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Strong-coupling theory for the spin-phonon model
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~Received 13 January 1997; revised manuscript received 9 September 1997!

We present a strong-coupling approach to the spin-phonon model with a cubic spectral density, which relies
on a matrix representation for the reduced time evolution operator on the four-dimensional space of pseu-
dospins. The 434 self-energy matrixS is written as an infinite series in powers of bath fluctuation operators,
and the lowest-order approximation is evaluated explicitly. The diagonal elementSzz corresponds to the result
of thenoninteracting blip approximation~NIBA !; retaining the full matrix is equivalent to taking into account
certain blip-blip interactions. Contrary to NIBA, this approach agrees with a rigorous result for the quadratic
term of the rate. As a main result, we find a crossover to incoherent motion at a temperatureT* , which is
compared to previous theoretical work and discussed in view of experimental data for various two-level
tunneling systems.@S0163-1829~98!04201-5#
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I. INTRODUCTION

Tunneling defects in various materials are well describ
in terms of quantum diffusion of a bistable system. As e
amples we note two level-systems in oxide glasses,1,2 submi-
cron metallic wires,3,4 amorphous metals,5,6 impurity ions on
off-center positions in alkali halides~KCl:Li, KBr:CN,
. . . !,7,8 and interstitial hydrogen in niobium.9,10

These different situations are accounted for by a dou
well potential for some collective coordinateq. At low tem-
peratures only the ground states in the two wells,uR& and
uL&, are relevant. Then all quantum features reduce to a
nel frequency Db which reads in WKB approximation
Db5v0exp(2A2mV0d2/\) with the particle massm, the
potential barrierV0, and the distance of the wellsd.

The quantum statesuR& and uL& give rise to a two-level
system whose operators are conveniently expressed in t
of Pauli matrices,

sz[uL&^Lu2uR&^Ru, sx[uR&^Lu1uL&^Ru; ~1.1!

the discrete coordinateq5 1
2 dsz takes the values6 1

2 d.
The simplest dynamic model is given by such a two-st

pseudospin system whose reduced coordinatesz is linearly
coupled to a heat bath,11

H85
1

2
\Dbsx1

1

2
sz(

k
\lk~bk1bk

†!1(
k

\vkbk
†bk ,

~1.2!

where the bath operators obey Bose commutation relati
@bk ,bk8

†
#5dkk8. ~This paper is confined to the symmetr

case where the two minima are degenerate, i.e., we dis
an asymmetry energy.! The heat bath is entirely characte
ized by the spectral function

J~v!5
p

2(
k

lk
2d~v2vk!. ~1.3!

Equations~1.2! and ~1.3! state the so-called spin-boso
problem which, with an appropriate choice for the spec
570163-1829/98/57~1!/347~15!/$15.00
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function J(v), accounts for various situations in solid-sta
physics and chemistry.11 We discuss atomic tunneling only
where the frequencyDb never exceeds a few Kelvin an
hence is much smaller than the cutoff of the spectral fu
tion. ThenJ(v) shows a simple power-law behavior in th
relevant frequency range.11 Two particularly interesting
cases are defined by the linear and cubic spectral functio

Ohmic damping.The linear caseJ(v)5pKv leads to a
frequency-independent damping function at low frequen
and finite temperature; for this reason it is usually referred
as the case of Ohmic dissipation. It arises, as a most pro
nent example, from electron-hole excitations in a metal. A
most striking feature, a logarithmic infrared singularity aris
in any order of perturbation theory from the linear frequen
dependence. As a consequence, one finds a nonanaly
temperature dependence for the tunnel frequency,D̃0}TK.
At higher temperature there is a crossover from damped
cillations to overdamped motion,11–17 with a relaxation rate
that, in the weak-coupling regimeK!1, decreases with ris
ing temperature,G}T2K21.

Phonon damping.The other case of physical relevance
realized in insulating materials where acoustic phonons p
vide the most efficient damping mechanism. In terms of
Debye model, the elastic waves obey the dispersion rela
vsk5vsuku, wheres labels transverse and longitudinal pola
ization. When subsuming the wave vectork and the branch
index s in the labelk in Eq. ~1.3!, we recover the well-
known expression

J~v!5pav3, ~1.4!

where the coupling parametera has dimension~frequen-
cy! 22. It is related to material constants through

a5
1

2p2\%S g l
2

v l
5

1
2g t

2

v t
5 D [

1

2p2\%

3g2

v5 , ~1.5!

wherev andg are appropriate average values of sound
locitiesv t andv l and deformation potentialsg t andg l . The-
347 © 1998 The American Physical Society
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348 57ALOIS WÜRGER
cubic frequency dependence arises from the coupling c
stant, lk}Avk, and the Debye density of state
(kd(v2vk)5const3v2. For further use we define a tem
perature

T05~2a!21/2~\/pkB!. ~1.6!

In the isotropic Debye model, a frequency cutoff for ea
phonon branchs is given byvskD . For later use we define
the corresponding Debye temperaturesQs for N atoms in a
volumeV,

kBQs5\vs~6p2N/V!1/3, ~1.7!

and the appropriate average valueQ,18

3/Q351/Q l
312/Q t

3. ~1.8!

A heat bath with cubic spectral density leads to damp
phenomena which are basically different from Ohmic dis
pation. Whereas the latter case is determined by an infra
singularity, the cubic spectral function does not cause
anomaly at low frequency; yet as to the weight of therm
phonons, the increasingJ(v) causes a strong enhanceme
with temperature.

Equation~1.4! is not the only possible spectral density f
phonon coupling. For an impurity site with inversion sym
metry, the couplings vary aslk}vk

3/2, which leads toJ(v)
}v5, instead of the cubic law. The linear coupling potent
in Eq. ~1.2! can be considered as the first term of an exp
sion in powers of the elastic strain field. Taking into accou
the quadratic coupling potential would give rise to an Ohm
contribution to the bath spectral density19–22and hence add a
different damping mechanism.

In this paper we address only the case of a cubic spe
function which, e.g., describes linar coupling to sound wa
of defects in glasses. The model parameters are given by
tunnel frequencyDb , temperatureT, the Debye temperatur
Q, and the coupling strengtha or the temperatureT0. Typi-
cal values for the latter areT0'5 K for tunneling systems in
amorphous SiO2. On the other hand, the quantity\Db /kB
hardly exceeds a few K, thus satisfying

aDb
2!1. ~1.9!

We will frequently take advantage of this relation and dr
small terms accordingly. There is no restriction with resp
to temperature. Yet in order to simplify certain integrals,
will in general assumeT!Q.

The dissipative dynamics of the spin-phonon model w
tackled by path integral and functional integr
methods,11,17,23 diagrammatic perturbation theory,24,25 and
mode-coupling theory.26–29There seems to be general agre
ment on the behavior at low temperature. In this limit
mentioned works find weakly damped tunneling oscillatio
both damping and relaxation rates involve the direct or o
phonon process only.

Yet with rising temperature, multiphonon processes
no longer small as compared to the direct process. For
domain, contradictory results have been obtained in differ
approaches. The controversial point may be cast in the q
tion whether or not the thermal motion destroys the cohe
tunnel oscillations.
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On the one hand, it was claimed that damping of a tw
level system by phonons is always weak, resulting in coh
ent tunneling motion at all relevant temperatures, i
T!Q.11 On the other hand, several works indicated a cro
over to incoherent motion at a much lower temperature; e
of them, however, found a different relaxation rate in t
incoherent regime.24,25,29–31

We close this introductory section with a short outline
the paper. In Sec. II we perform a canonical transformat
which converts the HamiltonianH8 to that of a two-state
polaron. Separating the static and fluctuating parts of
polaron operatorsB6 provides the basis for the subseque
perturbation theory. In Sec. III, the relevant dynamic quan
ties and the reduced propagator are defined. The perturba
theory for the latter is set up in Sec. IV, where we develo
formal series expansion for the self-energy matrix in terms
the quantum Liouville operator; as an essential ingredie
this requires to define commutators and anticommutator
response and correlation operators, respectively. In Sec
and VI we calculate explicitly the lowest-order approxim
tion of the self-energy and the corresponding bath spec
functions.

Evaluating the propagator matrix in terms of a pole a
proximation in Sec. VII, permits us to derive the explic
time evolution in Sec. VIII. As a main result we find tha
already in the noninteracting blip approximation~NIBA !,
there is a crossover to incoherent motion, and that in
coherent regime blip-blip interactions lead to a significa
correction of the damping rate. In the final sections we d
cuss and summarize our results.

II. STRONG-COUPLING APPROACH

A perturbative treatment of the Hamiltonian~1.2!
amounts to a power-series expansion in terms oflk

2 and pro-
vides an approximation that is valid for the weak-coupli
limit. A calculation of the lowest-order term}lk

2 and the
correction }lk

4 revealed, however, that the correspondi
expansion parameter increases with temperature and tha
perturbative approach breaks down at the temperatureT0.31

A proper treatment of the two-state dynamics then
quires a strong-coupling approach, including terms of a
order of the coupling parameterT2/T0

2. The canonical trans-
formation

S5expF2
1

2
sz(

k
uk~bk2bk

†!G ~2.1!

provides a representation that proves to be an approp
starting point. Here we have defined

uk5lk /vk . ~2.2!

Applying Eq. ~2.1! on the Hamiltonian~1.2! yields with
H5eSH8e2S,

H5
1

2
Db~s1B21s2B1!1(

k
\vkbk

†bk , ~2.3!

where we have dropped a constant and used
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57 349STRONG-COUPLING THEORY FOR THE SPIN-PHONON MODEL
B65expF6(
k

uk~bk2bk
†!G . ~2.4!

~The ladder operatorss15uL&^Ru and s25uR&^Lu fulfill
sx5s11s2 .! Such a form is well known from studies o
polaron motion32 and dissipative two-state dynamics.11

The Hamiltonian contains the non-Hermitian operat
B6 ands6 . For our purpose it becomes convenient to se
rate the average ofB6 ,

B5^B1&5^B2&, ~2.5!

from the fluctuations and to chose Hermitian combinatio
of the latter,

jg5
1

2
~B11B222B!, ju5

1

2i
~B12B2!. ~2.6!

In order to set up a perturbation theory, we separate
Hamiltonian~2.3! into two parts,

H5H01H1 , ~2.7!

the first of which describes the uncoupled system,

H05
1

2
\D̃0sx1(

k
\vkbk

†bk , ~2.8!

with the reduced tunnel energy

D̃05BDb ; ~2.9!

the second term contains the interaction,

H15
1

2
\Dbsxjg1

1

2
\Dbsyju . ~2.10!

The treatment of the two-state dynamics in this paper re
on a perturbation expansion in terms of the spin-phonon c
pling H1.

III. INITIAL STATE AND DYNAMIC QUANTITIES

Following Leggettet al.,11 we consider a particle which
dwells in the left well att50 and which evolves in time
according to Eq.~2.7!. As a consequence, the statistical o
erator att50 factorizes,

r5rSrB , ~3.1!

where the pseudospin partrS5 1
2 (11sz) projects on the

quantum state uL&. The remaining factor, rB
5e2bHB/tr(e2bHB), describes the heat bath in thermal eq
librium, with HB5Sk\vkbk

†bk . The average with respect t
Eq. ~3.1! is denoted by angular brackets,

^ . . . &5tr~ . . . r!. ~3.2!

Time evolution is written in terms of the quantum Liou
ville operatorL, whose action on the density operator
given by the von Neumann equation

ṙ52~ i /\!@H,r#[2 iLr. ~3.3!

Formal integration yields
s
-

s

e

s
u-

-

-

r~ t !5e2 iLtr. ~3.4!

Because of the factorization property ofr, the thermal
average over spin and bath degrees of freedom may be
formed separately. Accordingly the time-dependent spin
larization may be written as

^sa~ t !&5^saU~ t !&, ~3.5!

where we have defined the reduced propagator

U~ t !5^e2 iLt&B , ~3.6!

the subscriptB indicating a partial trace over bath coord
nates,̂ •••&B5trB(•••rB).

The dissipative two-state dynamics is entirely determin
by the time-dependent expectation values ofsz andsx . Fol-
lowing Leggettet al.,11 we define

P~ t !5^sz~ t !& ~3.7!

as the time-dependent expectation value of the reduced
state coordinatesz . With Eq. ~3.1! we find the initial value
P(t50)51. For zero-phonon coupling,lk50, it shows co-
herent oscillations with the bare tunnel frequencyDb ,
P(t)5cos(Dbt). Taking into account the phonon couplin
will lead to a reduced frequency,D̃0, and a loss of phase
coherence in terms of an exponential damping factor.

The second quantity of interest is given by the expectat
value

R~ t !5^sx~ t !&. ~3.8!

In the case of zero-phonon coupling, we haveR(t)50 for all
times, sincesx is diagonal in the energy eigenstates of t
uncoupled system. Taking into account the interaction w
phonons results in a finite lifetime of the spin states. Th
the averageR(t) provides two relevant quantities: In th
long-time limit, it tends towards the equilibrium spin pola
ization, R(t→`)5^sx&eq. The corresponding relaxatio
time determines the lifetime of the spin states.

Note that we have not transformed the Pauli matrices;
Hamiltonian~2.7! is written in terms of the original operator
sa . Since the reduced coordinatesz commutes with Eq.
~2.1!, @S,sz#50, its time evolution is the same when calc
lated with respect toH8 or H. Due to@S,sx#Þ0, this state-
ment does not hold true forsx . Equation ~3.8! describes
relaxation of a dressed two-state system in the adiab
limit.

For later convenience we note the equations of motion
pseudospin operators,ṡa5 iLsa , in terms of the reduced
tunnel frequencyD̃0 and the bath fluctuation operators~2.6!

ṡx5Dbjusz ,

ṡy52D̃0sz2Dbjgsz,

ṡz5D̃0sy1Dbjgsy2Dbjusx . ~3.9!

IV. PERTURBATION SERIES

The perturbation series forU~t! is set up by splitting the
Liouville operator according to Eq.~2.7! into two parts
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L4L01L1, with \L0A5@H0 ,A#, etc., and by expanding
the time evolution operator in terms ofL,

e2 iLt5e2 iL0t2 i E
0

t

dte2 iL0~ t2t!L1e2 iL0t2E
0

t

dtE
0

t

dt8

3e2 iL0~ t2t!L1e2 iL0~t2t8!L1e2 iL0t81•••. ~4.1!

In order to obtain the reduced propagator~3.6!, we divideL

further in spin and bath parts,L4LS1LB, which act on

any composite operatorA as LSA5 1
2 D̃0@sx ,A# and

\LBA5@HB ,A#. SinceL does not contain the couplin
term, the unperturbed time evolution factorizes,

e2 iL0t5e2 iLSte2 iLBt. ~4.2!

The operatorU~t! can be represented as a 434 matrix,
which acts on a space spanned by the identity operatos0
and the three Pauli matricessx , sy , sz ,

Ui j ~ t !5
1

2
tr@s iU~ t !s j #, ~4.3!

with i , j 50,x,y,z. @The elements0 is necessary in order to
obtain a closed algebra with respect to multiplicatio
s is05s i ands i

25s0; note tr(s0)52.#
In order to link up with Eq.~4.3! we are going to repre

sent all quantities appearing in the perturbation series as
trices. The unperturbed time evolution of spin operators
given by

Ŭi j ~ t !5
1

2
tr~s ie

2 iLSts j !; ~4.4!

integrating the equation of motion~3.9! for zero-phonon cou-
pling, one finds in a straightforward fashion

Ŭ~ t !5S 1 0 0 0

0 1 0 0

0 0 cos~D̃0t ! 2sin~D̃0t !

0 0 sin~D̃0t ! cos~D̃0t !

D . ~4.5!

The factorsL in Eq. ~4.1! involve composite operator
whose spin parts develop according to Eq.~4.4!. Yet each
factorL acting as a commutator with the whole object to
right, gives rise to a more complicated action on the b
variables.

We note a general relation for composite operatorsSiBi
with @Si ,Bj #50,

@S1B1 ,S2B2#5
1

2
@S1 ,S2#$B1 ,B2%1

1

2
$S1 ,S2%@B1 ,B2#,

~4.6!

where square brackets denote the commutator, and c
brackets the anticommutator.33 The factorsL in Eq. ~4.1! are
just commutators ofH1 with the expression to the right
According to Eq.~2.10!, there are two terms, the first on
with S15sx and B15jg and the second one withS15sy
and B15ju . The spin part ofL may be represented by
434 matrix,
,

a-
is

h

rly

iV i j 5
1

2
trS~s iL1s j !, ~4.7!

whose entries still act on the bath variables. Using the co
mutator relations for composite operators and those
s0 ,sx ,sy ,sz , we calculate

iV i j 5Xi jBg
j 1Yi jBu

j , ~4.8!

whereX andY are matrix elements ofsx andsy ,

Xi j 5
1

2
tr~s isxs j !, Yi j 5

1

2
tr~s isys j !. ~4.9!

The parts acting on the bath variables read explicitly

Bg
j 5HRg for j 50,x

Cg for j 5y,z,
Bu

j 5HRu for j 50,y

Cu for j 5x,z,

where we have defined response and correlation operato

RsB̂5
1

2
Db@js ,B̂#, CsB̂5

1

2
Db$js ,B̂%. ~4.10!

Here B̂ is an arbitrary function ofbk and bk
† , and s5g,u

labels the even and odd fluctuation operators~2.6!. Putting
together Eqs.~4.8!–~4.10! we find the matrix

iV5S 0 Rg Ru 0

Rg 0 0 iCu

Ru 0 0 2 iCg

0 2 iCu iCg 0

D . ~4.11!

When insertingV i j in the perturbation series~4.1!, we
still have to account for the time evolution of the bath o
erators. To that purpose we define

V i j ~ t !5eiLBtV i j e
2 iLBt. ~4.12!

Inserting Eqs.~4.5! and ~4.12! in Eq. ~4.1! and taking the
thermal average with respect to the bath we find a co
sponding series for the time evolution operatorU~t!,

Ui j ~ t !5Ŭi j ~ t !1E
0

t

dtŬik~ t2t!^Vkl~t!&Ŭl j ~t!

1E
0

t

dtE
0

t

dt8Ŭik~ t2t!^Vkl~t!

3Ŭlm~t2t8!Vmn~t8!&Ŭn j~t8!1•••, ~4.13!

where the summation labelsk,l ,m, . . . take the values
0,x,y,z. SinceŬ does not depend on the bath variables,
influence of the heat bath is accounted for by the correla
functions ofn operatorsV,

^V i j ~t1!Vkl~t2!•••Vpq~tn!&, ~4.14!

with n51,2,3, . . . andt1>t2>t3 . . . .
Equation~4.13! gives the exact time evolution of the in

tial state~3.1!. The averagê . . . & does not involve the ma
trices Ŭ, since these depend on neither spin nor phonon
erators. Our treatment relies on an expansion of Eq.~4.14! in
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terms of irreducible, or connected, correlations of ord
1, . . . ,n and truncating at finite order.

Since the linear term vanishes, there are no reducible c
tributions in the second and third orders,

^V~t1!&c5^V~t1!&50, ~4.15!

^V~t1!V~t2!&c5^V~t1!V~t2!&, ~4.16!

^V~t1!V~t2!V~t3!&c5^V~t1!V~t2!V~t3!&.
~4.17!

As to the fourth order, we have to subtract reducible,
nonconnected, terms of second order according to

^V~t1!V~t2!V~t3!V~t4!&c

5^V~t1!V~t2!V~t3!V~t4!&

2^V~t1!V~t2!&c^V~t3!V~t4!&c . ~4.18!

After an appropriate change of time integrations and r
ollecting terms, we find an integral equation for the prop
gatorU~t!,

Ui j ~ t !5Ŭi j ~ t !2E
0

t

dtE
0

t

dt8Ŭik~ t2t!Skl~t2t8!Ul j ~t8!,

~4.19!

where the self-energy is given as an infinite series

S i j ~ t !5S i j
~1!~ t !1S i j

~2!~ t !1S i j
~3!~ t !1••• . ~4.20!

The terms ofnth order involve the irreducible part ofn fac-
torsV(tn) with (n21) factorsŬ(tn2tn21) interposed. Be-
cause of Eq.~4.15!, the linear term vanishes,

S i j
~1!~ t2t8!52^V i j ~ t8!&cd~ t2t8!50; ~4.21!

that of second-order reads, withk,l 50,x,y,z,

S i j
~2!~ t2t8!5^V ik~ t !V l j ~ t8!&c Ŭkl~ t2t8!. ~4.22!

In a similar fashion, we find the third-order term

S i j
~3!~ t2t8!52E

t8

t

dt^V ik~ t !V lm~t!Vn j~ t8!&c

3Ŭkl~ t2t!Ŭmn~t2t8!. ~4.23!

The summation labelsk,l ,m,n run over 0,x,y,z. We have
used the translational invariance with respect tot→t1t0,
t8→t81t0. In Eqs. ~4.22! and ~4.23! all matrix indices are
indicated, since we have changed the order of the var
factorsV and Ŭ.

As to terms of higher order, we have to integrate over
(n22) inner time arguments and to sum over (2n22) indi-
ces. We note the general expression forn>3,
r

n-

r

-
-

us

e

S~n!~t12tn!5~21!nE
tn

t1
dt2•••E

tn

tn22
dtn21^V~t1!

3Ŭ~t12t2!V~t2!Ŭ~t22t3!•••V~tn21!

3Ŭ~tn212tn!V~tn!&c , ~4.24!

whereS, V, andŬ are matrices and where the usual mat
product (VŬ•••V) i j 5V ikŬkl•••Vm j is understood. The
bath correlation̂ V(t1)•••V(tn)&c contains the irreducible
or connected, part of Eq.~4.14! only.

V. SECOND-ORDER APPROXIMATION

The series~4.20! constitutes an expansion in terms of th
connected bath correlations~4.15!–~4.18!. We are going to
retain the lowest-order term Eq.~4.16! only, and to evaluate
the second-order term of the self-energy, as given in
~4.22!. We start with a few observations which restrict th
number of finite matrix elements ofS (2).

~i! There is no bath operator to the left of the factorV l j (t)
in Eq. ~4.22!. Since the response operatorsRs vanish when
there is unity to its left, we have

^Rs8~ t !Cs~ t8!&505^Rs8~ t !Rs~ t8!&

for any s,s8.
~ii ! The fluctuation operatorju is odd in terms of bath

operatorsbk ,bk
† , andjg is even. Thus two-times bath corre

lations are finite only fors5s8,

^js8~ t !js~ t8!&5^js~ t !js~ t8!&dss8.

The time evolution of the fluctuation operators reads
js(t)5eiH Bt/\jse

2 iH Bt/\, according to Eq.~4.12!.
~iii ! The Hamiltonian~2.7! is invariant under the ‘‘parity’’

transformationsz→2sz , sy→2sy , bk→2bk , implying
a useful symmetry property. Both the propagatorU and the
self-energy matrixS are block diagonal with respect to th
pairs of labels 0,x andy,z.

Taking into account these selection rules and inserting
matrices forV andŬ in Eq. ~4.22!, we find that the matrixS
is block diagonal with six finite entries. The terms involvin
the labelsy,z read as

Szz
~2!~ t !5Gu~ t !Ŭxx~ t !1Gg~ t !Ŭyy~ t !, ~5.1!

Syz
~2!~ t !52Gg~ t !Ŭzy~ t !52Szy

~2!~ t !, ~5.2!

Syy
~2!~ t !5Gg~ t !Ŭzz~ t !, ~5.3!

where the symmetrized bath correlations

Gs~ t2t8!5^Cs~ t !Cs~ t8!&5
1

2
Db

2^$js~ t !,js~ t8!%& ~5.4!

are readily obtained by inserting Eq.~4.10! in Eq. ~4.16!.
The obvious relation̂s0(t)&51 requiresS00505S0x .

As a consequence, the upper submatrix contains only
finite entries,

Sxx
~2!~ t !5Gu~ t !Ŭzz~ t !, ~5.5!
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Sx0
~2!~ t !5 ixu~ t !Ŭzy~ t !. ~5.6!

The matrix S is not symmetric; the off-diagonal entry in
volves the bath response function

xu~ t2t8!5^Cu~ t !Ru~ t8!&5
1

2
Db

2^@ju~ t !,ju~ t8!#&.

~5.7!

VI. THE PROPAGATOR MATRIX

To proceed further we take the Laplace transform of E
~4.19!, use the convolution theorem, and solve for the pro
gator matrixU,

U~z!52@2Ŭ21~z!1S~z!#21. ~6.1!

As a consequence of the conservation law mentioned ab
the matrixUij is block diagonal and splits in two 232 ma-
trices,

U~z!5S V~z! 0

0 W~z!
D , ~6.2!

whereV involves 0,x, andW the indicesy,z only.
As to the self-energy matrix, when inserting the u

coupled propagator~4.5! and using the convolution theorem
we find in a straightforward fashion

Szz~z!5Gu~z!1
1

2
@Gg~z1D̃0!1Gg~z2D̃0!#, ~6.3!

Syz~z!5
i

2
@Gg~z1D̃0!2Gg~z2D̃0!#, ~6.4!

Syy~z!5
1

2
@Gg~z1D̃0!1Gg~z2D̃0!#, ~6.5!

Sxx~z!5
1

2
@Gu~z1D̃0!1Gu~z2D̃0!#, ~6.6!

Sx0~z!5
1

2
@xu~z1D̃0!2xu~z2D̃0!#. ~6.7!

Here and in the remainder of this paper, we drop the labe
the second-order approximation. The spectraGu9 andGg9 are
symmetric functions of frequency, whereasxu9 is antisym-
metric.

The unperturbed propagator of the upper block in E
~6.2! is given byV̆(z)521/z. Inserting the two entries of the
self-energy matrix, we have

V~z!52S z 0

Sx0~z! z1Sxx~z!
D 21

. ~6.8!

Before writing down the lower blockW, we note that at
small frequency, the symmetric spectraGu9 and Gg9 are well
approximated by a constant. For this reason, the off-diago
matrix elementsSyz and Szy are, at smallz, much smaller
than the diagonal ones, and may be dropped. Then the
energy ofW is diagonal,
.
-

e,

-

r

.

al

lf-

W~z!52S z1Syy~z! 2 i D̃0

i D̃0 z1Szz~z!
D 21

. ~6.9!

It seems worthwhile noting the Laplace transform of t
quantity P(t), defined in Eq.~3.7!, which is given by the
lower diagonal elementP(z)5Wzz(z). Inversion of the
232 matrix results in

P~z!52S z1Szz~z!2
D̃0

2

z1Syy~z!
D 21

. ~6.10!

A. Pole approximation

In order to proceed further we simplify the frequency d
pendence of the propagatorU(z). To that purpose we note
that the self-energy spectraS i j9 (v) are constant at small fre
quencies, whereas the reactive partsS8 are roughly linear in
z. Accordingly we evaluate the dissipative partsS9(z) at the
resonances and keep the frequency dependence of the
tive parts,

S~z!5S8~z!1 iS9~z0!. ~6.11!

The values of z0 are given by the zeroes o
det„Ŭ(z)21

…5z2(z22D̃0
2). From Eqs.~6.8! and ~6.9! it is

clear thatV(z) involves the double pole atz50, whereas
W(z) shows two poles atz56D̃0.

As shown in the Appendix, the reactive part is small an
therefore, of little consequence. Here we evaluate the d
pative part of the self-energy matrix. From Eqs.~6.3!–~6.7!
we obtain

Szz9 ~D̃0!5gu1
1

2
~11c!gg , ~6.12!

Syy9 ~D̃0!5
1

2
~11c!gg , ~6.13!

Sxx9 ~0!5gu , Sx09 ~0!5g0 , ~6.14!

where we have defined the rates

gu5Gu9~D̃0!,

gg5Gg9~0!,

g05xu9~D̃0! , ~6.15!

and the additional temperature factor

c5b\D̃0sinh~b\D̃0!21. ~6.16!

In Eq. ~6.9! we have neglected the off-diagonal partsSyz9 and
Szy9 . Considering the relation

Syz9 ~6D̃0!56
i

2
~12c!gg52Szy9 ~6D̃0!, ~6.17!

we find that the factor (12c) is significant at low tempera
tures\D̃0!kBT only. In Eq.~7.18! we will see that the rate
gg is relevant at high temperaturesT>T0 only. Since the
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weak-coupling condition ~1.9! assures the inequalit
\D̃0!kBT0, we conclude that the off-diagonal entries~6.17!
are negligible indeed.

VII. DAMPING RATES

The damping rates defined in Eq.~6.15! may be written in
terms of the spectra of the two bath correlation functions

^B6~ t !B7~ t8!&5B2ew~ t2t8!,

^B6~ t !B6~ t8!&5B2e2w~ t2t8!, ~7.1!

whereB6 are defined in Eq.~2.4!. The phase is given by th
coupled phonon propagator34

w~ t !5(
k

uk
2@nke

ivkt1~11nk!e
2 ivkt#, ~7.2!

with the Bose occupation numbers

nk[n~vk!5@eb\vk21#21. ~7.3!

In the long-time limit, both functions~7.1! tend towards the
constantB2. According to the definition of the fluctuatio
operators~2.6!, this constant has been removed in the se
energy. With Eq.~2.9! and the definition ofja , we obtain

Gg~ t !5
1

2
D̃0

2@cosh„w~ t !…1cosh„w~2t !…22#,

Gu~ t !5
1

2
D̃0

2@sinh„w~ t !…1sinh„w~2t !…#,

xu~ t !5
1

2
D̃0

2@sinh„w~ t !…2sinh„w~2t !…#. ~7.4!

SinceGg contains only even powers ofw and Gu only odd
ones, we are led to consider the functionG(t)
5Gg(t)1Gu(t),

G~ t !5
1

2
D̃0

2@ew~ t !1ew~2t !22#, ~7.5!

and to separate even and odd terms later.
In view of Eq. ~6.5! we need to calculate the spectru

G9(v) which is given by the Fourier transform

G9~v!5
1

4
D̃0

2E
2`

`

dt eivt@ew~ t !1e2w~ t !22#. ~7.6!

It is worth noting that this spectrum is closely related to t
damping function obtained from the noninteracting b
approximation.11,30 In the present approach, the lowest dia
onal element of the self-energy matrix,Szz, is given by
G(z), whereas the remaining entries involve its even or o
parts only.

As to the the response functionxu , its spectrum is related
to odd partGu9 by a fluctuation-dissipation theorem,

xu9~v!5tanhS 1

2
b\v DGu9~v!. ~7.7!
-

-

d

The coupled phonon propagatorw(t) is not invariant un-
der time reversal but rather satisfies the relation

w~2t !5w~ t2 ib\!. ~7.8!

It turns out convenient to define the function

w̄ ~ t !5wS t2
1

2
ib\ D , ~7.9!

which is symmetric under time reversal and reads explic
as

w̄ ~ t !5(
k

uk
2 cos~vkt !

sinh~b\vk/2!
. ~7.10!

Following Grabert,17 we are going to rewrite Eq.~7.6! in
terms ofw̄ (t).

SinceG(t) is an analytic function of time, we may shif
the time integration from the real axis into the complext
plane. As the phonon density of states vanishes in the l
of zero frequency, the phase varies rapidly with time
t→`. Thus the Fourier integral~7.6! is determined by ther-
mal frequencies; the integration contour for larget is imma-

terial, and, witht→t2 1
2 ib\, we have instead of the spec

trum ~7.6!

G9~v!5
1

2
D̃0

2coshS 1

2
b\v D E

2`

`

dt eivt@ew̄ ~ t !21#.

~7.11!

When replacing the sum overk in w̄ (t) by an integral and
pushing the cutoff frequencyvD to infinity, one obtains the
phase17

w̄ ~ t !52aS p

\b D 2 1

cosh~pt/b\!2 . ~7.12!

In this limit, w(t) diverges att50, as doesw̄ (t5 1
2 i\b),

leading to an essential singularity inG(t) that is, however, of
no consequence to our purpose.

Since the Fourier transformation of@ew̄ (t)21# cannot be
performed in closed form, we expand the exponential in
power series, and transform each term separately,

G9~v!5D̃0
2coshS 1

2
b\v Db\

p (
n51

` w0
n

n!
An~b\v!.

~7.13!

For notational convenience we have split off a prefactor
powers of

w052a~p/\b!25
T2

T0
2 ; ~7.14!

the remaining Fourier integral arising from the exponen
series is given by

An~b\v!5
p

\bE2`

`

dteivt
1

cosh~pt/b\!2n
. ~7.15!

In the following we consider a few particular cases w
respect to frequency and temperature.
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Low-temperature expansion

The parameterw0 plays the role of a dimensionless co
pling constant. At low temperatures,T!T0, it is much
smaller than unity, and the series~7.13! may be restricted to
its first term. When inserting the value of the Fourier integ

A1(x)5 1
2 xsinh(12x)21, we obtain

G9~v!5
1

2
b\vcothS 1

2
D̃0

2b\v Db\

p
w0 ~w0!1!.

~7.16!

This result has been derived previously in Ref. 11, where
series~7.13! has been truncated at lowest order. In physi
terms this means that multiphonon processes have been
carded. In view of the expansion parameterw05T2/T0

2 it is
clear that this approximation breaks down as tempera
approachesT0.

By separating odd and even powers ofw0, settingv5D̃0
and using Eq.~7.14!, we find

gu5paD̃0
3cothS 1

2
b\D̃0D @11O~w0

2!#, ~7.17!

whose first term is the well-known one-phonon rate.
counterpartgg has to be evaluated atv50,

gg52paD̃0
2~kBT/\!

w0

3
@11O~w0

2!#, ~7.18!

and starts with a term proportional toa2T3.

The series at zero frequency

In view of Eq. ~6.15! we need to evaluateG9(v) at
v5D̃0 andv50. For temperatures well above\D̃0 /kB , the
argument of the function~7.15! is much smaller than unity
SinceAn(x) depends very weakly onx for uxu!1, we may
put v50 in Eq. ~7.13!,

G9~0!5D̃0
2 b\

p
w0F~w0!, ~7.19!

where the infinite series has been absorbed in the factor

F~w0!5 (
n51

` w0
n21

n!
An , ~7.20!

with the coefficientsAn[An(0). Evaluating the integra
~7.15! at v50, one finds35

An54n21
~n21!! 2

~2n21!!
. ~7.21!

One easily verifiesF(w0)→1 for w0→0. With the definition
of w0, the first few terms of the series read

G9~0!52paD̃0
2~kBT/\!

3F11
1

3
w01

4

45
w0

21
2

105
w0

31••• G . ~7.22!

The linear correction@11 1
3 w0# has been derived in Ref. 30

When expanding the coth function in powers of its inve
l

e
l
is-

re

s

e

argument, we find that Eqs.~7.16! and ~7.22! agree with
respect to the leading contribution.

Saddle-point integration

At high temperatures,w0@1, the spectrum at zero fre
quency,G9(0), may beevaluated by saddle-point integra
tion. When truncating the expansion ofw̄ (t)5w0
2 1

2 w2t21••• after the quadratic term and evaluating t
Gaussian integral, we find Holstein’s diffusion rate32

GSPI5D̃0
2 b\

p

1

A4w0 /p
ew0 ~w0@1!. ~7.23!

Here we have already used the relationw25w0
2/a @Ref. 30

and Eq.~1.6!#. For dissipative two-state dynamics, Eq.~7.23!
has been first derived by Pirc and Gosar.24

Eq. ~7.23! is valid for T0!T!Q. In the opposite limit
T.Q, the rate has been evaluated by Niu.25

Interpolation formula

For practical purposes, the series expansion~7.20! is not
very convenient, since it converges slowly. From Stirling
formula,n!'(n/e)nA2pn for largen, we find that the main
contributions to the series stem from terms withn of the
order of w0. Thus for temperatures about ten times larg
thanT0, several hundred terms have to be retained in orde
assure convergence of the series~7.20!.

For this reason we propose a simple interpolation form
for the factorF(w0),

F~w0!5
ew021

w0
~114w0 /p!21/2, ~7.24!

that correctly describes the limitsF(w0)→1 for w0→0 and
w0F(w0)→Ap/4w0ew0 for w0@1. The error in the interme-
diate range aboutw0'1 does not exceed 15%.

The frequency-dependent prefactor of the linear term
relevant at very low temperatureskBT<\D̃0. At higherT it

tends towards unity,12 xcoth(12x)→1 for x!1. For this reason
we may write

G9~v!5pD̃0
2avcothS 1

2
D̃0b\v DF~w0!, ~7.25!

which holds true for frequencies\uvu<max(T,T0).
For further convenience, we give approximate expr

sions for the ratesgu andgg , resulting from the interpolation
formula ~7.24!,

gu5paD̃0
3cothS 1

2
b\D̃0D sinh~w0!

w0A114w0 /p
, ~7.26!

gg52paD̃0
2~kBT/\!

cosh~w0!21

w0A114w0 /p
. ~7.27!

At low temperatures,T!T0, these rates tend towards th
correct expressions~7.17! and ~7.18!, whereas in the oppo

site limit T@T0 they satisfygu5
1
2 GSPI5gg .
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In order to complete the temperature dependence of
damping spectra, we note the value ofB as defined in Eq.
~2.5!. Inserting the spectral function~1.4! in

B5expF2(
k

uk
2~112nk!G , ~7.28!

we obtain34

B5expF2
1

2
avD

2 2
1

6
w0G . ~7.29!

By separating the argument of the exponential we rewrite
renormalized tunnel frequency~2.9! as

D̃05D0expF2
1

6
w0G . ~7.30!

Here the constantD0 contains the zero-temperature Deby

Waller factor,D05Dbexp(21
2avD

2). The thermal motion re-

duces the tunnel frequency further to the valueD̃0.
Thereby, the above rates acquire an additional fac

e2w0/3 that reduces, e.g., Eq.~7.23! to

GSPI5D0
2 b\

p

1

A4w0 /p
expS 2

3
w0D ~w0@1!. ~7.31!

VIII. TIME EVOLUTION

Equations~6.8! and~6.9! provide the damped spin propa
gator in terms of the self-energy. Inserting the rates~6.15!
and matrix inversion gives the upper 232 block,

V~z!52
1

z~z1 igu!
S z1 igu 0

2 ig0 z D , ~8.1!

which shows two poles in the complex plane. Upon inve
Laplace transformation, the relaxation pole atz52 igu gives
rise to an exponentially decaying contribution, whereas
undamped pole atz50 leads to a constant,

V~ t !5S 1 0

2g0 /gu 0D 1e2gutS 0 0

g0 /gu 1D . ~8.2!

The latter feature assures conservation of the trace of
density operator, and the initial conditionV(t50)51.

With the ratiog0 /gu5tanh(b\D̃0/2) we obtain the func-
tion ~3.8!,

R~ t !52tanh~b\D̃0/2!@12e2gut#. ~8.3!

The relaxation rate contains only odd powers of the coup
constanta; in the long-time limit,R(t) tends towards the
thermal expectation valuêsx&eq.

Now we turn to the lower submatrix in Eq.~6.2!. As
discussed below Eq.~6.17!, we setc51. When inserting the
rates in Eq.~6.10!, the diagonal elementP(z)5Wzz(z) reads

P~z!52
z1 igg

~z1 igg!~z1 igu1 igg!2D̃0
2

. ~8.4!
e

e

-

r

e

e

he

g

Calculating the roots of the quadratic form in the denomin
tor and taking the inverse Laplace transformation, we obt

P~ t !5(
6

G62gg

G62G7
exp~2G6t !, ~8.5!

whose complex frequencies are given by

G65gg1
1

2
gu6A1

4
gu

22D̃0
2. ~8.6!

These three formulas constitute, together with the ra
~7.26! and ~7.27!, the main results of this paper.

The argument of the square root changes sign as a f
tion of temperature. At low temperature, the relati

D̃0. 1
2 gu gives rise to two complex poles in Eq.~8.4! and to

underdamped oscillations ofP(t). With increasing tempera

ture, the system passes through the aperiodic caseD̃05 1
2 gu

and finally reaches the range of incoherent motion, wh
both poles of Eq.~8.4! are purely imaginary, i.e., whereG6

are real. Because of the different dynamical behavior,
deal separately with the two cases.

Damped oscillations:12 gu<D̃0

In view of the temperature dependence of both rate
tunnel energy, this range may be labeled as a weak-coup
or low-temperature case.

The roots of the denominator of Eq.~8.4! exhibit both real
and imaginary parts,G65G t6 iv t , where the effective tun-
nel frequencyv t and the damping rate are defined as

v t5AD̃0
22

1

4
gu

2, G t5
1

2
gu1gg . ~8.7!

Accordingly we find damped oscillations,

P~ t !5
cos~v tt1d!

cos~d!
exp~2G tt !, ~8.8!

with a phase shift defined by tand5(gu/2v t). At zero tem-
perature, the tunnel frequencyv t is almost identical toD0. In
the rangeT'T0 it decreases exponentially according to E
~7.30!, and finally vanishes at the crossover temperatureT* .

At very low temperatures the rate is dominated by t
one-phonon contribution togu ,

G t5
p

2
aD̃0

3coth~\D̃0/2kBT!1O~a2!. ~8.9!

With rising temperature, multiphonon terms become m
important; in order to permit a comparison with the result
Sec. IV, we give the power series resulting from Eqs.~7.17!
and ~7.18!,

G t5paD̃0
2~kBT/\!F11

2

3
w01

4

45
w0

21
4

105
w0

31••• G .
~8.10!

Note that the rate of phase memory loss,G t , involves both
gu andgg , whereas the phase shift depends on the odd-o
termsgu only.
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Incoherent tunneling: 1
2 gu>D̃0

For the aperiodic case12 gu5D̃0, the two poles2 iG6

merge on the imaginary axis,G15G2 . When increasing the
temperature further, the rate12 gu exceedsD̃0. Then both
poles of Eq.~8.4! are purely imaginary; accordingly the mo
tion is best described as incoherent tunneling between
two statessz561 with two different relaxation ratesG6 .

Even for very high temperatures, the smaller rateG2 dif-
fers from G1 merely by a factor of 2, G25gg

' 1
2 (gg1gu)5 1

2 G1 . Due to the exponential increase of th
rates, however, the amplitude of the term involvingG2 in
Eq. ~8.5! vanishes rapidly. As a consequence,P(t) is well
described by the simpler function

P~ t !5e2Gt with G5RG1 . ~8.11!

Well above the crossover temperature, the rateG is identical
to the NIBA result

G52pa~kBTD̃0
2/\!F~w0!, ~8.12!

where the last factor can be taken either as the exact s
~7.20! or as the approximate expression~7.24!.

Regarding the temperature dependence, there is a co
tition between the increase of the last factor and the decr
of the renormalized tunnel energyD̃0. Yet a glance at Eq
~7.30! shows that the sum of the arguments in the expon
tials is positive, resulting in an exponential increase of
rate. With the constantD0 it reads as

G5
\D0

2

2p1/2kB

T0

T2expS 2

3

T2

T0
2D for T@T0 . ~8.13!

The crossover temperature

The crossover to incoherent motion described above
curs at 2D̃05gu , requiring a value forw0 larger than unity.

Accordingly we havegu5
1
2 G and find with the tunnel en

ergy ~7.30! and

T05~2a!21/2~\/pkB!2

an implicit equation for the crossover temperatureT* ,

T* 5T0A6

5
ln~4ApkBT* 2/T0\D0!. ~8.14!

For temperatures well belowT0, the tunnel energy is given
by the constantD0, whereas it decreases exponentia
above. For most physical systems one findsD0!kBT0.
Therefore the crossover temperatureT* , which is defined by
v t50 in Eq. ~8.7!, is significantly larger thanT0.

IX. DISCUSSION

The strong-coupling approach of this paper relies on
perturbative treatment with respect to the bath fluctuat
operatorsja . Already in lowest-order approximation, the r
sulting tunnel frequency and damping rates comprise te
of any order in the coupling parametera or, more precisely,
in the dimensionless quantityw0.
he

ies

pe-
se

n-
e

c-

a
n

s

The restricted range of validity of previous work11 comes
from the fact that the quantityaD0

2 has been treated as ex
pansion parameter, thereby neglecting terms of higher or
in the temperature-dependent parameterw0. Implicitly, in
Ref. 11 our functionF(w0), as defined in Eq.~7.20!, has
been replaced by the valueF(w0)51 for w0!1.

Formally, the expansion of the self-energy~4.20! may be
written as a series in powers of the tunnel frequencyDb . Yet
it is not a priori clear whether this series involves a sm
parameter which would assure convergence. We have ca
lated the lowest-order corrections arising fromS (3) andS (4)

and we have found they are negligible. Although this is no
rigorous proof for the validity of our retainingS (2) only, we
may reasonably assume that the second-order term prov
a controlled approximation.

Besides the dissipative part of the self-energy matrix,
have, in the Appendix, considered its real part. As a m
result, we find that the derivative ofG8(v) is much smaller
than unity @cf. Eq. ~A20!#, resulting inZ factors close to
unity.

Comparison with previous work

Weak-coupling perturbation theory.In a recent investiga-
tion based on the Hamiltonian~1.2!, the self-energy of the
spin propagator was expanded in powers oflk .31 By calcu-
lating the contribution up to fourth order, the two-phono
correction for the transverse damping rate was obtained,

G t5paZDb
2~kBT/\!F11

2

3
w01O~w0

2!G , ~9.1!

whereZ5@11avD
2 1 2

3 p2a/(\b)21•••#21 is identical to
the lowest-order terms ofB2 as given in Eq.~7.29!. Com-
parison with the low-temperature result Eq.~8.10! reveals a
perfect agreement for both the explicit temperature dep
dence and the renormalization of the tunnel frequency.

Regarding the longitudinal rategu in Eq. ~8.3!, it contains
terms of odd order only. It seems worth noting that pert
bation theory confirms this result as well.36 Therefore we
conclude that the present approach provides the exact re
for the first two terms of the power series of the rates. Thi
not an irrelevant statement, since the results obtained pr
ously by various authors differ significantly with respect
the second-order term.

Imaginary-time approach.The series~7.20! can be related
to Grabert’s result for the incoherent rate arising from a co
posite spectral density that accounts for coupling to b
phonons and conduction electrons. Eq.~18! of Ref. 17
depends on w0 through the hypergeometric serie

1F1(K,K1 1
2 ;w0), divided by the Kondo parameterK. Con-

sidering the phonon correction factor, and taking the limit
zeroK, we recover the series~7.20!,

lim
K→0

1

KF 1F1S K,K1
1

2
;w0D21gG5w0F~w0!,

where the ‘‘1’’ in brackets removes, according to Holste
the ‘‘diagonal transition.’’32
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Comparison with the blip expansion

Much work on the spin-boson model relies on thenonin-
teracting blip approximation ~NIBA !.11,37 In a field-
theoretical language, a blip consists of an instanton p
which describe the motion along the classical trajectory in
inverted double-well potential. In terms of the Hamiltonia
~2.3! a blip corresponds to the scattering from one well to
other and back to the original well, while the dressed part
drags its phonon cloud.

A blip expansion for the two-state dynamics is most e
ily derived by formal integration of the equation of motion
the spin operatorssz ands6 .15,30 Imposing the initial con-
dition P(t50)51 and taking the thermal average, one o
tains an infinite series for Eq.~3.7!,

P~ t !512E
0

t

dt1E
0

t1
dt2^K~t1 ,t2!&1E

0

t

dt1E
0

t1
dt2

3E
0

t2
dt3E

0

t3
dt4^K~t1 ,t2!K~t3 ,t4!&1•••,

~9.2!

where a blip is described by the kernel30

K~ t,t8!5
1

2
Db

2@B1~ t !B2~ t8!1B2~ t !B1~ t8!#. ~9.3!

~The operatorsB6 shift the phonon coordinates between t
potential minima corresponding tosz561.!

The exact series~9.2! cannot be evaluated as such. T
approximation developed in Ref. 11 relies on neglecting
blip-blip interactions. This is equivalent to replacing in E
~9.2! the kernelK(t,t8) by its average value,

^K~ t2t8!&5D̃0
2ew~ t2t8!, ~9.4!

which results in the integral equation30

PNIBA~ t !512E
0

t

dtE
0

t

dt8^K~t2t8!&PNIBA~t8!.

~9.5!

Evaluating the kernel, applying a Markov approximatio
and discarding an insignificant difference in the frequen
argument of the self-energy, we obtain

PNIBA~z!52@z1Szz~D̃0!2D̃0
2/z#21. ~9.6!

As to the damping rate in the coherent regime, one fin
instead of Eq.~8.7!,

GNIBA5
1

2
~gu1gg!. ~9.7!

In view of the weak-coupling result~9.1! the leads us to the
conclusion that NIBA gives the correct terms of odd order
the rate. Yet it fails with respect to those of even ord
where it misses a factor of 2; cf. Ref. 30. Formally, there i
similar discrepancy in the overdamped regime, where
haveGNIBA5(gu1gg). Well beyond the crossover temper
ture, however, we findRG15GNIBA , i.e., blip-blip interac-
tion is immaterial.
ir,
n

e
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Calculating lowest-order corrections to NIBA require
one to evaluate in the series~9.2! correlations of blips at
different times. Since any factor^K& is already accounted fo
by Eq. ~9.4!, we define the blip fluctuation

dK~ t,t8!5K~ t,t8!2^K~ t2t8!&. ~9.8!

Then the lowest-order corrections arise from correlations
two such factors,

^dK~t1 ,t2!dK~t3 ,t4!&, ~9.9!

It turns out that̂ K(t,t8)& does not contain all two-time cor
relations of fluctuation operators

j65B62B. ~9.10!

In particular, NIBA misses the correlation of adjacent flu
tuation operators belonging todifferent factorsK,

Db
4B2^jb2

~t2!jb3
~t3!&, ~9.11!

which is, however, present in Eq.~9.9!. This term has been
evaluated in Ref. 30.

In order to recover the present result~6.10!, however, one
has to resum an infinite series of blip-blip interactions. As
the third-order term

^dK~t1 ,t2!dK~t3 ,t4!dK~t5 ,t6!&, ~9.12!

we have to retain correlations of adjacent operators acc
ing to

Db
6B2^jb2

~t2!jb3
~t3!&^jb4

~t4!jb5
~t5!&, ~9.13!

with bn56. A few comments on these blip-blip interaction
are in order.~i! There are no bath correlations fromt2n21 to
t2n . ~ii ! Since the labelsb2n andb2n11 are uncorrelated, the
resulting bath correlation function involves even powe
of the phase w only, i.e., it is proportional to
cosh@w(t2n2t2n11)#. ~iii ! Equation~9.11! contains one factor
cosh@w(t22t3)#, the three-blip term factorizes in two suc
factors; then-blip correction involves (n21) such factors.
As a consequence, all these corrections give rise to t
convolutions in the series~9.2!.

By summing aninfinite number of such blip-blip correla
tions, integrating over all intermediate times, and taking
Laplace transform, one obtainsP(z) as given in Eq.~6.10!.
In comparison with the NIBA result~9.6!, the blip-blip cor-
rections have addedSyy in the denominator of the last term
The partial summation of Ref. 30 corresponds to lineariz
the additional term in Eq. ~6.10! as D̃0

2@z1Syy#
21

→D̃0
2/z2SyyD̃0

2/z2.
Finally we note that this resummation scheme is n

unique. It may formally be improved by retaining addition
correlations. A perturbation expansion in powers ofw, how-
ever, indicates that these extra terms are insignificant.
gether with the perturbative approach of Ref. 30, these c
siderations lead us to the conclusion that Eq.~6.10!
constitutes the proper solution for the spin-phonon mo
with cubic bath spectral density.



o
tin

i
an
an

m
e

tu

es

of
p
K

on

e
y
-
ial

by
o-
lo
-

ro
e
e

ro
e
a

K
al

in
to
ra
m
d
th
e
w

d
ut

tic
em

rect,

city

ys-
ing
l

g

po-
.
he

te-
Li
he
ss-
e
rgy
w
s-
ral:

r

ss

le-
he

l
in

e-
ne

ls.

ing

358 57ALOIS WÜRGER
Experimental relevance

Here we discuss a few measurements of the phon
driven damping rate of two-state systems in both conduc
and insulating materials. In metallic compounds, there
competition between damping by conduction electrons
phonons; at low temperatures, the former are domin
whereas the phonon mechanism prevails at highT. There are
at least two examples where the strong increase of the da
ing rate due to the coupling to lattice vibrations has be
observed, namely bistable defects in Bi wires and quan
diffusion of interstitial hydrogen in Nb~OH! x .

Tunneling of bistable defects in submicrometer Bi wir
causes significant conductance fluctuations~Refs. 3,4, and
references cited therein!. When measuring the resistance
the wire as a function of time, one observes the ‘‘telegra
noise’’ of a two-state system. For temperatures below 1
the tunneling motion is strongly affected by the interacti
with conduction electrons;12,11 its rate decreases withT as
G}T2K21. For a given tunneling system, Chun and Birg4

find a Kondo parameterK50.16 and a tunnel energ
\D0 /kB51.931027 K. Above 1 K, however, phonon cou
pling becomes predominant and results in an exponent
increasing rate; from Fig. 1~b! of Ref. 4 we obtain for the
temperature scaleT0 a value of about 1 K.

The quantum motion of interstitial hydrogen trapped
an oxygen impurity in niobium is well described as a tw
state tunneling system. Inelastic neutron scattering at
temperature (T,10 K! revealed coherent motion with a tun
nel frequency\D0 /kB52.4 K; the damping by conduction
electrons is described by a Kondo parameterK50.055.9 Be-
tween 10 and 60 K, incoherent motion with a rateG
}T2K21 has been observed by quasielastic neut
scattering.10 Above 60 K, coupling to thermal motion of th
lattice leads to a strongly increasing rate; from Fig. 3 of R
10 we derive a value forT0 of about 25 K.

Now we turn to insulating materials, where phonons p
vide the only damping mechanism. Substitutional lithium d
fects in potassium chloride form tunneling states with
energy splitting of 1.65 K for6Li and 1.1 K for the lighter
isotope7Li. From sound velocity measurements below 10
Hübner et al. derived an elastic deformation potenti
g50.04 eV.38

Most dynamic experiments on tunneling systems
glasses involve linear-response functions with respect
time-dependent elastic or electric field. Since the configu
tional average involves the broad distribution for the para
eters of the two-state systems, the observed acoustic an
electric properties do not permit rigorous conclusions. On
other hand, nonlinear response functions arise from a w
defined subensemble of tunneling systems and thus allo
more thorough comparison with theory.

As an example we mention two-pulse echoes observe
Hunklinger and Arnold.2 The resonance condition singles o
defects with an energy splittingE5\v t , wherev t/2p5760
MHz is the oscillation frequency of the applied elas
waves. Since such an experiment probes mainly syst
with small asymmetry energy, we haveE'\D0, resulting in
\D0 /kB'35 mK. From a fit of Eq.~8.6! to these data we
have obtainedg52.6 eV.~Hunklinger and Arnold2 derived a
slightly different valueg53 eV.! The data cover only the
n-
g
s
d
t,

p-
n
m

h
,

ly

w

n

f.

-
-
n

,

a
-
-
di-
e
ll-
a

by

s

temperature range where the rate is dominated by the di
or one-phonon, process. From Eq.~8.12! we expect an expo-
nential increase of the rate above a few K.

According to Eqs.~1.5! and~1.6!, the elastic deformation
potentialg and the temperatureT0 are related through

kBT05g21A1

3
\3%v5 ~9.14!

in an unambiguous fashion, since the average sound velo
v and the mass density% are known.

In Table I we compare these parameters for a few cr
talline and amorphous solids with tunnel defects. Start
from measured values of the elastic deformation potentiag
for the insulating systemsa-SiO2 ~Ref. 2! and KCl:Li,38 we
calculate the temperatureT0 where incoherent motion arisin
from phonon damping is supposed to set in. For Nb~OH! x
and defects in mesoscopic Bi wires, we proceed in the op
site way: The values forT0 have been taken from fits to Fig
1~b! of Ref. 4 and Fig. 3 of Ref. 10; then we calculate t
deformation potential according to Eq.~9.14!.

The values obtained for defect atoms in crystalline ma
rials are very similar. Both interstitial hydrogen in Nb and
impurities in KCl are weakly coupled to elastic waves; t
elastic deformation of about 50 meV corresponds to a cro
over temperatureT0 of about 100 K. On the other hand, th
configurational defects display an elastic deformation ene
of several eV, leading to incoherent tunneling at a fe
Kelvin. This distinction between tunneling systems in cry
talline and amorphous materials seems to be valid in gene
Values similar to those fora-SiO2 have been reported fo
other oxide glasses asa-GeO2 and a-B 2O3,39 whereas the
numbers given for KCl:Li are characteristic for a whole cla
of doped alkali halides.8

A final remark concerns the phonon overlap matrix e
ment ~7.29!, which accounts for the dressing effect and t
reduction of the tunnel frequency, according to Eq.~2.9!. At
zero temperature we have

B05exp@2~Q/2pT0!2#. ~9.15!

With typical values for the Debye temperatureQ of a few
hundred K, we findB0'1 for substitutional and interstitia
defects, i.e., the phonon dressing effect for impurities
crystals is weak.

The situation is very different for the configurational d
fects. According to Table I, the Debye temperature is by o

TABLE I. Parameters for tunneling defects in various materia
For a-Bi and Nb~OH! x , the crossover temperatureT0 is taken from
Fig. 1~b! of Ref. 4 and Fig. 3 of Ref. 10; the elastic deformationg
is calculated according to Eq.~9.14!. For the insulating systems,g
is derived from measured values for the low-temperature damp
rates, andT0 is obtained from Eq.~9.14!.

% ~g/cm3) v l,t ~km/s! g ~eV! T0 ~K! \D0 /kB ~K!

Nb~OH! x 8.4 5.1/2.1 0.2 25 2.4
KCl:Li 2.0 3.9/2.4 0.04 98 1.65/1.1a

Bi 9.8 2.3/1.1 1.6 0.85 1.931027

a-SiO2 2.2 5.8/3.8 2.6 4.8 0.035

a1.65 for the lighter isotope6Li, and 1.1 for 7Li impurities.
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57 359STRONG-COUPLING THEORY FOR THE SPIN-PHONON MODEL
or two orders of magnitude larger thanT0, resulting in a very
small factorB0. The tunnel energyD0 measured for meso
scopic Bi wires is by about seven orders of magnitud
smaller than those for impurities in crystals, confirmi
qualitatively the law~9.15!.

When applying this law to tunneling systems in glass
one encounters an inconsistency of the data of Table I w
experimental findings. The values forQ andT0 would indi-
cate a dressing effect of many orders of magnitudes, whic
not compatible with the observed tunnel energies up
\D0 /kB'4 K. Most probably, the phonon model used he
does not apply to amorphous solids. In particular, it wo
seem that in glasses the high-frequency phonons are rep
by strongly damped local oscillators, thereby reducing c
siderably the effective Debye temperatureQ. Thus the
present treatment would overestimate the dressing e
arising from high-frequency modes.

Finally we recall that we have treated the cubic part of
phonon bath spectral density only. As mentioned in the
troductory section, an inversion symmetry or quadratic c
pling to the elastic amplitude may change the power law
the leading term. In most cases, however, the cubic
would seem to be the relevant one. For tunneling system
oxide glasses, the observed shift of the sound velocity m
mum with applied frequency,Tmax}v1/3, provides an experi-
mental confirmation of this statement.40

X. SUMMARY AND CONCLUSION

We have developed a strong-coupling approach to
spin-phonon model with cubic bath spectral density, which
based on a perturbation series in terms of the quantum L
ville operatorL. Starting from the static part of the polaro
operatorsB6 , we have treated their fluctuationsjg andju as
a perturbation@cf. Eq. ~2.6!#.

As a crucial step we have decomposed the interaction
of the Liouvillian in commutators and anticommutators a
cording to Eq.~4.6!, and thus obtained the self-energy
terms of correlation functions of the bath response and
relation operators~4.10!. The resulting expression for th
self-energy corresponds to a series in powers of the tu
frequencyDb . In order to evaluate the second-order con
bution explicitly, we have calculated the spectra of the r
evant bath correlations~7.1!.

After applying a pole approximation, we have deriv
explicit expressions for the damping rates. The detailed c
parison with the results of weak-coupling perturbation the
and the blip expansion in Sec. IX confirmed the validity
the present approach. Here we briefly summarize the m
results.

~i! The damping rate, as arising from the noninteract
blip approximation, has been given as an infinite ser
which permits one to recover previous results by taking
propriate limits; cf. Eqs.~7.16!–~7.23!.

~ii ! Contrary to the Ohmic case, the damping rates can
be given in closed form. We propose an approximate f
mula for the bath correlation spectrum, Eq.~7.25!, which
interpolates smoothly between the one-phonon spectrum
low temperature and the result from saddle-point integra
at high temperature.

~iii ! The present work confirms a crossover from coher
s
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tunneling to incoherent motion at a temperatureT* , as de-
rived previously in Ref. 30. According to Eq.~8.14!, T* is
essentially determined byT0. This crossover is already
present when treating the two-state dynamics in NIBA a
retaining the whole series~7.19!, i.e., retaining multiphonon
processes of any order.

~iv! In order to obtain a controlled approximation for th
cubic bath spectrum, one has to go beyond NIBA and re
certain blip-blip interactions. It turns out that the present a
proach corresponds to an infinite partial summation of s
corrections. The resulting Eq.~6.10! constitutes the prope
solution for the spin-phonon model.

~v! Phonon coupling affects the two-state dynamics in t
ways: The dressing effect reduces the effective tunnel
quency, whereas at higher temperatures, phonon-ass
tunneling results in an exponentially increasing rate. For s
eral materials, we have derived the values of the crosso
temperatureT0, and we have discussed the relevance of
results for configurational defects and impurity atoms
various systems.
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APPENDIX A

Spectral representation

Because of the different conventions that can be found
the literature, we give the Laplace transformation as it
used in this paper,

f ~z!5 i E
2`

`

dteiztf ~ t ! ~Iz.0!. ~A1!

For Iz→0, the functionf (z) may be written as

f ~v1 i0!5 f 8~v!1 i f 9~v!, ~A2!

where the spectral functionf 9 is given by the Fourier trans
form,

f 9~v!5
1

2E2`

`

dteivt f ~ t !, ~A3!

and f 8 by the Kramers-Kronig relation

f 8~v!5
1

pE2`

`

dv8
f 9~v8!

v82v
. ~A4!

For real and symmetric functionsf (t), both f 8(v) and f 9(v)
are real, i.e., Eq.~A2! separates real and imaginary parts
f (z).

Reactive partG8

Here we consider the reactive part of the self-energy m
trix. Since the Kramers-Kronig integral~A4! is determined
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360 57ALOIS WÜRGER
by high-frequency contributions, we need to use the ex
expression rather than the approximate~7.25!, when evaluat-
ing G8(v).

We expand the exponential in Eq.~7.6! in a power series
in w(t) and take the Fourier transform of each term,

G9~v!5
1

2
D̃0

2(
n51

`
1

n!
@kn9~v!1kn9~2v!#, ~A5!

where we use the shorthand notation

kn8~v!5
1

2E2`

`

dteivtw~ t !n. ~A6!

Using the symmetry properties of Eq.~A4!, we easily find
that the real partG8(v) is given by a corresponding series

G8~v!5D̃0
2(

n51

`
1

n!
gn~v! ~A7!

with

gn~v!5
1

2
@kn8~v!2kn8~2v!#. ~A8!

Due to the frequency dependence ofw9(v), the Kramers-
Kronig integral is determined by high frequencies. At mo
erate frequency and temperature, i.e.,T!Q and uvu!vD ,
we may replaceG8(v) by its value at T50; finite-
temperature corrections are small.

Hence we consider the zero-temperature limit for
coupled phonon spectrum,

w9~v!5H 2pav for 0<v<vD

0 else
~T50!. ~A9!

According to Eq.~A6!, the Kramers-Kronig integralkn8(v)
may be written in terms of ann-fold convolution ofw9(v).
After inserting the zero-temperature expression~A9! we ob-
tain

gn~v!5v~2a!nE
0

vD
dv1•••E

0

vD
dvn

3
v1•••vn

~v11 . . . 1vn!22v2 . ~A10!

The first two terms are easily integrated,

g1~v!5v2a ln~vD /v!, ~A11!

g2~v!5v~2a!2vD
2 F ln~2!2

1

2G , ~A12!

where we have neglected corrections of the orderv/vD . The
presence of the logarithmic factor renders the first term a
particular; because of the factorsv1•••vn in Eq. ~A10!,
there is no such factor in the higher orders, as shown exp
itly in Eq. ~A12! for the quadratic term.

For this reason, we may expand the integrand in pow
of v2, and integrate the term of zero order,
ct

-

e

it

c-

rs

gn~v!5v~2a!nvD
2~n21!I n@11O~v/vD!#. ~A13!

Here we have substitutedxi[v/vD and defined the integra

I n5E
0

1

dx1•••E
0

1

dxn

x1•••xn

~x11 . . . 1xn!2 . ~A14!

With increasingn, the coefficientsI n tend towards zero; we
give those forn52,3,4,

I 25 ln22
1

2
, ~A15!

I 35
3

8
@ ln~3!21#, ~A16!

I 45
9

4
ln32

28

9
ln22

11

36
, ~A17!

which indicate a rapid convergence of the series~A7!.
In order to obtain an upper bound for that series, we res

to the following approximations for the terms of ordern>2.
Since the integrand is positive, discarding the te
x21•••1xn in the denominator provides a strict upper lim
for I n . Then then integrals factorize, resulting in the in
equality

I n,212n for n>2. ~A18!

Inserting Eqs.~A11! and ~A18! in the expression for
G8(v) and usingW05avD

2 andD0
25Db

2e2W0, we obtain

G8~v!,2vaDb
2Fe2W0@ ln~vD /v!21#1

12e2W0

W0
G .
~A19!

In physical terms,G8(v) describes a frequency shift due
phonon coupling. It is negligible ifG8(D0)!D0 or, equiva-
lently, if ]vG8(v)!1 for v5D0. In this case, theZ factor
@11]vG8#21 is close to unity.

With the weak-coupling condition~1.9! it is clear that the
second term in brackets is irrelevant. When insertingv5D0
we find for the derivative of the first term

2aDb
2e2W0F ln~vD /Db!1

1

2
W022G .

Rewriting the argument of the logarithm as (vD /Db)
5AavD

2 /aDb
2, we see that this quantity is small in fact.

In summary we have shown that the derivative ofG8(v)
at v5D0 is much smaller than unity,

]vG8~v!uv5D0
!1, ~A20!

which justifies our neglecting the reactive part of the se
energy in Sec. VI.

In deriving Eq. ~A20! we heavily relied on the weak
coupling condition~1.9!. A more thorough investigation o
the real partG8 for the opposite case would seem most
teresting.
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