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Modulational instability of nonlinear spin waves in easy-axis antiferromagnetic chains
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The modulational instability of extended nonlinear spin waves in antiferromagnetic chains with on-site
easy-axis anisotropy has been investigated both analytically in the frame of linear-stability analysis and nu-
merically by means of molecular-dynamics simulations. The linear-stability analysis predicts the instability
region and the growth rates of modulation satellites. Our numerical simulations demonstrate that the analytical
predictions correctly describe the onset of instability. For long-time scales when the instability is fully devel-
oped the linear-stability analysis fails and the modulated nonlinear spin waves can evolve into localized
excitations. We explore the possibility of generating intrinsic localized spin-wave modes from extended spin
waves through modulational instability and find that both discretenessand strong nonlinearity seem to be
essential for the creation of long-lived localized excitations. The addition of weak dissipation is found to
impose a finite amplitude threshold even for infinite chains.@S0163-1829~98!04806-1#
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I. INTRODUCTION

Since the early evidence that intrinsic localized vib
tional modes in anharmonic crystals should represent ro
solutions,1–4 the idea of intrinsic localization in various non
integrable discrete lattices continues to be tested.5–7 It is now
established that intrinsic localized modes are ubiquitous
many homogeneous nonlinear lattices with the first rigor
proof for the existence of intrinsic localized modes in a wi
class of models presented for the anticontinuous limit.8–10

However, the question of how the atomic scale larg
amplitude excitation can be created in homogeneous disc
lattices is still open. Modulational instability~MI !, which
refers to the exponential growth of certain modulation si
bands of nonlinear plane waves propagating in a disper
medium as a result of the interplay between nonlinearity
dispersion effect, has been studied in a variety of fields.11–14

In most of these cases, MI appears in continuous me
where the propagation of nonlinear waves is usually g
erned by nonlinear Schro¨dinger-type partial differentia
equations. These studies of continuum models have sh
that the initial amplitude of an unstable modulation wa
grows exponentially with the time evolution of a modulat
nonlinear plane wave. Although the onset of MI can be qu
titatively described by linear-stability analysis, the long-tim
behavior is analytically untractable. Nevertheless, comp
simulations and experiments15–17have demonstrated that on
of the main effects of the modulational instability is the ge
eration of localized pulses. For example, subpicosecond
tonlike optical pulses have been experimentally genera
from a weakly modulated input via an induced modulati
instability in single-mode optical fibers.15 Given this obser-
vation, modulational instability recently has been propos
to be a possible mechanism responsible for the energy lo
ization in discrete lattices, and it has been studied in a n
ber of discrete models.16–23Although many aspects of MI in
discrete systems are the same as those in continuous m
the discreteness can drastically modify the parameter s
of modulational instability as deduced from a continuum
even semidiscrete approximation.19 The advantage of mak
570163-1829/98/57~6!/3433~11!/$15.00
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ing use of modulational instability to create localized exci
tions in discrete lattices is that because of the lack of c
tinuous translational symmetry the localized pulse genera
by the nonlinear instability can be trapped by discretenes
form strongly localized long-lived excitations.

The analogy between lattice vibrations and spin wa
has generated some studies of intrinsic localized spin wa
in semiclassical and classical magnetic models.24–31The pur-
pose of this paper is to examine the modulational instabi
of extended nonlinear spin waves in antiferromagnetic cha
with easy-axis anisotropy. Previous studies of MI in discr
lattices concerned onlymonatomiclattices withone degree
of freedom per site. Easy-axis antiferromagnetic chains
equivalent todiatomic lattices and havetwo degrees of free-
dom per site~the length of spin is fixed!. In addition,
whereas the previously studied Klein-Gordon~KG! lattice
and Fermi-Pasta-Ulam lattice have either an on-site an
monic potential or an intersite anharmonic coupling,17,19,22

the current model has both nonlinear on-site anisotropy
nonlinear exchange coupling. Here we determine the in
bility regions by using linear-stability analysis and compa
the analytical results with numerical results obtained fro
molecular-dynamics simulations. We also explore the po
bility of generating intrinsic localized spin-wave modes fro
spatially extended spin waves, and demonstrate that b
nonlinearity and discreteness is essential to the creatio
long-lived localized excitations.

II. MODULATIONAL INSTABILITY
OF NONLINEAR EXTENDED SPIN WAVES

A. Traveling nonlinear extended spin-wave modes

The one-dimensional antiferromagnetic chain ofN spins
to be investigated is described by the Hamiltonian

H52J(
n

Sn•Sn112D(
n

~Sn
z!2, ~1!

where both the exchange constantJ and the single-ion an-
isotropy constantD are positive; hence, thez axis is an easy
3433 © 1998 The American Physical Society
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3434 57R. LAI AND A. J. SIEVERS
axis, and in the ground state adjacent spins point in oppo
z directions. Previous studies have demonstrated that in
sic localized spin-wave modes can exist in the gap below
standard antiferromagnetic resonance frequency.24,28,30,32

Each spin moves in the effective magnetic field produc
by its two nearest neighbors and the anisotropy field

dSn

dt
5Sn3Hn

eff , ~2!

where from Eq.~1! the effective magnetic field

Hn
eff52¹Sn

H522J~Sn211Sn11!12DSn
zez .

The equations of motion for the circular variablesn
1 , which

is defined assn
65(Sn

x6 iSn
y)/S to make use of the axial sym

metry of the Hamiltonian, becomes

i
dsn

1

dt
522JS@~sn21

z 1sn11
z !sn

12~sn21
1 1sn11

1 !sn
z#

12DSsn
zsn

1 , ~3!

whereS is the magnitude of spin, and thez component of the
spins on even sites is chosen to be in the positivez direction.
The traveling extended spin-wave mode with wave vectoq
and frequencyv can be found by substituting into Eq.~3! the
following circularly polarized trial solution

s2n
1 ~ t !5 f ei @2nqa2vt1u0#, s2n

z 5A12 f 2

s2n11
1 ~ t !5gei @~2n11!qa2vt1u0#, s2n11

z 52A12g2 .
~4!

Hereu0 is a constant phase, and both spin deviationsf andg
are real and nonnegligible. This yields two coupled nonlin
equations

V f 52 fA12g21~A f12g cosqa!A12 f 2 ,

Vg522gA12 f 22~Ag12 f cosqa!A12g2 , ~5!

where the dimensionless frequencyV5v/2JS, and the an-
isotropy parameterA5D/J. EliminatingV from Eq.~5! and
defining the parameter

r 5
2

A12
, ~6!

we obtain

g

f
52

r cosqa

16A~12r 2 cos2 qa!~12 f 2!
, ~7!

where the6 signs designate two degenerate branches. O
ing to the symmetry between the up spins and down spins
can choose the solution with positive sign in the denomina
so thatug/ f u,1 without losing generality. In fact it can b
shown that the solution with negative sign in the denomi
tor is equivalent to the one with positive sign after excha
ing f andg.

Given the spin-wave amplitudef , the frequency as a
function of wave vector can be obtained from Eqs.~5! and
~7! as
ite
n-
e

d

r

-
e
r

-
-

V~q, f !52A12a2f 21~A22a cosqa!A12 f 2, ~8!

where

a52
g

f
5

r cosqa

11A~12r 2 cos2 qa!~12 f 2!
. ~9!

Hence the frequency of an extended nonlinear spin w
depends on both its wave vector and its amplitude. In
case of small amplitudef 2!1, one finds

V~q, f !'V0~q!2
AV0~q!

V0~q!1V0~p/2a!
f 2, ~10!

whereV0(q)5A(A12)224 cos2 qa is the linear spin-wave
frequency. Equation~10! indicates that the nonlinear spin
wave frequency decreases quadraticly with increasing am
tude.

B. Modulational instability of extended nonlinear spin waves

To study the modulational stability of the extended no
linear spin waves, we investigate the time evolution of
perturbed nonlinear spin wave of the form

s2n
1 ~ t !5~ f 1b2n1 ic2n!ei @2nqa2vt1u# ,

s2n11
1 ~ t !5~g1b2n111 ic2n11!ei @~2n11!qa2vt1u# ,

~11!

where f , g, andv are related by Eqs.~8! and ~9!, and the
perturbations$bn(t)% and $cn(t)% are real and are assume
to be small in comparison with the parameters of the car
wave. Note that in this form we have added the perturbat
in a frame rotating with the exact periodic solution. The a
vantage of the form of Eq.~11! is that it ensures that the
resulting linearized equations of the perturbation have c
stant coefficients instead of time-dependent coefficients
would be obtained in the usual stability analysis of period
solutions. Since the perturbations$bn(t)% and $cn(t)% are
arbitrary, so far this does not involve any approximatio
Inserting Eq.~11! into Eq. ~3! and separating the real an
imaginary parts, we obtain, up to the linear terms of$bn(t)%
and$cn(t)%, the four linear equations

1

2JS

db2n

dt
5$~b2n112b2n21!sin qa1~c2n111c2n21

12ac2n!cosqa%A12 f 2, ~12a!

1

2JS

db2n11

dt
52H ~b2n122b2n!sin qa

1S c2n121c2n211
2

a
c2n11D

3cosqaJA12g2, ~12b!
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1

2JS

dc2n

dt
5~c2n112c2n21!A12 f 2 sin qa

1H g f

A12g2
2A12 f 2 cosqaJ ~b2n111b2n21!

2
2a cosqa2A f2

A12 f 2
b2n , ~12c!

1

2JS

dc2n11

dt
52~c2n122c2n!A12g2 sin qa2H g f

A12 f 2

2A12g2 cosqaJ ~b2n121b2n!

1

2

a
cosqa2Ag2

A12g2
b2n11 . ~12d!

To solve the system of coupled linear equations given
Eqs. ~12a!–~12d!, we expand the perturbation in terms
Fourier components as
s

de
f
-
a
e

n-

n

y

S b2n

c2n
D5(

Q
S b0~Q!

c0~Q! Dei2nQa, ~13a!

S b2n11

c2n11
D5(

Q
S b1~Q!

c1~Q! Dei ~2n11!Qa. ~13b!

This decomposition allows us to identify the time evolutio
of each individual component. Since$bn(t)% and$cn(t)% are
real,

bi* ~Q!5bi~2Q!, and c i* ~Q!5c i~2Q! ~ i 50,1!.
~14!

Substituting Eqs.~13a! and ~13b! into Eqs.~12a!–~12d! and
comparing the coefficients of the same Fourier compon
we obtain

d

dt S b0~Q!

b1~Q!

c0~Q!

c1~Q!

D 5 2JS S M11

M21

M12

M22
D S b0~Q!

b1~Q!

c0~Q!

c1~Q!

D , ~15!

whereMi j ’s are 232 matrices given by
M115S 0

22iA12g2 sin Qa sin qa
2iA12 f 2 sin Qa sin qa

0 D , ~16a!

M115M22, ~16b!

M125S 2aA12 f 2 cosqa 2A12 f 2 cosQa cosqa

22A12g2 cosQa cosqa 2
2

a
A12g2 cosqa D , ~16c!

M2152M121S ~A22a! f 2

A12 f 2
cosqa 2

g f

A12g2
cosQa

22
g f

A12 f 2
cosQa

2~A22/a!g2

A12g2
cosqa

D . ~16d!
-

ving
ion

ion

e
ne
lyti-
The general solution of Eq.~15! is a superposition of term
having the time dependencee2 ivmt where thevm’s are the
frequencies of the modulation wave relative to the exten
nonlinear spin wave and the2 ivm’s are the eigenvalues o
the 434 matrix 2JSM. The stability of the extended non
linear spin-wave mode is determined by the imaginary p
of vm . The extended nonlinear spin wave is unstable wh
the Im$vm%.0, otherwise it is stable. Defining the dime
sionless frequencyl5vm/2JS, we can obtain thel’s from

detul~q,Q!I 2 iM u50. ~17!

Equation~17! determines the condition for the stability of a
extended nonlinear spin wave with wave vectorq with re-
d

rt
n

spect to the modulation with wave vectorQ. Since M11

5M2250 whenQ50, l(q,0)50 is always one of the ei-
genvalues of matrixM . Note that since the trace of the ma
trix M is zero regardless of the values ofq and Q, the
condition for stability is that all eigenvalues ofM are imagi-
nary. Otherwise there must be at least one eigenvalue ha
a positive real part. Furthermore, the symmetric modulat
sidebands atq6Q have the same growth rate sincel(q,
2Q)52l* (q,Q).

Since there is no simple analytical form for the dispers
relation l(q,Q) for arbitrary q, Eq. ~17! has to be solved
numerically to determine the domains of instability in th
(q,Q) plane. However, two important cases, e.g., the zo
center and zone-boundary spin waves, can be solved ana
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3436 57R. LAI AND A. J. SIEVERS
cally. We shall consider these two cases before we cons
spin waves with arbitrary wave vectors.

1. The q50 mode

The q50 extended nonlinear spin wave is particula
important in that the existence of the stationary intrinsic
calized spin wave gap modes~ILSG’s! we previously
studied28 is accompanied by its instability. Hence the con
tion for instability to occur also tells us when stationa
ILSGs can exist. SinceM115M2250 whenq50, the case of
zone-center spin-wave mode becomes particularly simple
this case, Eq.~17! becomes

detul2~0,Q!I 1M21M12u50, ~18!

which yields the following dispersion relation for the mod
lation wave

l6
2 ~0,Q!5S aC1

B

a D24E sin2 Qa6H S aC1
B

a D 2

24BC sin2 QaJ 1/2

, ~19!

where

B5
2

a
2~A12!g222aA~12g2!~12 f 2!, ~20a!

C52a2~A12! f 22
2

a
A~12g2!~12 f 2!, ~20b!

E5g f2A~12g2!~12 f 2!. ~20c!

In the case of an isotropic chain (A50), B5C50, andE
521 so that Eq.~19! can be reduced to

l6
2 ~Q!54 sin2 Qa. ~21!

Note that Eq.~21! is merely the linear spin-wave dispersio
relation and is positive for anyQ. This can be easily under
stood since theq50 mode in an isotropic chain is simply
rotation of the whole lattice in spin space by an arbitra
amount and any small amplitude perturbation to this stat
a superposition of linear spin waves.

In anisotropic antiferromagnetic chains, instability c
however occur for the zone-center spin wave. WhenA.0, it
is straightforward to show that

aC1
B

a
>0, ~22a!

E,0, ~22b!

S aC1
B

a D 2

24BC sin2 Qa>0. ~22c!

Hence l1
2 (0,Q)>0 holds for anyQ and this branch is

stable. To determine the instability condition we focus on
l2(0,Q) branch from here on.

It is clear from Eq.~19! thatl2
2 (0,0)50 and the instabil-

ity occurs if and only ifl2
2 (0,Q) becomes negative for som

nonzeroQ. This requires that
er

-

-

In

is

e

S aC1
B

a D24E sin2 Qa,H S aC1
B

a D 2

24BC sin2 QaJ 1/2

. ~23!

After some algebra the above inequality simplifies to

sin2 Qa,
2E~aC1B/a!2BC

4E2 . ~24!

The right-hand side~RHS! of Eq. ~24! is always positive for
any spin-wave amplitudef , and is proportional tof 2 in the
small f limit as shown later. Since in a finite periodic lattic
of sizeN the smallest wave vector isQ52p/Na, there ex-
ists an amplitude thresholdf c;O(1/N) so that only zone
center spin waves with amplitude larger thanf c are unstable.
However, in a real materialN;108, so the amplitude thresh
old is negligibly small. The zone-center spin wave is the
fore always unstable to long-wavelength modulation, wh
also means that there is no energy threshold for ILSGs
antiferromagnetic chains since the energy of an unsta
nonlinear plane spin wave is proportional toN fc

2}1/N.33

One can also show that the RHS of Eq.~24! can become
greater than 1 for sufficiently largeA and f so that theq
50 extended nonlinear spin wave is unstable to any per
bation. When the RHS of Eq.~24! is less than 1 we obtain a
critical wave vector given by

Qca5arcsinF S 2E~aC1B/a!2BC

4E2 D 1/2G . ~25!

The extended nonlinear spin-wave mode is unstable
modulation withuQu,Qc .

As an example the stability region of theq50 extended
nonlinear spin wave in the (Q, f ) plane is plotted in Fig. 1

FIG. 1. Regions of modulational instability in the (Q, f ) plane
for the q50 extended spin wave.~a! The anisotropy parameterA
51.0. The largeQ region is always stable regardless of the sp
wave amplitude.~b! The anisotropy parameterA52.0. The spin
wave with large amplitude becomes unstable to perturbation of
wave vector.
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57 3437MODULATIONAL INSTABILITY OF NONLINEAR SPIN . . .
for two different anisotropy parameters. In Fig. 1~a! the an-
isotropy parameterA51.0. Theq50 spin wave is stable to
modulation waves with large wave vector. When the antif
romagnetic chain becomes more anisotropic with increas
A, the spin wave with large amplitude can become unsta
with respect to any modulation wave vector as illustrated
Fig. 1~b! for the case ofA52.0.

Equations~19! and ~25! hold for arbitrary amplitudes. In
the small amplitude limit, they can be simplified to yie
more transparent results. Keeping only the lowest terms of ,
one can determine from Eq.~25! that

Qca5
1

11
DV0

2V0~0!

S A

DV0
D 1/2

f , ~26!

whereDV0 is the bandwidth of the linear spin-wave ban
and we have used the approximation sinQa'Qa for small
Qa. The critical wave vector of the modulation wave
therefore linear in the spin-wave amplitude in the small a
plitude limit, as can be seen in Fig. 1.

Since theq50 spin wave with a small amplitude is un
stable only to long-wavelength (Qa; f ) modulations, Eq.
~19! can be simplified in lowest order, i.e.,f 4, to yield

l2
2 ~Q!52

4~12r ! f 2

11A12r 2
sin2 Qa1

r 2

12r 2 sin4 Qa.

~27!

The RHS of Eq.~27! is 0 atQ50 and negative for 0,uQu
,Qc , hencel2(Q) is purely imaginary in the smallQ re-
gion. The maximum growth rate can be found from Eq.~27!
to be

Im$l2~Q!%max5
A

2 S 1

11
DV0

2V0~0!
D f 2 ~28!

at the modulation wave vector

Qmax5
Qc

&
. ~29!

The maximum growth rate therefore has a quadratic dep
dence on the spin-wave amplitude.

2. The zone-boundary mode

Another simple case is the zone-boundary spin wave
the Brillouin-zone boundaryq5p/2a and the spin deviation
at odd sitesg50, hencea50. However the ratio cosqa/a is
well defined, i.e.,

cosqa

a
→

11A12 f 2

r
, as q→

p

2a
. ~30!

Inserting Eq.~30! into Eq. ~17!, we obtain the following
equation forl(p/2a,Q):

l4S p

2a
,QD1a2l2S p

2a
,QD1a050, ~31!

where the coefficientsa0 anda2 are given by
-
g
le
n

,

-

n-

t

a0516~12 f 2!sin4 Qa1
8A

r
f 2~11A12 f 2!sin2 Qa,

~32a!

a252
4

r 2 ~11A12 f 2!218A12 f 2 sin2 Qa. ~32b!

Therefore the dispersion relation of perturbation wav
l(p/2a,Q) can be presented as

l6
2 S p

2a
,QD5

2a26Aa2
224a0

2
. ~33!

Sincea2,0 anda0>0, the condition for stability become
a2

224a0>0, which leads to

~11A12 f 2!3

r 4 2F 4

r 2 ~11A12 f 2!2
4

r
f 2Gsin2 Qa>0.

~34!

It can be readily shown that the inequality given by Eq.~34!
holds for anyQ and f since sin2 Qa<1. Hence the extended
nonlinear spin waves at the Brillouin-zone boundary a
stable to perturbations by any wave vector.

3. Instability region of spin waves with arbitrary q

For nonlinear spin waves of arbitrary wave vectorq the
dispersion relationl(q,Q) has to be obtained by numer
cally solving Eq.~17!. Figure 2 shows a typical plot of the
regions of modulational instability in the (Q,q) plane that is
determined by Im$l(q,Q)% for an anisotropic antiferromag
netic chain. The dot-dashed lines separate the regions of
bility ~I and III! and region of instability~II !. In regions I and
III Im $l(q,Q)%<0 for any of the fourl(q,Q)’s correspond-
ing to the same pair of (q,Q), while in region II at least one
of the four l(q,Q)’s has a positive imaginary part. For
given spin-wave amplitudef , the area of the instability re
gion grows increasing anisotropy parameterA. The lower
boundary moves towards the direction of largeQ, while the
upper boundary approachesq5p/4a. However, spin waves
with q.p/4a are stable against any perturbation indepe

FIG. 2. A typical plot of regions of modulational instability in
the (Q,q) plane. Regions I and III are stable regions, and region
is unstable. Spin waves with a wave vector larger thanp/4a are
stable to a perturbation of any wave vector.
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3438 57R. LAI AND A. J. SIEVERS
dent of the values ofQ and f . On the other hand, as th
chain becomes more and more isotropic withA approaching
zero, the area of the instability region shrinks until it disa
pears for the isotropic chain.

A number of studies of various lattice dynamical mod
have shown that the existence of intrinsic localized mode
always accompanied by the instability of corresponding
tended nonlinear waves.18–20,23 Previous study has show
that the intrinsic localized spin waves~ILSMs! can occur
only in the gap below the standard antiferromagnetic re
nance frequency atq50 while no ILSM exists at the
Brillouin-zone boundary.28 This is in agreement with Fig. 2
where only extended spin waves with smallq are unstable to
a long-wavelength modulation while the zone-boundary s
waves are stable to the modulation of any wavelength.

III. COMPARISON BETWEEN NUMERICAL
SIMULATIONS AND ANALYTICAL RESULTS

According to the above analytical results based on line
stability analysis, in an easy-axis antiferromagnetic chain
stability of an extended nonlinear spin wave with wave v
tor q modulated by a small-amplitude wave of wave vec
Q is determined by the dispersion relationl(q,Q) that can
h
he

a

r
e
n

b

he

2
pa
-

is
-

-

n

r-
e
-
r

be obtained from Eq.~17!. Linear stability analysis can de
termine the instability domain in parameter space and pre
quantitatively how the amplitude of a modulation sideba
evolves at the onset of the instability; however, such analy
is based on the linearization around the unperturbed ca
wave, which is valid only when the amplitude of perturb
tion is small in comparison with that the carrier wav
Clearly, the linear approximation must fail at large tim
scales as the amplitude of unstable sideband grows expo
tially. Furthermore, the linear-stability analysis neglects a
ditional combination waves generated through wave-mix
processes which, albeit small at the initial stage, can bec
significant at large time scales if its wave vector falls in
instability domain. Linear-stability analysis therefore cann
tell us the long-time evolution of a modulated extended n
linear spin wave. In order to check the validity of our an
lytical analysis and to investigate the long-time evolution
modulated nonlinear spin waves, we have carried out m
lecular dynamics simulations for easy-axis chains with va
ous anisotropy parameters.

In our numerical simulations the initial conditions are c
herently modulated extended nonlinear spin waves of
form
s2n
1 ~0!5H f 1

b

2
@b0~Q!ei2nQa1c.c.1 i ~c0~Q!ei2nQa1c.c.!#J ei2nqa ,

s2n11
1 ~0!5H g1

b

2
@b1~Q!ei ~2n11!Qa1c.c.1 i ~c1~Q!ei ~2n11!Qa1c.c.!#J ei ~2n11!qa , ~35!
e
ier

as

um
ve-

the
ith
ical

e-
ility
the
ig.

ut

a
an
on
where c.c. denotes the complex conjugate,~b0(Q), b1(Q),
c0(Q), c1(Q)! is a normalized eigenvector of theM matrix,
andb is a small parameter measuring the relative strengt
the modulation wave to the carrier wave, typically at t
order of 0.01. The amplitudesf andg are related by Eq.~7!.
Sinceub1 icu2Þub* 1 ic* u2, the two satellites atq6Q have
different strengths except whenq50. Given sn

1(0), the z
components of spins can be obtained from

sn
z~0!5~21!nA12usn

1~0!u2. ~36!

Once an initial condition is given the time evolution of
modulated spin wave can be investigated by means
molecular-dynamics~MD! simulations. In order to monito
the time evolution of individual Fourier components, we d
fine the complete spatial Fourier transform of spin deviatio

m~p,t !5 (
n50

N21

sn
1~ t !e2 in~2pp/N!, S 2

N

4
,p<

N

4 D .

~37!

The growth rate of each individual Fourier component can
obtained by the least square fitting ofum(p,t)u2 over the first
few periods during which time it is expected to grow at t
rate of 2 Im$l(q,Q)%.

As a specific example, we first consider a chain of 1
spins with periodic boundary conditions. The anisotropy
of

of

-
s

e

8
-

rameter is taken to beA51.0, and the spin-wave amplitud
f 50.2. Figure 3 shows the long-time evolution of the carr
wave with wave vectorq515p/64a modulated by small am-
plitude waves with wave vectorsQ5617p/64a that falls in
the unstable region. The exponential growth ofq6Q satel-
lite sidebands at the initial stage of instability is obvious
can be seen in the log-linear plot of Fig. 3~a!. Figure 3~b!
shows the time evolution of the complete Fourier spectr
where additional combination waves generated from wa
mixing processes can be seen after about 300TAFMR as the
instability further develops.

Plotted in Fig. 4 are the growth rates as a function of
modulation wave vector for the running carrier waves w
various wave vectors. The solid curves represent analyt
results obtained by diagonalizing the matrixM while the
filled circles are MD simulation results. The excellent agre
ment between them demonstrates that the linear-stab
analysis does give a quantitatively correct description of
onset of instability. An interesting feature can be seen in F
4. While the carrier waves with smallq are unstable to long-
wavelength modulation~small Q!, a carrier wave of largeq
(q515p/64a) is stable to long-wavelength modulations b
unstable to some short-wavelength modulations~large Q!.
This is in contrast to what was reported in Ref. 19 for
monatomic Klein-Gordon chain that is also subject to
on-site anharmonic substrate potential. In the Klein-Gord
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chains the smallQ region is always the unstable region
long as an instability does occur for the corresponding car
wave.

The prediction of stability from linear analysis does n
necessarily rule out the occurrence of instability in the lon
time evolution because of the combination waves neglec
there. To illustrate this point, the long-time evolution of
perturbed carrier wave with wave vectorq515p/64a is plot-
ted in Fig. 5. In this case the modulation wave vectorsQ5
6p/8a lie in the stable region as shown in Fig. 4~a!. The
Fourier component corresponding to the carrier wave
mains the same for a period of approximately 180TAFMR be-
fore the instability occurs. From the time evolution of th
spatial Fourier components at wave vectorsq, q6Q, and
q62Q plotted in Fig. 5~a!, it can be seen that theq6Q
components do not grow until aftert5180TAFMR , just as
predicted in the linear-stability analysis, but theq62Q com-
ponents which are neglected in the linear-stability analy
grow to significant magnitudes after 180TAFMR . Conse-

FIG. 3. Time evolution of the carrier wave withq515p/64a
and f 50.2 modulated by a small amplitude wave withQ
517p/64a. The anisotropy parameter isA51.0, and time is mea-
sured in units ofTAFMR , the period of theq50 linear spin wave.
~a! Time evolution of the main Fourier components atq ~solid
curve!, q1Q ~dot-dashed curve! andq2Q ~long-dashed curve!. ~b!
Time evolution of the complete Fourier spectrum. After a su
ciently long time, combination modes appear.
er

t
-
d

-

is

quently, the carrier wave becomes unstable and gener
even more combination modes.

This simulation demonstrates that the combination mo
at q62Q,q63Q generated by the nonlinearity, though the
magnitudes are smaller than that of theq6Q by at least a
factorb at t50, may fall in the instability region and play a
important role at sufficiently large time scales. Hence
condition for stability for large time scales is that not on
the main satellite modulation but also all combination mod
must not lie in the regions of instability. Note that unlike
other models such as the Klein-Gordon lattice and Fer
Pasta-Ulam lattice, the nonlinearity in the uniaxial easy-a
antiferromagnetic chains does not generate combina
waves at62q,63q,..., etc. With the Brillouin-zone folding
back taken into account, the stability condition is given b

modS q6nQ,
p

a D¹unstable regions, n51,2, . . . .

~38!

According to Fig. 2, this condition is quite restrictive and
appears that only carrier waves with wave vectorq.p/4a
are stable on large time scales.

As the anisotropy parameter increases the antiferrom
netic chain appears more discrete and according to the
lytical results the area of the instability region in the (Q,q)
plane also grows so that the upper boundary of the instab
region in Fig. 2 approachesq5p/4a. As an example we
investigate a chain with a larger anisotropy parameter. A
the first example the chain contains 128 spins with perio
boundary conditions but the anisotropy parameter is take
be A52.0. The amplitudes of the extended nonlinear car
waves are stillf 50.2. The growth rates of the amplitude o

FIG. 4. Growth rate of modulational waves as a function
modulation wave vector for carrier waves with various wave v
tors. The parameters areA51.0 andf 50.2. VAFMR is the standard
antiferromagnetic resonance frequency. The wave vectors of ca
waves are: ~a! 15p/64a, ~b! 7p/32a, ~c! p/8a, and ~d! 0. The
solid curves are analytical results while the filled circles are M
simulation results.
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3440 57R. LAI AND A. J. SIEVERS
modulation waves for carrier waves with a wide range
wave vectors are plotted in Fig. 6. The MD simulation r
sults ~filled circles! are in excellent agreement with the an
lytical results. The instability region steadily grows with in
creasing carrier wave wave vector, and the carrier wave w
q515p/64a is unstable to modulation by any wave vecto
However, if the carrier wave wave vector increases bey
q5p/4a, it becomes stable to modulation by any wave ve
tor.

IV. CREATION OF INTRINSIC LOCALIZED
SPIN-WAVE MODES

A. Lossless system

In the previous sections numerical simulations have de
onstrated that the energy initially concentrated in one
stable mode will finally flow to all available modes in Fo
rier space, e.g., the energy is delocalized in Fourier sp
Since a delocalized state in Fourier space can be eith

FIG. 5. Instability induced by combination modes. The wa
vector and amplitude of the carrier wave areq515p/64a and f
50.2, respectively. The modulation wave vectorQ5p/8a lies in
the stable region, as can be seen in Fig. 3~a!. Time is measured in
units ofTAFMR . ~a! Time evolution of the Fourier components atq
~solid curve!, q1Q ~dot-dashed curve!, q2Q ~long-dashed curve!,
q12Q ~doted curve! and q22Q ~short-dashed curve!. ~b! Time
evolution of the complete Fourier spectrum.
f
-

th
.
d
-

-
-

e.
a

localized state or a delocalized state in the corresponding
space, depending on the relative phases between Fo
components, the time evolution in Fourier space alone d
not tell us the complete process of energy redistribution. I
generally believed that the system will finally reach equip
tition of energy in a sufficiently long time since entrop
should grow during the system’s time evolution. In oth
words the system should approach a state where the ener
evenly distributed not only among modes in Fourier spa
but also on lattice sites in real space. However, this does
exclude the possibility of energy localization at intermedia
stages. Indeed, one of the main effects of modulational
stability is the creation of localized excitations from spatia
extended excitations.15 This modulational-instability-induced
energy localization has been proposed to be the mecha
responsible for the formation of intrinsic local
zation.15,17,19,20,34For instance, it has been demonstrated
computer simulations that modulational instability can
used to generate intrinsic localized vibrational modes via
optimal control scheme.34

Here we investigate how the energy initially concentra
in one mode is redistributed in an antiferromagnetic cha
The time evolution of a zone-center mode perturbed by r
dom noise in both Fourier space and real space is plotte
Fig. 7. The chain consists of 128 spins with anisotropy
rameterA52.0. The amplitude of the zone-center spin wa
is f 50.2, and the amplitude of noise perturbation is sm
compared to that of the carrier wave, i.e.,udsn

1(0)/sn
1(0)u

,0.01. In Fig. 7~a! the time evolution of the complete Fou
rier spectrum shows that theq50 mode remains stable for

FIG. 6. Growth rate of modulational waves as a function of t
modulation wave vector in an antiferromagnetic chain with lar
anisotropy. The parameters areA52.0 and f 50.2, andVAFMR is
the standard antiferromagnetic resonance frequency. Solid cu
are analytical results while filled circles are MD simulation resu
The wave vector of carrier waves are:~a! 15p/64a, ~b! 7p/32, ~c!
3p/16, ~d! p/8, ~e! p/16, and~f! 0. Note that the carrier wave with
q515p/64a is unstable to perturbation of any wave vector.
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57 3441MODULATIONAL INSTABILITY OF NONLINEAR SPIN . . .
short period of time~about 80TAFMR! then quickly decays
into other Fourier components, i.e., the energy is delocali
in Fourier space. In Fig. 7~b!, the time evolution of the en
ergy density distribution defined as

e~n,t !5JSn•~Sn211Sn11!2D~Sn
z!2 ~39!

in real space shows a different picture. The initial uniform
distributed energy becomes localized as the instability de
ops. A number of localized excitations are created and
pear to be trapped by the discreteness of the lattice. Th
localized excitations appear to last for a time scale su
ciently long for experimental purpose, as demonstrated
this numerical simulation.

From the above numerical simulation it appears poss
to create strongly localized long-lived excitations by drivi
the antiferromagnetic chain into a nonlinear regime17 using
optimal control schemes with powerful laser pulses, such
the one reported in Ref. 34. However, our numerical exp
ments with different anisotropy parameters and carrier w
amplitudes demonstrate that although localized excitati
can be created in this way their lifetimes depend strongly
the anisotropy parameter of the lattice and the amplitude
the initial carrier wave. Since the anisotropy here is on-s
it is not only a measure of the anharmonicity but also
effective measure of the discreteness of the lattice. As
anisotropy parameterA or the carrier wave amplitude de

FIG. 7. Creation of intrinsic localized spin-wave excitatio
from extended nonlinear spin waves via modulational instabil
The anisotropy parameter isA52.0. Initially the q50 extended
spin wave with amplitudef 50.2 is perturbed by random noise
Time is measured in units ofTAFMR , and energy is measured from
ground state in units of 2JS. ~a! Time evolution of the perturbed
spin wave in Fourier space.~b! Time evolution of the energy den
sity distribution in real space.
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creases, i.e., the lattice is less discrete and less anharm
and the lifetime of localized excitations decreases. To ob
a more quantitative characterization, we define the ene
energy correlation function as17,35

CE~n,t !5NK (
m

e~m,t !e~m1n,t !

F(
m

e~m,t !G2 L , ~40!

where ^• • •& indicates the average over initial condition
For a uniform energy distribution, such as our initial cond
tions, CE(n) is just a uniform background, while when lo
calized excitations appearCE(n) should consist of a centra
spike. Since the total energy is a conserved quantity,
degree of localization can be measured by the height~or the
width! of the central spike.

To illustrate the effect of the anisotropy parameter on
energy localization process of randomly perturbed nonlin
plane spin waves, the height of the central spike of
energy-energy correlation function as a function of time
plotted in Fig. 8 for two antiferromagnetic chains with a
isotropy parametersA51.0 and 2.0, respectively. In bot
cases, the carrier waves have the same amplitude and w
vector, i.e.,q50 and f 50.2, and each curve is average
over 20 initial conditions. Note that the solid curve (A
52.0) is qualitatively different from the dot-dashed cur
(A51.0). In the case of the larger anisotropy parameter,
height of the central spike in the energy-energy correlat
function increases with time during the simulation perio
which indicates that localized excitations are generated

.

FIG. 8. The height of the center spike of the energy-ene
correlation function as a function of time. Initially theq50 ex-
tended spin wave with amplitudef 50.2 is perturbed by random
noise. Solid curve: A52.0. Dot-dashed curve:A51.0. Each
curve is averaged over 20 initial conditions.
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3442 57R. LAI AND A. J. SIEVERS
grow with time. Although localized excitations are also ge
erated in the lattice with a smaller anisotropy parameter, t
are short lived and the energy appears to be exchanged
and forth between localized excitations and extended s
waves. This demonstrates that the discretenessand strong
anharmonicity seem to be essential for the creation of lo
lived localized excitations.

Ignoring the difference between the three-dimensio
~3D! and 1D lattices examples of the modulational instabi
effect described above may be displayed by well-kno
uniaxial systems.36 Because of its relatively weak anisotrop
field, MnF2 should generate localized excitations only on
short-time scale. On the other hand, FeF2, with the much
larger anisotropy value, would be expected to produce lo
ization on a much longer time scale. Even though we h
not treated easy plane antiferromagnets here, a general s
ment can be made about their expected instabilities. Syst
such as MnO and NiO should not show this long-lived loc
ized behavior because of the underlying weak localizat
associated with the production of nonlinear reson
modes.29

B. System with dissipation

So far we have investigated the modulational instability
nonlinear spin waves and the creation of ILSMs in lossl
easy-axis antiferromagnetic chains. In this section we s
discuss the influence of weak dissipation.

In a dissipative chain, the equations of motion represen
by Eq. ~2! become

dSn

dt
5Sn3Hn

eff2«Sn3~Sn3Hn
eff!, ~41!

where the second term is the Landau-Gilbert damping36 that
preserves the spin length, ande is a small parameter measu
ing the damping strength. The dissipation in magnetic ma
rials is usually weak, for instance,G/v;1025 in bulk MnF2
~Ref. 37! and FeF2 ~Ref. 38! and ;1024 in ferromagnetic
yttrium-iron-garnet films.39 For the case of weak dissipatio
the amplitude decay rateG of plane spin waves is from Eq
~41!

G~q!52JS2~A12!«1O~« f 2!. ~42!

The dissipation imposed amplitude thresholdf th follows
from the condition that the maximum MI growth rate b
greater than the damping rate. From Eqs.~28! and~42!, one
obtains

f th
2 5

2~A12!S

A S 11
DV0

2V0~0! D «. ~43!

It should however be pointed out that Eq.~43! does not guar-
antee the formation of ILSMs from the MI. The formation
ILSMs is a dynamical process in which the competing
fects of nonlinearity and dispersion reach a delicate bala
The characteristic time scale of this nonlinear process ca
obtained from the nonlinear frequency shift given in E
~10!, that is,

TNL5
2p

uDvu
5

V0~q!1V0~p/2a!

A f2 TAFMR . ~44!
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With the parametersA52.0 andf 50.2 used in our numeri-
cal simulations, one findsTNL'93TAFMR . ILSMs can be
created from the MI only when effects of nonlinearity an
dispersion are much stronger than the dissipation effect,40 the
condition is that

G~q!TNL!1. ~45!

To illustrate the influence of weak dissipation on the fo
mation of ILSMs, MD simulations with the perturbedq50
extended spin wave with amplitudef 50.2 as initial condi-
tion were carried out and the time evolution of the ener
distribution were obtained for two different dissipation va
ues. The energy density multiplied bye2Gt, for ease in view-
ing, is plotted in Fig. 9~a! for G/v0(0)51024 and Fig. 9~b!
for G/v0(0)51023. Interesting differences can be found b
tween the two cases. The ILSMs in the weaker dissipat
case are much more localized and appear to be pinned
less strongly than the case for no dissipation previou
shown in Fig. 7~b!. On the other hand, the ILSMs in th
stronger dissipation case@Fig. 9~b!# are more delocalized an
hence more mobile. This difference results from the com
tition between the MI-induced energy localization and t
dissipation effect. In the weaker dissipation case (GTNL
'0.058) the MI process can take place before dissipa
becomes significant, while in the stronger dissipation c
(GTNL'0.58) the dissipation effect prevents energy fro
strongly localized by decreasing the amplitude and he
reducing the strength of the nonlinearity.

FIG. 9. The influence of weak dissipation on ILSMs’ formatio
from modulational instability for two different damping factor
The energy density is multiplied bye2Gt for ease in viewing. Ini-
tially the q50 extended spin wave with amplitudef 50.2 is per-
turbed in a lattice withA52.0. ~a! G/v0(0)51024. ~b! G/v0(0)
51023.
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V. CONCLUSIONS

We have investigated the modulational instability of e
tended nonlinear spin waves in antiferromagnetic chains w
on-site easy-axis anisotropy. The model is equivalent t
‘‘diatomic’’ lattice with two degrees of freedom per site an
involves both on-site and intersite nonlinearity. The instab
ity domain in parameter space is determined from line
stability analysis. Although nonlinear plane spin waves w
short wavelengths (q.p/4a) are stable to any noise pertu
bation, spin waves with long wavelengths (q,p/4a) can be
unstable to modulation by certain wave vectors and the
stability domain in (q,Q) plane grows with increasing th
anisotropy parameter or the spin-wave amplitude. In cont
to the monatomic KG chain19 where plane waves with wav
vectors in the lower half of Brillouin zone are always u
stable to long-wavelength perturbations, in easy-axis anti
romagnetic chains spin waves with wave vectors close to
zone center ~but q,p/4a! are stable to both long
wavelength and short-wavelength perturbations but unst
to perturbations of moderate wavelengths. The amplit
threshold for the instability of long-wavelength spin waves
inversely proportional to the lattice size, and therefore te
to zero in real materials. The analytic results are compare
numerical simulations and good agreement is obtained. S
B
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-
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st
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e

le
e

s
to
ce

the long-time evolution of nonlinear spin waves are analy
cally untractable, numerical simulations are employed. It
veals that combination waves generated via wave-mix
processes can have significant effect on the spin-wave st
ity at large time scale. One of the main effects of the mod
lational instability is the creation of localized pulses a
hence it provides a possible mechanism for the generatio
intrinsic localized spin waves. Weak dissipation produc
two interesting features absent in lossless lattices: it impo
a finite amplitude threshold even for infinite chains and
ILSMs become mobile during formation because of the
duced strength of the nonlinearity. Our numerical expe
ments demonstrate that the combination of discreetness a
strong nonlinearity is essential for the creation of long-liv
ILSMs.
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