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Strong-coupling theory for the spin-phonon model
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We present a strong-coupling approach to the spin-phonon model with a cubic spectral density, which relies
on a matrix representation for the reduced time evolution operator on the four-dimensional space of pseu-
dospins. The %4 self-energy matri is written as an infinite series in powers of bath fluctuation operators,
and the lowest-order approximation is evaluated explicitly. The diagonal el€¥genbrresponds to the result
of the noninteracting blip approximatiofiNIBA); retaining the full matrix is equivalent to taking into account
certain blip-blip interactions. Contrary to NIBA, this approach agrees with a rigorous result for the quadratic
term of the rate. As a main result, we find a crossover to incoherent motion at a temp@ratwrlich is
compared to previous theoretical work and discussed in view of experimental data for various two-level
tunneling systemq.50163-18208)04201-5

[. INTRODUCTION function J(w), accounts for various situations in solid-state
physics and chemistr{. We discuss atomic tunneling only,
Tunneling defects in various materials are well describedvhere the frequency, never exceeds a few Kelvin and
in terms of quantum diffusion of a bistable system. As ex-hence is much smaller than the cutoff of the spectral func-
amples we note two level-systems in oxide glassesjbmi-  tion. ThenJ(w) shows a simple power-law behavior in the
cron metallic wires:* amorphous metafs® impurity ions on  relevant frequency randé. Two particularly interesting
off-center positions in alkali halidegKCI:Li, KBr:CN, cases are defined by the linear and cubic spectral functions.
...),"8and interstitial hydrogen in niobiuh° Ohmic dampingThe linear casd(w)=mKw leads to a
These different situations are accounted for by a doublefrequency-independent damping function at low frequency
well potential for some collective coordinate At low tem-  and finite temperature; for this reason it is usually referred to
peratures only the ground states in the two wel®), and  as the case of Ohmic dissipation. It arises, as a most promi-
|L), are relevant. Then all quantum features reduce to a tument example, from electron-hole excitations in a metal. As a
nel frequency A, which reads in WKB approximation most striking feature, a logarithmic infrared singularity arises
A= woexp(—x/ZmVOdzlh) with the particle massn, the in any order of perturbation theory from the linear frequency
potential barriel/,, and the distance of the welts dependence. As a consequence, one finds a nonanalytical
The quantum stateR) and|L) give rise to a two-level temperature dependence for the tunnel frequedgy; TK.
system whose operators are conveniently expressed in terms higher temperature there is a crossover from damped os-
of Pauli matrices, cillations to overdamped motiolt;*” with a relaxation rate
that, in the weak-coupling regim€<1, decreases with ris-
o =|L)(L[=IRXRI|, ox=|RXL|+|LXRI; (1.))  ing temperaturel = T2< 1]
) _ 1 N Phonon dampingThe other case of physical relevance is
the discrete coordinag=;da, takes the values ;d. realized in insulating materials where acoustic phonons pro-
The simplest dynamic model is given by such a two-stat&jjge the most efficient damping mechanism. In terms of the
pseudospin system whose reduced coordingtés linearly  pepye model, the elastic waves obey the dispersion relation

coupled to a heat batH, wg=v¢ K|, wheres labels transverse and longitudinal polar-
1 1 ization. When subsuming the wave veckoand the branch
H' =Z#Au0+ —UZE ﬁ)\k(bk+bl)+2 ﬁwkblbk, index s in the !abelk in Eq. (1.3, we recover the well-
2 2% K known expression
(1.2
where the bath operators obey Bose commutation relations, J(w)=maw®, (1.4

[bk,bl,]=5kk,. (This paper is confined to the symmetric _ _ .
case where the two minima are degenerate, i.e., we discah’!?lhe_rze the coupling parameter has dimension(frequen-
an asymmetry energyThe heat bath is entirely character- €y) ~“. It is related to material constants through
ized by the spectral function
1 2 297 1 392
J —TrE 25 1.3 ale o ETLS’ (1.5
(0)=75 R (0= wy). 1.3 2w’he\ p5 5| 2mhe

Equations(1.2) and (1.3) state the so-called spin-boson wherev andy are appropriate average values of sound ve-

problem which, with an appropriate choice for the spectralocitiesv, andv, and deformation potentialg, andy,. The-
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cubic frequency dependence arises from the coupling con- On the one hand, it was claimed that damping of a two-
stant, A\« Jo,, and the Debye density of states, level system by phonons is always weak, resulting in coher-
> 8(w— w,) =consX w?. For further use we define a tem- ent tunneling motion at all relevant temperatures, i.e.,
perature T<0 . On the other hand, several works indicated a cross-
over to incoherent motion at a much lower temperature; each

To=(2a) Y4 hlmks). (1.6)  of them, however, found a different relaxation rate in the

_ _ incoherent regimé%2529-31
In the isotropic Debye model, a frequency cutoff for each  \ye close this introductory section with a short outline of
phonon brancts is given byvkp . For later use we define he paper. In Sec. Il we perform a canonical transformation
the corresponding Debye temperatugsfor N atoms in @ \yhich converts the Hamiltoniahl’ to that of a two-state

volumeV, polaron. Separating the static and fluctuating parts of the

_ 2 1/3 polaron operator8. provides the basis for the subsequent
keOs=Avs(6m°N/V)™ (L7 perturbation theory. In Sec. lll, the relevant dynamic quanti-

and the appropriate average val@et® ties and the reduced propagator are defined. The perturbation
theory for the latter is set up in Sec. IV, where we develop a
3103=1/03+2/03. (1.8)  formal series expansion for the self-energy matrix in terms of

) . ) _ the quantum Liouville operator; as an essential ingredient,

A heat bath with cubic spectral density leads to dampinghis requires to define commutators and anticommutators as
phenomena which are basically different from Ohmic dissi-response and correlation operators, respectively. In Secs. V
pation. Whereas the latter case is determined by an infrareghq v| we calculate explicitly the lowest-order approxima-
anomaly at low frequency; yet as to the weight of thermalf;nctions.
phonons, the increasin(w) causes a strong enhancement  Eyaluating the propagator matrix in terms of a pole ap-
with temperature. proximation in Sec. VII, permits us to derive the explicit

Equation(1.4) is not the only possible spectral density for time evolution in Sec. VIII. As a main result we find that,
phonon coupling. For an impurity site with inversion sym- giready in the noninteracting blip approximati¢NIBA),
metry, the couplings vary as w2, which leads to)(w)  there is a crossover to incoherent motion, and that in the
x>, instead of the cubic law. The linear coupling potential coherent regime blip-blip interactions lead to a significant

in Eq. (1.2 can be considered as the first term of an expancorrection of the damping rate. In the final sections we dis-
sion in powers of the elastic strain field. Taking into accountcuss and summarize our results.

the quadratic coupling potential would give rise to an Ohmic
contribution to the bath spectral dendity??and hence add a
different damping mechanism.

In this paper we address only the case of a cubic spectral A perturbative treatment of the Hamiltoniarfl.2)
function which, e.g., describes linar coupling to sound wavegmounts to a power-series expansion in termsZénd pro-
of defects in glasses. The model parameters are given by thgjes an approximation that is valid for the weak-coupling
tunnel frequencydy,, temperaturd, the Debye temperature |imjt. A calculation of the lowest-order term\Z and the
©®, and the coupling strengi or the temperatur,. TYpi-  qrrection oc)\f(‘ revealed, however, that the corresponding

cal values far 'the latter argy~5 K for tunneling Systems In expansion parameter increases with temperature and that the

amorphous Si@. On the other ha}nd{ the quantityA,/kg perturbative approach breaks down at the temperaftyre

hardly exceeds a few K, thus satisfying A proper treatment of the two-state dynamics then re-
wA2<1 (1.9 quires a strong-coupling approach, including terms of any

b= ' order of the coupling parameté*F/TS. The canonical trans-

We will frequently take advantage of this relation and dropformation

small terms accordingly. There is no restriction with respect

to temperature. Yet in order to simplify certain integrals, we 1

will in general assum@<0. S= exr{ - EUZE u(b—by) 2.1

The dissipative dynamics of the spin-phonon model was :

tackled by path integral and functional integral

methods:}1"2® diagrammatic perturbation theo?§?® and

mode-coupling theor{?~?° There seems to be general agree-

ment on the behavior at low temperature. In this limit all

mentioned works find weakly damped tunneling oscillations;

both damping and relaxation rates involve the direct or One_AppIying Eq. (2.1 on the Hamiltonian(1.2) yields with

phonon process only. TS

Yet with rising temperature, multiphonon processes ar(y—e H'e™,

no longer small as compared to the direct process. For this

domain, contradictory results have been obtained in different H= EA (¢,B_+0.B )+z Zwbib 2.3

approaches. The controversial point may be cast in the ques- 2 B TaEm T T Kk '

tion whether or not the thermal motion destroys the coherent

tunnel oscillations. where we have dropped a constant and used

II. STRONG-COUPLING APPROACH

provides a representation that proves to be an appropriate
starting point. Here we have defined

Uk:)\k/wk. (22)
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il
B;exp[ 3 uk(bk—bl)}. (2.4) p(t)=e Tp. 349
. Because of the factorization property pf the thermal
(The ladder operators, =|L)(R| and o_=|R){L| fulfill average over spin and bath degrees of freedom may be per-
oy=0,+0o_.) Such a form is well known from studies on formed separately. Accordingly the time-dependent spin po-
polaron motior? and dissipative two-state dynamits. larization may be written as
The Hamiltonian contains the non-Hermitian operators
B. ando. . For our purpose it becomes convenient to sepa- (0a(1))=(aUUD), (3.9
rate the average @.. , where we have defined the reduced propagator
B=(B.)=(B-), (2.9 Ut)=(e g, (3.6)
from the fluctuations and to chose Hermitian combinationghe subscrip indicating a partial trace over bath coordi-
of the latter, nates(- - -)g=trg(- - - pg).

1 1 The dissipative two-state dynamics is entirely determined
- _ - _ by the time-dependent expectation valuegrpindo, . Fol-
B,+B_—2B), -(B B_). 2.6 i . X
$9=3 B+ o b= (B ). (28 lowing Leggettet al.*! we define

In order to set up a perturbation theory, we separate the P(t)=(o(1)) 3.7)
Hamiltonian(2.3) into two parts, z
as the time-dependent expectation value of the reduced two-
H=Ho+Hy, (2.7)  state coordinate,. With Eq. (3.1) we find the initial value
P(t=0)=1. For zero-phonon coupling,, =0, it shows co-

the first of which describes the uncoupled system, L -
P y herent oscillations with the bare tunnel frequenay,

1 : P(t)=cos@t). Taking into account the phonon coupling
HO:EﬁAOUXJrzk: hobby, (28 will lead to a reduced frequencyl,, and a loss of phase
coherence in terms of an exponential damping factor.
with the reduced tunnel energy The second quantity of interest is given by the expectation

_ value
Ay=BAy; (2.9
R(t)=(ox(1)). (3.9

In the case of zero-phonon coupling, we h&(¢) =0 for all
times, sinceo, is diagonal in the energy eigenstates of the
uncoupled system. Taking into account the interaction with

L __phonons results in a finite lifetime of the spin states. Then
The treatment of the two-state dynamics in this paper relieg,o averageR(t) provides two relevant quantities: In the

on a perturbation expansion in terms of the spin-phonon coygng time [imit, it tends towards the equilibrium spin polar-

the second term contains the interaction,

1 1
HlZEﬁAbUX§g+ EﬁAbUygw (21@

pling H,. ization, R(t—)=(0oy)eq- The corresponding relaxation
time determines the lifetime of the spin states.
Il INITIAL STATE AND DYNAMIC QUANTITIES Note that we have not transformed the Pauli matrices; the

Hamiltonian(2.7) is written in terms of the original operators
o, Since the reduced coordinate, commutes with Eq.
(2.1, [S,0,]=0, its time evolution is the same when calcu-
lated with respect té1’ or H. Due to[ S,0]# 0, this state-
ment does not hold true fow,. Equation(3.8) describes

Following Leggettet al,'* we consider a particle which

dwells in the left well att=0 and which evolves in time
according to Eq(2.7). As a consequence, the statistical op-
erator att=0 factorizes,

P=PsPB, (3.1 ‘relaxation of a dressed two-state system in the adiabatic
limit.
where the pseudospin papls=3(1+0,) projects on the For later convenience we note the equations of motion for

quantum state |[L). The remaining factor, pg  pseudospin operators;,=iLa,, in terms of the reduced

=e PMe/tr(e”#M'e), describes the heat bath in thermal equi-tunnel frequencyd, and the bath fluctuation operatd6)
librium, with HB=Ekﬁwkblbk. The average with respect to

Eq. (3.1 is denoted by angular brackets, o= Apé oy,
Loo=tr( L. p). 3.2 - ~
< > r( p) (3.2 oy= _AOUZ_Abng'Za
Time evolution is written in terms of the quantum Liou- L~
ville operator £, whose action on the density operator is 07=R007y+ Apégay — Ap€yox- 3.9

given by the von Neumann equation
IV. PERTURBATION SERIES

p=—(ilth)[H,p]=—iLp. 3.3 . _ . .
P (177)[H.p] it 33 The perturbation series f@f(t) is set up by splitting the

Formal integration yields Liouville operator according to Eq(2.7) into two parts
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L=Ly+ L4, with AL,A=[Hg,A], etc., and by expanding ) 1
the time evolution operator in terms &f, 1€ :Etrs(a'iﬁla'j)u 4.7

Lt Lot t CiLo(tem) ;o ailor t T, whose entrieg still act on the bgth variables. Using the com-
e “=e "ol odTe 0T Lye e OdT OdT mutator relations for composite operators and those for
09,0%,0y,0,, We calculate
—iLy(t—17) *iﬁo(T*T’) 7i£07’ .
Xe Lqe Lqe +---. (4] 0, =X, g+ y” i 4.8
In order to obtain the reduced propagat®s6), we divide L,
further in spin and bath part€,= Ls+ Lg, Which act on

any composite operatorA as LgA=3iA,[o,,A] and 1 1
hLgA=[Hg,A]. Since £, does not contain the coupling Aij=5t(oiok0y),  Vij=3trloio,0)). (4.9
term, the unperturbed time evolution factorizes,

where X’ and ) are matrix elements of, andoy,

The parts acting on the bath variables read explicitly

e—iﬁot: e_iCSte_iﬁBt‘ (42)
; Ry for j=0x ; R, for j=0y
The operatoiA(t) can be represented as &4 matrix, S B,= o
) ) ) 9 i=VY,z, C, for j=x,z,
which acts on a space spanned by the identity opekagor
and the three Pauli matrices,, oy, o5, where we have defined response and correlation operators
1 . 1 . ~
U;(1) = St otV o], (4.3 RsB=5Au&s,B], CB= SALé.BL (410
with i,j=0x,y,z. [The elementr, is necessary in order to Here B is an arbitrary function ob, and b/, ands=g,u
obtain a closed algebra with respect to multiplication,labels the even and odd fluctuation operat@s%). Putting
oi00=0; ando?=oy; note tr(gy)=2.] together Eqs(4.8—(4.10 we find the matrix
In order to link up with Eq.(4.3) we are going to repre-
sent all quantities appearing in the perturbation series as ma- 0 Ry Ry O
trices. The unperturbed time evolution of spin operators is Ry O 0 G,

i iQ= . 4.1
given by [ R« 0 0 -iC (4.1
. 1 . 0 -—ic, IiC 0

Uij(t)zztr(oief"cstaj); (44) u 9

When inserting(};; in the perturbation serie¢t.1), we
integrating the equation of motidB.9) for zero-phonon cou-  still have to account for the time evolution of the bath op-

pling, one finds in a straightforward fashion erators. To that purpose we define
1 0 0 0 Qij(t):eiLBtQijeiiEBt. (412
. 01 0 0 Inserting Eqs.(4.5) and (4.12 in Eq. (4.1) and taking the
U=\, o cosKyt) —sinEyh) | (4.9 thermal average with respect to the bath we find a corre-
_ . sponding series for the time evolution operdifft),
0 0 sin(Agt) cogApt)
~ t ~ ~
The factors, in Eq. (4.1) involve composite operators Ui (1) =Uyj () + JOdTuik(t_7')<Q'<'(T)>U'J(T)
whose spin parts develop according to E4.4). Yet each
factor £, acting as a commutator with the whole object to its td Td > Q
right, gives rise to a more complicated action on the bath + e U (t=1)( Qi (7)
variables.
We note a general relation for composite operaB xzjllm( 7—7") Qi T’))Z:{n,-(r’)+ ce., (413
with [S;,B;]=0,
[S.B;] where the summation labelk,l,m,... take the values
1 1 0x,y,z. Sincel{ does not depend on the bath variables, the
[S1B1,5,B,]= 5[81'52]{81'82}+ 5{51'52}[81'82]’ influence of the heat bath is accounted for by the correlation
(4.6)  functions ofn operator(},
where square brackets denote the commutator, and curly Qi (1) (12) - Qo). (4.14
brackets the anticommutatdtThe factorsZ, in Eq. (4.1) are ) () (2 pal 7o)
just commutators oH, with the expression to the right. Withn=123 ... andr=7>73... .

According to Eq.(2.10), there are two terms, the first one  Equation(4.13 gives the exact time evolution of the ini-
with S;=0o, and Bl—gg and the second one wit§; =, tial state(3 1. The averagé . . .) does not involve the ma-
andB;=¢,. The spin part of, may be represented by a tricesi/, since these depend on neither spin nor phonon op-
4X 4 matrix, erators. Our treatment relies on an expansion of(Ed.4) in
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terms of irreducible, or connected, correlations of order

1, ... n and truncating at finite order.

Since the linear term vanishes, there are no reducible con-

tributions in the second and third orders,

(Q(71))c=(Q(71))=0, (4.19
(A1) Q(72))=(Q(11)Q(72)), (4.16

(A1) Q(72) Q(73))c={Q(71)Q(72)Q(73)).
4.1

As to the fourth order, we have to subtract reducible, or

nonconnected, terms of second order according to
(Q(7)Q(72) Q(73)Q(74) )

= <Q( 1) Q(72) Q(73)Q( 7'4)>

(1) Q1)) Q(73)Q(74) )¢ (4.18

351

71 -2
$0(ry =) =(~1)" [ "dry - [ "m0

XU(Ty— o) Qo) U(Ty— 73) - - Q1)
(4.29

wheres, Q, andi/ are matrices and where the usual matrix
product Q- --Q)ij=Qull- - - Qp; is understood. The
bath correlatiof Q () - - Q(7,)). contains the irreducible,
or connected, part of E¢4.14) only.

XU(Tn-1— 10) Q) )e,

V. SECOND-ORDER APPROXIMATION

The serieg4.20 constitutes an expansion in terms of the
connected bath correlatiorid.15—(4.18. We are going to
retain the lowest-order term E(.16) only, and to evaluate
the second-order term of the self-energy, as given in Eq.
(4.22. We start with a few observations which restrict the
number of finite matrix elements &?).

(i) There is no bath operator to the left of the faciy(t)
in Eq. (4.22. Since the response operatdtg vanish when

After an appropriate change of time integrations and recthere is unity to its left, we have
ollecting terms, we find an integral equation for the propa-

gator(t),

Ui (1) =U;j(1) — J'odeo dr' Uy (t— 1) 2 (71— 7")Uj(7"),
(4.19

where the self-energy is given as an infinite series

Si0=3PO+2PO+3F 0+, (420

The terms ofnth order involve the irreducible part of fac-
torsQ(7,) with (n—1) factorsi{( Th— Th—1) iNterposed. Be-
cause of Eq(4.15), the linear term vanishes,

St =—(Q(t)S(t—-t)=0; (4.2
that of second-order reads, wikhl =0x,y,z,
SR =(QuOQ);(t)e Ua(t—t). (422

In a similar fashion, we find the third-order term

t
SEt-t)=- f A Q) Q1) Qi)

XUy (t= TV U T—"). (4.23
The summation labelk,l,m,n run over 0x,y,z. We have
used the translational invariance with respectttot+t,

t'—t'+1t5. In Egs.(4.22 and (4.23 all matrix indices are

(Re (DCs(1"))=0=(Rg () Rs(t"))

for anys,s’.

(i) The fluctuation operatog, is odd in terms of bath
operatordy, ,bl, and{, is even. Thus two-times bath corre-
lations are finite only fos=s',

(&5 (DEs(t))=(&s(D)€s(t')) Oss -

The time evolution of the fluctuation operators reads as
£(t)=eMs!i g e el aecording to Eq(4.12.

(iii) The Hamiltonian2.7) is invariant under the “parity”
transformationo,— —o,, oy— —oy, b— —Dby, implying
a useful symmetry property. Both the propagdtoand the
self-energy matrix%, are block diagonal with respect to the
pairs of labels & andy,z.

Taking into account these selection rules and inserting the
matrices forQ) and/ in Eq. (4.22, we find that the matri®,
is block diagonal with six finite entries. The terms involving
the labelsy,z read as

S0 =Ty (O)U() +T ()l (1), (5.)
S0 = Tyl (t)=—23(1), (5.2
3P =T4(t)lAL), (5.3

where the symmetrized bath correlations

1
To(t=t") =(CLOC(1)) =5 AK{E(D).&(1)}) (5.4

are readily obtained by inserting E@.10 in Eq. (4.16).

indicated, since we have changed the order of the various The obvious relatiof og(t))=1 requires y=0=3,.

factorsQ andif.

As a consequence, the upper submatrix contains only two

As to terms of higher order, we have to integrate over thdinite entries,

(n—2) inner time arguments and to sum oven(22) indi-
ces. We note the general expressionrier3,

@) =T ()it AL), (5.5
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Z+2yy(z) _IZO
iKo z+3,/2)

It seems worthwhile noting the Laplace transform of the

quantity P(t), defined in Eq.(3.7), which is given by the

1
Xu(t—t’)=<Cu(t)Ru(t’))=§A§<[§u(t),§u(t’)]>. lower diagonal elemenP(z)=W,(z). Inversion of the
(5.7) 2X 2 matrix results in

SEO=1xu(OUy(1). (5.6

The matrix3 is not symmetric; the off-diagonal entry in-
volves the bath response function

-1
W(z)=— ) . (6.9

AS

z+3,(2)

-1
) . (6.10

VI. THE PROPAGATOR MATRIX P(2)=—|z+3,(2)—

To proceed further we take the Laplace transform of Eq.
(4.19, use the convolution theorem, and solve for the propa-

. A. Pole approximation
gator matrixi{,

In order to proceed further we simplify the frequency de-
Uz)=—-[-UN2)+3(2)]" . (6.1 pendence of the propagatbfz). To that purpose we note
. . that the self-energy spectE’;{’j(w) are constant at small fre-
As a consequence of the conservation law mentioned abovg,encies, whereas the reactive patsare roughly linear in
the matrixt4; is block diagonal and splits in twoX22 ma-  ; accordingly we evaluate the dissipative pa¥tyz) at the

trices, resonances and keep the frequency dependence of the reac-
W2) 0 tive parts,
u(z)=(0 W(z)), 6.2 3(2)=3"(2)+i2"(2y). (6.1
whereV involves 0x, and the indicesy,z only. The values of z, are given by the zeroes of

As to the self-energy matrix, when inserting the un-deil4(z) ‘)=z%(z2—A32). From Eqs.(6.8) and (6.9 it is
coupled propagatd#.5 and using the convolution theorem, clear that)(z) involves the double pole a=0, whereas
we find in a straightforward fashion W(z) shows two poles at= izo-

1 As shown in the Appendix, the reactive part is small and,
S, {2)=T(2)+ _[Fg(z+'50)+pg(z_'50)], (6.3  therefore, of little consequence. Here we evaluate the dissi-
2 pative part of the self-energy matrix. From E¢8.3)—(6.7)

. we obtain
[ ~ —~
2yd2)=5[Ty(z+Ag) —T'y(z=Ag)], (6.4 _ 1
2ABo)=yut 5(1+0) 7y, (6.12
1 —~ —~
2yy(2)=5[Ty(z+Ag)+ (2= A0)], (6.5 -1
2:yy(AO): E(l+c) 7ga (613)
1 ~ ~
2ul2)=5[Tu(z+Ag) +T(z=Ag)], (6.6 31 (0)=y4,  S16(0)= 70, (6.14
1 where we have defined the rates
S0(@=5lxz+Ro) —xu(z=8p)]. (6.7 .
S ’ n=T{(Ro),
Here and in the remainder of this paper, we drop the label for o
the second-order approximation. The speétfaand I’y are Yg=1'4(0),
symmetric functions of frequency, whereg§ is antisym- .
metric. Yo=Xu(Ao), (6.19

The unpertu[bed propagator of the upper block in Ed.and the additional temperature factor
(6.2 is given byV(z) = — 1/z. Inserting the two entries of the

self-energy matrix, we have c=BhAgsinh( BhAy) L. (6.16
z 0 -1 In Eq. (6.9 we have neglected the off-diagonal pat§, and
V2)=- o2 43,2 6.8 37, Considering the relation

Before writing down the lower blockV, we note that at y =
small frequency, the symmetric spectrg and F’é are well Eyz(iAO) —2(1_‘3)7’9
approximated by a constant. For this reason, the off-diagonal o
matrix elements,, and3,, are, at smalz, much smaller We fmcfivthat the factor (% c) is significant at low tempera-
than the diagonal ones, and may be dropped. Then the seldresfiAo<<kgT only. In Eq.(7.18 we will see that the rate
energy ofW is diagonal, Ygq is relevant at high temperaturds=T, only. Since the

=-37(*RKy), (6.17)



57 STRONG-COUPLING THEORY FOR THE SPIN-PHONON MODEL 353

weak-coupling condition (1.9) assures the inequality The coupled phonon propagate(t) is not invariant un-
1 Ao<kgT,, we conclude that the off-diagonal entrigs17 ~ der time reversal but rather satisfies the relation

are negligible indeed. .
9 e(—D)=g(t—iph). (7.8
VIl. DAMPING RATES It turns out convenient to define the function
The damping rates defined in E§.15 may be written in — 1
terms of the spectra of the two bath correlation functions p()=¢|t— E'Bﬁ ' (7.9
(B.(1)B+(t"))=B2et"t), which is symmetric under time reversal and reads explicitly
as
(B.(1)B.(t"))=B2e ¢t (7.1) coq wit)

T 2
(p(t)_Ek: uksinf(ﬁﬁwk/Z)' (7.10

Following Grabert, we are going to rewrite Eq(7.6) in
terms of ¢ (t).

whereB.. are defined in E¢(2.4). The phase is given by the
coupled phonon propagatér

<p(t)=§k: Ul ne' K+ (1+ny)e ], (7.2 SinceI'(t) is an analytic function of time, we may shift

the time integration from the real axis into the complex
with the Bose occupation numbers plane. As the phonon density of states vanishes in the limit
B fho 1 of zero frequency, the phase varies rapidly with time for

Nk=n(wy) =[e”"k—=1]"". (7.3 t—c. Thus the Fourier integrdl7.6) is determined by ther-

In the long-time limit, both function§7.1) tend towards the Mal frequencies; the integration contour for latgs imma-
constantB2. According to the definition of the fluctuation terial, and, witht—t—3iB%, we have instead of the spec-
operators(2.6), this constant has been removed in the self-trum (7.6)

energy. With Eq(2.9) and the definition o&,, we obtain

1 1 .
1. F"(w)ZEAOZCOS}‘(Eﬁﬁw)I dt elwt[e‘P(t)—l].

Iy(t)= EAé[cosr(cp(t))Jr coshe(—t))—2], e -
1 When replacing the sum ovérin (t) by an integral and
ryt)= EZS[Siﬂh(go(t)Hsinr‘(cp(—t))], plﬁshiér;g the cutoff frequencyp, to infinity, one obtains the

phas
1~2 : . o - 2 1
xu() = ZAg[sinh(e(t) —sinhe(~1)]. (7.4 o0=20 ] 712

SinceI'y contains only even powers af andI', only odd | this limit, ¢(t) diverges att=0, as doesp(t=1i%8),
ones, we are led to consider the functiol(t) |eading to an essential singularitylit(t) that is, however, of

=Lg() +T'y(1), no consequence to our purpose. B
1 Since the Fourier transformation p&*() — 1] cannot be
()= EZS[e‘P(‘)Jre‘P(‘“—Z], (7.5 performed in closed form, we expand the exponential in a

power series, and transform each term separately,

and to separate even and odd terms later. 1 BhZ ol
In view of Eq. (6. e need to calculate the spectrum " X %o
view q ( 5) W u p u T (w):Agcos%EBﬁw) E mAn(lBﬁw)

Tn=1

I'"(w) which is given by the Fourier transform
(7.13
["(w)= E“A'gfw dt é“[e*W+e ¢V—-2]. (7.6 For notational convenience we have split off a prefactor in
4 — powers of
It is worth noting that this spectrum is closely related to the T2
damping function obtained from the noninteracting blip (p0=2a(77/ﬁ,8)2=F; (7.19

approximationt*°In the present approach, the lowest diag- 0

onal element of the self-energy matriX,,, is given by the remaining Fourier integral arising from the exponential
I'(z), whereas the remaining entries involve its even or oddseries is given by

parts only.
As to the the response functign,, its spectrum is related T (e _
to odd partl’!, by a fluctuation-dissipation theorem, An(Bliow)= We dte'th- (7.19
Cw -

" 1 " In the following we consider a few particular cases with
X”(w)_tank(iﬁﬁw)ru(w)' 7.7 respect to frequency and temperature.
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Low-temperature expansion argument, we find that Eqg7.16 and (7.22 agree with

The paramete, plays the role of a dimensionless cou- "€SPECt t0 the leading contribution.

pling constant. At low temperature§,<T,, it is much
smaller than unity, and the seri€s13 may be restricted to
its first term. When inserting the value of the Fourier integral At high temperaturesg,>1, the spectrum at zero fre-
A;(x) = ixsinh(x) "%, we obtain qguency,I'”(0), may beevaluated by saddle-point integra-
tion. When truncating the expansion ofp(t)=¢q
1 1 ph —1g,t?+--- after the quadratic term and evaluating th
we o N_ o ) pn 3 3P quadratic term and evaluating the
I"(w)= zﬁﬁwCOtr( 2A03ﬁ“’) . (po<1). Gaussian integral, we find Holstein’s diffusion rite
(7.16

This result has been derived previously in Ref. 11, where the rsplz”g@ ;
series(7.13 has been truncated at lowest order. In physical T Aol
terms this means that multiphonon processes have been dis- ) )
carded. In view of the expansion parametge=T2/T2 itis ~ Here we have already used the relatiop= ¢y/ o [Ref. 30

clear that this approximation breaks down as temperatur@"d EQ.(1.6)]. For dissipative two-state dynamics, Eg.23
approached,. has been first derived by Pirc and Go&ar.

Eq. (7.23 is valid for Tp<T<0. In the opposite limit
T>0, the rate has been evaluated by Kfu.

Saddle-point integration

g% (go>1).  (7.23

By separating odd and even powersgf settingw =12,
and using Eq(7.14), we find

Interpolation formula

~ 1
_ 3 2
Yu= 7T"AOCOU'(E'%AO [1+O(e0)], (7.17) For practical purposes, the series expansiag0 is not
very convenient, since it converges slowly. From Stirling’s

whose first term is the well-known one-phonon rate. 'tsformula,n!m(n/e)“\/z_q-rnfor largen, we find that the main

counterpartyg has to be evaluated at=0, contributions to the series stem from terms withof the
order of ¢o. Thus for temperatures about ten times larger
Vo= zwazg(kBT/ﬁ) ﬂ[1+ O(q,g)], (7.18 thanT,, several hundred terms have to be retained in order to
3 assure convergence of the seri@0.
and starts with a term proportional T2, For this reason we propose a simple interpolation formula

for the factorF (o),

The series at zero frequency
e‘PO_

In view of Eqg. (6.15 we need to evaluatd”(w) at F(go) =
w=Ay andw=0. For temperatures well abo¥ié\ 4 /kg, the
argument of the functioii7.19 is much smaller than unity. that correctly describes the limifs(¢,)—1 for ¢,—0 and
SinceA,(x) depends very weakly or for |x|<1, we may o F(po)— \/mlAgae?o for ¢o>1. The error in the interme-

(1+4¢@glm) 2, (7.2

put@=0 in Eq.(7.13, diate range aboup,~1 does not exceed 15%.
Bh The frequency-dependent prefactor of the linear term is
I"(0)=A5— ¢oF (¢o), (7.19  relevant at very low temperaturggT<#A,. At higher T it
o

tends towards unity; xcoth(3x)—1 for x<1. For this reason
where the infinite series has been absorbed in the factor we may write

o n—1
Po _ 1.
F(soo)=n21 A (7.20 r"(w)zonzawcotk(EAoﬁﬁw F(go), (7.29
with the coefficientgAann(O). Evaluating the integral \which holds true for frequencids| | < max(T, Ty).
(7.19 at w=0, one find3 For further convenience, we give approximate expres-
(n—1)12 sions for the ratey, andyy, resulting from the interpolation
_n-13 0 formula(7.24),
A,=4 Zn=Di (7.22)
. o : . _ 1 sinh(¢g)
One easily verifie§ (¢g) — 1 for ¢g— 0. With the definition _ A3cotl-(— X ) %o 79
of ¢q, the first few terms of the series read (e 2'8 0 eoV1+4deylm (729
" _ A2
I'"(0)=2maAg(ksT/h) :277aZ2(k TIH) cost{gg) —1 (7.27
7 0e (,DO\/1+4(,DO/7T. .

1 4 , 2
X| 1+ §€DO+ 4—5900+ 1—05g00+ - (7.22
At low temperaturesT<T,, these rates tend towards the
The linear correctiofil+ % ¢,] has been derived in Ref. 30. correct expression§&/.17) and (7.18, whereas in the oppo-
When expanding the coth function in powers of its inversesite limit T>T, they satisfyy,= 3T spi= Yg-
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In order to complete the temperature dependence of th€alculating the roots of the quadratic form in the denomina-
damping spectra, we note the valueBfas defined in Eq. tor and taking the inverse Laplace transformation, we obtain
(2.5). Inserting the spectral functiofi.4) in

F+_
P()=3 2 Lexp(~T.1), 8.5
B=ex;{—2 uz(1+2ny |, (7.28 R
k
2 whose complex frequencies are given by
we obtai
1 1 2_ X2
1 1 o=yt snE Vg7 e (8.6)
B=expg — an%— 5ol (7.29

These three formulas constitute, together with the rates
By separating the argument of the exponential we rewrite th€7.26) and (7.27), the main results of this paper.
renormalized tunnel frequend®.9) as The argument of the square root changes sign as a func-
tion of temperature. At low temperature, the relation

) (7.30 Ao> 1y, gives rise to two complex poles in E(.4) and to
underdamped oscillations &f(t). With increasing tempera-

Here the constand, contains the zero-temperature Debye-ture, the system passes through the aperiodic Agse; y,,
Waller factor,AozAbexp(—%asz). The thermal motion re- and finally reaches the range of incoherent motion, where
q the t 't further to th ~ both poles of Eq(8.4) are purely imaginary, i.e., wheté.
uc1:'ehsere§yurt]rr1]: a{t?c?\lj:ngegrag;ui?e gnvagéﬁitional factogre real. Because of the different dynamical behavior, we
’ I rately with the tw .
e %0 that reduces, e.g., E¢7.23 to eal separately with the two cases

_ 1
AOZ Aoex% - EQDO

Damped oscillations: y,<A,

Bgh 1 .
FSPI:A%7 Wex 3 %0 (@o>1). (7.30) In view of the temperature dependence of both rate and

tunnel energy, this range may be labeled as a weak-coupling
or low-temperature case.

VIll. TIME EVOLUTION The roots of the denominator of E@.4) exhibit both real

and imaginary partd, . =I';*+iw,, where the effective tun-

Equations(6.8) and(6.9) provide the damped spin propa- | frequencyw, and the damping rate are defined as

gator in terms of the self-energy. Inserting the ra@4d5

and matrix inversion gives the uppei2 block, 1 1
_ o= \A-27% Te=3nt 7. 8.7
1 z+iy, O
2)=- z(ztiy)\ —iyy z)’ @D Accordingly we find damped oscillations,
which shows two poles in the complex plane. Upon inverse cog wt+ 0)
Laplace transformation, the relaxation poleat—iy, gives P(t)= m—é)exq —Tt), (8.9
rise to an exponentially decaying contribution, whereas the
undamped pole a=0 leads to a constant, with a phase shift defined by tas (y,/2w,). At zero tem-

perature, the tunnel frequeney is almost identical td\ . In
1 0 -~ 8.2 the rangeT~T, it decreases exponentially according to Eq.
—yolvy O Yolvy 1/° ) (7.30, and finally vanishes at the crossover temperattre

_ At very low temperatures the rate is dominated by the
The latter feature assures conservation of the trace of thene-phonon contribution tg,,

density operator, and the initial conditiaf{t=0)=1.

With the ratio y,/y,=tanh(BAAy/2) we obtain the func- T~ _
tion (3.9), Yol bhid2) FtZEaAgCOﬂ‘(ﬁAO/ZkBT)—FO(az). (8.9

V(t)=(

R(t)=—tanh BAAy/2)[1— e ], (8.3  With rising temperature, multiphonon terms become more
important; in order to permit a comparison with the result of
The relaxation rate contains only odd powers of the couplingec. IV, we give the power series resulting from Egs17)
constanta; in the long-time limit, R(t) tends towards the and(7.18,
thermal expectation valugr,)eq.
Now we turn to the lower submatrix in Ed6.2). As > 2 4 , 3
discussed below E{6.17), we setc=1. When inserting the I'i=malo(keT/h) 1+ 3%0t 25@0T TgP0t |-
rates in Eq(6.10, the diagonal elemei(z) =W, (z) reads (8.10

Z+iy Note that the rate of phase memory loEs, involves both
P(z)=— _ . = (8.9 Yuandyg, whereas the phase shift depends on the odd-order
(z+iyg)(z+iy,+iyg—Af termsy, only.
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Incoherent tunneling: £ y,>A, The restricted range of validity of previous woticomes

- ~ . from the fact that the quantityAg has been treated as ex-
For the ap_er|od_|c Casé_”U:AO’ the tWO_pOIeS__'Fi pansion parameter, thereby neglecting terms of higher orders

merge on the imaginary axik,, =T". Wheﬂ increasing the in the temperature-dependent paramepgr Implicitly, in

temperature further, the ratgy, exceedsA,. Then both  Ref. 11 our functionF(e,), as defined in Eq(7.20, has

poles of Eq(8.4) are purely imaginary; accordingly the mo- peen replaced by the valf{ ¢o) =1 for pg<1.

tion is best described as incoherent tunneling between the Formally, the expansion of the self-ener@y20 may be

two stateso,= =1 with two different relaxation rateB...  yyritten as a series in powers of the tunnel frequefigy Yet
Even for very high temperatures, the smaller iatedif- it js not a priori clear whether this series involves a small

fers from T', merely by a factor of 2,I'_=vy5  parameter which would assure convergence. We have calcu-

w%(ngr vy =3I . Due to the exponential increase of the lated the lowest-order corrections arising fr&?) and3, ()

rates, however, the amplitude of the term involviig in  and we have found they are negligible. Although this is not a

Eq. (8.5 vanishes rapidly. As a consequené¥t) is well  rigorous proof for the validity of our retaining(® only, we

described by the simpler function may reasonably assume that the second-order term provides
. _ a controlled approximation.
P()=e™'" with T=RT,. (8.1 Besides the dissipative part of the self-energy matrix, we

have, in the Appendix, considered its real part. As a main
result, we find that the derivative &f' (w) is much smaller
than unity [cf. Eqg. (A20)], resulting in Z factors close to
unity.

Well above the crossover temperature, the faie identical
to the NIBA result

I'=2ma(kgTAYA)F(¢o), (8.12
where the last factor can be taken either as the exact series Comparison with previous work

(7.2 or as the approximate expressigh24). . Weak-coupling perturbation theorin a recent investiga-
Regarding the temperature dependence, there is a COMPgsy pased on the Hamiltoniafl.?), the self-energy of the

tition between the increase of the last factor and the decreag%in propagator was expanded in powers\ pf®! By calcu-

of the renormalized tunnel energy,. Yet a glance at Eq. |ating the contribution up to fourth order, the two-phonon

(7.30 shows that the sum of the arguments in the exponencorrection for the transverse damping rate was obtained,
tials is positive, resulting in an exponential increase of the

rate. With the constarmk it reads as
I'=maZAi(ksT/h)

2
1+50¢ "’O((PZ)}, 9.9
RAS To f2TH R

_F/ZKB?ZGX §T—ZO or T>Ty. (3

where Z=[1+ awj+ 27%al(hB)?+---]7* is identical to

The crossover temperature the lowest-order terms d? as given in Eq(7.29. Com-

i ) i parison with the low-temperature result £§.10 reveals a
The crossover to incoherent motion described above OCerfect agreement for both the explicit temperature depen-

curs at Ay=y,, requiring a value fok, larger than unity.  dence and the renormalization of the tunnel frequency.

Accordingly we havey,=3T" and find with the tunnel en- Regarding the longitudinal ratg, in Eq. (8.3), it contains
ergy (7.30 and terms of odd order only. It seems worth noting that pertur-
bation theory confirms this result as w&l Therefore we
To=(2a) Y41l mkg)? conclude that the present approach provides the exact results

for the first two terms of the power series of the rates. This is
not an irrelevant statement, since the results obtained previ-
6 ously by various authors differ significantly with respect to
T* =T, \/_ In(4/mkgT* 2 TohAy). (8.14 the secc_)nd-or_der term. _
) Imaginary-time approachThe serieg7.20 can be related
to Grabert’s result for the incoherent rate arising from a com-
posite spectral density that accounts for coupling to both

an implicit equation for the crossover temperatilife

For temperatures well below,, the tunnel energy is given
by the constantA,, whereas it decreases exponentially .
. ' phonons and conduction electrons. E48) of Ref. 17
above. For most physical systems one finlg<kgT,. . .
Therefore the crossover temperatiie, which is defined by depends ?_n %o _thrOUQh the hypergeometric  series
=0 in Eq.(8.7), is significantly larger thaiT,. 1F1(K,K+3;¢0), divided by the Kondo parametér. Con-
sidering the phonon correction factor, and taking the limit of

IX. DISCUSSION zeroK, we recover the serie§.20),

The strong-coupling approach of this paper relies on a 1 1
perturbative treatment with respect to the bath fluctuation lim —[1F1(K,K+ E;(po) —1g}=gp0F(<po),
operatorst, . Already in lowest-order approximation, the re- K—0

sulting tunnel frequency and damping rates comprise terms
of any order in the coupling parameteror, more precisely, where the “1” in brackets removes, according to Holstein,
in the dimensionless quantityy. the “diagonal transition.3
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Comparison with the blip expansion Calculating lowest-order corrections to NIBA requires
Much work on the spin-boson model relies on trnin- one to evaluate in the seri€9.2) correlations of blips at
teracting blip approximation (NIBA).X%¥ In a field- different times. Since any factoK) is already accounted for

theoretical language, a blip consists of an instanton pai®y Ed-(9.4), we define the blip fluctuation

which describe the motion along the classical trajectory in an , , ,
inverted double-well potential. In terms of the Hamiltonian SK(t,t")=K(t,t") —(K(t—t")). 9.8
(2.3 a blip corresponds 'to. the scatterlng from one well to j[hel'hen the lowest-order corrections arise from correlations of
other and back to the original well, while the dressed partlcle[
. wo such factors,

drags its phonon cloud.

A blip expansion for the two-state dynamics is most eas-
ily derived by formal integration of the equation of motion of
the spin operators,, and o .*>*° Imposing the initial con-
dition P(t=0)=1 and taking the thermal average, one ob-
tains an infinite series for E¢3.7),

(6K(7y,7) 6K(73,74)), (9.9

It turns out that K(t,t")) does not contain all two-time cor-
relations of fluctuation operators

. . . . ¢&.=B.—B. (9.10
P(t)zl_fodTlfo dT2<K(T1,72)>+deT1fo d7'2

In particular, NIBA misses the correlation of adjacent fluc-
tuation operators belonging thfferentfactorsk,

X fTZdTgfradM(K(Tl,Tz)K(TsaT4)>+ T
0 0

9.2
©2 which is, however, present in ER.9). This term has been
where a blip is described by the kerifel evaluated in Ref. 30.
1 In order to recover the present res{@t10, however, one
1N T A2 , / has to resum an infinite series of blip-blip interactions. As to
K(t.t) ZAb[BJr(t)B‘(t JFTB(DB.(t)]. (9.3 the third-order term

ARB*(ép,(72)€p,(72)), (9.11)

(The operator®8.. shift the phonon coordinates between the SK SK SK 91
potential minima corresponding t®,= +1.) (0K (71, 72) K (73, 74) 9K (75, 76)), (9.12

The exact serie9.2) cannot be evaluated as such. Theye have to retain correlations of adjacent operators accord-
approximation developed in Ref. 11 relies on neglecting thgng to
blip-blip interactions. This is equivalent to replacing in Eq.

(9.2 the kernelK(t,t") by its average value, ASBZ<§BZ(72)§ﬁ3(73)><§ﬁ4( 74)5[,5(75)), (9.13
(K(t—t"))=Ap%*"1), (94 with 8,=+. A few comments on these blip-blip interactions
which results in the integral equatﬁ?n are in order(i) There are no bath correlations frorg,_; to

755« (i) Since the labelg,, and3,,,.. 1 are uncorrelated, the
t B resulting bath correlation function involves even powers
PNIBA(t):l_f de dr'(K(7=7"))Pniga(7'). of the phase ¢ only, i.e. it is proportional to
0 0 9.5 cosh (7= Ton+1)]- (iii ) Equation(9.11) contains one factor
' cosho(m—13)], the three-blip term factorizes in two such
Evaluating the kernel, applying a Markov approximation, factors; then-blip correction involves f—1) such factors.
and discarding an insignificant difference in the frequencyAs a consequence, all these corrections give rise to time

argument of the self-energy, we obtain convolutions in the serie®.2).
By summing annfinite number of such blip-blip correla-
Pupa(2)=—[2+3,(A0) —Ao%/z] 2. (9.6)  tions, integrating over all intermediate times, and taking the

) ) ) ~ Laplace transform, one obtaifqz) as given in Eq(6.10.
As to the damping rate in the coherent regime, one findsy, comparison with the NIBA resul9.6), the blip-blip cor-
instead of Eq(8.7), rections have addel,, in the denominator of the last term.
1 The partial summation of Ref. 30 corresponds to linearizing
Tniea== Yo+ Vo) (9.7 the additional term in Eq.(6.10 as Aj[z+3,,]*
2 ¢ ~2 X252
—Aglz—%,Ag/z°.
In view of the weak-coupling resu(®.1) the leads us to the Finally we note that this resummation scheme is not
conclusion that NIBA gives the correct terms of odd order inunique. It may formally be improved by retaining additional
the rate. Yet it fails with respect to those of even order,correlations. A perturbation expansion in powerspohow-
where it misses a factor of 2; cf. Ref. 30. Formally, there is aever, indicates that these extra terms are insignificant. To-
similar discrepancy in the overdamped regime, where weether with the perturbative approach of Ref. 30, these con-
havel'yiga= (v, * v,). Well beyond the crossover tempera- siderations lead us to the conclusion that E§.10
ture, however, we findRT" , =T'yga , i-€., blip-blip interac-  constitutes the proper solution for the spin-phonon model
tion is immaterial. with cubic bath spectral density.
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Experimental relevance TABLE I. Parameters for tunneling defects in various materials.

Fora-Bi and NOH),, the crossover temperatufg is taken from

Here we discuss a few measurements of the phONOf, “yp) o ket 4 and Fig. 3 of Ref. 10; the elastic deformatipn
driven damping rate of two-state systems in both Conducm,lgs calculated according to E€9.14). For the insulating systems,

and insulating materials. In metallic compounds, there iSs gerived from measured values for the low-temperature damping

competition between damping by conduction electrons angates, andr, is obtained from Eq(9.14).

phonons; at low temperatures, the former are dominant

whereas the phonon mechanism prevails at Righhere are o (glem®) vy (kmis) y (eV) Ty (K) #ildg/Kg (K)
I wo examples where the strong incr f th mp-

at least two examples where the strong increase of the dampy ") 5121 02 25 2.4

ing rate due to the coupling to lattice vibrations has been

. . Lo KCI:Li 2.0 3.9/2.4 0.04 98 1.65/14
rv namely bi I f in Bi wir n ntum
observed, namely bistable defects es and quantu 1 0.8 2911 16 085 1910-7

diffusion of interstitial hydrogen in NI©H),, . ,

Tunneling of bistable defects in submicrometer Bi wiresa'SIOZ 2:2 5.8/3.8 2.6 4.8 0.035
causes significant conductance fluctuatiéRefs. 3,4, and 2 65 for the lighter isotop&Li, and 1.1 for ’Li impurities.
references cited thereinWhen measuring the resistance of
the wire as a function of time, one observes the “telegraphemperature range where the rate is dominated by the direct,
noise” of a two-state system. For temperatures below 1 Kpr one-phonon, process. From E§.12 we expect an expo-
the tunneling motion is strongly affected by the interactionnential increase of the rate above a few K.
with conduction electront®!! its rate decreases with as According to Egs(1.5) and(1.6), the elastic deformation
I'«T2%-1 For a given tunneling system, Chun and Bﬁge potential y and the temperaturg, are related through
find a Kondo parameteK=0.16 and a tunnel energy
fiAy/kg=1.9X10 7 K. Above 1 K, however, phonon cou- KoToe 1 /Ehg 5 (9.14
pling becomes predominant and results in an exponentially Blo™Y 3" e '
increasing rate; from Fig.(h) of Ref. 4 we obtain for the
temperature scalg, a value of about 1 K.

The quantum motion of interstitial hydrogen trapped by
an oxygen impurity in niobium is well described as a two-
state tunneling system. Inelastic neutron scattering at lo
temperature T< 10 K) revealed coherent motion with a tun-
nel frequencyiAy/kg=2.4 K; the damping by conduction
electrons is described by a Kondo paraméter0.055° Be-
tween 10 and 60 K, incoherent motion with a rafe
«T?~1 has been observed by quasielastic neutro
scattering:® Above 60 K, coupling to thermal motion of the

lattice leads to a strongly increasing rate; from Fig. 3 of Ref. ) . .
gy J g deformation potential according to E(.14).

10w rive a value fi f 25 K. . 7 .
0 we derive a value fofq of about 25 The values obtained for defect atoms in crystalline mate-

Now we turn to insulating materials, where phonons pro- . .- . - ; ;
vide the only damping mechanism. Substitutional lithium de-,”als are very similar. Both interstitial hydrogen in Nb and Li

fects in potassium chloride form tunneling states with an"?pL:.r |t|§sf|n KCt,‘.I arefwgakltysc(:)ouplsd to elastic dw?ves; the
energy splitting of 1.65 K for’Li and 1.1 K for the lighter elastic delormation ot abou MEV COIrespondas 1o a cross-

isotope ’Li. From sound velocity measurements below 10 K, Over temperaturd q of ab_out 100 K. On_the other h_and, the
Hibner et al. derived an elastic deformation potential configurational defects display an elastic deformation energy

_ 38 of several eV, leading to incoherent tunneling at a few
y=0.04 ev: Kelvin. This distinction between tunneling systems in crys-
Most dynamic experiments on tunneling systems in lin : nd amoroh material m tgbyv lid in nyr "
glasses involve linear-response functions with respect to € and amorphous materials seems 1o be va general.

time-dependent elastic or electric field. Since the configura- alues similar to those foa-SiO, have been reported for

; 39
tional average involves the broad distribution for the param-Other oxide glasses &GeO, anda-B,03,™ whereas the

eters of the two-state systems, the observed acoustic and ({nymbers given for KCI:Li are characteristic for a whole class
electric properties do not permit rigorous conclusions. On thé)f dAOFedl alkal hkallde§. the ph | trix el
other hand, nonlinear response functions arise from a well- i '?az remﬁ_r hconcern;s fe Fh or&on o_vera]E)f mta ”):j %?'
defined subensemble of tunneling systems and thus allow en (. 29, which accounts for the ressing efrect and the
more thorough comparison with theory reduction of the tunnel frequency, according to Ej9). At

As an example We&mention two-pulse echoes observed bf/ero temperature we have
Hunklinger and Arnold. The resonance condition singles out B.— 2

. - =exd —(0/27Ty)~]. 9.1

defects with an energy splitting=# w,, wherew,/27w= 760 0=exf ~(0/2mTo)] ©.19
MHz is the oscillation frequency of the applied elastic With typical values for the Debye temperatute of a few
waves. Since such an experiment probes mainly systemsundred K, we findBy~1 for substitutional and interstitial
with small asymmetry energy, we hakte=% A, resulting in  defects, i.e., the phonon dressing effect for impurities in
hAy/kg=~35 mK. From a fit of Eq.(8.6) to these data we crystals is weak.
have obtained/= 2.6 eV.(Hunklinger and Arnoldderived a The situation is very different for the configurational de-
slightly different valuey=3 eV, The data cover only the fects. According to Table I, the Debye temperature is by one

in an unambiguous fashion, since the average sound velocity
v and the mass densigy are known.

In Table | we compare these parameters for a few crys-

line and amorphous solids with tunnel defects. Starting
rom measured values of the elastic deformation potential
for the insulating systema-SiO, (Ref. 2 and KCI:Li*® we
calculate the temperatufig where incoherent motion arising
from phonon damping is supposed to set in. Foi(®OH)
r1’;1nd defects in mesoscopic Bi wires, we proceed in the oppo-
site way: The values fof, have been taken from fits to Fig.
1(b) of Ref. 4 and Fig. 3 of Ref. 10; then we calculate the
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or two orders of magnitude larger thdp, resulting in a very  tunneling to incoherent motion at a temperatilifg as de-
small factorBy. The tunnel energyr, measured for meso- rived previously in Ref. 30. According to E¢8.14), T* is
scopic Bi wires is by about seven orders of magnitudesssentially determined by,. This crossover is already
smaller than those for impurities in crystals, confirmingpresent when treating the two-state dynamics in NIBA and
qualitatively the lawm9.15). retaining the whole serigg.19, i.e., retaining multiphonon
When applying this law to tunneling systems in glassesprocesses of any order.
one encounters an inconsistency of the data of Table | with (iv) In order to obtain a controlled approximation for the
experimental findings. The values fér and T, would indi-  cubic bath spectrum, one has to go beyond NIBA and retain
cate a dressing effect of many orders of magnitudes, which isertain blip-blip interactions. It turns out that the present ap-
not compatible with the observed tunnel energies up tgroach corresponds to an infinite partial summation of such
hAg/kg~4 K. Most probably, the phonon model used herecorrections. The resulting E¢6.10 constitutes the proper
does not apply to amorphous solids. In particular, it wouldsolution for the spin-phonon model.
seem that in glasses the high-frequency phonons are replaced(v) Phonon coupling affects the two-state dynamics in two
by strongly damped local oscillators, thereby reducing conways: The dressing effect reduces the effective tunnel fre-
siderably the effective Debye temperatu@. Thus the quency, whereas at higher temperatures, phonon-assisted
present treatment would overestimate the dressing effettinneling results in an exponentially increasing rate. For sev-
arising from high-frequency modes. eral materials, we have derived the values of the crossover
Finally we recall that we have treated the cubic part of thetemperaturely, and we have discussed the relevance of our
phonon bath spectral density only. As mentioned in the intesults for configurational defects and impurity atoms in
troductory section, an inversion symmetry or quadratic couvarious systems.
pling to the elastic amplitude may change the power law of
the leading term. In most cases, however, the cubic part ACKNOWLEDGMENTS
would seem to be the relevant one. For tunneling systems in
oxide glasses, the observed shift of the sound velocity maxi- | am grateful to Dr. Fabio Pistolesi for a helpful discus-
mum with applied frequencyl, R provides an experi- sion, and to Professor N.O. Birge and Bernhard Thimmel for
mental confirmation of this statemefit. kind and beneficial comments. | particularly thank Professor
H. Horner for valuable advice.

X. SUMMARY AND CONCLUSION APPENDIX A

We have developed a strong-coupling approach to the
spin-phonon model with cubic bath spectral density, which is Spectral representation

based on a perturbation series in terms of the quantum Liou- gacase of the different conventions that can be found in

ville operator.. Starting from the static part of the polaron w6 jiterature. we give the Laplace transformation as it is
operators.., we have treated their fluctuatiofgandé,as | ;sed in this paper

a perturbatioricf. Eq. (2.6)].

As a crucial step we have decomposed the interaction part w A
of the Liouvillian in commutators and anticommutators ac- f(z)=iJ dte?'f(t) (Jz>0). (A1)
cording to Eqg.(4.6), and thus obtained the self-energy in o
terms of correlation functions of the bath response and core
relation operatorg4.10. The resulting expression for the
self-energy corresponds to a series in powers of the tunnel f(w+i0)=f(w)+if"(w) (A2)
frequencyA,. In order to evaluate the second-order contri- ’
bution explicitly, we have calculated the spectra of the relwhere the spectral functioff’ is given by the Fourier trans-
evant bath correlation&.1). form,

After applying a pole approximation, we have derived
explicit expressions for the damping rates. The detailed com- 1 (= _
parison with the results of weak-coupling perturbation theory f(w)=5 dte'“'f(1), (A3)
and the blip expansion in Sec. IX confirmed the validity of o
trziugl)trse.sent approach. Here we briefly summarize the maigy, ¢/ by the Kramers-Kronig relation

(i) The damping rate, as arising from the noninteracting 1 (= (@)
blip approximation, has been given as an infinite series, f’(w)z—f do'— ) (A4)
which permits one to recover previous results by taking ap- T)ee @00

propriate limits; cf. Eqs(7.16—(7.23. . . , "
(ii) Contrary to the Ohmic case, the damping rates canno'fOr real and symmetric functiorigt), bothf"(w) andf”(w)

be given in closed form. We propose an approximate forare real, i.e., Eq(A2) separates real and imaginary parts of
mula for the bath correlation spectrum, E@.25, which f(2).
interpolates smoothly between the one-phonon spectrum at
low temperature and the result from saddle-point integration
at high temperature. Here we consider the reactive part of the self-energy ma-

(iii) The present work confirms a crossover from coherentrix. Since the Kramers-Kronig integré#f4) is determined

or Jz—0, the functionf(z) may be written as

Reactive parl™’
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by high-.frequency contributions, we need to use the exact Yo(0)=0(2a)"0i" VI [1+0(w/wp)]. (A13)
expression rather than the approximéte5, when evaluat-
ing I'' (). Here we have substituted= w/wp and defined the integral
We expand the exponential in E(.6) in a power series
in ¢(t) and take the Fourier transform of each term, 1 1 X1+ - Xp
] = Jodxl. ..J’den—(xl_k T (A14)
1. 1
I'w)= §A(2’21 n—|[;<ﬁ(a))+;<§;(—w)], (A5)  With increasingn, the coefficientd , tend towards zero; we
n= .

give those fom=2,3,4,
where we use the shorthand notation

1 (= _ I2=In2—§, (A15)
Kn' (w)= EJ dte' “to(t)". (AB6)
3
Using the symmetry properties of EGA4), we easily find I3==[In(3)—1], (Al6)
that the real part’’ (w) is given by a corresponding series, 8
JUP | _9 8 , 11
(@) =8 3 (o) (A7) =713~ g2~ 35 (AL7
with which indicate a rapid convergence of the sefi&g).

In order to obtain an upper bound for that series, we resort
1 to the following approximations for the terms of order 2.
(@)= 5[ Kp(@) = Kkn(— )], (Ag)  Since the integrand is positive, discarding the term
Xo+ - - - +X, in the denominator provides a strict upper limit
for I,. Then then integrals factorize, resulting in the in-

Due to the frequency dependence @f(w), the Kramers- ;
quency dep () equality

Kronig integral is determined by high frequencies. At mod-
erate frequency and temperature, iB€0 and|w|<wp,
we may replacel'’(w) by its value atT=0; finite-
temperature corrections are small.

Hence we consider the zero-temperature limit for theF
coupled phonon spectrum,

[,<2"" for n=2. (A18)

Inserting Egs.(A1l) and (A18) in the expression for
'(w) and usingWy= aw? andA3=A2e~Vo, we obtain

,WO

2maw for O<ow<ow ’ 2| o= W, _ - -
D (T=0). (A9) I'(w)<2waAp e "[In(wp/w)—1]+ Wy

0 else (A19)
According to Eq.(A6), the Kramers-Kronig integrat; ()
may be written in terms of an-fold convolution of¢"(w).
After inserting the zero-temperature expresdiaf) we ob-
tain

so"(w)={

In physical terms]'’ (w) describes a frequency shift due to
phonon coupling. It is negligible if' (Ag) <A, or, equiva-
lently, if 9,I'" (w)<<1 for @=A,. In this case, theZ factor
[14+0,I'] 1 is close to unity.

op op With the weak-coupling conditiofiL.9) it is clear that the
yn(w)=w(2a)”f dwq- - f dw, second term in brackets is irrelevant. When insertingA

0 0 we find for the derivative of the first term

Wy,
X 2 2-
(w1+ ... to) —w

(A10) 1
2aAie™ "o In(wp/Ap) + >Wo—2|.
The first two terms are easily integrated,
Rewriting the argument of the logarithm asw{/Ay)
yi(w)=w2aln(wp/w), (A11) = \/asz/aAbz, we see that this quantity is small in fact.
In summary we have shown that the derivativd 6{ w)
at w=A, is much smaller than unity,

Ya(®)=0(2a)%wp IN(2) - ﬂ (A12)
awrr(w)lw:A0<1! (AZO)

where we have neglected corrections of the ordes,. The

presence of the logarithmic factor renders the first term a bitvhich justifies our neglecting the reactive part of the self-

particular; because of the factoes;- - - w, in Eg. (A10), energy in Sec. VI.

there is no such factor in the higher orders, as shown explic- In deriving Eq. (A20) we heavily relied on the weak-

itly in Eqg. (A12) for the quadratic term. coupling condition(1.9). A more thorough investigation of
For this reason, we may expand the integrand in powerthe real parfl’’ for the opposite case would seem most in-

of w?, and integrate the term of zero order, teresting.
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