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Magnetization plateau in the S5 1
2 Heinsenberg spin chain with next-nearest-neighbor

and alternating nearest-neighbor interactions

Keisuke Totsuka*
The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, 351-01, Japan

~Received 24 June 1997!

The magnetization process of theS51/2 Heisenberg chain with next-nearest-neighbor~NNN! and alternat-
ing nearest-neighbor interactions is investigated using the bosonization technique. The existence of the NNN
interaction is shown to stabilize a ‘‘diluted’’ dimer order at magnetizationmz51/4, leading to a plateau, where
two degenerate ground states appear. Effective Hamiltonians describing the low-energy physics in the vicinity
of the mz51/4 plateau are also presented. The analogy to metal-insulator transitions is discussed briefly.
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I. INTRODUCTION

In the last decade, our understanding of low-dimensio
quantum spin systems has been greatly deepened; s
quantum fluctuations play an important role and class
pictures valid in higher dimensions are known to break do
in many cases. For example, an excitation gap exists
one-dimensional Heisenberg antiferromagnets with inte
spin quantum numbers,1,2 although a gapless spin-wave-lik
excitation is expected from the classical theory.

Quite recently, a new member has joined a family of no
trivial quantum phenomena in one-dimensional s
systems—intermediate plateaus in magnetization p
cesses.3–6 Namely, for some range of a magnetic field, t
system ceases responding to it and a plateau is formed in
field (H) vs magnetization (mz) curve. The value ofmz, at
which the plateau appears, neither seems sensitive to a s
change in the model parameters nor is restricted to h
integers; for example, themz51/6 plateau appears in a trim
erized S51/2 model.3 However, irrational values have no
been found at least so far. Suchexactnessandrationality of
the values are reminiscent of those occurring in the o
dimensional Mott transitions.7,8 In fact, we can explain6 the
appearance of themz51/2 plateau for bond-alternatingS
51 chains4 in such a way as in metal-insulator~MI ! transi-
tions.

An attempt at obtaining criteria for plateaus from a ge
eral viewpoint has been made recently by Oshikawaet al.9

Guided by a soft argument in the manner of Lieb, Schu
and Mattis10 ~LSM! and a heuristic reasoning based
bosonization, they concluded that plateaus in spin-S chains
are possible only at values ofmz allowed by the condition

Q~S2mz!PZ. ~1!

The above integerQ denotes the spatial period of th
~infinite-volume! ground state. If the above condition is n
satisfied for the spatial periodQHam of theHamiltonians, the
ground state withmz is either ~i! gapless~the word ‘‘gap’’
needs some remarks; we give the meaning in the next
tion! or ~ii ! degenerate. This is a finite-mz generalization of
the well-known LSM dichotomy.10,11 In all the models men-
tioned above,Q equalsQHam ~e.g., Q5QHam52 for the
570163-1829/98/57~6!/3454~12!/$15.00
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bond-alternatingS51 chains!, although they can be differen
from each other, by definition.

Quite recently, however, anmz51/4 plateau has bee
found in numerical calculations12 carried out for the familiar
S51/2 Heisenberg chain with the next-nearest-neigh
~NNN! and alternating nearest-neighbor interactions~see be-
low for the definition of the model!. In Fig. 1, we show a
typical magnetization curve exhibiting the plateau atmz

51/4.
This model has been extensively studied13–16 as a simple

model showing a quantum phase transition caused by f
tration and now attracts a renewed interest since it
considered17 to be an~adiabatic! effective Hamiltonian for
the spin-Peierls compound CuGeO3.

18

From the facts known for the magnetization process
S51/2 chains,16,19–21such a plateau is quite unexpected.
fact, it is known6,21 that there isno plateau if the NNN in-
teraction is absent. In light of the LSM argument of Ref.
the first possibility~i! of the dichotomy is realized in this
case. If the condition~1! is correct, the integerQ should be
an integer multiple of 4, while the model has a peri
QHam52; this is the first example where the ground sta
breaks the symmetry of the original model. Namely, the s
ond possibility~ii ! occurs andQ/QHam ground states appea

Furthermore,S51/2 chains are known to have a ferm
onic description and can be considered to be most suitab
demonstrate the above-mentioned analogy to the Mott t
sitions.

FIG. 1. Schematic drawing of the magnetization curve exhib
ing a plateau. ForHp1<H<Hp2 , magnetization takes a consta
value 1/4. Hc and Hs denote the critical and saturation field
respectively.
3454 © 1998 The American Physical Society
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The model we consider in the following is given by@Fig.
2~a!#.

H15 (
i :chain

@12~21! id#Si•Si 111J2 (
j :chain

Sj•Sj 12 , ~2!

whereSi denote the spin-1/2 operator on thei th site. For the
nonzero value ofd (>0), the nearest-neighbor interactio
alternates in strength. The next-nearest-neighbor interac
is controlled by the parameterJ2 . Coupling to an externa
magnetic field is incorporated by adding the Zeeman ter

H1,Zeeman52H (
i :chain

Si
z . ~3!

The pointd50, J251/2 was rigorously shown13 to have
simple product-form ground states~Shastry and Sutherland14

extended the region to a line 2J21d51!; the spin correla-
tions are extremely short ranged and an excitation gap a
ally exists above two degenerate ground states.22 Haldane15

discussed the ground-state phase diagram of the model
d50 using the method developed by Luther and Pesch23

and predicted that the system becomes spontaneously d
ized for J2.J2

c (J2
c,1/2). Subsequent numerical calcul

tions16,24 fixed the critical valueJ2
c50.2411.... Furthermore

the (d-J2) phase diagram forH50 has been obtained b
using the density-matrix renormalization-group method.25 Fi-
nally, Hammar and Reich pointed out26 that H1 will be a
model Hamiltonian for a zigzag-chain compoun
Cu2~1,4-diazacycloheptane!2Cl4~CHpC!.

Apparently, the same model can be written in a sligh
different form @Fig. 2~b!#:

H25J2(
r

~Sr
~u!

•Sr 11
~u! 1Sr

~ l !
•Sr 11

~ l ! !1~11d!(
r

Sr
~u!

•Sr
~ l !

1~12d!(
r

Sr
~u!

•Sr 11
~ l ! . ~4!

In this expression, we regard the system as two~uniform!
S51/2 chains coupled via the vertical (11d) and the diag-
onal (12d) interactions or a frustrated ladder. Hereafter,
call the vertical coupling a ‘‘rung’’ as is usual in the busine

FIG. 2. Two models considered in the text:~a! chainlike
HamiltonianH1 and ~b! ladderlike oneH2 . Note that the physica
contents are the same.
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of ladder systems. The upper indices (u) and (l ) denote the
upper and lower chains, respectively. Of course, the Zeem
term is written as

H2,Zeeman52H(
r

~Sr
~u!,z1Sr

~ l !,z!. ~5!

It is important to note that the system is translationally
variant in the ladder~not chain! direction. This representa
tion is convenient in discussing the cases withd;1, J2;0
and u11du, u12du!J2 .

The setup of the present paper is as follows. In the n
section~Sec. II!, we map the system onto the field theory
interacting spinless fermions in the spirit of Luther a
Peschel.23,15With the help of the bosonization technique a
the renormalization-group theory, we investigate the lo
energy behavior in the weak-coupling limitudu, uJ2u!1. It is
shown that atmz51/4 the system becomes gapped for so
region of the (J2 ,d) plane. When the plateau is formed, th
elementary excitations are given bySz561/2 kink (1/2) and
antikink (21/2).

In the opposite limitJ2@u11du, u12du, the system can
be viewed as two Heisenberg chains coupled via thezigzag
interaction (H2);27 in this case another weak-coupling trea
ment is possible. Again, using the continuum-theory meth
we argue that the system is gapless for genericmz; that is, no
magnetization plateau appears for 0,mz,1/2 in this limit.
Readers who are not interested in the details of bosoniza
can skip this section and proceed directly to Sec. III.

Then, in Sec. III, we present a simple explanation for t
ground-state degeneracy occurring atmz51/4 using the
strong-coupling expansion around the limit ofu11du@J2 ,
u12du. In the lowest order, the system is described by
S51/2 XXZ chain withz-axis anisotropy depending upond
andJ2 . For a certain range of parameters, it exhibits antif
romagnetic order; the ground state is twofold degenerat
mz51/4 and a kind of ‘‘diluted’’ dimer order is stabilized
Using the effective Hamiltonian, we can clearly see how
interplay between bond alternation and the NNN interact
yields a nontrivial plateau.

In Sec. IV, we summarize the main results of the analy
and obtain the phase diagram formz51/4.

An analogy to metal-insulator transitions is described
ing a few examples in the final section. We can regard
appearance of the plateau in our model as a metal-insu
transition occurring at low densities.

II. CONTINUUM-THEORY APPROACH

Before embarking on the detailed discussions, we c
sider how the magnetization curve is determined from a g
eral viewpoint. Since our system is invariant under rotat
about thez axis, the z component of the total spinStot

z

5(iSi
z is a good quantum number. As a function of the fie

H, the energy levels ofH11H1,Zeeman~or H21H2,Zeeman!
decompose into groups of straight lines with slopes2Mz

52Stot
z . Among the lines with a given slope~i.e., Mz!, only

the lowest one is important in considering the magnetizat
process.

As has been well-known since the classical work of Bo
ner and Fisher,20 the magnetization curve~precisely speak-
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3456 57KEISUKE TOTSUKA
ing, steps for finite systems! is determined by

H5HM[E~M ,0!2E~M21,0!, ~6!

whereE(M ,0) denotes the lowest energy ofH1 with a given
M . For Mz of the order of the system sizeL, HMz will
remain finite even in the thermodynamic limit. Therefore
finite gap betweenE(M ,0) andE(M11,0) does not neces
sarily imply the existence of a plateau. This is in contras
the fact that the critical field appearing in magnetica
gapped systems actually corresponds to a gap.2

There are several ways to define a plateau. One is to c
acterize it as a nonanalytic point in the energy density a
function of mz.4,12

Though this is quite general, it is not so useful for o
purpose. Instead, we focus on the physical excitations.
lowing the standard method28 in fermion systems, we use

E~Mz,0!2HMz ~7!

as energy eigenvalues.
First we change the origin of the fieldH to H0 , at which

the magnetization is given byMz5M @;O(L)#:

H5H01H8. ~8!

Typically, we may take

H05HM5E~M ,0!2E~M21,0!. ~9!

In general, for the purpose of considering how the magn
zation curve behaves in the vicinity of the point (H0 ,M ), it
is convenient to use the following reduced energy levels

EM~Mz2M ![E~Mz,0!2E~M ,0!2H0~Mz2M !.
~10!

Then the energy difference

@E~Mz,0!2HMz#2@E~M ,0!2HM #

5EM~Mz2M !2H8~Mz2M ! ~11!

involves only finite quantities even forL@1 as long as we
consider finite excitations satisfying (Mz2M )/L!1.

For generic cases, the reduced energyEM(Mz2M ) can
take arbitrarily small values as the system size beco
large, that is, the system is magneticallygapless.

However, if the gap to the ‘‘one-particle’’ excitation

EM~1![E~M11,0!2E~M ,0!2H0 ~12!

remains finite even in the thermodynamic limit, then the
exists a magnetization plateau aroundH5H0 . In the follow-
ing, we use the word ‘‘gap’’ in this sense.29

One way to determine whether such an excitation g
exists or not would be to investigate one in the correspo
ing continuum model. Taking the continuum limit aroun
‘‘Fermi points’’ to obtain a well-defined field theory fo
physical excitations with finite energies corresponds to
procedure described above; all physical quantities such
magnetization and energy are measured from infinitely la
bulk values. This fact is implicit in earlier papers.9,6
o
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A. Small-J2 case

It is well known that one-dimensionalS51/2 systems can
be described in terms of interacting spinless fermions by
ing the Jordan-Wigner transformation, and this fact enab
us to use powerful tools developed in the study of on
dimensional electron systems.30 Although most work in the
field of quantum spin chains has been devoted to study
the ground-state property withmz50 since the pioneering
work by Luther and Peschel,23 the methods used there can
principle be extended to nonzeromz. Some results have bee
already reported in Ref. 6. Below, we derive a continuu
effective theory for the HamiltonianH1 .

The bosonization method was successfully applied for
modelH1 with d50 andmz50 first by Haldane.15 Later,
Kuboki and Fukuyama31 generalized the model to includ
bond alternationd caused by the spin-Peierls distortion a
discussed the properties nearmz50. However, probably be-
cause it was believed that nothing unusual happens for fi
mz, the effect of the magnetizationmz ~or the fermion filling,
in fermionic language! has been less investigated so far
spin systems than it has been in electron systems.

The derivation of the effective Hamiltonian formzÞ0 is
almost parallel to the one formz50, and we give only the
outline. In order to facilitate the procedure, it is convenie
to introduce thez-axis anisotropyD:

H35 (
i :chain

@12~21! id#~Si
xSi 11

x 1Si
ySi 11

y 1DSi
zSi 11

z !

1J2 (
j :chain

Sj•Sj 12 . ~13!

The first step is to consider the model withD50, d50, and
J250 as a free part and to linearize the spectrum near
Fermi points determined by the magnetizationmz:

q56kF56
p

2
~122mz! ~0<mz<1/2!. ~14!

When we introduce the interactions, we regard the magn
zationmz as a fundamental quantity rather than the magn
field H ~note that the interactions modify the relationsh
betweenmz andH!. In other words, we investigate how th
system changes by the interactions with the magnetiza
mz fixed.

In investigating the properties ofH1 in the presence of a
strong magnetic field, it is important to treat the effect of t
~fermion! filling carefully. It affects the effective Hamil-
tonian in two ways: One is to change the marginal co
plings. The other is—and this is essential for the quantizat
of the value of the plateau~1/4 in the present case!—to de-
termine which interactions are commensurate.

After some careful calculations, we obtain the followin
Hamiltonian:

H5HTL1V11V21V3 , ~15!

where
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HTL5E
0

L dx

2p
v0$p

2:P~x!2:1:@]xf~x!#2:%

1g1E dx@ :JL
2:1:JR

2:#1g2E dxJLJR ~16!

and

V15l1E dx:cos@~G24kF!x14Rf̃#: ~umklapp!,

~17!

V25l2E dx:cos@~p22kF!x12Rf̃2kFa#:, ~18!

V35l3E dx:cos@~p24kF!x14Rf̃22kFa#:. ~19!

The first one denotes the Tomonaga-Luttinger Hamilton
characterized by the Fermi velocityv05sinkF and two kinds
~g1 andg2! of forward scattering. The value of the reciproc
lattice vectorG is given by 2p or p according to whether
d50 or not. The Tomonaga bosonf and its dualf̃ obey the
following canonical commutation relation:

@f~x,t !,P~y,t !#5Ff~x,t !,
1

p
]yf̃~y,t !G5 id~x2y!.

~20!

The meaning of them is clarified below.
The first interactionH1 is called the umklapp term an

allowed for lattice systems. The normal-ordered~:•••:! inter-
actionsH2 andH3 come from bond alternation; the latter h
been neglected in the literature because it does not affec
long-distance physics atmz50.

In obtaining them, we have bosonized the free spinl
fermionsCL andCR as32

CL;:e22ifL:, CR;:e22ifR:, ~21!

where the chiral bosons are defined by

f5fL1fR , f̃5fL2fR . ~22!

For low energies, the original Jordan-Wigner fermionc is
expressed as

c;e2 ikFxCR~x!1e1 ikFxCL~x!. ~23!

The left and right currentsJL/R are given by

JL5
1

p
]1fL~x1!, JR5

1

p
]2fR~x2!. ~24!

Roughly speaking, the bosonf represents the gapless flu
tuation around the in-plane~short-range! Néel order, whereas
its dual f̃ is related to the so-called ‘‘current excitations
@note that the current operatori (cj 11

† cj2cj
†cj 11) defined on

a lattice reduces to]0f̃ in the continuum limit#. As is obvi-
ous from the above physical meaning off, it is a periodic
variable:

f;f12pR. ~25!
n

l

he

s

The quantityR absorbs the effects of interactions and det
mines critical exponents, scaling dimensions, etc., in the g
less phase.23,33

With these expressions, we can write down continu
expressions of the spin operators6

sz;mz1
R*
p

]xf̃1const:cos~2kFx22R* f̃ !:, ~26!

s1;cos~px!:ei ~1/R
*

!f:1const:eipx1 i ~1/R
*

!f

3cos~2kFx22R* f̃ !:. ~27!

The first two terms of Eq.~26! and the first one of Eq.~27!
have classical meanings; the former is related to a unifo
spin density, and a cos(px) factor of the latter reflects the
in-plane~short-range! staggered order mentioned above. T
canonical commutation relation~20! is a quantum analog o
the classical Poisson bracket:

$f~x!,Scosu~y!%PB5dx,y ~Sz5Scosu!.

On the other hand, the term :cos(2kFx22R*f): stands for
the charge-density wave~CDW! with a wave vector 2kF
around the average magnetizationmz.

The coupling constants are given in terms ofD, J2 , andd
as

v05sin kF , ~28!

g152~D22J2!sin2 kF12J2 sin 2kF~p1sin 2kF!,
~29!

g254~D22J2!sin2 kF14J2 sin2 2kF , ~30!

l1;~J22J2
c!, l2;d, l3;d. ~31!

Of course, settingkF5p/2 (mz50), we reproduce the re
sults obtained in Ref. 15.

After the marginal couplingsg1 and g2 are fully taken
into account, the compactification radiusR is given by

R~D,J2 ,mz!

5F 12~8/p!J2 sin2 kF14J2 coskF

11~4/p!D sinkF14J2 coskF@11~2/p!sin2kF#G
1/4

.

~32!

It determines the scaling dimensions of the cosine inter
tions as a function ofkF ~or mz!. From Eq.~32!, it follows
that R→1 in the limit mz→1/2 (kF→0); the system be-
comes noninteracting near saturation. This is typical for s
chains approaching the saturation point.34,35

Since interactions containing quickly oscillating facto
cannot enter the continuum theory, which operators cont
ute to the low-energy theory strongly depends on the va
of kF5p(122mz)/2. Namely, we only keep interaction
satisfying the following condition:

Ki[0H ~mod 2p! for d50,
~mod p! for dÞ0 , ~33!

where the momentaKi are defined as
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3458 57KEISUKE TOTSUKA
K15G24kF ~G52p for d50, G5p for dÞ0!,

K25p22kF , K35p24kF . ~34!

For generic values ofmz except 0 and 1/4,l1 , l2 , andl3
do not play any essential role in the low-energy physics;
fixed-point effective Hamiltonian is given by the Tomonag
Luttinger modelHTL , and magnetic excitations are gaple
leading to a smooth increase of the magnetization.

At mz50 (kF5p/2), the l1 interaction, coming both
from D and fromJ2, together withl2 from bond alternation
contribute:

H5HTL1V11V25HTL1l1E dx:cos@4Rf̃#:

1l2E dx:sin@2Rf̃#:.

~35!

According to the values of (D,J2 ,d), various phases
appear.15,25,31,36The resulting phase diagram formz50 can
be found in Refs. 25 and 36.

At mz51/4, on the other hand, the umklapp term (l1) as
well as thel3 term corresponding to bond alternation sat
fies the commensurability conditionp24kF[0 (mod 2p/2)
and becomes important. The appearance of the recipr
vector p instead of 2p is understood by noticing that th
spatial period is doubled due to alternation. The result
model

H5HTL1l1E dx:cos@4Rf̃#:

1l3E dx:cos@4Rf̃22kFa#:

5HTL1l1E dx:cos@4Rf̃#:1l3E dx:sin@4Rf̃#:

~36!

is the so-called quantum sine-Gordon model. Note that
umklapp terml1 is permittedonly whenl3Þ0 ~i.e., dÞ0!;
if bond alternationd is absent,H5HTL and the magnetiza
tion curve is smooth as has been observed in nume
calculations.16

The appearance of a sine in Eq.~36! is natural because th
system already breaks site parity@cf. Eq.~35!#. Hereafter, we
combine the sine and cosine into a single sine whose c
pling constant is proportional tod. In considering the phas
diagram, it is convenient to use the renormalization-gro
~RG! argument.37

The RG b function is computed using the operato
product expansion.38 The result is the well-known Kosterlitz
Thouless-typeb function:

dR

d ln L
522p2R3~l3!2,

dl3

d ln L
5~224R2!l3 . ~37!

The RG flow is shown in Fig. 3.
e
-
,

-

al

g

e

al
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The scaling dimension ofl3 is given by

x354R2, ~38!

and hence it becomes relevant to produce a gap ifR
,1/&.

In the region of interest, 0,J2,1, 0<D<1, the radiusR
given by Eq.~32! is slightly larger than 1/& and hencel3 is
irrelevant. The RG flow shows that massive flows exist o
outside the curve~the thick curve in Fig. 3!

l35
)

p
AS 1

2R2 12 ln RD2~12 ln 2! ~39!

when the initial value ofR is larger than 1/&. This implies
that a finite value of alternationd is necessary for thel3
interaction to produce a gap. In other words, the appeara
of the plateau isconditionalat least for smallJ2 ; it appears
if and only if the alternationd exceeds a certain critical valu
dc(D,J2) ~recall that formz50 a gap appears as soon as t
alternation is switched on!. At the critical pointd5dc , the
system undergoes a Kosterlitz-Thouless~KT! transition.39

Numerical results of Tonegawaet al.12 actually show a tip-
like phase boundary, which is characteristic of the KT tra
sition, in (H-d) diagrams. In Sec. IV, we show that th
transition is of the second order for larger values ofJ2 .

If d takes such a large value as the initial point~l3
(0) , R0!

lies outside the curve~39!, the system flows to the strong
coupling fixed point characterized byudu↗` andR↘0; the
static susceptibilityx5R

*
2 /(py* ) actually vanishes and a

incompressible~‘‘insulating’’ ! state is realized. Atd5dc
20, the susceptibility takes a finite valuex51/(2py* ),
while it vanishes ford5dc10. That is,x is discontinuousat
the transition pointd5dc @and so is the spin stiffnessDspin

5y* R
*
2 /(2p)#. If we replacex andDspin with the compress-

ibility and the Drude weight~5charge stiffness!, respec-
tively, this is just what happens in the Mott transitions.8 Fur-
thermore, our result~32! suggests that the critical valuedc
becomes larger if the anisotropyD gets smaller.

All these are in contrast with the case of the bon
alternatingS51 chain discussed in Refs. 4 and 6, where
arbitrarily small value of alternation produces an excitati
gap atmz51/2. From the point of view of experiments, it i

FIG. 3. Renormalization-group flow derived from theb function
~37!. The semi-infinite linel350, R>1/& is the Gaussian fixed
line, on which the system is described byHTL with the renormal-
ized R* . When we increased along the line A, a KT transition
occurs on the bold line.
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fortunate that the plateau isunconditionalfor the alternating
S51 chain; themz51/2 plateau has been actually observe5

in Ni compounds.
Next, we consider what happens when we vary the ex

nal field H with d (.dc) fixed. If we approach the critica
fields Hp1 and Hp2 ~see Fig. 1! from the incommensurate
sides~i.e., H→Hp120 or H→Hp210!, application of the
well-known method40 predicts that the system is asympto
cally described by free spinless fermions and that phys
quantities behave like~Hp5Hp1 or Hp2!

v* ;AuH2Hpu↘0, R→1/2, Dspin;AuH2Hpu↘0,

mz21/4;AuH2Hpu↘0, x;
1

AuH2Hpu
↗`. ~40!

From the factR→1/2, it follows that the spin correlation
exponents hxx5hyy51/hzz approach 2 in the limit
H→Hp120 or H→Hp210 ~recall thathxx→1/2 for theS
51 bond-alternating chain6!.

Then let us discuss the property of the plateau state f
the viewpoint of our continuum model~36!. In our bosoniza-
tion treatment, the plateau state is characterized by a str
coupling fixed pointR*↘0. Since the limitR*↘0 corre-
sponds to the classical limit of thef̃ field, we can expect tha
the value off̃ is pinned at one of the minima of :cos4Rf̃:.

The low-energy effective HamiltonianHTL possesses sev
eral internal symmetries; the translationf°f1Rf0 im-
pliesSj

6°e6 if0Sj
6 , while f̃°f̃1f̃0 corresponds to trans

lation in the spatial direction. The latter will be most eas
understood in the density-wave picture@see Eq.~26!#. As has
been derived in Ref. 6, the one-site translation is actu
realized as

f°f1Rp, f̃°f̃2
kF

R
~41!

~the former is reminiscent of the classical antiferromagne
order in thexy plane!.

At mz51/4 (kF5p/4), the periodp/2R of the cosine
interaction :cos 4Rf̃: fits with the two-site translation~note
that the system is only invariant under two-site translat
for dÞ0!. Since the circumference of the circle, on whi
the f̃ field resides, is given byp/R, :cos 4Rf̃: may spon-
taneouslybreak the two-site translation symmetry down
the four-site one, leading to two degenerate ground st
~recall that cos 4Rf̃ takes its minima atf5p/4R and f
53p/4R, which are related to each other by the two-s
translationf̃°f̃2p/2R!. A situation like this is known to
occur in the commensurate CDW state.

This is analogous to the fact that the same type of op
tors coming from the umklapp process spontaneously bre
the translational invariance down to the two-site translat
and brings about two dimerized ground states formz50 and
d50.13,15 The occurrence of this ground-state degenerac
our case (dÞ0, mz51/4) is explained naturally in the nex
section.

Now that we have obtained the effective Hamiltoni
~36!, some predictions about elementary excitations can
made. The sine-Gordon soliton~antisoliton! associated with
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Eq. ~36! corresponds to a shiftf̃°f̃62p/(4R) ~or, equiva-
lently, two-site translation!. On the other hand, the~bulk-
subtracted! z component of the total spin is given by

Stot
z 5E

0

L

dx
R

p
]xf̃~x!5

R

p
@f̃~L !2f̃~0!#. ~42!

Thus we can conclude that the solitons~antisolitons! con-
necting two different ground states carry theSz quantum
number 1/2 (21/2) and that they appear only in pairs as
consequence of their ‘‘kinky’’ character. They are nothin
but the fractionally charged solitons well known in th
theory of polyacetylene.41 These solitonic excitations ar
clearly visualized in the next section.

For d2dc(J2)!1, the low-energy~or low-temperature!
physics is described by the~massive! soliton field theory; the
width of the plateau is twice as large as the soliton mass
finite temperatures (T), the plateau is not strictly flat; ne
glecting the temperature dependence of the soliton mass~this
becomes exact in the limitR→1/2!, we can write down the
magnetization in the plateau region as

mz~H,T!5
1

4
1

Dsol

p (
n51

`

~21!n21K1~nDsol/T!

3sinh@nm~H !/T#, ~43!

whereK1 is the modified Bessel function, which can be a
proximated byK1(nDsol/T);AT/(nDsol)e

2nDsol /T for low
enough temperatures. The soliton massDsol and the ‘‘chemi-
cal potential’’ m(H) are given byDsol5(Hp22Hp1)/2 and
m(H)5H2(Hp11Hp2)/2, respectively.

B. Large-J2 case

There is one more region where a field-theory calculat
based on weak-coupling perturbation is allowed:J2@u1
1du, u12du. That is, we consider the problem of a doub
chain coupled via the zigzag interaction. Since the calcu
tion is similar to that given in Refs. 6 and 42, we only giv
the final result. We are left with the following five importan
interactions:

~ i!H coskF :cos@~G24kF!x12&Rsymf̃sym2kF#:,

2d sin kF :sin@~G24kF!x12&Rsymf̃sym2kF#:,

~ ii !H coskF :cos@2&Rdifff̃diff1kF#:,

d sin kF :sin@2&Rdifff̃diff1kF#:,

~ iii !d:cosF &Rdiff
fdiffG :. ~44!

The Fermi wave vectorkF is the same as before. The abo
bosonsfsym andfdiff are obtained by recombining the tw
bosonsfu and f l corresponding to the upper and low
chains, respectively:

fsym5
1

&
~fu1f l !, fdiff5

1

&
~fu2f l !. ~45!

The interactions~i! and ~ii ! are reminiscent of umklapp an
backward scattering ing-ology,30 respectively. Note that
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only thefsym sector is important for the magnetization pr
cess; if the sector is gapless, we may conclude that theH-mz

curve is smooth aroundmz5 1
2 2kF /p.

Within the weak-coupling approximation, the paramet
Rsym andRdiff are given by

Rsym5F11
2

pJ2 sin kF
1

4D2

p
sin kFG21/4

,

Rdiff5F12
2

pJ2 sin kF
1

4D2

p
sin kFG21/4

, ~46!

where we have introduced thez-axis anisotropyJ2D2 into
the NNN interaction.

At mz50 (kF5p/2), all five interactions vanish ifd
50. Hence the remaining interactions are marginal and ir
evant ones as pointed out by White and Affleck using
non-Abelian bosonization.27 If both J2 and D2 are positive,
nonzero values ofd causes a gap to thefsym sector only at
mz50.

For mzÞ0, the type-~i! interactions never contribute an
the fsym sector remains gapless regardless of the value od,
while thefdiff sector becomes gapped by the ‘‘backscatt
ing’’ term.

A remark is in order here about higher-order interactio
A little calculation shows that an interaction

:cos@8kFx24&Rsymf̃sym#: ~47!

comes from thexy part of the interchain coupling. It is com
mensurate atmz51/4 and will generate a gap to thefsym
sector if the radius satisfiesRsym,1/2. For sufficiently large
J2 , where our weak-coupling approximation is valid,Rsym is
larger than the critical value 1/2. However, it is highly no
trivial whether the conditionRsym.1/2 is satisfied down to
J2'0 or not.

It is interesting to see what happens when the above
teraction is relevant. As has been shown in Ref. 6, the o
site translation in the leg direction is realized as a discr
symmetry of thefsym field:

f̃sym°f̃sym2
&p

4Rsym
. ~48!

It is not surprising that&p/4Rsym is equal to the period o
the cosine :cos@4&Rsymf̃sym#: since the system is invarian
under the translation in the leg direction.

On the other hand, the period of thef̃sym itself is twice as
large as that of the above pinning potential. Hence the tra
lational symmetry in the leg direction may be spontaneou
broken down to the two-site~in the chain picture, this corre
sponds to the four-site translation! one; as a result, two de
generate ground states appear.

Thus we have reached the same conclusion as in the
vious subsection starting from a completely different lim
In Sec. IV, we present an argument supporting the existe
of a transition line below which thefsym sector becomes
gapped.

To summarize, at least for sufficiently large~positive! J2 ,
the spin excitation is gapless unlessmz50 and the magneti-
zation curve is smooth.
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III. SIMPLE PICTURE OF THE GROUND STATE
AT mz51/4

In the preceding sections, we have seen that a hig
order interaction generated by bond alternation becom
commensurate atmz51/4 (kF5p/4) and generates a gap t
magnetic excitations. In the framework of the continuu
field theory, the bond alternationd plays a main role; the
NNN interactionJ2 only lowers the value ofR and makes
the l3 interaction relevant@note that 1

2 1mz<R(mz)<1(0
<D,`) for J250 ~Ref. 6!#.

In this section, we clarify how the interplay betweenJ2
andd stabilizes the plateau state atmz51/4 and discuss the
difference between the case withJ250 ~Refs. 6 and 21! and
that with J2Þ0. We also investigate the physical properti
of the ground state realized for a certain region of the (J2 ,d)
plane.

To this end, we consider a slightly extreme caseu12du,
J2!11d. In this case, it is convenient to use the ‘‘ladde
representationH2 where the system is treated as a sum
decoupled ‘‘rung’’ dimers perturbed by NNN and diagon
interactions@see Fig. 2~b!#. To be concrete, we regard th
second term ofH2 as the unperturbed Hamiltonian and ot
ers as perturbations. Throughout this section, we assume
the lengthL of the chainH1 is twice as large as the tota
number (2N) of rungs contained in the ladderH2 : L54N.
Then the ground states atmz51/4 are easily found;N of the
2N rungs are occupied by singlet bonds and the others
triplet bonds withSz51. They apparently (N

2N)-fold degener-
ate in position. In order to consider the degenerate pertu
tion for these ground states, we introduce the so-called bo
operator formalism: namely, we use the tensor products
the states@singlet (s) or triplet (t)# on rungs~i.e., strong
bonds!,

^

r :rungs
uf r&:uf r&PH us&5S 1

0
0
0
D , ut~1!&5S 0

1
0
0
D ,

ut~0!&5S 0
0
1
0
D , ut~21!&5S 0

0
0
1
D J ,

as a basis of the whole Hilbert space. For example,us& can
be written as

us&5
1

&
~ u↑&u,r ^ u↓&1,r2u↓&u,r ^ u↑&1,r). ~49!

The others will be self-explanatory. With these 42N(52L)
bases, any local spin operators are expressed by 434 matri-
ces; the perturbation Hamiltonian in the new basis can a
be written down by replacing the ordinary spin operato
with

Sr
~u!15

1

& S 0
21
0
0

0
0
0
0

0
1
0
0

1
0
1
0
D ,
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1
2 . . .
Sr
~ l !z5

1

2 S 0
0

21
0

0
1
0
0

21
0
0
0

0
0
0

21
D ,

etc.
Up to now, no approximation has been made and the

sulting Hamiltonian can be viewed as a certain on
dimensional model consisting of 2N sites, on each of which
four statesus&, ut(1)&, ut(0)&, andut(21)& are possible. Us-
ing the numberN(a) of sites taking the stateua&, the total
energy and thez component of the total spin are given by

E5~11d!@2N2N~s!#, Mz5N„t~1!…2N„t~21!…,
~50!

respectively.
Although the full Hamiltonian is slightly complicated, th

situation becomes drastically simple when we restrict o
selves to the first-order~degenerate! perturbation for the low-
est states with a given value ofMz.43 That is, we can trun-
cate the 434 matrices by 232 ones and the perturbatio
Hamiltonian can be written as

Heff5
1

4
@2J22~12d!# (

r :rungs

2N

~dr
†dr 111dr 11

† dr !

1
1

4
@2J21~12d!# (

r :rungs

2N

nrnr 11 , ~51!

where we have introduced the fermion operatordr
†(dr),

which creates a tripletut(1)& ~singlet us&! on the r th rung,
and the corresponding number operatornr . For the lowest
states, the total fermion number( r 51

2N dr
†dr is related toMz

by

Mz5(
r 51

2N

dr
†dr . ~52!

A constantMz implies a constant fermion number.
It is worth mentioning that singlet dimers become sta

along the line 2J21d51, on which a static~or solidlike!
dimer configuration becomes the exact ground state foH
50.14 Below we consider the effective HamiltonianHeff

within a sector with a fixed fermion numberNF5( rdr
†dr

5L/4.
Let us consider an extreme caseu2J22(12d)u!2J2

1(12d) first. Obviously, the ground state~g.s.! is given
either by

ug.s. A&5 )
r 5odd

dr
†u0&F ~53!

or by

ug.s. B&5 )
r 5even

dr
†u0&F . ~54!

This implies that the symmetry-breaking ground state occ
in the infinite-volume limit. In~spinless! fermionic language,
this situation can be viewed as the occurrence of the
called 2kF-CDW ordering.44 If we translate it back into the
e-
-

r-

rs

o-

language of the original HamiltonianH1 , N dimer singlets
occupy every other strong (11d) bond ~the number of
strong bonds is 2N!; the two degenerate ground states~A and
B! corresponds to the two possible ways of assigningN sin-
glets onto 2N strong bonds~see Fig. 4!. Apparently, exciting
another fermion~i.e., triplet with Sz51! over the NF5N
5L/4 ground state costs extra energy@2J21(12d)#/2 in
addition to the increase (11d) on a strong bond. The firs
one is responsible for the plateau.

When u2J22(12d)u is not so small compared with 2J2
1(12d), the energy gain due to the hopping of triplets a
the repulsive interaction which favors the CDW compe
with each other. The region of stability of the ordered sta
is obtained by noticing that the effective Hamiltonian
nothing but the one of theS51/2 XXZ chain,

HXXZ5Jeff(
r 51

2N

~Sr
xSr 11

x 1Sr
ySr 11

y 1DeffSr
zSr 11

z !, ~55!

with the exchange coupling and thez-axis anisotropy given
by

Jeff5
1

2
@2J22~12d!# ~56!

and

Deff5
1

2 S 2J21~12d!

u2J22~12d!u D , ~57!

respectively. Of course, in order for the interaction betwe
singlet dimers to be repulsive, a condition 2J21(12d).0
is necessary. The magnetization of the aboveXXZ chain is
given byMXXZ

z 5( r 51
2N (dr

†dr21/2) and hence the sector wit
NF5N fermions corresponds to the one withMXXZ

z 50. It is
well known from the exact solution45 that the ground state is
antiferromagnetically ordered and is gapped forDeff.1; the
antiferromagnetic order corresponds to the CDW order in
fermion model. Therefore, we may conclude that t
symmetry-breaking ground state is stable in the region
tween two linesJ25(12d)/6 andJ253(12d)/2. Since this
region includes the perturbative regimed;1, J2;0, our ar-
gument is self-consistent.

To summarize, at least in the perturbative regime the tw
site translation symmetry can be spontaneously broken d

FIG. 4. Two degenerate ground states realized in the extr
caseu2J22(12d)u!2J21(12d): ug.s. A& ~a! and ug.s. B& ~b!.
Ovals denote dimer singlets. Note that the dimer order is in a se
‘‘diluted.’’
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to the four-site one; two~not four! ground states degenera
and magnetic excitations have a gap leading to themz51/4
plateau. Using the exact results,45 the width of the plateau in
the present regime is given by twice the soliton mass:

Hp22Hp1'u2J22~12d!u
1

p
K~k!A~Deff

2 21!~12k2!

S Deff5cosh
pK8~k!

K~k! D , ~58!

whereK(k) andk denote the complete elliptic integral of th
first kind and its modulus, respectively.

In fact, the above argument for symmetry breaking can
extended to the case of a smalld with the help of the
bosonization method developed in Sec. II. The most suita
choice of an order parameter probing the above density w
would be

^Oi&5^S4i•S4i 11&2^S4i 12•S4i 13&. ~59!

Taking the continuum limit, we obtain, formz51/4,

O~x!5:sin@2R* f̃~x!28kFx23kF#:, ~60!

whose correlation function is readily computed as

^O~x!O~0!&;
1

x2R
*
2 cos~8kFx!5

1

x2R
*
2 . ~61!

In the plateau phase, we haveR* 50 as has been shown i
Sec. II using the RG argument. Hence, in the presence o
mz51/4 plateau, a ‘‘dimer-density wave’’ with a wave ve
tor q5p/2 is formed. This shows that both the perturbati
region (J2,12d!11d) and the weak-coupling regio
(J2 ,udu!1) belong to the same unique density-wave pha

The elementary excitations are expected to be given
massive kinks and antikinks, which haveSz561/2. Typical
configurations with spin quantum numberSz51, 21, and 0
are shown in Figs. 5~a!, 5~b!, and 5~c!, respectively. These
are consistent with the conclusion of the bosonization ar
ment presented in the previous section. It would be inter
ing to compare such soliton configurations with those
pearing formz50, d50, andJ2.0.2411... .14

In a recent paper,6 we pointed out that although the cosin
interaction :cos4Rf̃: coming from bond alternation become
commensurate atmz51/4, an expected ordered state such
in Fig. 4 is not realized because of strong fluctuations a

FIG. 5. Typical soliton configurations. The change in the qu
tum numberStot

z is given by 1~a!, 21 ~b!, and 0~c!.
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explained why themz51/4 plateau is absent21 from the
Hamiltonian with J250. In the present case, however, th
NNN interaction stabilizes the dimerized order~note that the
stability conditionDeff.1 cannot be met byd or J2 alone!
and produces the plateau.

IV. PHASE DIAGRAM

In the present section, we summarize the results obta
in the preceding sections and discuss the (J2 ,d) phase dia-
gram. The final results are summarized as a phase diag
for mz51/4 in Fig. 6~see Ref. 25 for themz50 phase dia-
gram!.

We have performed the bosonization analyses in two l
its: ~i! uJ2u, udu!1 and~ii ! J2@u16du. In the first case, we
have treated the NNN interaction (J2) and the alternation~d!
as small perturbations to the ordinary uniformS51/2
Heisenberg chain.

For mz50, there is a strongly relevant operator :cos 2Rf̃:
in addition to the well-known umklapp one :cos 4Rf̃: when
bond alternation is present; the system is gapless only
restricted regiond50 and J2,0.2411... .24,25 A symmetry
consideration predicts that the low-energy physics is
scribed by the sine-Gordon model withb5A2p; the el-
ementary excitation is given by a magnon triplet compos
of the soliton, the antisoliton, and the breather together w
a Raman-active singlet excitation corresponding to ano
breather.15,46

Away from half filling (mz.0), the well-known umklapp
operator becomes negligible in the low-energy limit; the on
nontrivial operator comes from the bond alternationd. Ex-
actly atmz51/4, it satisfies the commensurability conditio
and contributes to the low-energy physics. The result of
bosonization suggests that the cosine operator :cos@4Rf̃
22kFa#: is slightly irrelevant at least for smallJ2 @see Eq.
~32!# and that a finite amount of alternation is necessary
the mz51/4 plateau to appear. On the transition lined
5dc

(1)(J2) ~line 1 of Fig. 6!, the Kosterlitz-Thouless transi
tion occurs.

-

FIG. 6. mz51/4 phase diagram predicted by the analyses us
the bosonized Hamiltonians andHeff . Obviously, it is symmetric
underd↔2d. Themz51/4 plateau appears in the shaded triang
lar region between two boundaries, line 1 and line 2, on which a
transition occurs. Line 2 is shown only schematically. ForJ2

c1,J2

,J2
c2 ~bold line!, a second-order transition ind occurs.
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1
2 . . .
On the other hand, whenJ2 is not small, our perturbative
result~32! is not reliable and whether the bond alternation
relevant or not is nontrivial. Quite recently, correlation e
ponents ofH1 along the line d50 were investigated
numerically.47 According to their results, the radiusR be-
comes smaller than 1/& for J2.J2

c1 ~J2
c1'0.2; we must not

confuse it with the ‘‘spin-fluid–to–dimer’’ critical pointJ2
c

appearing formz50! and hence becomes relevant@note that
the authors of Ref. 47 evaluated a correlation expon
h3(J2 ,mz51/4), which is expressed as 2R2 by ourR#. Thus
we may conclude that the plateau transition is of the KT ty
for J2,J2

c1, while it is an ordinary second-order one forJ2

.J2
c1; the transition pointdc(J2) is given bydc50 for J2

.J2
c1 and the plateau appears asHp22Hp1;d1/(224R2).
The second approach~ii ! from the large-J2 limit shows

that the alternationd does not play any essential role in th
magnetization process except formz50 and hence the pla
teau is absent. Therefore, it is natural that we assume
existence of another transition linedc

(2)(J2) ~line 2 of Fig. 6!
beyond which the plateau is absent. Furthermore, we
show that two massive degenerate ground states appea
possible higher-order interaction becomes relevant. Th
fore, two completely different approaches give the same
sult.

Unfortunately, the determination of the second transit
line is far beyond our bosonization calculation.48 However,
at least for smallJ2 , we can obtain some insight into the lin
using the effective Hamiltonian of Sec. III. In Sec. III, w
have obtained theS51/2 XXZ model as an effective Hamil
tonian describing the low-energy physics atmz51/4. In the
region between two linesJ253(12d)/2 andJ25(12d)/6
~indicated by dark gray in Fig. 6!, the system is in the gappe
phase with the translation symmetry by two sites~spontane-
ously! broken. In theXXZ language, thez-axis anisotropy
Deff is unity along these lines, beyond which the system
comes gapless~the XY region of theXXZ chain!. Hence we
may expect that the transition occurring on the lineJ2
53(12d)/2 is of the KT type too; we further expect tha
this line continues to the pointJ25J2

c2 on theJ2 axis. In Fig.
6, we show the second line~line 2! only qualitativelyexcept
for d'1.

On the portion of theJ2 axis betweenJ2
c1 andJ2

c2 ~shown
by a bold line in Fig. 6!, the transition from the gapless pha
to the plateau phase is of second order. Themz51/4 plateau
appears in an area surrounded by line 1, line 2, and theJ2
axis ~shaded triangular region in Fig. 6 except on theJ2 axis
itself!. In that region, such a ‘‘diluted’’ dimer order as i
Figs. 4~a! and 4~b! is realized. Since singlet dimers becom
static on the Shastry-Sutherland line 2J21d51 as pointed
out in Sec. III, we expect that the width of the plateau
largest around this line.

The resulting phase diagram is quite different from th
obtained formz50 in Ref. 25.

V. ANALOGY TO METAL-INSULATOR TRANSITIONS

In this section, we briefly discuss the aforemention
analogy to the metal-insulator~MI ! transition8 and roughly
classify the plateaus found so far from the viewpoint of th
origin.
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There are several ways to see the analogy between th
transitions and the plateau transition. First, there is a for
analogy between them; if we identify the spin stiffness a
the ~dc! susceptibility with the Drude weight and the com
pressibility, respectively, transitions to the plateau phase
be regarded as those from metallic states to insulating sta
This has been already pointed out in Sec. II. Furthermore,
can characterize49 the plateau state in the same manner
Kohn50 did for the insulator.

Of course, these transitions are similar in a physical w
as well. Although much wider classes of interactions are p
sible in spin systems than in electron systems, we res
ourselves to the following two simple cases in demonstrat
the similarity. The first category is the spin-S Heisenberg
chain with the single-ion type anisotropy (D):

HD5J(
j

Sj•Sj 111D(
j

~Sj
z!2. ~62!

The effect of an external magnetic fieldH is incorporated by
adding the Zeeman term

HZeeman52H(
j

Sj
z . ~63!

When the nearest-neighbor exchangeJ vanishes, the prob-
lem reduces to a local one, forS>3/2, there are intermediat
@S21/2# ~the brackets@•••# denote the Gauss symbol! pla-
teaus.

The second one is the spin-S Heisenberg model with bond
alternation:

Halt5(
j

S2 j•S2 j 111J8(
j

S2 j 21•S2 j . ~64!

In the ground state withmz50, it shows a rich phase dia
gram according toS and J8.51 For clarity of the argument,
we only consider the case 0<J8<1. In this case, the mode
becomes local whenJ850; there appear 2S21 plateaus in
the interval 0,mz,S.

In both cases, the spacings of the lowest-energy lev
E(Mz,0) are almost the same, i.e.,E(Mz,0)2E(Mz21,0)
5const. As a result, the magnetizationMz5S jSj

z can vary
without loss of the total energyH2HS jSj

z when the fieldH
equals to the level spacings. For example, consider the m
HD with S52. WhenJ50, the spacing between energy le
elsE(Mz,0) is equal toD for 0<Mz<L. If Mz exceeds the
system sizeL, the level spacing abruptly changes to 3D; a
level jump occurs atMz5L. These equidistant levels be
come highly degenerate forH5D andH53D, and the mag-
netization curve is vertical~or metamagnetic! there. Plateaus
occur between these equidistant regions as a consequen
the above level jumps. Themz51/6 plateau in a spin-1/2
chain3 and in the~antiferromagnetic! three-leg ladder52 can
also be explained in the same manner.

When a small interaction between local sites~or dimer-
ized bonds! is switched on, energy bands are formed by t
hopping and vertical parts of the curve will have large b
finite slopes; the widths of plateaus may be reduced, but t
will remain finite provided that the interactionsJ andJ8 are
small enough.
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To compare the situation with those occurring in intera
ing fermion ~or boson! systems, it is convenient to consid
the increment ofSj

z ~for HD! or S2 j
z 1S2 j 11

z ~for Halt! as
adding a particle. Of course, an external magnetic fi
coupled toStot

z is replaced by a chemical potential. Then t
roles played by

D(
j

~Sj
z!2 or (

j
S2 j•S2 j 11 ~strong bonds!

~65!

are quite similar to those played by the on-site Coulo
repulsion. Here we use the word ‘‘site’’ in a generaliz
sense to include a strong bond as well.

The situation occurring for the HamiltonianHD with S
53/2 is reminiscent of that in the single-band Hubba
model; when the ‘‘hopping’’J is absent, all lowest state
with Stot

z 5Mz (2L/2<Mz<L/2) degenerate and a finit
‘‘charge gap’’ (2D) opens to the lowest state with one mo
particle Mz5L/211. On the other hand, whenD50 (J
.0), the system is ‘‘metallic’’; the transition to the ‘‘insu
lating’’ phase should take place in between. The criti
value ofD/J is obtained in Refs. 9 and 53. ForS larger than
2, the situation is rather like the one in the interacting bo
model discussed by Batrouniet al.7

In a sense, plateaus are consequences of ‘‘MI transitio
occurring for high densities~i.e., more than one particle pe
‘‘site’’ ! in all cases treated above; finite level jumps resp
d

.

s

v

s

h
t

t-

ld

b

d

l

n

s’’

-

sible for plateaus exist already in the local limitsJ50 and
J850. The interaction between local sites~hopping, in the
language of electron systems! plays only a secondary role in
the formation of plateaus in such systems.

However, themz51/4 plateau discussed in the precedin
sections occurs at a low density~1/2 particle per site!; there
is no such simple local picture as exists forHD andHalt . No
level jump exists as long as the interactions 12d andJ2 are
absent. That is, themz51/4 plateau is purely a many-bod
effect. This situation is similar to the MI transition takin
place in the extended Hubbard model at quarter filling.54 The
fact that longer-ranged density-density interactions~the
NNN interaction here! are necessary for an ordered state
be stabilized is reminiscent of the fact that we need lon
~but finite! range interactions to have the Mott transitions
low densities.8,54,55
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