l+g>, we can write
(gl D)2

=21 [(¢" ol DIP+ (Bl 1) [*+2¢_1(b- 1l $1) (] 1)

=c2 (- 1| D+l pDP—2lc o] (| DI (Bl ).
(B7)

F4
Ve

x (B10)

Hence, we have shown that in the linkt—0 the lowest

eigenvalueF)L1 of the operatorl:|xl:|y, X_l behaves as
— yF4IV3 with ye[1.3292,7.460R8 The temperatur&, and

the eigenvaluex_1 are connected by the equatioR,
=#AV|\_1|//2ma and we obtain the estimate

& hF?

=3 aVy’ (B11)

with ¢ [1.1530,2.7311
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