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Modulational instability of nonlinear spin waves in easy-axis antiferromagnetic chains
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The modulational instability of extended nonlinear spin waves in antiferromagnetic chains with on-site
easy-axis anisotropy has been investigated both analytically in the frame of linear-stability analysis and nu-
merically by means of molecular-dynamics simulations. The linear-stability analysis predicts the instability
region and the growth rates of modulation satellites. Our numerical simulations demonstrate that the analytical
predictions correctly describe the onset of instability. For long-time scales when the instability is fully devel-
oped the linear-stability analysis fails and the modulated nonlinear spin waves can evolve into localized
excitations. We explore the possibility of generating intrinsic localized spin-wave modes from extended spin
waves through modulational instability and find that both discretenadsstrong nonlinearity seem to be
essential for the creation of long-lived localized excitations. The addition of weak dissipation is found to
impose a finite amplitude threshold even for infinite chaj&163-182608)04806-1

[. INTRODUCTION ing use of modulational instability to create localized excita-
tions in discrete lattices is that because of the lack of con-
Since the early evidence that intrinsic localized vibra-tinuous translational symmetry the localized pulse generated
tional modes in anharmonic crystals should represent robu$ly the nonlinear instability can be trapped by discreteness to
solutions} ™ the idea of intrinsic localization in various non- form strongly localized long-lived excitations. .
integrable discrete lattices continues to be teStédt.is now The analogy between lattice vibrations and spin waves
established that intrinsic localized modes are ubiquitous td'as generated some studies of intrinsic localized spin waves
many homogeneous nonlinear lattices with the first rigoroush Semiclassical and classical magnetic modets: The pur-
proof for the existence of intrinsic localized modes in a widePose of this paper is to examine the modulational instability
class of models presented for the anticontinuous firi. of extended nonlinear spin waves in antiferromagnetic chains
However' the question of how the atomic scale |arge_With easy—aXiS anisotropy. PreVipUS StudIeS of Ml in discrete
amplitude excitation can be created in homogeneous discret@ttices concerned onlynonatomiclattices withone degree
lattices is still open. Modulational instabilityMI), which ~ of freedom per site. Easy-axis antiferromagnetic chains are
refers to the exponential growth of certain modulation side-€duivalent tadiatomiclattices and havéevo degrees of free-
bands of nonlinear plane waves propagating in a dispersivdom per site(the length of spin is fixed In addition,
medium as a result of the interplay between nonlinearity andvhereas the previously studied Klein-Gord@G) lattice
dispersion effect, has been studied in a variety of fisld&'  and Fermi-Pasta-Ulam lattice have either an on-site anhar-
In most of these cases, MI appears in continuous medi'ONic potential or an intersite anharmonic coupltfig?*?
where the propaga’[ion of nonlinear waves is usua”y gov.the current model has both nonlinear on-site aniSOtrOpy and
erned by nonlinear Schdinger-type partial differential nonlinear exchange coupling. Here we determine the insta-
equations. These studies of continuum models have showhility regions by using linear-stability analysis and compare
that the initial amp"tude of an unstable modulation Wavethe analytical I'eSU|tS W|th numerical I’eSU|tS Obtained from
grows exponentially with the time evolution of a modulated Molecular-dynamics simulations. We also explore the possi-
non'inear plane wave. A|though the onset of MI can be quanbmty Of generating intrinSiC |Oca|ized Spin'WaVe mOdeS fl’0m
titatively described by linear-stability analysis, the long-timespatially extended spin waves, and demonstrate that both
behavior is analytically untractable. Nevertheless, computefonlinearity and discreteness is essential to the creation of
simulations and experiments'’have demonstrated that one !0ng-lived localized excitations.
of the main effects of the modulational instability is the gen-
eration of localized pulses. For example, subpicosecond soli- II. MODULATIONAL INSTABILITY
tonlike optical pulses have been experimentally generated OF NONLINEAR EXTENDED SPIN WAVES
from a weakly modulated input via an induced modulation
instability in single-mode optical fiberS.Given this obser-
vation, modulational instability recently has been proposed The one-dimensional antiferromagnetic chainNbspins
to be a possible mechanism responsible for the energy locale be investigated is described by the Hamiltonian
ization in discrete Iattiljsgezsé, and it has been studied in a num-
ber of discrete models.™= Although many aspects of Ml in
discrete systems are the same as those in continuous media, H :2‘]; SheShea D; (S)% @
the discreteness can drastically modify the parameter space
of modulational instability as deduced from a continuum orwhere both the exchange constdnand the single-ion an-
even semidiscrete approximatibhThe advantage of mak- isotropy constanD are positive; hence, theaxis is an easy

A. Traveling nonlinear extended spin-wave modes
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axis, and in the ground state adjacent spins point in opposite  ()(q,f )=2y1— a?f2+ (A—2a cosqa)1-f2, (8)
z directions. Previous studies have demonstrated that intrin-
sic localized spin-wave modes can exist in the gap below th?vhere
standard antiferromagnetic resonance frequéféy>9-2

Each spin moves in the effective magnetic field produced
by its two nearest neighbors and the anisotropy field

ds,

dt . .
Hence the frequency of an extended nonlinear spin wave
where from Eq.(1) the effective magnetic field depends on both its wave vector and its amplitude. In the
case of small amplitudé’<1, one finds

B r cosga
1+(1-rZcof qa)(1—f2)

€)

—-| Q

S X HEM, 2

He'= =V H=—2J(S,_1+ S\, 1)+ 2DS}e,.

The equations of motion for the circular varialgl¢, which Q(q,f )=~Q(q)— AQo(a)
is defined as, =(S:+iSY)/S to make use of the axial sym- Qo(q) +Qo(7/2a)
metry of the Hamiltonian, becomes

f2, (10)

whereQy(q) = V(A+2)?—4 cog gais the linear spin-wave
frequency. Equatiori10) indicates that the nonlinear spin-
wave frequency decreases quadraticly with increasing ampli-
tude.

H dSrJ‘r Z V4 + + + V4
I F:_Z‘]Si(snfl'i_swrl)sn _(Snfl+sn+1)sn]

+2DS¢s,, 3

whereS is the magnitude of spin, and taecomponent of the ~ B. Modulational instability of extended nonlinear spin waves
spins on even sites is chosen to be in the postideection.
The traveling extended spin-wave mode with wave veqtor
and frequencyo can be found by substituting into E@) the
following circularly polarized trial solution

To study the modulational stability of the extended non-
linear spin waves, we investigate the time evolution of a
perturbed nonlinear spin wave of the form

S;n(t):fei[Zr‘lqa—wt+00], Sénlel—fz S;n(t):(f+b2n+ilﬁ2n)ei[2nqa_wt+0],
Sonea()=gelenrbaazettiol - sf | =—\1-¢%. @ Son+ 1(1)=(g+bon sy it q)elZNTHAaT0 an

Here 6, is a constant phase, and both spin deviatibaadg
are real and nonnegligible. This yields two coupled nonlineal
equations

wheref, g, and w are related by Eqg8) and (9), and the
lberturbations{bn(t)} and{#,(t)} are real and are assumed
to be small in comparison with the parameters of the carrier
_ — 7 wave. Note that in this form we have added the perturbation
(f=21y1-g"+(Af+2g cosqa)yl-1, in a frame rotating with the exact periodic solution. The ad-
Qg=-2gyJ1-f°—(Ag+2f cosqa)y1—g®, (5  vantage of the form of Eq(1l) is that it ensures that the
_ ) resulting linearized equations of the perturbation have con-
where the dimensionless frequeny=w/2JS, and the an- - giant coefficients instead of time-dependent coefficients as

isotropy parameteA=D/J. EliminatingQ2 from Eq.(5) and  \oyid be obtained in the usual stability analysis of periodic
defining the parameter solutions. Since the perturbatiob,(t)} and {y,(t)} are
arbitrary, so far this does not involve any approximation.
, (6) Inserting Eq.(11) into Eq. (3) and separating the real and
A+2 imaginary parts, we obtain, up to the linear termgf(t)}
and{ (1)}, the four linear equations

we obtain

g r cosqa 1 dby, B .

?__1i\/(1—r2 o2 g (=) (7) 538 dt ={(ban+1=Dban-1)sinda+ (Pan+1+ hon-1
where the=+ signs designate two degenerate branches. Ow- +2aynn)cosqayy1—f2, (129

ing to the symmetry between the up spins and down spins we
can choose the solution with positive sign in the denominator

so that|g/f|<1 without losing generality. In fact it can be 1 dbanis —[(b2n+2—b2n)sin ga
shown that the solution with negative sign in the denomina- 2JS  dt

tor is equivalent to the one with positive sign after exchang- 2

ing f andg. +( Yan+2 Pon-1F — tansa

Given the spin-wave amplitudé, the frequency as a
function of wave vector can be obtained from E¢8. and

(7) as ><cosqa] V1-g7, (12b
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1 dip, 5 . (bZH)_ (bO(Q)> i2nQa
238 dr ~ (Wan+1~ Yan-1)V1- 17 singa Yon _% Po(Q) )€ (139
gf b b
+ === V1-f? COSqa](bz +1+D2n-1) ( 2“+1): ( 1(Q)> i(2n+1)Qa 13b
[ V1-¢° " " Uant1 % #1(Q) © ' (139
_ 2a cosqa—Af? b (120 This decomposition allows us to identify the time evolution
[1—¢2 2n» of each individual component. Sin¢b,,(t)} and{,(t)} are
real,
1 dion+a . of .
57¢ =~ (Yon+2— h2n)V1-g* singa— b (Q)=bi(—Q), and ¢ (Q)=#(—-Q) (i=0,1).
23S dt 2 Yan V112 ' ' ' | (14)
Substituting Eqs(139 and (13b) into Egs.(128—(12d) and
—V1-g* cosqa] (D2n+ 2+ bap) comparing the coefficients of the same Fourier component,
we obtain
2
_ _ 2
2 C0Sda—Ag 124 bo(Q) bo(Q)
+——— b ) 12 d| b M M b
N S = as [ | 2 s
0 21 22, 0
To solve the system of coupled linear equations given by 1(Q) 41(Q)
Egs. (129—(12d), we expand the perturbation in terms of
Fourier components as whereMj;’s are 2<2 matrices given by
Moo 0 2iV1-f2sinQa singa 16
1=\ —2iJ1-g°sinQasinga 0 : (163
M1;=Mpys, (16b)
2a/1—-f% cosqa 2\1—f? cosQa cosqa
M= 2 160
12 —-2yJ1—g? cosQa cosqa - 1-g° cosga R
(A—2a)f? ) gf o
————cosqga cosQa
V1—f2 Vi-¢?
Mz]_: - M12+ g . (160)
) gf o —(A—2/a)g?
- cosQa ————=—cosqa
1 e

The general solution of Eq15) is a superposition of terms spect to the modulation with wave vect@. Since My,
having the time dependenes'“m' where thew,,,’s are the =M ,,=0 whenQ=0, A(q,0)=0 is always one of the ei-
frequencies of the modulation wave relative to the extendegenvalues of matrisM. Note that since the trace of the ma-
nonlinear spin wave and theiwp,’'s are the eigenvalues of trix M is zero regardless of the values gfand Q, the

the 4x4 matrix 2JSM. The stability of the extended non- condition for stability is that all eigenvalues bf are imagi-
linear spin-wave mode is determined by the imaginary parhary. Otherwise there must be at least one eigenvalue having
of wy,. The extended nonlinear spin wave is unstable wher positive real part. Furthermore, the symmetric modulation
the Im{w.}>0, otherwise it is stable. Defining the dimen- sidebands atj=Q have the same growth rate sini€q,

sionless frequency = w,/2JS, we can obtain tha’s from —Q)=-\*(q,Q).
Since there is no simple analytical form for the dispersion
det\(q,Q)I—iM|=0. (17) relation A (qg,Q) for arbitrary q, Eq. (17) has to be solved

numerically to determine the domains of instability in the
Equation(17) determines the condition for the stability of an (q,Q) plane. However, two important cases, e.g., the zone
extended nonlinear spin wave with wave vecdtpwith re-  center and zone-boundary spin waves, can be solved analyti-
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cally. We shall consider these two cases before we consider 1.0
spin waves with arbitrary wave vectors. 08 [ (a) 1

1. The g=0 mode 06k Unstable i

The gq=0 extended nonlinear spin wave is particularly b
important in that the existence of the stationary intrinsic lo- 04 i Stable Stable
calized spin wave gap modefLSG’'s) we previously 02k .
studied® is accompanied by its instability. Hence the condi-
tion for instability to occur also tells us when stationary 0.0 ' !
ILSGs can exist. Sinc®l ;= M ,,=0 whenq=0, the case of 1.0 — T T _
zone-center spin-wave mode becomes particularly simple. In 0.8 i (b) -
this case, Eq(17) becomes ’ ]
06 k Unstable ]
deﬂ)\z(O,Q)l +M21M 12|:0, (18) [T [
which yields the following dispersion relation for the modu- 04 |
lation wave 0y | Stable
B 2 00 .
Ri(O,Q)=(aC+ —| —4E sirf Qai[ aC+— 210 =05 0.0 0.5 1.0
“ “ Q (w/2a)
12
—A4BC sir? Qa] , (19 FIG. 1. Regions of modulational instability in th€(f) plane
for the g=0 extended spin wavéa) The anisotropy parametéy

where =1.0. The largeQ region is always stable regardless of the spin-

wave amplitude(b) The anisotropy parametek=2.0. The spin
wave with large amplitude becomes unstable to perturbation of any

2
B=;—(A+2)gz—Za\/(l—g2)(1—f2), (208 \ave vector.

2

B
aC+ —
a

B .
aC+—|—4E sir? Qa<:

C=2a—(A+ 2)f2—§ J1-g%)(1-13), (20b

1/2
E=gf—\(1-g?)(1—12). (200 —4BCsin2Qa] . (23

In the case of an isotropic chai0), B=C=0, andE  After some algebra the above inequality simplifies to
=—1 so that Eq(19) can be reduced to
2E(aC+B/a)—BC

\2(Q)=4sir Qa. (21) sir’ Qa< 1E2 : (24)

Note that Eq(21) is merely the linear spin-wave dispersion The right-hand sidéRHS) of Eq. (24) is always positive for
relation and is positive for an§. This can be easily under- any spin-wave amplitudé, and is proportional td? in the
stood since theg=0 mode in an isotropic chain is simply a smallf limit as shown later. Since in a finite periodic lattice
rotation of the whole lattice in spin space by an arbitraryof size N the smallest wave vector @=27/Na, there ex-

amount and any small amplitude perturbation to this state itsts an amplitude thresholé.~O(1/N) so that only zone
a superposition of linear spin waves. center spin waves with amplitude larger thigrare unstable.

In anisotropic antiferromagnetic chains, instability canHowever, in a real materiad~10°, so the amplitude thresh-
however occur for the zone-center spin wave. WAer0, it old is negligibly small. The zone-center spin wave is the_re-
is straightforward to show that fore always unstable to_long—wavelength modulation, whlc_h

also means that there is no energy threshold for ILSGs in
antiferromagnetic chains since the energy of an unstable

aC+—=0, (228 nonlinear plane spin wave is proportional kf2o1/N.3
One can also show that the RHS of E§4) can become
E<O, (22b greater than 1 for sufficiently largd and f so that theq
=0 extended nonlinear spin wave is unstable to any pertur-
2 bation. When the RHS of Eq24) is less than 1 we obtain a
aC+—| —4BC sir® Qa=0. (220  critical wave vector given by
1/2
Hence A% (0,Q)=0 holds for anyQ and this branch is Qca:arcsi{(2E(aC+B£a)—BC) } (25)
stable. To determine the instability condition we focus on the 4E
A-(0,Q) branch from here on. The extended nonlinear spin-wave mode is unstable to

It is clear from Eq(19) thatA?(0,0)=0 and the instabil- modulation with|Q|< Q..
ity occurs if and only ifA? (0,Q) becomes negative for some  As an example the stability region of tlie=0 extended
nonzeroQ. This requires that nonlinear spin wave in theQ,f ) plane is plotted in Fig. 1
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for two different anisotropy parameters. In Figallthe an- 1.0 y T
isotropy parameteA=1.0. Theq=0 spin wave is stable to

modulation waves with large wave vector. When the antifer-
romagnetic chain becomes more anisotropic with increasing - I
A, the spin wave with large amplitude can become unstable

with respect to any modulation wave vector as illustrated in §
Fig. 1(b) for the case oA=2.0. E 05 k- -
Equations(19) and (25) hold for arbitrary amplitudes. In o> et
the small amplitude limit, they can be simplified to yield 11 al
more transparent results. Keeping only the lowest ternfs of s /‘/ I
one can determine from E@5) that {
{
1 A 1/2 i
= 0.0 . L '
Qea A0, (AQO) fi (26) 0.0 03 10
1+ 200(0) Q (TC/2a)

where A, is the bandwidth of the linear spin-wave band, FIG. 2. A typical plot of regions of modulational instability in
and we have used the approximation ®a~Qa for small the (Q,q) plane. Regions | and Il are stable regions, and region I
Qa. The critical wave vector of the modulation wave is IS unstable. Spin waves with a wave vector larger thdda are
therefore linear in the spin-wave amplitude in the small amStable to a perturbation of any wave vector.
plitude limit, as can be seen in Fig. 1.

Since theq=0 spin wave with a small amplitude is un-
stable only to long-wavelengthQ@a~f ) modulations, Eq.

ag=16(1—f?)sin* Qa+ 8r—A f2(1+J1—f?)sir? Qa,

(19) can be simplified in lowest order, i.€4, to yield (329
A2 (Q)=— ———— sir’ Qa+ —— sir’ Qa. a,=— — (1+1-%)?+8y1-f*si Qa. (32b)
14112 -1 r

(27)  Therefore the dispersion relation of perturbation waves

The RHS of Eq(27) is 0 atQ=0 and negative for &|Q|  M\(7/2a,Q) can be presented as
<Q., hencex _(Q) is purely imaginary in the smafD re-

2
gion. The maximum growth rate can be found from E2j) 22 al= — 3 va;—4a (39
to be *12a’ 2 '
A 1 Sincea,<0 anday=0, the condition for stability becomes
M\ (Qbmac5 | — 30 f2 (28)  a5—4a,=0, which leads to
0
1+
2Q0(0) (1+1—12)3 [4 4
————— = (1+J1—f?)— = f2?|sir’ Qa=0.
at the modulation wave vector r r® ( r Q
(34)
Q :% 29 It can be readily shown that the inequality given by E2f)
max 5 holds for anyQ andf since sik Qa<1. Hence the extended

_ _ nonlinear spin waves at the Brillouin-zone boundary are
The maximum growth rate therefore has a quadratic depenstaple to perturbations by any wave vector.

dence on the spin-wave amplitude.

3. Instability region of spin waves with arbitrary q
2. The zone-boundary mode . . .
For nonlinear spin waves of arbitrary wave vectpthe

Another simple case is the zone-boundary spin wave. Ajispersion relation\ (q,Q) has to be obtained by numeri-
the Brillouin-zone boundary = 7/2a and the spin deviation ca|ly solving Eq.(17). Figure 2 shows a typical plot of the
at odd sitegy=0, hencen=0. However the ratio coga/ais  regions of modulational instability in theQ,q) plane that is

well defined, i.e., determined by Iff\(q,Q)} for an anisotropic antiferromag-
> netic chain. The dot-dashed lines separate the regions of sta-
cosqa_> 1+y1-f as q— m (30) bility (1 and IIl) and region of instabilityll). In regions | and
a r ' 2a’ Il Im{\(9,Q)}=0 for any of the four\(q,Q)’s correspond-

ing to the same pair ofg,Q), while in region Il at least one
of the four\(q,Q)’s has a positive imaginary part. For a
given spin-wave amplitudé, the area of the instability re-
gion grows increasing anisotropy paramefer The lower
+a,=0, (31)  boundary moves towards the direction of la@e while the
upper boundary approachgs- w/4a. However, spin waves
where the coefficientay anda, are given by with q>m/4a are stable against any perturbation indepen-

Inserting Eq.(30) into Eq. (17), we obtain the following
equation for\ (7/2a,Q):

+a,N?

4( T T
A Z’Q E’Q
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dent of the values of) and f. On the other hand, as the be obtained from Eq(17). Linear stability analysis can de-
chain becomes more and more isotropic witlapproaching termine the instability domain in parameter space and predict
zero, the area of the instability region shrinks until it disap-quantitatively how the amplitude of a modulation sideband
pears for the isotropic chain. evolves at the onset of the instability; however, such analysis
A number of studies of various lattice dynamical modelsjs based on the linearization around the unperturbed carrier
have shown that the existence of intrinsic localized modes igyave, which is valid only when the amplitude of perturba-
always accompanied by the instability of corresponding extion is small in comparison with that the carrier wave.
tended nonlinear wave§:*** Previous study has shown Clearly, the linear approximation must fail at large time

that the intrinsic localized spin wave#LSMs) can occur  geqjes as the amplitude of unstable sideband grows exponen-
only in the gap below the standard antiferromagnetic resoggy Furthermore, the linear-stability analysis neglects ad-

Ea_ﬂce_ frequertl)cy aaq?g Tvr\]/_hll_e no ILSM exgsts_thait:_ thez ditional combination waves generated through wave-mixing
riflouin-zone bounadary. 1Nis 1S in agreement wi 9. processes which, albeit small at the initial stage, can become

where only extended spin waves V.V'th snphre unstable to . significant at large time scales if its wave vector falls in an
a long-wavelength modulation while the zone-boundary spin o ST " )

. Instability domain. Linear-stability analysis therefore cannot
waves are stable to the modulation of any wavelength.

tell us the long-time evolution of a modulated extended non-
linear spin wave. In order to check the validity of our ana-
Iytical analysis and to investigate the long-time evolution of
modulated nonlinear spin waves, we have carried out mo-
According to the above analytical results based on linearlecular dynamics simulations for easy-axis chains with vari-
stability analysis, in an easy-axis antiferromagnetic chain theus anisotropy parameters.
stability of an extended nonlinear spin wave with wave vec- In our numerical simulations the initial conditions are co-
tor g modulated by a small-amplitude wave of wave vectorherently modulated extended nonlinear spin waves of the
Q is determined by the dispersion relatiniig,Q) that can  form

IlIl. COMPARISON BETWEEN NUMERICAL
SIMULATIONS AND ANALYTICAL RESULTS

San(0)=1f+ g [bo(Q)e'2"®+c.c4i (yo(Q)e' 23+ c.c.)]] gl2naa,
Spn+1(0)=10+ g [by(Q)e' R4 ¢ c4i(yy(Q)e'nthRat c.c.)]] g'(2nriaa (35
|
where c.c. denotes the complex conjugdtg(Q), b1(Q), rameter is taken to bA=1.0, and the spin-wave amplitude

¥o(Q), ¥1(Q)) is a normalized eigenvector of tid matrix,  f=0.2. Figure 3 shows the long-time evolution of the carrier
andg is a small parameter measuring the relative strength ofvave with wave vectoq= 157/64a modulated by small am-
the modulation wave to the carrier wave, typically at theplitude waves with wave vecto®= + 177/64a that falls in
order of 0.01. The amplituddsandg are related by E(.7).  the unstable region. The exponential growthoof Q satel-
Sincelb+iy|?#|b* +iy*|?, the two satellites a1=Q have |ite sidebands at the initial stage of instability is obvious as
different strengths except whem=0. Givens; (0), thez  can be seen in the log-linear plot of FigiaB Figure 3b)

components of spins can be obtained from shows the time evolution of the complete Fourier spectrum
, . —— where additional combination waves generated from wave-
sn(0)=(—=1)"y1—[s, (0)[% (36)  mixing processes can be seen after aboufTap@g as the

Once an initial condition is given the time evolution of a INStability further develops. _
modulated spin wave can be investigated by means of Plotte_d in Fig. 4 are the growth rates as a.functlon of t.he
molecular-dynamic¢MD) simulations. In order to monitor modulation wave vector for the running carrier waves with
the time evolution of individual Fourier components, we de-Various wave vectors. The solid curves represent analytical

fine the complete spatial Fourier transform of spin deviationd€Sults obtained by diagonalizing the matfix while the
filled circles are MD simulation results. The excellent agree-

N-1 _ N N ment between them demonstrates that the linear-stability
m(p,t)= >, s (t)e"in@pmN) ( —2<p= Z)' analysis does give a quantitatively correct description of the
n=0 onset of instability. An interesting feature can be seen in Fig.
(37) 4. While the carrier waves with smajlare unstable to long-
The growth rate of each individual Fourier component can bevavelength modulatioismall Q), a carrier wave of largeg
obtained by the least square fitting|af(p,t)|? over the first  (q=15/64a) is stable to long-wavelength modulations but
few periods during which time it is expected to grow at theunstable to some short-wavelength modulatidilasge Q).
rate of 2 IM{A(q,Q)}- This is in contrast to what was reported in Ref. 19 for a
As a specific example, we first consider a chain of 128monatomic Klein-Gordon chain that is also subject to an
spins with periodic boundary conditions. The anisotropy pa-on-site anharmonic substrate potential. In the Klein-Gordon
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FIG. 4. Growth rate of modulational waves as a function of
modulation wave vector for carrier waves with various wave vec-
tors. The parameters afe=1.0 andf =0.2. Q ogpg is the standard
antiferromagnetic resonance frequency. The wave vectors of carrier
waves are: (a) 157/64a, (b) 77/32a, (c) w/8a, and(d) 0. The
solid curves are analytical results while the filled circles are MD
simulation results.

Modulus Squared of m

quently, the carrier wave becomes unstable and generates
even more combination modes.

This simulation demonstrates that the combination modes
atq*2Q,q*3Q generated by the nonlinearity, though their
magnitudes are smaller than that of the& Q by at least a

FIG. 3. Time evolution of the carrier wave witlp=157/64a  factor 8 att=0, may fall in the instability region and play an
and f=0.2 modulated by a small amplitude wave wiQ  important role at sufficiently large time scales. Hence the
=17m/64a. The anisotropy parameter /= 1.0, and time is mea- condition for stability for large time scales is that not only
sured in units off srur, the period of they=0 linear spin wave.  the main satellite modulation but also all combination modes
(@) Time evolution of the main Fourier components cat(solid  muyst not lie in the regions of instability. Note that unlike in
curvg, g+ Q (dot-dashed curyeandq—Q (long-dashed curye(b)  other models such as the Klein-Gordon lattice and Fermi-
Time evolution of the complete Fourier spectrum. After a suffi- pasta-Ulam lattice, the nonlinearity in the uniaxial easy-axis
ciently long time, combination modes appear. antiferromagnetic chains does not generate combination

waves att 2q,* 3q, ..., etc. With the Brillouin-zone folding
chains the smalQ region is always the unstable region as back taken into account, the stability condition is given by
long as an instability does occur for the corresponding carrier
wave. T
The prediction of stability from linear analysis does not mo{qth, 2
necessarily rule out the occurrence of instability in the long- (38)
time evolution because of the combination waves neglected
there. To illustrate this point, the long-time evolution of a According to Fig. 2, this condition is quite restrictive and it
perturbed carrier wave with wave vectpr 157/64a is plot-  appears that only carrier waves with wave veaor 7/4a
ted in Fig. 5. In this case the modulation wave vecQrs are stable on large time scales.
+x/8a lie in the stable region as shown in Fig@t The As the anisotropy parameter increases the antiferromag-
Fourier component corresponding to the carrier wave renetic chain appears more discrete and according to the ana-
mains the same for a period of approximately T8Q,s be- Iytical results the area of the instability region in th@,§)
fore the instability occurs. From the time evolution of the plane also grows so that the upper boundary of the instability
spatial Fourier components at wave vectqisq*=Q, and  region in Fig. 2 approacheg= w/4a. As an example we
g=2Q plotted in Fig. %a), it can be seen that the=Q investigate a chain with a larger anisotropy parameter. As in
components do not grow until aftér= 180T zryr, just as  the first example the chain contains 128 spins with periodic
predicted in the linear-stability analysis, but the&:2Q com-  boundary conditions but the anisotropy parameter is taken to
ponents which are neglected in the linear-stability analysidbe A=2.0. The amplitudes of the extended nonlinear carrier
grow to significant magnitudes after IBQyr. Conse- waves are stilf =0.2. The growth rates of the amplitude of

time p

¢ unstable regions n=1.2, ... .
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@ FIG. 6. Growth rate of modulational waves as a function of the
T 404 modulation wave vector in an antiferromagnetic chain with large
(?)- anisotropy. The parameters afe=2.0 andf=0.2, andQppyr is
» 20 the standard antiferromagnetic resonance frequency. Solid curves
% are analytical results while filled circles are MD simulation results.
3 The wave vector of carrier waves area) 157/64a, (b) 77/32,(c)
= 32 37/16, (d) 7/8, (e) w/16, and(f) 0. Note that the carrier wave with
g=15m/64a is unstable to perturbation of any wave vector.
: 16 . . . .
i 0 32 b localized state or a delocalized state in the corresponding real
ime

space, depending on the relative phases between Fourier
FIG. 5. Instability induced by combination modes. The wave COMpONeNts, the time evolution in Fourier space alone does

vector and amplitude of the carrier wave aye 157/64a and f not tell us the complete process of energy redistribution. It is
=0.2, respectively. The modulation wave vec®r =/8a lies in  generally believed that the system will finally reach equipar-
the stable region, as can be seen in Fig).3Time is measured in tition of energy in a sufficiently long time since entropy
units of Tapur - (@) Time evolution of the Fourier componentscat ~ Should grow during the system'’s time evolution. In other
(solid curve, g+ Q (dot-dashed curyeq—Q (long-dashed curye ~ words the system should approach a state where the energy is
g+2Q (doted curvg and q—2Q (short-dashed curye(b) Time  evenly distributed not only among modes in Fourier space
evolution of the complete Fourier spectrum. but also on lattice sites in real space. However, this does not
exclude the possibility of energy localization at intermediate
modulation waves for carrier waves with a wide range ofstages. Indeed, one of the main effects of modulational in-
wave vectors are plotted in Fig. 6. The MD simulation re-stability is the creation of localized excitations from spatially
sults(filled circles are in excellent agreement with the ana- extended excitation’s. This modulational-instability-induced
lytical results. The instability region steadily grows with in- energy localization has been proposed to be the mechanism
creasing carrier wave wave vector, and the carrier wave withesponsible for the formation of intrinsic locali-
q=157/64a is unstable to modulation by any wave vector. zation>17192%-34Fqr instance, it has been demonstrated in
However, if the carrier wave wave vector increases beyondomputer simulations that modulational instability can be
g=/4a, it becomes stable to modulation by any wave vec-used to generate intrinsic localized vibrational modes via an

tor. optimal control schem&
Here we investigate how the energy initially concentrated
IV. CREATION OF INTRINSIC LOCALIZED in one mode is redistributed in an antiferromagnetic chain.
SPIN-WAVE MODES The time evolution of a zone-center mode perturbed by ran-
dom noise in both Fourier space and real space is plotted in
A. Lossless system Fig. 7. The chain consists of 128 spins with anisotropy pa-

In the previous sections numerical simulations have demrameterA=2.0. The amplitude of the zone-center spin wave
onstrated that the energy initially concentrated in one unis f=0.2, and the amplitude of noise perturbation is small
stable mode will finally flow to all available modes in Fou- compared to that of the carrier wave, i.B3s, (0)/s, (0)|
rier space, e.g., the energy is delocalized in Fourier space<0.01. In Fig. 7a) the time evolution of the complete Fou-
Since a delocalized state in Fourier space can be either er spectrum shows that tltg=0 mode remains stable for a



57 MODULATIONAL INSTABILITY OF NONLINEAR SPIN ... 3441

70 F g T T T Y T T T
AS.O ™ T
oﬂ\

)
N’
m
Q
=
b
o
et
U 30 .
(b) i

_ i

2 L R A s

§ 1 lI ‘I' \l " \\ ! \I’ v

>~05 I \l’ \| / \II \"

o= /' AW

1.0 A T R S e

@ 0

0.0 200.0 400.0 600.0 800.0
T AFMR

FIG. 8. The height of the center spike of the energy-energy

FIG. 7. Creation of intrinsic localized spin-wave excitations COrrelation function as a function of time. Initially theg=0 ex-
from extended nonlinear spin waves via modulational instability.tended spin wave with amplitude=0.2 is perturbed by random
The anisotropy parameter i=2.0. Initially the q=0 extended Noise. Solid curve: A=2.0. Dot-dashed curve:A=1.0. Each
spin wave with amplitudef=0.2 is perturbed by random noise. Curve is averaged over 20 initial conditions.

Time is measured in units Gfaryr, and energy is measured from ) o . )
ground state in units of 2S. (a) Time evolution of the perturbed Creases, i.e., the lattice is less discrete and less anharmonic,

spin wave in Fourier spacéb) Time evolution of the energy den- and the lifetime of localized excitations decreases. To obtain
sity distribution in real space. a more gquantitative characterization, we define the energy-
energy correlation function &s*

site n

short period of time(about 80 sr\r) then quickly decays
into other Fourier components, i.e., the energy is delocalized > e(m,t)e(m+n,t)

in Fourier space. In Fig.(B), the time evolution of the en- _

ergy density distribution defined as Ce(n.H=N 2 ’ (40

>e(mpt)

m

e(n)=JS (S, 1+S:)-D(SH? (39 . - .
where (- - -) indicates the average over initial conditions.

in real space shows a different picture. The initial uniformly For a uniform energy distribution, such as our initial condi-
distributed energy becomes localized as the instability develtions, Cg(n) is just a uniform background, while when lo-
ops. A number of localized excitations are created and apsalized excitations appe&¢g(n) should consist of a central
pear to be trapped by the discreteness of the lattice. Thespike. Since the total energy is a conserved quantity, the
localized excitations appear to last for a time scale suffidegree of localization can be measured by the heighthe
ciently long for experimental purpose, as demonstrated iwidth) of the central spike.
this numerical simulation. To illustrate the effect of the anisotropy parameter on the

From the above numerical simulation it appears possible@nergy localization process of randomly perturbed nonlinear
to create strongly localized long-lived excitations by driving plane spin waves, the height of the central spike of the
the antiferromagnetic chain into a nonlinear regimesing  energy-energy correlation function as a function of time is
optimal control schemes with powerful laser pulses, such aplotted in Fig. 8 for two antiferromagnetic chains with an-
the one reported in Ref. 34. However, our numerical experiisotropy parameter&\=1.0 and 2.0, respectively. In both
ments with different anisotropy parameters and carrier waveases, the carrier waves have the same amplitude and wave
amplitudes demonstrate that although localized excitationgector, i.e.,q=0 and f=0.2, and each curve is averaged
can be created in this way their lifetimes depend strongly orover 20 initial conditions. Note that the solid curvé (
the anisotropy parameter of the lattice and the amplitude of2.0) is qualitatively different from the dot-dashed curve
the initial carrier wave. Since the anisotropy here is on-site(A=1.0). In the case of the larger anisotropy parameter, the
it is not only a measure of the anharmonicity but also arheight of the central spike in the energy-energy correlation
effective measure of the discreteness of the lattice. As th&unction increases with time during the simulation period,
anisotropy parameteA or the carrier wave amplitude de- which indicates that localized excitations are generated and
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grow with time. Although localized excitations are also gen-
erated in the lattice with a smaller anisotropy parameter, they
are short lived and the energy appears to be exchanged back
and forth between localized excitations and extended spin
waves. This demonstrates that the discretermegbstrong
anharmonicity seem to be essential for the creation of long-
lived localized excitations.

Ignoring the difference between the three-dimensional
(3D) and 1D lattices examples of the modulational instability
effect described above may be displayed by well-known
uniaxial system® Because of its relatively weak anisotropy
field, MnF, should generate localized excitations only on a
short-time scale. On the other hand, Refwith the much
larger anisotropy value, would be expected to produce local- (b)
ization on a much longer time scale. Even though we have
not treated easy plane antiferromagnets here, a general state-
ment can be made about their expected instabilities. Systems
such as MnO and NiO should not show this long-lived local-
ized behavior because of the underlying weak localization

energy density

energy derILs.lty
g
ny
3

associated with the production of nonlinear resonant O,M 100
modes’® 0 50 oy, .
100 o time
B. System with dissipation site n

So far we have investigated the modulational instability of ~ FIG. 9. The influence of weak dissipation on ILSMs’ formation
nonlinear spin waves and the creation of ILSMs in losslesgrom modulational instability for two different damping factors.
easy-axis antiferromagnetic chains. In this section we shallhe energy density is multiplied bg?"* for ease in viewing. Ini-
discuss the influence of weak dissipation. tially the q=0 extended spin wave with amplitude=0.2 is per-

In a dissipative chain, the equations of motion representettirbed in a lattice withA=2.0. (8) I'/wo(0)=10"". (b) I'/wy(0)
by Eg.(2) become =10"°.

ds, _ eff eff With the parameterd=2.0 andf=0.2 used in our numeri-
dt ~ o Hn =S (ScHy ) “1 cal simulations, one find3y, ~93Tsrur. ILSMs can be

where the second term is the Landau-Gilbert danSitiat created from the MI only when effects of nonlinearity and
preserves the spin length, aaés a small parameter measur- dlspe_r_5|on_ are much stronger than the dissipation effatie
' condition is that

ing the damping strength. The dissipation in magnetic mate-

rials is usually weak, for instanc€/w~ 10" ° in bulk MnF,

(Ref. 37 and Fek (Ref. 3§ and ~10 * in ferromagnetic T(q) Ty <1. (45)

yttrium-iron-garnet films® For the case of weak dissipation

the amplitude decay raté of plane spin waves is from Eq.

(47 To illustrate the influence of weak dissipation on the for-
5 ) mation of ILSMs, MD simulations with the perturbeg=0

['(q)=2JS(A+2)e+O(ef?). (42)  extended spin wave with amplitude=0.2 as initial condi-

The dissipation imposed amplitude threshdig follows  tion were carried out and the time evolution of the energy
from the condition that the maximum MI growth rate be distribution were obtained for two different dissipation val-

greater than the damping rate. From E@8) and(42), one  Uues. The energy density multiplied Y"!, for ease in view-

obtains ing, is plotted in Fig. @) for I'/ wo(0)=10"* and Fig. 9b)
for I'/ we(0)=10"3. Interesting differences can be found be-
, 2(A+2)S AQ tween the two cases. The ILSMs in the weaker dissipation
thT T A 20,(0) €. (43 case are much more localized and appear to be pinned but

less strongly than the case for no dissipation previously
It should however be pointed out that E43) does not guar- shown in Fig. Tb). On the other hand, the ILSMs in the
antee the formation of ILSMs from the MI. The formation of stronger dissipation ca$Eig. 9(b)] are more delocalized and
ILSMs is a dynamical process in which the competing ef-hence more mobile. This difference results from the compe-
fects of nonlinearity and dispersion reach a delicate balancegition between the Mi-induced energy localization and the
The characteristic time scale of this nonlinear process can bgissipation effect. In the weaker dissipation cad&T
obtained from the nonlinear frequency shift given in Eg.~0.058) the MI process can take place before dissipation

(10), that is, becomes significant, while in the stronger dissipation case
(I'Tn.~0.58) the dissipation effect prevents energy from
T _2m Qo(q) +Qo(7/22) T (44) strongly localized by decreasing the amplitude and hence

NLT A o Af? AFMR - reducing the strength of the nonlinearity.
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V. CONCLUSIONS the long-time evolution of nonlinear spin waves are analyti-
cally untractable, numerical simulations are employed. It re-

tended noniinear spin waves i antierromagneto chains wiff 215 N2 combination waves generated via wave-mixing
on-site easy-axis anisotropy. The model is equivalent to %;ocesses can have significant effect on the spin-wave stabil-
“diatomic” lattice with two degrees of freedom per site and at Iarge time scale. One of t_he main effects of the modu-
involves both on-site and intersite nonlinearity. The instabil-lat'onal. msta_blhty 'S the_ creation Of. localized pulses _and
ity domain in parameter space is determined from Iinear—.hence. It prov@es a pgssmle mechanism .for. thg generation of
stability analysis. Although nonlinear plane spin waves With'm”r.ISIC Iocghzed spin Waves. _Weak d|SS|pat|on prpduces

' . two interesting features absent in lossless lattices: it imposes
short wavelengthsq> w/4a) are stable to any noise pertur-

bati . ith | lenat a b a finite amplitude threshold even for infinite chains and the
ation, spin waves with long waveleng rp<{ /48) can be . ILSMs become mobile during formation because of the re-
unstable to modulation by certain wave vectors and the in-

tability d S | it i ina th duced strength of the nonlinearity. Our numerical experi-
stabiiity domain 1n ¢.Q) p ane grows with Increasing e .o s qemonstrate that the combination of discreetness and a
anisotropy parameter or the spin-wave amplitude. In contra

. . rong nonlinearity is essential for the creation of long-lived
to the monatomic KG chaifl where plane waves with wave ILSM% y 9

vectors in the lower half of Brillouin zone are always un-

stable to long-wavelength perturbations, in easy-axis antifer-

romagnetic chains spin waves with wave vectors close to the ACKNOWLEDGMENTS
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