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Magnetization plateau in the S=3 Heinsenberg spin chain with next-nearest-neighbor
and alternating nearest-neighbor interactions
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The magnetization process of tBe= 1/2 Heisenberg chain with next-nearest-neigh®ddXN) and alternat-
ing nearest-neighbor interactions is investigated using the bosonization technique. The existence of the NNN
interaction is shown to stabilize a “diluted” dimer order at magnetizatigs- 1/4, leading to a plateau, where
two degenerate ground states appear. Effective Hamiltonians describing the low-energy physics in the vicinity
of the m*=1/4 plateau are also presented. The analogy to metal-insulator transitions is discussed briefly.
[S0163-182608)02705-2

[. INTRODUCTION bond-alternating= 1 chaing, although they can be different
from each other, by definition.

In the last decade, our understanding of low-dimensional Quite recently, however, am?’=1/4 plateau has been
guantum spin systems has been greatly deepened; strofmund in numerical calculatioh$carried out for the familiar
guantum fluctuations play an important role and classicab=1/2 Heisenberg chain with the next-nearest-neighbor
pictures valid in higher dimensions are known to break dowr(NNN) and alternating nearest-neighbor interactisee be-
in many cases. For example, an excitation gap exists folow for the definition of the modgl In Fig. 1, we show a
one-dimensional Heisenberg antiferromagnets with integralypical magnetization curve exhibiting the plateau rat
spin quantum numbers’ although a gapless spin-wave-like =1/4.
excitation is expected from the classical theory. This model has been extensively studied®as a simple

Quite recently, a new member has joined a family of non-model showing a quantum phase transition caused by frus-
trivial quantum phenomena in one-dimensional spintration and now attracts a renewed interest since it is
systems—intermediate plateaus in magnetization proeonsideredf to be an(adiabati¢ effective Hamiltonian for
cesse$ ® Namely, for some range of a magnetic field, thethe spin-Peierls compound CuGgt§
system ceases responding to it and a plateau is formed in the From the facts known for the magnetization process of
field (H) vs magnetizationr?) curve. The value of?, at  S=1/2 chains®®?!such a plateau is quite unexpected. In
which the plateau appears, neither seems sensitive to a smédkt, it is knowrf"? that there isno plateau if the NNN in-
change in the model parameters nor is restricted to halfteraction is absent. In light of the LSM argument of Ref. 9,
integers; for example, the?=1/6 plateau appears in a trim- the first possibility(i) of the dichotomy is realized in this
erized S=1/2 model® However, irrational values have not case. If the conditiorfl) is correct, the intege® should be
been found at least so far. Suekactnessindrationality of  an integer multiple of 4, while the model has a period
the values are reminiscent of those occurring in the oneQ,,,=2; this is the first example where the ground state
dimensional Mott transition§? In fact, we can explafhthe  breaks the symmetry of the original model. Namely, the sec-
appearance of then’=1/2 plateau for bond-alternatin§  ond possibility(ii) occurs andQ/Qy,m ground states appear.
=1 chainé in such a way as in metal-insulat@vil) transi- Furthermore S=1/2 chains are known to have a fermi-
tions. onic description and can be considered to be most suitable to

An attempt at obtaining criteria for plateaus from a gen-demonstrate the above-mentioned analogy to the Mott tran-
eral viewpoint has been made recently by Oshikawal®  sitions.
Guided by a soft argument in the manner of Lieb, Schultz,
and Mattig® (LSM) and a heuristic reasoning based on
bosonization, they concluded that plateaus in $pichains 12
are possible only at values af* allowed by the condition

magnetization

Q(S—m*) el (1 14| -

The above integelQ denotes the spatial period of the
(infinite-volume ground state. If the above condition is not
satisfied for the spatial perid@,,m, of the Hamiltonians the
ground state withm? is either (i) gapless(the word “gap”
needs some remarks; we give the meaning in the next sec- F|G. 1. Schematic drawing of the magnetization curve exhibit-
tion) or (ii) degenerate. This is a finite? generalization of ing a plateau. FoH,,<H<H,,, magnetization takes a constant
the well-known LSM dichotomy®**In all the models men- value 1/4. H, and H, denote the critical and saturation fields,
tioned above,Q equals Quam (€.9., Q=Qpam=2 for the  respectively.

field

0 Hc Hp1  Hp2 f'Is
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FIG. 2. Two models considered in the texta chainlike
Hamiltonian?, and(b) ladderlike on€e},. Note that the physical

contents are the same.

The model we consider in the following is given fig.

2@].
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i:chain

Hy 1—(—1)i5]s.s+1+azj,§amsj-sj+2, )

whereS denote the spin-1/2 operator on ttik site. For the
nonzero value of§ (=0), the nearest-neighbor interaction

alternates in strength. The next-nearest-neighbor interactio

is controlled by the parametd,. Coupling to an external
magnetic field is incorporated by adding the Zeeman term:

Hl,Zeeman:_H E Slz'

i:chain

)

The points=0, J,=1/2 was rigorously show to have
simple product-form ground statéShastry and Sutherlatt
extended the region to a linel2+ §=1); the spin correla-
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of ladder systems. The upper indicag @nd () denote the
upper and lower chains, respectively. Of course, the Zeeman
term is written as

Ho zeemar — HZ (S24+g07), (5)

It is important to note that the system is translationally in-
variant in the laddefnot chain direction. This representa-
tion is convenient in discussing the cases with1, J,~0
and|1+ 4|, |1—6|<J,.

The setup of the present paper is as follows. In the next
section(Sec. I), we map the system onto the field theory of
interacting spinless fermions in the spirit of Luther and
Peschef>*®With the help of the bosonization technique and
the renormalization-group theory, we investigate the low-
energy behavior in the weak-coupling lini|, |J,|<1. Itis
shown that am*=1/4 the system becomes gapped for some
region of the §,,6) plane. When the plateau is formed, the
elementary excitations are given B§y= *+ 1/2 kink (1/2) and
antikink (—1/2).

In the opposite limitl,>|1+ §|, |[1—&|, the system can
be viewed as two Heisenberg chains coupled viazigeag
interaction (+,);?” in this case another weak-coupling treat-
ment is possible. Again, using the continuum-theory method,
we argue that the system is gapless for geneficthat is, no
agnetization plateau appears foxMm*<1/2 in this limit.
eaders who are not interested in the details of bosonization
can skip this section and proceed directly to Sec. Ill.

Then, in Sec. Ill, we present a simple explanation for the
ground-state degeneracy occurring rat=1/4 using the
strong-coupling expansion around the limit |df+ §|>J,,
[1-8]. In the lowest order, the system is described by the
S=1/2 XXZ chain with z-axis anisotropy depending up@h
andJ,. For a certain range of parameters, it exhibits antifer-
romagnetic order; the ground state is twofold degenerate at

tions are extremely short ranged and an excitation gap act?=1/4 and a kind of “diluted” dimer order is stabilized.

ally exists above two degenerate ground st&tdsaldane®

Using the effective Hamiltonian, we can clearly see how the

discussed the ground-state phase diagram of the model Wi{ﬂterplay between bond alternation and the NNN interaction

5=0 using the method developed by Luther and Pe&thel

yields a nontrivial plateau.

and predicted that the system becomes spontaneously dimer- N S€c. IV, we summarize the main results of the analyses

ized for J,>J5 (J5<1/2). Subsequent numerical calcula-
tions'®?*fixed the critical valuel5=0.2411.... Furthermore,
the (6-J,) phase diagram foH=0 has been obtained by
using the density-matrix renormalization-group metfoBi-
nally, Hammar and Reich pointed Sbithat 7, will be a
model Hamiltonian for a zigzag-chain compound
Cu,(1,4-diazacycloheptapl,(CHpCO).

Apparently, the same model can be written in a slightly

different form[Fig. 2(b)]:
H=3,2 (SV-89,+8"- s ) +(1+9> §¥-g"

+<1—5>Z sv.s';. (4)

In this expression, we regard the system as twoiform)
S=1/2 chains coupled via the vertical {15) and the diag-

and obtain the phase diagram fof=1/4.

An analogy to metal-insulator transitions is described us-
ing a few examples in the final section. We can regard the
appearance of the plateau in our model as a metal-insulator
transition occurring at low densities.

II. CONTINUUM-THEORY APPROACH

Before embarking on the detailed discussions, we con-
sider how the magnetization curve is determined from a gen-
eral viewpoint. Since our system is invariant under rotation
about thez axis, thez component of the total spiis;,
=3, is a good quantum number. As a function of the field
H, the energy levels of{;+ M1 zeeman (O Ha+ Ho zeemad
decompose into groups of straight lines with slopeM?
=—Sf;. Among the lines with a given slodée., M?), only
the lowest one is important in considering the magnetization
process.

onal (1- §) interactions or a frustrated ladder. Hereafter, we As has been well-known since the classical work of Bon-
call the vertical coupling a “rung” as is usual in the businessner and Fishef) the magnetization curvéprecisely speak-
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ing, steps for finite systemss determined by A. Small-J, case

It is well known that one-dimension&= 1/2 systems can
be described in terms of interacting spinless fermions by us-
ing the Jordan-Wigner transformation, and this fact enables
us to use powerful tools developed in the study of one-
dimensional electron systemf$Although most work in the

remain finite even in the thermodynamic limit. Therefore, ag Id of quantum spin chains has been devoted to studvin
finite gap betweer(M,0) andE(M + 1,0) does not neces- cldorq spin chains Zi -n devoled 1o studying
the ground-state property witm?=0 since the pioneering

sarily imply the existence of a plateau. This is in contrast to 4
the fact that the critical field appearing in magneticallyWork by Luther and Peschélthe methods used there can in

gapped systems actually corresponds to a%gap. principle be extended to nonzem¥. Some results have been

There are several ways to define a plateau. One is to Cha?_lready reported in Ref. 6. Below, we derive a continuum

P . . - ffective theory for the Hamiltoniaf, .
acterize it as a nonanalytic point in the energy density as & D 1 .
12¢ | 7 4,12 ytie pointi 9y e The bosonization method was successfully applied for the

function of m*.
L o model H; with §=0 andm?=0 first by Haldane? Later,
Though this is quite general, it is not so useful for Ourl_(uboki and Fukuyani generalized the model to include

urpose. Instead, we focus on the physical excitations. Fo . . . . .
I%W?ng the standard meth&Hin fermignysystems we use ond alternations caused by the spin-Peierls distortion and
' discussed the properties neaf=0. However, probably be-

H=Hy=E(M,0)—E(M—1,0), (6)

whereE(M,0) denotes the lowest energy &, with a given
M. For M? of the order of the system sizle, Hy- will

E(M?,0)— HM? @) cause it was believed that nothing unusual happens for finite
' m?, the effect of the magnetization® (or the fermion filling,
as energy eigenvalues. in fermionic languagehas been less investigated so far in
First we change the origin of the field to Hy, at which ~ SPin systems than it has been in electron systems.
the magnetization is given biyl?=M [~O(L)]: The derivation of the effective Hamiltonian fon*#0 is
almost parallel to the one fan*=0, and we give only the
H=Hy+H'. (8)  outline. In order to facilitate the procedure, it is convenient

to introduce thez-axis anisotropyA:
Typically, we may take

Ho=Hu=E(M,0)-E(M—-1,0). €) Hay= >, [1-(—1)8)(SS,,+ Y, +ASS, )
i:chain
In general, for the purpose of considering how the magneti-
zation curve behaves in the vicinity of the poitt{,M), it 4+ S.S 13
is convenient to use the following reduced energy levels: 4 :%:ain St a3
Em(M?*=M)=E(M*,0) —E(M,0)—Ho(M*=M). The first step is to consider the model with=0, §=0, and

(10) J,=0 as a free part and to linearize the spectrum near the

Then the energy difference Fermi points determined by the magnetizatiof

[E(M%0—HM?*]—[E(M,0)—HM]

q=tke=+0 (1-2m%) (0<mP<1/2). (14
=Ey(MZ=M)—H'(MZ=M) (12) 2
involves only finite quantities even far>1 as long as we When we introduce the interactions, we regard the magneti-
consider finite excitations satisfyindg/*—M)/L<1. zationm? as a fundamental quantity rather than the magnetic
For generic cases, the reduced enefgy(M?—M) can field H (note that the interactions modify the relationship
take arbitrarily small values as the system size becomesetweenm? andH). In other words, we investigate how the

large, that is, the system is magneticallgpless system changes by the interactions with the magnetization
However, if the gap to the “one-particle” excitation m? fixed.
In investigating the properties 6{, in the presence of a
Ev(1)=E(M+1,0—E(M,0)—H, (120  strong magnetic field, it is important to treat the effect of the

o _ o (fermion) filling carefully. It affects the effective Hamil-
remains finite even in the thermodynamic limit, then thereignian in two ways: One is to change the marginal cou-
exists a magnetization plateau aroutiet Ho. In the follow-  plings. The other is—and this is essential for the quantization
ing, we use the word “gap” in this senge. o of the value of the platea(ll/4 in the present case-to de-

One way to determine whether such an excitation gaRermine which interactions are commensurate.

exists or not would be to investigate one in the correspond-  after some careful calculations, we obtain the following
ing continuum model. Taking the continuum limit around Hamiltonian:

“Fermi points” to obtain a well-defined field theory for

physical excitations with finite energies corresponds to the

procedure described above; all physical quantities such as H=Hn +V1+V,+ Vs, (15
magnetization and energy are measured from infinitely large

bulk values. This fact is implicit in earlier papet8. where
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L dx
HTL:fO E00{7723H(X)23+3[(7x¢5(x)]23}
+91J’ dx[:JE:+:J§:]+92J dxJJr (16
and

V1=)\1J dx:coe{(G—4k,:)x+4R’<Z]: (umklapp,
17

v2=x2f dx:cog (m—2kg)x+2Rp—keal:, (18

Va= Agf dx:cod (7—4ke)x+4Rp—2keal:. (19
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The quantityR absorbs the effects of interactions and deter-
mines critical exponents, scaling dimensions, etc., in the gap-
less phasé®33

With these expressions, we can write down continuum
expressions of the spin operafors

R, ~ -
ST~ mi+ 7* dyp+const:co62kex— 2R, ¢):,  (26)

st~ codg 7x):€ (MRe): 1 conste! ™ 1(1R, )¢
XCOSZKFX_ZR*;‘Z):_ (27)

The first two terms of Eq(26) and the first one of Eq27)
have classical meanings; the former is related to a uniform
spin density, and a cosx) factor of the latter reflects the
in-plane(short-rangg staggered order mentioned above. The
canonical commutation relatiof20) is a quantum analog of

The first one denotes the Tomonaga-Luttinger Hamiltoniarthe classical Poisson bracket:

characterized by the Fermi velocity,= sin kg and two kinds

(g1 andg,) of forward scattering. The value of the reciprocal

lattice vectorG is given by 2r or 7 according to whether

6=0 or not. The Tomonaga bosahand its duakp obey the
following canonical commutation relation:

1 -~
[¢(x.0),I(y,D]=] d(x,1), — dy(y,1) | =i8(x=Y).
(20)
The meaning of them is clarified below.

The first interactionH, is called the umklapp term and

allowed for lattice systems. The normal-ordefed-:) inter-

actionsH, andH; come from bond alternation; the latter has
been neglected in the literature because it does not affect the

long-distance physics an*=0.

In obtaining them, we have bosonized the free spinless

fermions¥, and ¥ as?

P ~e 2 Wp~ie 2R (22)
where the chiral bosons are defined by
b=dL+ PR, b=dL—dr. (22

For low energies, the original Jordan-Wigner fermions
expressed as

c~e FWg(x)+e PP (x). (23

The left and right currentd, g are given by
J, = L + Jo= ! - 24
L= dyPL(XT), R™ J_Pr(X7). (24

Roughly speaking, the bosaf represents the gapless fluc-

tuation around the in-plan@hort-ranggNeel order, whereas

its dual ¢ is related to the so-called “current excitations”

[note that the current operati(c], ;¢;—c/c;. ) defined on
a lattice reduces tdy¢ in the continuum limit. As is obvi-
ous from the above physical meaning of it is a periodic
variable:

b~ P+ 27R. (25)

{(x),Scos 0(y)}ps= 6,y (S*=Scos6).

On the other hand, the term :cokf2—2R, ¢): stands for
the charge-density waveCDW) with a wave vector R
around the average magnetization.

The coupling constants are given in terms\of],, andé
as

vo=Ssinkg, (28)
91=2(A—2J,)sir? ke+2J, sin Ke(7+sin Xg),

(29

g,=4(A—2J,)sir? ke+4J, sir? 2kg, (30)

AN~(3—35), Ap~8, Ng~. (31)

Of course, settindg= /2 (m*=0), we reproduce the re-
sults obtained in Ref. 15.

After the marginal couplingg; and g, are fully taken
into account, the compactification radiBsis given by

R(A,J,,m?)

B 1—(8/m)J, sir? kg +4J, coske 1/a
|14 (4lm)A sinkg+4J, coke[ 1+ (2/7)sinke]
(32

It determines the scaling dimensions of the cosine interac-
tions as a function ok (or m?). From Eq.(32), it follows
that R—1 in the limit m*—1/2 (ke—0); the system be-
comes noninteracting near saturation. This is typical for spin
chains approaching the saturation pait®

Since interactions containing quickly oscillating factors
cannot enter the continuum theory, which operators contrib-
ute to the low-energy theory strongly depends on the value
of ke=m(1—2m%)/2. Namely, we only keep interactions
satisfying the following condition:

(mod 27) for 6=0,

=0 (mod 7) for 6#0 (33

where the momentH; are defined as
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Ki=G—4kg (G=2m for 6=0, G=x for §+0),
K2:7T_2k|:, K3:’7T_4k|:. (34)

For generic values ah? except 0 and 1/4 1, N5, and\;
do not play any essential role in the low-energy physics; the
fixed-point effective Hamiltonian is given by the Tomonaga-
Luttinger modelHt_, and magnetic excitations are gapless,
leading to a smooth increase of the magnetization.

At m*=0 (kg=m/2), the \, interaction, coming both
from A and fromJ,, together withx , from bond alternation
contribute:

-1.5 -1 -0.5 0 05 ! 1.5

H=Hn+Vi+Vo=Hn + Mf dx:co§4Ré¢]: FIG. 3. Renormalization-group flow derived from tBdunction
(37). The semi-infinite linex;=0, R=1/2 is the Gaussian fixed
_ line, on which the system is described B, with the renormal-
+)\2f dx:sin 2R¢]:. ized R« . When we increasé along the line A, a KT transition
(35) occurs on the bold line.

According to the values of A,J,,8), various phases  The scaling dimension of; is given by
appear->2®31%The resulting phase diagram far=0 can ’
be found in Refs. 25 and 36. Xg=4R", (38)

At m*=1/4, on the other hand, the umklapp terly as and hence it becomes relevant to produce a gapR if
well as thek; term corresponding to bond alternation satis-<<1A/72.
fies the commensurability condition— 4k=0 (mod 27/2) In the region of interest, €J,<1, 0<A<1, the radiuRR
and becomes important. The appearance of the reciprocglven by Eq.(32) is slightly larger than 42 and hence\ ; is
vector 7 instead of 2r is understood by noticing that the irrelevant. The RG flow shows that massive flows exist only
spatial period is doubled due to alternation. The resultingutside the curvéthe thick curve in Fig. B
model

Vg2
~ Ng=— ==+2InR|—(1-In2) (39
H=Hq + Mf dx:co§ 4Re]: ™ 2R
when the initial value oR is larger than 2. This implies
that afinite value of alternations is necessary for thé;
interaction to produce a gap. In other words, the appearance
of the plateau izonditionalat least for smalll,; it appears
ZHTLH\J dx:co§ 4R ]: H\Sf dx:siM4R]: if and only if the alternatior exceeds a certain critical value
8:(A,J,) (recall that form*=0 a gap appears as soon as the

(36)  alternation is switched gnAt the critical pointé=é., the
system undergoes a Kosterlitz-Thoule$eT) transition®®
Rlumerical results of Tonegawet al!? actually show a tip-
like phase boundary, which is characteristic of the KT tran-
sition, in (H-6) diagrams. In Sec. IV, we show that the
3tansition is of the second order for larger values)of

o . If 5takes such a large value as the initial painf, Ry)
The appearance of a sine n E86) is natural because the lies outside the curvé39), the system flows to the strong-
system already breaks site palfitf. Eq. (35)]. Hereafter, we o X . )
. : et . ; coupling fixed point characterized thy| = andR\,0; the
combine the sine and cosine into a single sine whose COUs tic suscentibilityy— R2 / actually vanishes and an
pling constant is proportional té. In considering the phase ic susceptibilityy =R, /() ually vani

diagram, it is convenient to use the renormalization-groudncompress'ble(“'.ns.l?latmg,') stat9'|s realized. At5=o,
(RG) argument’ —0, the susceptibility takes a finite valuge=1/(27v,),

The RG B function is computed using the operator- while it vanishes ford= 6.+ 0. That is,y is discontinuousat
product expansio® The result is the well-known Kosterlitz- 1€ transition poin= 4. [and so is the spin stiffned3 i,

+)\3J dx: cos{4RE— 2keal:

is the so-called quantum sine-Gordon model. Note that th
umklapp term ; is permittedonly when\;#0 (i.e., 5+ 0);

if bond alternations is absent;H="Hy_and the magnetiza-
tion curve is smooth as has been observed in numeric
calculationst®

Thouless-type3 function: =v, Ri/(Zw)]. If we replacey andD g, with the compress-
ibility and the Drude weight(=charge stiffness respec-

dR 93 ) tively, this is just what happens in the Mott transitidrsur-

dinL —2mRY(Na)%, thermore, our resul(32) suggests that the critical valug

becomes larger if the anisotrogy gets smaller.
dhs , All these are in contrast with the case of the bond-
dinL_(274R JA3. (37)  alternatingS=1 chain discussed in Refs. 4 and 6, where an
arbitrarily small value of alternation produces an excitation
The RG flow is shown in Fig. 3. gap atm?=1/2. From the point of view of experiments, it is
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fortunate that the plateau ismconditionalfor the alternating  Eq. (36) corresponds to a shi’ﬁ;,ﬁ}zt 27/(4R) (or, equiva-

S=1 chain; them?=1/2 plateau has been actually observed lently, two-site translation On the other hand, théoulk-

in Ni compounds. subtracteflz component of the total spin is given by
Next, we consider what happens when we vary the exter-

nal field H with 6 (>46.) fixed. If we approach the critical , L R ~ R ~ ~

fields Hy; andHp, (see Fig. 1 from the incommensurate Siot= fo dx — dxp(x)=—[#(L)=#(0)]. (42

sides(i.e., H—Hp;—0 or H—H,+0), application of the ) o

well-known method predicts that the system is asymptoti- Thus we can conclude that the solitof@tisolitons con-

cally described by free spinless fermions and that physicafecting two different ground states carry t§ quantum

quantities behave likéH,=H; or H ) number 1/2 ¢ 1/2) and that they appear only in pairs as a
consequence of their “kinky” character. They are nothing
U*NM\O' R—1/2, Dgpir~ M\o' but the fractionally charged solitons well known in the
theory of polyacetylen& These solitonic excitations are
clearly visualized in the next section.
m?— 1/4~ ~/|H—Hp|\0, X~ ——/"%. (40 For 6— 6:(J,)<1, the low-energy(or low-temperature
VIH=H,| physics is described by tHenassive soliton field theory; the

width of the plateau is twice as large as the soliton mass. At
finite temperaturesT), the plateau is not strictly flat; ne-
glecting the temperature dependence of the soliton fthiss

From the factR—1/2, it follows that the spin correlation
exponents 7,,=n,,=1/n,, approach 2 in the limit

H—Hp—0 or H—Hp,+0 (recall thatn,—1/2 for theS o 1as exact in the limR—1/2), we can write down the

=1 bond-alternating chafn N .
; magnetization in the plateau region as
Then let us discuss the property of the plateau state from g P 9

the viewpoint of our continuum modés6). In our bosoniza- 1 ®
tion treatment, the plateau state is characterized by a strong-  m*H,T)=—-+ — D (— )" K (NAG/T)
coupling fixed pointR, 0. Since the limitR, 0 corre- 4 ™=
sponds to the classical limit of thg field, we can expect that Xsinflnu(H)/T], (43
the value of¢ is pinned at one of the minima of :cd34:.
The low-energy effective HamiltoniaH 1, possesses sev-
eral internal symmetries; the translatioh— ¢+ Ry im-
plies S —e™'*S;", while ¢— ¢+ ¢, corresponds to trans-
lation in the spatial direction. The latter will be most easily
understood in the density-wave pictysze Eq(26)]. As has
been derived in Ref. 6, the one-site translation is actually
realized as

whereK; is the modified Bessel function, which can be ap-
proximated byK;(nA¢,/T)~T/(nAg)e "so'T for low
enough temperatures. The soliton masg and the “chemi-
cal potential” u(H) are given byAg,=(H,,—H,1)/2 and
m(H)=H—(Hp+Hy,)/2, respectively.

B. Large-J, case

There is one more region where a field-theory calculation
based on weak-coupling perturbation is allowe>|1
+ 4|, |1—4|. That is, we consider the problem of a double
] o ) ) _chain coupled via the zigzag interaction. Since the calcula-
(the former is reminiscent of the classical antiferromagnetigjon is similar to that given in Refs. 6 and 42, we only give
order in thexy plane. _ . the final result. We are left with the following five important

At mz: 1/4 (ij 77'/4), the per|0d7T/2R of the cosine interactions:
interaction :cos R¢: fits with the two-site translatiofnote _
that the system is only invariant under two-site translation | coskg :cog(G—4Kg)X+2V2Rgymbsym—Kel:,
for gi_O). Slnc_e thg cw_cumference of the circle, on which — & sin kg :sin (G —4kg) X+ 2V2Rgymdbsym—Ke 11,
the ¢ field resides, is given byr/R, :cos R¢: may spon-
taneouslybreak the two-site translation symmetry down to .| coskg :coizﬁRdiﬁEder kel:,
the four-site one, leading to two degenerate ground states (ii) Ssi S 2VIR v b :

-~ . .. o Sin k|:.S|r[2 2Rdiff¢diff+ kF]'!

(recall that cos R¢ takes its minima akp=7/4R and ¢

~ ~ ke
p—¢+Rm, fod- = (4

=37/4R, which are related to each other by the two-site )

translationg— ¢— 7/2R). A situation like this is known to (iii ) o: COS{R—_ Daite

occur in the commensurate CDW state. dif
This is analogous to the fact that the same type of operaFhe Fermi wave vectdkg is the same as before. The above

tors coming from the umklapp process spontaneously breaksosonseg,, and ¢ are obtained by recombining the two

the translational invariance down to the two-site translatiorbosons ¢, and ¢, corresponding to the upper and lower

and brings about two dimerized ground statesnd=0 and  chains, respectively:

5=0.23%The occurrence of this ground-state degeneracy in

our case §+0, m*=1/4) is explained naturally in the next 1 1

section. ¢sym:% (¢ut 1), d’diff:‘z (Pu—1). (45)
Now that we have obtained the effective Hamiltonian

(36), some predictions about elementary excitations can b&he interactiongi) and (ii) are reminiscent of umklapp and

made. The sine-Gordon solitqantisoliton associated with backward scattering irg-ology° respectively. Note that

. (44
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only the ¢, sector is important for the magnetization pro- . SIMPLE PICTURE OFZTHE GROUND STATE
cess; if the sector is gapless, we may conclude thatitme? AT m*=1/4

: z_1_ . . .
curve IS smooth arounh e kF/”: ) In the preceding sections, we have seen that a higher-
Within the weak-coupling approximation, the parametersyger interaction generated by bond alternation becomes

Reym @nd Ry are given by commensurate at’=1/4 (kg=m/4) and generates a gap to
5 m 1 magnetic excitations. In the framework of the continuum
= L T72g field theory, the bond alternatiod plays a main role; the
Reym=| 1+ ——+ sinkg| : :
mlp sinkg  w NNN interactionJ, only lowers the value oR and makes
the A5 interaction relevanfnote that3 +m?<R(m?)<1(0
2 4A; e <A<w) for J,=0 (Ref. §].
Ran=| 1= T3 sinke ~ 7 SNke| (40 In this section, we clarify how the interplay b
2 F m , play betweén

) ) ) ] and & stabilizes the plateau state rat=1/4 and discuss the
where we have introduced theaxis anisotropyJ;A; into  gifference between the case with=0 (Refs. 6 and 2Land
the NNN interaction. that with J,#0. We also investigate the physical properties

At m*=0 (ke=m/2), all five interactions vanish i  f the ground state realized for a certain region of the, §)
=0. Hence the remaining interactions are marginal and '”el'plane.

evant ones as pointed out by White and Affleck using the 14 this end, we consider a slightly extreme cése 8,
non-Abelian bosonizatiofl. If both J, and A, are positive,  3,<1+ 5. In this case, it is convenient to use the “ladder”
nonzero values 0b causes a gap to thgs,, sector only at  representatiortt, where the system is treated as a sum of
m=0. . ) i decoupled “rung” dimers perturbed by NNN and diagonal
For m?# 0, the typefi) interactions never contribute and interactions[see Fig. 2b)]. To be concrete, we regard the
the ¢,m sector remains gapless regardless of the valug of second term oft, as the unperturbed Hamiltonian and oth-
while the ¢ sector becomes gapped by the “backscatteryg a5 perturbations. Throughout this section, we assume that

ing” term. _ _ _the lengthL of the chain; is twice as large as the total
A remark is in order here about higher-order interactions,;mper (N) of rungs contained in the laddet,: L=4N.
A little calculation shows that an interaction Then the ground states af= 1/4 are easily foundy of the

] /s ~ 2N rungs are occupied by singlet bonds and the others by
:c08 8KeX— 4V2Rg b syml: (47) triplet bonds withS?=1. They apparently{*)-fold degener-
comes from they part of the interchain coupling. It is com- @ate in position. In order to consider the degenerate perturba-
mensurate am’=1/4 and will generate a gap to théy, tion for these ground states, we introduce the so-called bond-
sector if the radius satisfidR,,,< 1/2. For sufficiently large ~Operator formalism: namely, we use the tensor products of
J,, where our weak-coupling approximation is valil, is the stateqsinglet (s) or triplet (t)] on rungs(i.e., strong
larger than the critical value 1/2. However, it is highly non- bonds,
trivial whether the conditiorRg > 1/2 is satisfied down to

1 0
J,~0 or not.

It is interesting to see what happens when the above in- ® |é):|d) el |s)= 0 . t))= 1 ,
teraction is relevant. As has been shown in Ref. 6, the one-  r.rungs 0 0
site translation in the leg direction is realized as a discrete 0 0
symmetry of thegg,, field:

0 0
~ ~ V2 48 - 0 1)) = 0
¢syM_>¢sym % (48) |t ( )= 1/ t(— )= 0 )
0 1

It is not surprising that2 /4R, is equal to the period of _ _
the cosine :cd#v2Ry,mbs,ml: Since the system is invariant as a basis of the whole Hilbert space. For examjglecan

under the translation in the leg direction. be written as
On the other hand, the period of tifg,, itself is twice as 1
large as that of the above pinning potential. Hence the trans- _ = _
lational symmetry in the leg direction may be spontaneously s V2 (Thur@l L= 1D ur®IT)r)- 49

broken down to the two-sitén the chain picture, this corre- ) ]
sponds to the four-site translatioane; as a result, two de- The others will be self-explanatory. With thesé"“g=2")
generate ground states appear. bases, any local spin operators are expressed¥ atri-

Thus we have reached the same conclusion as in the pr€es; the perturbation Hamiltonian in the new basis can also
vious subsection starting from a completely different limit. b written down by replacing the ordinary spin operators
In Sec. IV, we present an argument supporting the existenc#ith
of a transition line below which thebs,, sector becomes

gapped. 0 00 1
To summarize, at least for sufficiently largeositive) J,, S+ :i -1 010
the spin excitation is gapless unleasé=0 and the magneti- va{ 0 0 0 1/

zation curve is smooth. 0O 0 0 O
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etc.

Up to now, no approximation has been made and the re-
sulting Hamiltonian can be viewed as a certain one- ~, x\ LN
dimensional model consisting of\2sites, on each of which \.“ \,
four stategs), [t(1)), |t(0)), and|t(—1)) are possible. Us- 7
ing the numbeiN(a) of sites taking the statf), the total (b)
energy and the component of the total spin are given by

FIG. 4. Two degenerate ground states realized in the extreme

N(t(1))—N(t(—1)), case|2J,— (1— 8)|<2J,+(1-6): |g.s. A (@) and|g.s. B (b).
(50 Ovals denote dimer singlets. Note that the dimer order is in a sense
“diluted.”

E=(1+8)[2N—N(s)], M?=

respectively.

Although the full Hamiltonian is slightly complicated, the
situation becomes drastically simple when we restrict our-
selves to the first-orddédegenerateperturbation for the low-
est states with a given value 8243 That is, we can trun-
cate the 4«4 matrices by X2 ones and the perturbation

language of the original Hamiltonial,, N dimer singlets
occupy every other strong (15) bond (the number of
strong bonds is R); the two degenerate ground statdsand
B) corresponds to the two possible ways of assigmingin-

Hamiltonian can be written as

2N
Hert= 4[2J2 (1-9)] 2, (did,y+df.idy)

r:rung
2N
—[2J2+<1 8] > nnpq, (51)

r:rungs

where we have introduced the fermion operalﬁl(d,),

which creates a tripleft(1)) (singlet|s)) on therth rung,
and the corresponding number operatpr For the lowest

states, the total fermion numb&?N,d'd, is related toM?
by

MZ= ;1 did, . (52)

A constantM? implies a constant fermion number.

It is worth mentioning that singlet dimers become static

along the line 2,+ =1, on which a statidor solidlike)

glets onto N strong bondgsee Fig. 4. Apparently, exciting
another fermion(i.e., triplet with S*=1) over the Ng=N
=L/4 ground state costs extra energ8J,+(1—45)]/2 in
addition to the increase (115) on a strong bond. The first
one is responsible for the plateau.

When|2J,—(1-6)| is not so small compared withJ2
+(1-6), the energy gain due to the hopping of triplets and
the repulsive interaction which favors the CDW compete
with each other. The region of stability of the ordered states
is obtained by noticing that the effective Hamiltonian is
nothing but the one of th8=1/2 XXZ chain,

2N
Hyxz=1J eﬁE (SIS 1+ S 1+ AerSISF 1), (55)

with the exchange coupling and tlzeaxis anisotropy given
by

1
Jer=75 (23, (1 9)] (56)

dimer configuration becomes the exact ground stateHfor and

=014 Below we consider the effective Hamiltoniaﬁeﬁ
within a sector with a fixed fermion numbé&i=3> d d,
=L/4.

Let us consider an extreme ca$l,—(1—6)|<2J,
+(1- ) first. Obviously, the ground stat@.s) is given
either by

lg.s. A= 11 dfl0) (53)

or by

IT dfjo)e. (54)

r=even

l9.s. B=

This implies that the symmetry-breaking ground state occursegion includes the perturbative regirie-1, J,~
in the infinite-volume limit. In(spinles$ fermionic language,

1 ( 2J,+(1-9) -

Aet=3 [23,—(1-9)])"

respectively. Of course, in order for the interaction between
singlet dimers to be repulsive, a conditiod,2- (1— 6)>0

is necessary. The magnetization of the ab®v€Z chain is
given byM%,,=3>2V. (d'd, — 1/2) and hence the sector with
Ng=N fermions corresponds to the one wh,,=0. It is

well known from the exact solutidithat the ground state is
antiferromagnetically ordered and is gapped A&Qg>1; the
antiferromagnetic order corresponds to the CDW order in the
fermion model. Therefore, we may conclude that the
symmetry-breaking ground state is stable in the region be-
tween two linesl,=(1- 6§)/6 andJ,=3(1— §)/2. Since this

0, our ar-
gument is self-consistent.

this situation can be viewed as the occurrence of the so- To summarize, at least in the perturbative regime the two-
called Xe-CDW ordering* If we translate it back into the site translation symmetry can be spontaneously broken down
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(a) ! ! JZ ;
== S SN0 S J0 O ST YL N T SO=——". S 3 . twocoupled chains

1 1
soliton  soliton

J& J,=3(1-8)/2

() : i
@mmHm@E_‘@j—@uka@wH an |-
anti-solitons
© : :
=} - S S if 4 4 Shastry-Sutherland
1 .
! ! & 1
anti-soliton soliton 172 “-’/\ e

Jcl
FIG. 5. Typical soliton configurations. The change in the quan- B
tum numberSy,, is given by 1(a), —1 (b), and 0(c). 0

19ppe] 4V 39-C

0

Jz\z(l—b)/6
to the four-site one; twgnot four ground states degenerate : ) ) )
and magnetic excitations have a gap leading torthe 1/4 FIG. 6. m*=1/4 phase diagram predicted by the analyses using

plateau. Using the exact resuffsthe width of the plateau in the bosonized Hamiltonians arfde . Obvi0u§ly, it is symme.tric
the present regime is given by twice the soliton mass: under 8« — 8. Them?=1/4 plateau appears in the shaded triangu-

lar region between two boundaries, line 1 and line 2, on which a KT
transition occurs. Line 2 is shown only schematically. Bfgi'r<J2

1
Hpz—Hpi~[23,—(1-9)| - K(K)V(AZg—1)(1—Kk?) <J%? (bold line), a second-order transition ifioccurs.

, explained why them?=1/4 plateau is absefit from the
7K' (k) (58) Hamiltonian withJ,=0. In the present case, however, the
K(k) /’ NNN interaction stabilizes the dimerized ordepte that the
stability conditionA>1 cannot be met by or J, alone

and produces the plateau.

A f=cosh

whereK (k) andk denote the complete elliptic integral of the
first kind and its modulus, respectively.

In fact, the above argument for symmetry breaking can be
extended to the case of a smallwith the help of the IV. PHASE DIAGRAM
bosonization method developed in Sec. Il. The most suitable | the present section, we summarize the results obtained
choice of an order parameter probing the above density wavig, e preceding sections and discuss the, §) phase dia-

would be gram. The final results are summarized as a phase diagram
for m*=1/4 in Fig. 6(see Ref. 25 for then’=0 phase dia-
(0)=(Ssi*Sui+1) —(Sai+2-Suir3)- (59 gram. g 6( P
Taking the continuum limit, we obtain, fon*=1/4, We have performed the bosonization analyses in two lim-
_ its: (i) |35/, | 8]<1 and(ii) J,>|1= §|. In the first case, we
O(x)=:siM 2R, ¢(x) — 8kex—3keg]:, (600  have treated the NNN interactiody) and the alternatiofd)

as small perturbations to the ordinary unifor®=1/2
Heisenberg chain. _

1 Form*=0, there is a strongly relevant operator : c&/2

(O(X)0(0))~ ——5 cOIBKeX) = —7. (61)  in addition to the well-known umklapp one :coRé: when
X X bond alternation is present; the system is gapless only in a

In the plateau phase, we haRe =0 as has been shown in restricted regions=0 andJ,<0.2411...2** A symmetry
Sec. Il using the RG argument. Hence, in the presence of theonsideration predicts that the low-energy physics is de-

m?=1/4 plateau, a “dimer-density wave” with a wave vec- scribed by the sine-Gordon model wiii=27; the el-
tor = /2 is formed. This shows that both the perturbativeementary excitation is given by a magnon triplet composed
region (J,,1—5<1+68) and the weak-coupling region of the soliton, the antisoliton, and the breather together with
(J2.] 8|<1) belong to the same unique density-wave phase@ Raman-active singlet excitation corresponding to another

The elementary excitations are expected to be given bibh’:‘c'sl'fhefl-s’46
massive kinks and antikinks, which hagé= = 1/2. Typical Away from half filling (m*>0), the well-known umklapp
configurations with spin quantum numb®=1, —1, and 0  operator becomes negligible in the low-energy limit; the only
are shown in Figs. ®), 5(b), and Fc), respectively. These hontrivial operator comes from the bond alternati®nEx-
are consistent with the conclusion of the bosonization arguactly atm?=1/4, it satisfies the commensurability condition
ment presented in the previous section. It would be interes@nd contributes to the low-energy physics. The result of our
ing to compare such soliton configurations with those apbosonization suggests that the cosine operator[4Ros
pearing form?=0, §=0, andJ,>0.2411...** —2keal: is slightly irrelevant at least for small, [see Eq.

In a recent pageerwe pointed out that although the cosine (32)] and that a finite amount of alternation is necessary for
interaction :cosR¢: coming from bond alternation becomes the m?=1/4 plateau to appear. On the transition lide
commensurate ah’= 1/4, an expected ordered state such as= 521)(‘]2) (line 1 of Fig. 6, the Kosterlitz-Thouless transi-
in Fig. 4 is not realized because of strong fluctuations andion occurs.

whose correlation function is readily computed as
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On the other hand, whedy, is not small, our perturbative There are several ways to see the analogy between the Mi
result(32) is not reliable and whether the bond alternation istransitions and the plateau transition. First, there is a formal
relevant or not is nontrivial. Quite recently, correlation ex-analogy between them; if we identify the spin stiffness and
ponents of 7, along the line =0 were investigated the (dc) susceptibility with the Drude weight and the com-
numerically*’ According to their results, the raditR be-  pressibility, respectively, transitions to the plateau phase can
comes smaller than 42 for J,>J5' (J5'~0.2; we must not  be regarded as those from metallic states to insulating states.
confuse it with the “spin-fluid—to—dimer” critical poinf$ This has been already pointed out in Sec. Il. Furthermore, we
appearing fom?=0) and hence becomes relevgnote that can characteriZ@ the plateau state in the same manner as

. 0 H;i ;
the authors of Ref. 47 evaluated a correlation exponeriohr™ did for the insulator. S _
73(J,,m?= 1/4), which is expressed a2 by ourR]. Thus Of course, these transitions are similar in a physical way
we may conclude that the plateau transition is of the KT typeS Well. Although much wider classes of interactions are pos-
for J,<JS, while it is an ordinary second-order one fby ~ SiPle in spin systems than in electron systems, we restrict
>ng; the transition points.(J,) is given by s,=0 for J, ourselves to the following two simple cases in demonstrating

the similarity. The first category is the spBHeisenber
>J5" and the plateau appears kg, —Hp;~ sY@-4R?), Y gory P 9

The second approadti) from the larged, limit shows chain with the single-ion type anisotrop}:
that the alternatiord does not play any essential role in the
magnetization process except ff=0 and hence the pla- HD=J2 S-St DZ (sz)z. (62
teau is absent. Therefore, it is natural that we assume the ! !
existence of another transition lir#)(J,) (line 2 of Fig. 6  The effect of an external magnetic fightlis incorporated by
beyond which the plateau is absent. Furthermore, we alsgdding the Zeeman term
show that two massive degenerate ground states appear if a
possible higher-order interaction becomes relevant. There-
fore, two completely different approaches give the same re- Hzeemar= — H; S (63
sult.

Unfortunately, the determination of the second transitionwhen the nearest-neighbor exchanheanishes, the prob-
line is far beyond our bosonization calculatihHowever,  |em reduces to a local one, f6&3/2, there are intermediate
at least for smalll,, we can obtain some insight into the line [S—1/2] (the bracketd---] denote the Gauss symbagila-
using the effective Hamiltonian of Sec. Ill. In Sec. lll, we teaus.
have obtained th&=1/2 XXZ model as an effective Hamil- The second one is the spBHeisenberg model with bond
tonian describing the low-energy physicsnat=1/4. In the  glternation:
region between two line§,=3(1-6)/2 andJ,=(1-6)/6
(indicated by dark gray in Fig.)6the system is in the gapped
phase with the translation symmetry by two sitspontane- Har= 2 S Spju1+d' 2 Sj-1°Syj- (64)
ously) broken. In theXXZ language, the-axis anisotropy . .

At is unity along these lines, beyond which the system betn the ground state witm?=0, it shows a rich phase dia-
comes gaplesghe XY region of theXXZ chain. Hence we  gram according t& and J’.%* For clarity of the argument,
may expect that the transition occurring on the lid2  we only consider the case<Q)’ <1. In this case, the model
=3(1-6)/2 is of the KT type too; we further expect that becomes local whed’ =0; there appear @—1 plateaus in

this line continues to the poirigz\]g2 on theJ, axis. In Fig.  the interval 6<m?<S.

6, we show the second linéine 2) only qualitatively except In both cases, the spacings of the lowest-energy levels
for 6~1. E(M%0) are almost the same, i.d&(M%0)—E(M*—1,0)
On the portion of thel, axis betweed5' andJ$* (shown  =const. As a result, the magnetizatitd?=3;S} can vary

by & bold line in Fig. §, the transition from the gapless phase without loss of the total energj—H;Sf when the fieldH

to the plateau phase is of second order. fitfe- 1/4 plateau  equals to the level spacings. For example, consider the model
appears in an area surrounded by line 1, line 2, andlthe 74, with S=2. WhenJ=0, the spacing between energy lev-
axis (shaded triangular region in Fig. 6 except on heaxis  elsE(M?0) is equal tdD for 0<M?<L. If M? exceeds the
itself). In that region, such a “diluted” dimer order as in system size., the level spacing abruptly changes tB3a
Figs. 4a) and 4b) is realized. Since singlet dimers become |eve| jump occurs aM?=L. These equidistant levels be-
static on the ShaStry-SUtherland ||né22' o=1 as pOinted come h|gh|y degenerate fofr=D andH =3D, and the mag-

out in Sec. Ill, we expect that the width of the plateau ispetization curve is verticaor metamagneticthere. Plateaus

largest around this line. S occur between these equidistant regions as a consequence of
The resulting phase diagram is quite different from thatthe above level jumps. The?=1/6 plateau in a spin-1/2
obtained form*=0 in Ref. 25. chair? and in the(antiferromagneticthree-leg laddéf can

also be explained in the same manner.
When a small interaction between local sites dimer-
ized bondgis switched on, energy bands are formed by the
In this section, we briefly discuss the aforementionedhopping and vertical parts of the curve will have large but
analogy to the metal-insulat@MI) transitiof and roughly finite slopes; the widths of plateaus may be reduced, but they
classify the plateaus found so far from the viewpoint of theirwill remain finite provided that the interactiodsandJ’ are
origin. small enough.

V. ANALOGY TO METAL-INSULATOR TRANSITIONS



3464 KEISUKE TOTSUKA 57

To compare the situation with those occurring in interact-sible for plateaus exist already in the local limitss0 and
ing fermion (or boson systems, it is convenient to consider J’=0. The interaction between local sitésopping, in the
the increment ofSf (for Hp) or S5+ S5, (for Hyy as  language of electron systejnslays only a secondary role in
adding a particle. Of course, an external magnetic fieldhe formation of plateaus in such systems.
coupled toSg, is replaced by a chemical potential. Then the However, them?=1/4 plateau discussed in the preceding

roles played by sections occurs at a low densitl/2 particle per site there
is no such simple local picture as exists fép andH ;. No
DZ (sz)z or 2 S,;Sy.1 (strong bonds level jump exists as long as the interactions 4 andJ, are

i i

absent. That is, then’=1/4 plateau is purely a many-body

(65) effect. This situation is similar to the MI transition taking
lace in the extended Hubbard model at quarter filfthghe

act that longer-ranged density-density interactioftbe
NNN interaction hergare necessary for an ordered state to
be stabilized is reminiscent of the fact that we need long-
(but finite) range interactions to have the Mott transitions at
low densitied>45°

are quite similar to those played by the on-site Coulom
repulsion. Here we use the word “site” in a generalized
sense to include a strong bond as well.

The situation occurring for the HamiltonigH with S
=3/2 is reminiscent of that in the single-band Hubbard
model; when the “hopping”J is absent, all lowest states
with Sf,=M? (—L/2<M?<L/2) degenerate and a finite
“charge gap” (2D) opens to the lowest state with one more
particle M*=L/2+1. On the other hand, wheB=0 (J
>0), the system is “metallic”’; the transition to the “insu- The author thanks Professor M. Kaburagi and Professor
lating” phase should take place in between. The criticalT. Tonegawa for showing their unpublished results and dis-
value ofD/J is obtained in Refs. 9 and 53. F8rarger than  cussions. He is also grateful to Dr. M. Hagiwara and Dr. M.
2, the situation is rather like the one in the interacting bosorHase for explaining the experimental realization of the frus-
model discussed by Batrouat al.’ trated spin chain discussed in the text and to Dr. C. Gerhardt

In a sense, plateaus are consequences of “MlI transitionsfor sending his numerical data. This work has been sup-
occurring for high densitie§.e., more than one particle per ported by the Special Researchers’ Basic Science Program
“site” ) in all cases treated above; finite level jumps responfrom RIKEN.
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