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Cyclotron resonance in uniaxial polar crystals with complex structure
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Using a variational approach, the energy spectrum of the optical polaron in a uniaxial crystal with complex
structure, placed in a weak dc magnetic field directed along the optical axis is obtained. In performing the
minimization of the system energy, the mean of thez component of the total angular momentum is considered
as a constraint. The obtained expression of both the cyclotron mass and the effective mass of motion along the
direction of the magnetic field are used to discuss the results of the cyclotron resonance experiment performed
in the layered compounda-HgI2. @S0163-1829~98!06306-1#
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I. INTRODUCTION

In order to assure a theoretical basis for the analysis of
cyclotron resonance phenomenon in polar crystals, a lo
work1–6 concerning the energy spectrum of the polaron
magnetic field, for the cases of weak, intermediate, a
strong coupling has been done.

Excluding the paper of Larsen,7 in which the cyclotron
resonance of polarons in ellipsoidal bands is discussed in
context of the Haga approximation, all other theoretical st
ies deal with isotropic systems.

Suitable to analyze the cyclotron resonance of holes
some cubic polar insulators having a multivalley valen
band, the results obtained by Larsen do not apply to the c
of a uniaxial crystal with a complex structure due to t
presence of supplemental sources of anisotropy that are
tained in both the electron-optical phonon interaction and
frequencies of the phononic modes. Though there are
papers8–10 devoted to the problem of the energy spectrum
anisotropic optical polaron in uniaxial crystals in the abse
of the magnetic field, a model discussing the cyclotron re
nance in such an anisotropic system, taking into accoun
sources of anisotropy, is still missing.

The studies of the cyclotron resonance in layered crys
HgI2 ~Refs. 11 and 12! and InSe~Ref. 13! deal with the
anisotropic features of the system in a simplified mann
either considering the corresponding Fro¨hlich Hamiltonian
restricted to the one oscillator model,8 or introducing two
anisotropic polaron coupling constants13 a' anda i for mo-
tions perpendicular, respectively, parallel to the optical a
In the second approach the forms ofa' anda i are not en-
tirely based on the anisotropic properties of the system.

In this paper, based on the idea used by Evra
Kartheuser, and Devreese~EKD!14 to exploit the existence o
the constants of motion induced by the symmetry of
problem, we develop a variational approach strongly rela
to the one of Lee, Low, and Pines,15 allowing a discussion of
the cyclotron resonance for the magnetic field directed al
the optical axis of a polar crystal with complex structu
This peculiar geometry permits us to treat thez component
of the total angular momentum as a constant of motion
EKD14 have considered it for an isotropic system.

It is in our intention to observe what happens to the
ergy of an anisotropic optical polaron of a crystal with co
570163-1829/98/57~6!/3411~7!/$15.00
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plex structure in the range of weak magnetic fields, obtain
both the form of the cyclotron mass and the form of t
effective mass for motion along the direction of the magne
field.

II. THE HAMILTONIAN

In the absence of the magnetic field and with thez axis of
the trihedron directed along the optical axis of the crystal,
form of the Hamiltonian of the system is9

HF5
pz

2

2mi
1

p'
2

2m'

1(
q,m

\vm~q!bq,m
1 bq,m

1(
q,m

FVm~q!

AV
bq,meiq•r1H.c.G , ~1!

wheremi , m' , andvm(q) are the components of the diag
onal mass tensor for the conduction ‘‘bare’’ electron and
frequencies of the ‘‘true’’ normal phononic modes, respe
tively; the symbolsi and' correspond to a direction that i
either parallel or orthogonal to the optical axis. The concr
form of the coupling constantVm(q), suitable for anisotropic
crystals with complex structure, was obtained
Toyozawa.16

To preserve the axial character of the problem’s symm
try, an important point of subsequent developments, the
ternal dc magnetic fieldB0 will be assumed directed alon
the optical axis.

Considering the problem of the electron magnetic-fie
interaction in the symmetrical Coulomb gauge, we shall
troduce the operators (A,A1) and (B,B1) related to those
considered in Ref. 17 by the equations

A5~2\m'V!21/2P, ~2a!

B5S 2\

m'V D 1/2

X1 , ~2b!

where, byV5(eB0 /m') we have denoted the cyclotron fre
quency of the ‘‘bare’’ electron.

Using these operators that verify the following commu
tion relations: @A,A1#5@B,B1#51 and @A,B#5@A,B1#
3411 © 1998 The American Physical Society
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3412 57D. E. N. BRANCUS AND G. STAN
50, both, the electronic contributions to the Hamiltonian a
to the z component of the angular momentum have the
pressions

He5
pz

2

2mi
1\V~A1A1 1

2 !, ~3!

Le,z5\~A1A2B1B!. ~4!

According to EKD,14 we shall consider the following con
stants of motion: thez component of the total momentum

P̂Z5pz1(
q,m

\qzbq,m
1 bq,m , ~5!

and thez component of the total angular momentum

LZ5Le,Z1 i\ (
m,q,q8

bq,m
1 bq,m

]

]w8 F 1

V E drei r•~q82q!G ,
~6!

where the expression of the contribution of the opti
phonons to thez component of the total angular momentu
diagonal inm index is obtained as a generalization of t
form presented by EKD.14 In the expression~6!, w8 is the
azimuthal angle in theq8 space.

III. THE VARIATIONAL APPROACH
OF THE POLARON PROBLEM

We shall apply the LLP15 theory, suitable to discuss th
polaron problem for the intermediate coupling range, to
anisotropic system in the presence of the magnetic field.

In order to eliminate the electronic coordinates from t
Hamiltonian, according to Ref. 15, we introduce the follo
ing unitary transformation:

S5SZS' , ~7!

where

SZ5expF i

\ S PZ2(
q,m

\qzbq,m
1 bq,mD zG ~8!

and

S'5exp F2
i

\ (
q,m

\~xqx1yqy!bq,m
1 bq,mG , ~9!

PZ , being the eigenvalue of the operatorP̂Z . Taking into
account the possibility of replacing the electron coordina
x and y by the operatorsA and B, for the transformed
HamiltonianS1HS one obtains the form

H̃[S1HS5
1

2mi
S PZ2(

q,m
\qzbq,m

1 bq,mD 2

1\VFA12S \

2m'V D 1/2

(
q,m

q1bq,m
1 bq,mG
d
-

l

r

s

3FA2S \

2m'V D 1/2

(
q,m

q2bq,m
1 bq,mG

1
\V

2
1(

q,m
\vm~q!bq,m

1 bq,m

1(
q,m

FVm~q!

AV
bq,m1

Vm* ~q!

AV
bq,m

1 G , ~10!

provided thatpZ50, where

q65qx6 iqy . ~11!

It is our intention to treat on the same basis the electron
magnetic field and the system of optical phonons. In t
respect, the trial state is chosen of coherent15,17 type

u$g%&5uj,z& ^ P
q,m

u f m~q!&, ~12!

whereuj,z& and u f m(q)& are eigenstates of the operatorsA,
B, andbm(q), respectively.

These states are obtained by acting with the displacem
operatorsDA(j), DB(z), andD@ f m(q)# on the fundamenta
states of the oscillators,u0,0&e ~the fundamental state of th
‘‘bare’’ electron in magnetic field with zero value ofz com-
ponent of angular momentum! andu0&ph ~the phonon vacuum
state!.

Because a coherent state of an electron in magnetic fie17

is obtained as a superposition of many states with differ
Landau quantum numbern, the expression of the energ
spectrum of the polaron that we intend to obtain will
correct in the limit

V→0 with nV5const, ~13!

allowing a proper treatment of cyclotron resonance pheno
enon. Thus, we shall disregard, from the beginning, the c
stant \V/2 in the transformed Hamiltonian, such a choi
affecting only the origin of the energy scale and con
quently, the expression of the ground-state energy. By c
paring our expression of the polaron energy spectrum,
duced to the isotropic case and in the limit of weak magne
field, with the first order inV term of the relation~33! of
Ref. 1, in this limit of accuracy, the origin of the energy sca
can be established.

Taking into account the effect of the canonical transf
mations of the displaced-oscillators form on the operatorsA,
B, andbqm ,

DA
21~j!ADA~j!5A1j, ~14!

DB
21~z!BDB~z!5B1z, ~15!

D21@ f m~q!#bq,mD@ f m~q!#5bq,m1 f m~q!, ~16!

the energy of the polaron that should be minimized has
expression
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E~j,$ f m~q!%!5^$g%uH̃u$g%&5
PZ

2

2mi
1\(

q,m
Fvm~q!2

PZqz

mi
1

\

2 S qZ
2

mi
1

q'
2

m'
D G u f m~q!u21

\2

2mi
(
q,q8
m,m8

qZ8qZu f m8~q8!u2u f m~q!u2

1(
q,m

FVm~q!

AV
f m~q!1

Vm* ~q!

AV
f m* ~q!G1\VH uju22jF \

2m'VG1/2

(
q,m

q1u f m~q!u2

2j* F \

2m'VG1/2

(
q,m

q2u f m~q!u21F \

2m'VG (
q,q8
m,m8

q1q28 u f m~q!u2•u f m8~q8!u2J . ~17!
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The minimizing procedure will be performed consideri
the mean of thez component of the total angular momentu
over the same stateSu$g%&, as a constraint.

With the expressions~4! and~6! of the two contributions
of thez component of the total angular momentum, and a
a lengthy but straightforward calculation, the form of th
mean value has been obtained:

LZ

\
5^$g%uS1

LZ

\
Su$g%&5uju22uzu22 i(

q,m
f m* ~q!

] f m~q!

]w
.

~18!

As an intermediate result a set of equations for the va
tional parametersj, z, andf m(q) is obtained. The form of the
equation forf m(q) is a generalization of the usual expressi
~25! of Ref. 15 permitting the introduction of the magnet
field into the problem. To work out the problem of the p
laron energy we have to solve the equation forf m(q), and
find out the dependencies of the variational parameters onPZ
and LZ to obtain the final form of the polaron energ
E(PZ ,LZ).

IV. WEAK MAGNETIC FIELD

In the following, we shall consider the case of we
magnetic-field range (V/vm(u)!1) and low values of
PZ$PZ!@2\mivm(u)#1/2%.

In this case, it is a matter of calculation to see that s
plifying the expression~18! to

Lz /\'uju2, ~19!

the correct form of the polaron energy spectrum, includ
the terms of type (V/vm)2, Pz

2/2\mivm and
Pz

2/2\mivm(V/vm), is obtained.
If the trial state had been an eigenstate of the correspo

ing operator, the mean value of thez component of the an
gular momentumLz would have been of the form\n, n
integer. Unfortunately, this is not the case, so that in
following we shall take only approximately

Lz'\~n1«!, ~20!

where« lies between 0 and 1 and withn>0 as a result of Eq.
~19!.

The final form of the energy spectrum of an anisotro
polaron is obtained:
r

-

-

g

d-

e

E~Pz ,n!

\
52(

m
^am~u!vm~u!&1~n1«!VA'

21

2
9

64
n2V2~n1«!2A'

24(
m

K am~u!sin4u

vm~u!s2~u!L
1

Pz
2

2\mi
FAi

212
9

8
nV~n

1«!A'
22Ai

22(
m

K am~u!sin2 ucos2 u

vm~u!s2~u! L G ,
~21!

where

A'511
n

4 (
m

K am~u!sin2 u

s~u! L ~22!

and

Ai511
1

2 (
m

K am~u!cos2 u

s~u! L , ~23!

n being the anisotropic mass ration5mi /m' for the ‘‘bare’’
electron. In the above expressions we denote byam(u) the
Fröhlich’s dimensionless coupling constant10 corresponding
to the phononic branchm and bys(u) the expression cos2u
1n sin2u, the symbol̂ & meaning an angular average

^ f ~u!&5
1

2 E
0

p

f ~u!sin~u!du. ~24!

In the case of an isotropic crystal with simple structu
the expression~21! of the polaron energy is reduced to th
result

Eis~Pz ,n!

\v
52a1~n1«!b

V

v
2

3

40
~n1«!2ab4S V

v D 2

1
PZ

2

2m\v Fb2
3

20
~n1«!ab4

V

v G , ~25!

wherev is the optical phonon frequency andb is the com-
bination (11a/6)21. This expression is an extension to th
intermediate coupling range of the result obtained by Baj3
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In the limit of small V, by choosing«51
2, the form of the

ground-state energy of Eq.~25! is

Eis~0,0!

\v
52a1

1

2
b

V

v
, ~26!

also obtained, in the same order inV, from the expression
~33! of Ref. 1.

The choice of the trial state~12! prevents us from obtain
ing, in the second order inV, the correct contribution to the
ground-state energy. However, what is important in the st
of cyclotron resonance, the energy difference between
consecutive levels has the same expression,

Eis~Pz ,n11!2Eis~PZ ,n!

\v
5b

V

v
2

3

20
~n11!ab4S V

v D 2

2
3

20
ab4

V

v

PZ
2

2m\v
, ~27!

whatever the form, either Eq.~25! of our work or Eq.~33! of
Ref. 1 would be used.

As was stated by Larsen,1 for the weak-coupling limit of
the energy difference between the ground state and the
excited magnetic state on obtains the value

S 12
a

6 DV

v
2

3

20 S V

v D 2

a, ~28!

also found in the frame of the perturbation theory.
According to Refs. 1 and 18, the isotropic form~25! of

the polaron energy spectrum in the magnetic field, for« 5 1
2 ,

can be obtained19 from the solution

Eis~P!/\v52a1b
P2

2m\v
2

3

40
ab4S P2

2m\v D 2

,

~29!

found in the absence of the magnetic field, (n1 1
2 )\V

1Pz
2/2m replacingP2/2m everywhere.

A similar correspondence between the two polaron ene
spectra~i.e., in the absence or in the presence of the magn
field! also holds for the case of anisotropic uniaxial cryst

Thus extending the expression10 of the polaron energy in
uniaxial crystal in the absence of the magnetic field by
cluding also the terms of fourth order inP one obtains

E~4!~Pi ,P'!5E~2!~Pi ,P'!1Ji
~2!S Pi

2

2mi
D 2

1J'
~2!S P'

2

2m'
D 2

1Ji ,'
~1! S Pi

2

2mi
D S P'

2

2m'
D , ~30!

where the coefficientsJ have the forms

Ji
~2!52

3

8
Ai

24(
m

K am~u!cos4 u

\vm~u!s2~u!L , ~31a!

J'
~2!52S 3

8D 2

n2A'
24(

m
K am~u!sin4 u

\vm~u!s2~u!L , ~31b!
y
o

rst

y
tic
.

-

Ji ,'
~1! 52

9

8
nAi

22A'
22(

m
K am~u!sin2 u cos2 u

\vm~u!s2~u! L ,

~31c!

and

E~2!~Pi ,P'!52(
m

\^am~u!vm~u!&1
Pi

2

2miAi
1

P'
2

2m'A'

.

~32!

Now it is obvious that the form~21! of the energy spec-
trum of an uniaxial polaron in a magnetic field, written fo
«5 1

2 , can be obtained from the relation~30! by substituting
Pz

2/2mi and \V(n1 1
2 ) for Pi

2/2mi and P'
2 /2m' , respec-

tively. Thus one can obtain both the cyclotron massMc* ,
defined through the energy difference between two conse
tive polaron levels, usually taken atPz50,

m'

MC*
5A'

212
9

32
n2~n11!VA'

24(
m

K am~u!sin4 u

vm~u!s2 u L
~33!

and the effective mass of motion along the direction of
magnetic fieldM i ,

mi

M i
5Ai

212
9

8
nS n1

1

2DVA'
22Ai

22

3(
m

K am~u!sin2 u cos2 u

vm~u!s2 u L . ~34!

Just like in the case of an isotropic crystal, when at ve
weak magnetic fields the value of the polaron mass1 is ob-
tained for both the cyclotron mass and the effective mas
the motion along the direction of the magnetic field, in t
anisotropic case the aforementioned quantities are reduce
the components10 of the polaron effective mass tensor:

MC* .M'5m'A' , ~35a!

M i5miAi . ~35b!

The relations~22!, ~23!, and~35! permit us to obtain the
equation

(
m

^am~u!&52@~M i2mi!/mi12~M'2m'!/m'#,

~36!

which is a generalization to this anisotropic case of the w
known result of the intermediate coupling theory

M* 5m~11a/6!. ~37!

Using the expression~21!, the corresponding form of a
two-dimensional~2D! electron interacting with a 3D aniso
tropic system of phonons is obtained by taking formallymi

→`. In terms ofãm(u) defined through the relation

ãm~u!5sin u lim
mi→`

am~u!, ~38!

the obtained form~39! is a generalization to the anisotrop
uniaxial crystal and to the intermediate coupling case of
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expression of the so-called semiclassical contribution to
level shiftdESC, found by Das Sarma20 for an isotropic sys-
tem:

E~n!/\52
1

2 (
m

E
0

p

ãm~u!vm~u!du1V~n1 1
2 !~A'

2D!21

2
9

128
V2~n1 1

2 !2~A'
2D!24(

m
E

0

p ãm~u!

vm~u!
du,

~39!

where

A'
2D511

1

8 (
m

E
0

p

ãm~u!du. ~40!

Similar results are found for the case of an electron inter
ing with a 3D anisotropic system of phonons and which
confined in a quantum well whose width goes to zero.

V. RESULTS AND DISCUSSION

We discuss the experiments of the cyclotron resona
phenomenon in red mercury iodide (a-HgI2) performed by
Bloch et al.11 and Hodby and co-workers,12 restricting our-
selves to the case of electrons. The aim of such experime
to obtain the components of the effective mass tensor of
‘‘bare’’ electron. Due to the involved axial symmetry, i
addition to the measurement of the cyclotron resonance
quency performed forB0 directed along the optical axis,
supplemental source of information concerning the pola
spectrum has to be considered. Thus, according to the re
obtained from the drift mobility measurements,21 Bloch
et al.11 take for the anisotropic polaron factorN5M i /M' ,
the valueN150.837. In the second paper12 the cyclotron
mass obtained forB0 perpendicular to the optical axis wa
identified with the expression (M iM')1/2. Though this result
is beyond our frame of the polaron problem, we shall tak
into consideration together with the value of the cyclotr
mass for B0 parallel to the optical axis obtainingN2
51.085, where, accordingly to Ref. 12, the small nonpa
bolicity of the polaron spectrum at low magnetic fields w
neglected.

Based on the knowledge of the parameters of the opt
phonon modes from infrared reflectivity measurements,22 in
order to analyze the results of the experiments we shall c
sider the curves representing the functions

N5n

11
1

2 (
m

K am~u!sin2 u

s~u! L
11

n

4 (
m

K am~u!cos2 u

s~u! L 5 f m'
~n! ~41!

for different values of mass componentm' . For each of the
valuesN1 andN2 the expression~41! permits us to obtain a
set of values (m' ,n) that leads to the curvesm'5m'(n)
presented in Fig. 1. This curves present the possible va
m' and n determined by the anisotropic properties of t
phononic spectra of this material compatible with the cor
sponding anisotropic factorN of the polaron spectrum. Th
values of the ‘‘bare’’ electron effective masses inferred fro
e

t-
s

e

is
e

e-

n
lts

it

-

al

n-

es

-

the experiments reported in Refs. 11 and 12 correspon
Fig. 1 to the pointsH1 ~n50.862, m'50.29m0! and H2
~n50.863, m'50.33m0!, respectively. Depending on th
specific value of the anisotropic factor of the polaron sp
trum, induced by a supplemental measurement, the acc
able effective massm' is obtained by comparing the exper
mental value of the cyclotron mass with those determined
Eq. ~33!, m' belonging to one of the curves of Fig. 1. Due
the fact that the Fro¨hlich coupling functionsam(u) depend
on the values of the effective masses of the ‘‘bare’’ electr
that at their term are derived from the cyclotron resona
measurements, a self-consistent solution has to be found
ing the expression~33! and the values of the effective mass
of the ‘‘bare’’ electron corresponding to the pointsH1 and
H2 shown in Fig. 1, the dashed and the dotted curves mar
with ~1! in Fig. 2 present the dependence of the cyclotr
resonance frequency on the magnetic field. The dot co

FIG. 1. The curvesm'5m'(n) for the two values of the aniso
tropic polaron factorN150.837,N251.085.

FIG. 2. The cyclotron resonance frequency vs magnetic fie
The solid, dashed, and dotted curves marked with~1! correspond to
the values ~m'50.235m0 , mi50.205m0!, ~m'50.29m0 , mi

50.25m0!, and ~m'50.33m0 , mi50.285m0!, respectively. The
curves marked with~2! are obtained, in the weak coupling formu
lation of the polaron problem, for the same valuesm' andmi . The
dot marked on the first curve corresponds to the experimental v
of the cyclotron resonance frequency found in the experiment
cussed in Ref. 11.
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3416 57D. E. N. BRANCUS AND G. STAN
sponds to the cyclotron resonance frequency found in
experiment11 performed in the geometry considered throug
out this paper. The solid curve~1! in Fig. 2 was obtained for
m'50.235m0 andn50.872, these values corresponding
the point marked on the curve forN150.837 in Fig. 1.

Knowing the parameters of the optical phonons from
frared reflectivity measurements22 and the values of the con
sidered components of the effective mass tensor of
‘‘bare’’ electron, the angular dependencies of the Fro¨hlich’s
phonon coupling functionsam(u), m51,3 are plotted in Fig.
3. The dotted, dashed, and solid curves are obtained for
valuesm' andn corresponding to the pointsH2 , H1 , and to
that marked on the curve drawn in Fig. 1 forN1 , respec-
tively.

Excepting the contribution of the quasitransverse mo
illustrated in Fig. 3~b!, for the other contributions (m

FIG. 3. The angular dependence of the coupling functio
am(u) for the three branches of the involved phonon modes. T
solid, dashed, and dotted curves correspond to the same valu
m' andmi as those presented in Fig. 2.
e
-

-

e

he

s

51,3), due to their values, a perturbational approach to
polaron problem seems to be inadequate.

The curves similar to those with the index~1!, obtained in
the frame of the weak electron-phonon coupling are mar
in Fig. 2 with the index 2.

The observed discrepancy between the curves labeled~1!
in Fig. 2 that are obtained in the context of intermedia
coupling theory and corresponding curves~2! is due to the
large values of Fro¨hlich’s coupling constants. Thus, at ver
weak magnetic field, denoting the slopes of two correspo
ing curves~1! and ~2! by sp and sv , respectively, for the
relative variationhs , one obtains the expression

hs5
sv2sp

sv
5~A'21!2. ~42!

Also the ratio of the deviations form the linearity of th
curves~1! and~2!, plotted for the same values ofm' andmi ,
representing the ratio of the coefficientsgp and gv of the
terms inB2 is given by

gp /gv5A'
4 . ~43!

For the solid, dashed, and dotted curves, the values ofA' are
1.51, 1.57, and 1.60, respectively.

Thus, the discrepancy between the behaviors of t
curves~1! and~2!, especially for large values ofB, increases
with the strength of the electron-phonon interaction. Nev
theless, for the case of weak electron-phonon interaction
above discrepancy is insignificant and the perturbational
proach is an adequate one.

For the anisotropic polaron factorN251.085 reached
from the second experiment,12 in a similar manner, for the
effective masses of the ‘‘bare’’ electron one obtainsm'

50.228m0 andmi50.269m0 determining the point marked
on the corresponding curve of the Fig. 1. We believe that
anisotropic features of this material could not support
coexistence of both valuesN251.085 andn50.863 pro-
posed in Ref. 12. As concerns the pointH1 shown in Fig. 1,
we think that the difference between the values found
Bloch et al.11 for the components of the effective mass te
sor of the ‘‘bare’’ electron and ours is due to the undere
mation of the electron-phonon interaction in the first case

Our results reflect mainly the strong contribution to t
electron-phonon interaction of the branchm53 of the
phonon modes with low frequencies, v3(u)
P@17.46 cm21, 32.15 cm21#.

However in the circumstances of the existence of a la
free-electron contribution to the dielectric tensor, the scre
ing effect may be important leading to a reduction of cor
sponding Fro¨hlich’s coupling functions. It is our intention to
discuss this subject in the future.

The central point of the method that we have develope
to consider the mean value of thez component of the tota
angular momentum, which is a constant of motion, as a c
straint in the minimizing procedure of the polaron energy

As far as in the presence of a magnetic field the ax
symmetry of the system is preserved, the method just p
sented can be applied, allowing the study of the cyclot
resonance in uniaxial crystals, quasi-two dimensional str
tures, and anisotropic uniaxial quantum wells, as well.
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