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Cyclotron resonance in uniaxial polar crystals with complex structure
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Using a variational approach, the energy spectrum of the optical polaron in a uniaxial crystal with complex
structure, placed in a weak dc magnetic field directed along the optical axis is obtained. In performing the
minimization of the system energy, the mean of zh@mponent of the total angular momentum is considered
as a constraint. The obtained expression of both the cyclotron mass and the effective mass of motion along the
direction of the magnetic field are used to discuss the results of the cyclotron resonance experiment performed
in the layered compound-Hgl,. [S0163-18208)06306-1

I. INTRODUCTION plex structure in the range of weak magnetic fields, obtaining
both the form of the cyclotron mass and the form of the
In order to assure a theoretical basis for the analysis of theffective mass for motion along the direction of the magnetic
cyclotron resonance phenomenon in polar crystals, a lot dield.
work!~® concerning the energy spectrum of the polaron in

magnetic field, for the cases of weak, intermediate, and Il. THE HAMILTONIAN
strong coupling has been done. . . .
Excluding the paper of Larseénin which the cyclotron In the absence of the magnetic field and with ztexis of

resonance of polarons in ellipsoidal bands is discussed in tH&e trihedron directed along the opticalggxis of the crystal, the
context of the Haga approximation, all other theoretical studform of the Hamiltonian of the system’is
ies deal with isotropic systems.

Suitable to analyze the cyclotron resonance of holes in pf pf N
! : - : He=s—+—+>, fiw,(q)bs b
some cubic polar insulators having a multivalley valence 2m,  2m, & O q.40 0
band, the results obtained by Larsen do not apply to the case ’
of a uniaxial crystal with a complex structure due to the V,(q) .
presence of supplemental sources of anisotropy that are con- + E ’\L/v by, €9 +H.C.|, 1)
q.p

tained in both the electron-optical phonon interaction and the
frequencies of the phononic modes. Though there are few .
_10 wherem;, m, , andw ,(q) are the components of the diag-
paper devoted to the problem of the energy spectrum of u L M
' . : . o ; onal mass tensor for the conduction “bare” electron and the
anisotropic optical polaron in uniaxial crystals in the absenc

of the magnetic field, a model discussing the cyclotron reso‘?_requenues of the "true” normal phononic modes, respec-

; : . . Hvely; the symboldl and_L correspond to a direction that is
nance in such an anisotropic system, taking into account all. . .
, A either parallel or orthogonal to the optical axis. The concrete
sources of anisotropy, is still missing. form of the coupling constant ,(q), suitable for anisotropic
The studies of the cyclotron resonance in layered crystals pling w4 P

Hgl, (Refs. 11 and 12and InSe(Ref. 13 deal with the Crystals vg|th complex structure, was obtained by
Toyozawat

anisotropic features of the system in a simplified manner, . )
) N LS o To preserve the axial character of the problem’s symme-
either considering the corresponding Rioh Hamiltonian ; ;
try, an important point of subsequent developments, the ex-

restricted to the one oscillator modebr introducing two L : .
; : ! ternal dc magnetic field, will be assumed directed along
anisotropic polaron coupling constatits:, and «; for mo- the optical axis

tions perpendicular, respectively, parallel to the optical axis. Considering the problem of the electron magnetic-field

In the second approach the forms®f and «; are not en- . R . ;
tirelv based on the anisotrobic broperties of the svstem interaction in the symmetrical Coulomb gauge, we shall in-
y pic prop Y " troduce the operatorsA(A*) and B,B™) related to those

In this paper, based on the idea used by Evrard : . :
Kartheuser, and DevreeeKD) to exploit the existence of tonsidered in Ref. 17 by the equations

the constants of motion induced by the symmetry of the
problem, we develop a variational approach strongly related
to the one of Lee, Low, and Piné3allowing a discussion of
the cyclotron resonance for the magnetic field directed along [ 2h
the optical axis of a polar crystal with complex structure. im0
This peculiar geometry permits us to treat theomponent
of the total angular momentum as a constant of motion awhere, by() =(eBy/m,) we have denoted the cyclotron fre-
EKD! have considered it for an isotropic system. guency of the “bare” electron.

It is in our intention to observe what happens to the en- Using these operators that verify the following commuta-
ergy of an anisotropic optical polaron of a crystal with com-tion relations: [A,A*]=[B,B"]=1 and [A,B]=[A,B"]

A=(2am, Q) Y21, (28

12
X, (2b)
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=0, both, the electronic contributions to the Hamiltonian and i 12 .
to thez component of the angular momentum have the ex- X A—(m Z quq,ﬂbq,#
pressions + e
hQ)
n
2 + Tﬂ% hw,(a)bg b .
He=5—+hQ(ATA+1), (3)
° 2m, i V,.(9) Vi)
+2 Bt Bau | (10
e | WV N
Le,=h(ATA—-B'B). (4 provided thatp,=0, where
According to EKD* we shall consider the following con- 9. =0x*idy. (11

stants of motion:  the component of the total momentum It is our intention to treat on the same basis the electron in

magnetic field and the system of optical phonons. In this

|SZ: pﬁz ﬁqzba’”bq w (5 respect, the trial state is chosen of coheretitype
. R
and thez component of the total angular momentum |{g}>=|§y§>®nq'#|fM(Q)>, (12)
Ly=Le,+if 2 bt b i 1 f drel @' -a where|&,¢) and|fﬂ(q)) are eigenstates of the operatérs
' , AmuTqu é’go' \V ! !
©.0.9 B, andb,(q), respectively.

(6) These states are obtained by acting with the displacement

where the expression of the contribution of the opticaloPeratorsDa(é), Dg(£), andD[f,(q)] on the fundamental
phonons to the component of the total angular momentum States of the oscillator$0,0). (the fundamental state of the
diagonal inu index is obtained as a generalization of the Pare” electron in magnetic field with zero value afcom-

form presented by EKD® In the expressior6), ¢’ is the ponent of angular momentyrand|0) ,, (the phonon vacuum

azimuthal angle in the’ space. state. _ .
Because a coherent state of an electron in magnetic field

is obtained as a superposition of many states with different
Landau quantum number, the expression of the energy
spectrum of the polaron that we intend to obtain will be
We shall apply the LLE theory, suitable to discuss the correct in the limit
polaron problem for the intermediate coupling range, to our
anisotropic system in the presence of the magnetic field. _
In order to eliminate the electronic coordinates from the (1—0 with nQ)=const, (13

Hamﬂt_oman, accordlng. to Ref. 15, we introduce the follow- allowing a proper treatment of cyclotron resonance phenom-
ing unitary transformation: enon. Thus, we shall disregard, from the beginning, the con-
B stant7(}/2 in the transformed Hamiltonian, such a choice

S=5:5,, () affecting only the origin of the energy scale and conse-
where que_ntly, the expression of the ground-state energy. By com-
paring our expression of the polaron energy spectrum, re-

i duced to the isotropic case and in the limit of weak magnetic

Szzex;{% (PZ—E ﬁqzbgubq#)z (8)  field, with the first order inQ) term of the relation(33) of
G4 Ref. 1, in this limit of accuracy, the origin of the energy scale
and can be established.
Taking into account the effect of the canonical transfor-
mations of the displaced-oscillators form on the operafgrs

, (9 B, andb

Ill. THE VARIATIONAL APPROACH
OF THE POLARON PROBLEM

i
SLZEXD - g % h(XQX""yqy)b;,p.bq,,u

qu

P,, being the eigenvalue of the operaﬂég. Taking into 1 _
account the possibility of replacing the electron coordinates DA (§)ADA(§)=A+E,
x and y by the operatorsA and B, for the transformed

HamiltonianS™HS one obtains the form

(14)

Ds'({)BDg({)=B+¢, (15)

~ 1 2
HES*HSZZ—M(PZ_% flqzb;‘#bq’p‘) i
’ D [f,u.(q)]bq,p.D[f,u(q)]:bq,,u+fp.(q)v (16)

the energy of the polaron that should be minimized has the

+7Q .
expression

% 1/2
+
A ama £ 9-0auba
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E(&Lf () =g} H{ }>=P—§+ﬁ2 w2 G, 4 £ ,( >|2+ﬁ—2 > a5azlf (a3 ()]
el J J 2my g ” a m 2\m m w4 2m, a.q' Az0zIT, 1 W
o
) AU L P |§|2—5[Lr22 Al ()
an | W ¥ N 2m Q] g
— & UZE q-|f.(@)]?+ i }E a:9"|f (@] ]f,.(a)]? (17)
2m Q| & A 2m Q7 e " '
wop!

The minimizing procedure will be performed considering E(P,,n)

the mean of the component of the total angular momentum P 2 (a,(0)w,(0)+(n+e)QAT
over the same stat§{g}), as a constraint. a
With the expression§4) and (6) of the two contributions ° L., S a,( 6)sin*6
of thez component of the total angular momentum, and after “6a” Q%(n+e) A, E © (0)S2(0)
a lengthy but straightforward calculation, the form of this ” "
mean value has been obtained: P2 9
+ T [A|l— g Vﬂ(n
S2_(lg)ls” SE Siah= - [g2-i tri Ad h
h h G~ dg LA A 2S a,(6)sir? ocos’ 6
(18) 8) L Il m w,u( 0)52( 0) ’
As an intermediate result a set of equations for the varia- (21

tional parameterg, ¢, andf ,(q) is obtained. The form of the
equation forf ,(q) is a generalization of the usual expressionWhere
(25) of Ref. 15 permitting the introduction of the magnetic .
field into the problem. To work out the problem of the po- A =1+ v S <“u( 0)sir? ‘9> 22)
laron energy we have to solve the equation fig¢q), and s(6)

find out the dependencies of the variational parametef2,0n

and L, to obtain the final form of the polaron energy and
E(Pz.L2).

1 <aﬂ( )cos 0>’ 23

AH=1+§Z S(0)

IV. WEAK MAGNETIC FIELD H

In the following, we shall consider the case of weak v being the anisotropic mass ratie=m;/m, for the “bare”
magnetic-field range (}/w,(#)<1) and low values of electron. In the above expressions we denoterhff) the

PZ{PZ<[2ﬁm”wﬂ(0)]1’2}. Frohlich’s dimensionless coupling const&htorresponding
In this case, it is a matter of calculation to see that sim+o the phononic brancj and bys(6) the expression cé8
plifying the expressiori18) to +vsirfg, the symbok ) meaning an angular average
L /h~|€?, (19 1=
(f(6))= > f f(#)sin(6)da. (24
0

the correct form of the polaron energy spectrum, including
the terms of type Q/w,)? Pi2imwe, and
P2i2imiw,(Q/w,), is obtained.

If the trial state had been an eigenstate of the correspon
ing operator, the mean value of taecomponent of the an-
gular momentunmL, would have been of the formin, n

In the case of an isotropic crystal with simple structure,
&be expressiori21) of the polaron energy is reduced to the
result

- o - Eis(P,,n) Q 3 0\?
integer. Unfortunately, this is not the case, so that in the =is*" z: =—a+(n+8)f — — (n+s)2a,84(—)
following we shall take only approximately fiw w 40 ®
2
L~fi(n+e), (20) P?

: (25

3 . Q
T omiw | P20 (MR
wheree lies between 0 and 1 and witl=0 as a result of Eq.
(29. where w is the optical phonon frequency amlis the com-
The final form of the energy spectrum of an anisotropicbination (1+ «/6) 1. This expression is an extension to the
polaron is obtained: intermediate coupling range of the result obtained by Bhjaj.
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In the limit of small Q), by choosinge=3, the form of the " 9 ., ., a,(0)sir? ¢ cos 0
ground-state energy of E(R5) is =g vAAL % hw (0)5(6) |
Ex(0,0) 1 0 26 (319
e T3 B (260 and
. . , p2 p2
also obtained, in the same order () from the expression (2) — i I L
(33) of Ref. 1. EZ (PP % ilau(6)w,(0) 2mA; 2m A, °
The choice of the trial statel2) prevents us from obtain- (32

ing, in the second order if2, the correct contribution to the o ]

ground-state energy. However, what is important in the study NOW it is obvious that the fornt21) of the energy spec-

of cyclotron resonance, the energy difference between twduMm of an uniaxial polaron in a magnetic field, written for

consecutive levels has the same expression, £=73, can be obtained from the relati¢80) by substituting
PZ/2m, and 2Q(n+3) for P?/2m, and P?/2m, , respec-

Ei(P,,n+1)—E(Pz,Nn) JQ 2 tively. Thus one can obtain both the cyclotron mas3 ,
P, P o720 (n+1)ap (;) defined through the energy difference between two consecu-
tive polaron levels, usually taken Bt,=0,
> B* QP (27) m 9 (0)sirt 6
— s~ O - ’ L - - @
20 2mfi — =ATl- 2 4 N
w w M A= 35 AN 1)OA] % < PRGE: 9>
whatever the form, either Eq5) of our work or Eq.(33) of (33
Ref. 1 would be used. and the effective mass of motion along the direction of the

As was stgted by Larsénfor the weak-coupling limit of _magnetic fieldM, ,
the energy difference between the ground state and the first

excited magnetic state on obtains the value m, 9 1
M—=AH*1— 3 v( n+ E)QALZA,Z
L Q 3(0)\2 - :
5lo 20\ 0 @ (28 XE cv’u(@)sin2 6 cog 6 (34
, _ m w,(0)s* 6
also found in the frame of the perturbation theory.
According to Refs. 1 and 18, the isotropic for(®5) ?f Just like in the case of an isotropic crystal, when at very
the polaron energy spectrum in the magnetic fieldefer 3, weak magnetic fields the value of the polaron massob-
can be obtained from the solution tained for both the cyclotron mass and the effective mass of
) ) o the motion along the direction of the magnetic field, in the
E(PVho=— at P _ i J P anisotropic case the aforementioned quantities are reduced to
s(Plho=—atfsomm— 7 af| 5o the componentd of the polaron effective mass tensor:

(29)
ME=M,=m A, (359
found in the absence of the magnetic field)+H3)%AQ
+ P2/2m replacingP?/2m everywhere. M =mA,. (35b)
A similar correspondence between the two polaron energy
spectrai.e., in the absence or in the presence of the magnetic The relationg(22), (23), and(35) permit us to obtain the
field) also holds for the case of anisotropic uniaxial crystal. €gquation
Thus extending the expressi8rof the polaron energy in
unia_xial crystal in the absence of the magnetic f_ield by in- Z (@,(6))=2[(M;—m)/m+2(M, —m,)/m,],
cluding also the terms of fourth order i one obtains ©

(36)
2\2 2 \2
E@DP,,P)=E?D(P,,P,)+JI? ﬂ +3@ P which is a generalization to this anisotropic case of the well-
L LR 2m, L 12m, known result of the intermediate coupling theory
+Jﬁlg(P—'2) p? ) 0 M* =m(1+ al6). (37)
-\2m;/\2m, /)’ . . .
! + Using the expressiof21), the corresponding form of a
where the coefficientd have the forms two-dimensional2D) electron interacting with a 3D aniso-
tropic system of phonons is obtained by taking formafy
3 a (0)cod o —o0, In terms ofa, () defined through the relation
JP=—g A <,i"()—2> (319 !
w \hw,(0)s(0) @, (0)=sin6 lm a,0), (39)

mH*WC

2 i 4
J(f): _ (E) VZAIAE < a,(6)sin” ¢ > (31b) the obtained form(39) is a generalization to the anisotropic

8 7 \hw,(0)s%(0) uniaxial crystal and to the intermediate coupling case of the
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expression of the so-called semiclassical contribution to the 06 ——F———————//T——1———7T——7—
level shift SEgc, found by Das Sarnfafor an isotropic sys- ™M
tem: N=0.837 N=1.085
0.5 -
1 T~ 1y, A2D\—1
EM/i=—5 2 | 2@,(0)w,(0)do+Q(n+3)(AP)
2% Jo 04} y J
2
9 Wa (0) I A
— = 02(n+1)2(A2D)-4 13 3l ]
o5 AN+ 2)A(AE) % . wﬂ(a)de, 03F M.
(39 oz -
where
1 m 0.1 i
AiDzl‘l‘—E J EM(Q)dG (40) | . [ L .7 e SRR BUPURN R S
8% Jo 085 086 087 0.88 116 118 120 122 124 v

Similar results are found for the case of an electron interact-
ing with a 3D anisotropic system of phonons and which is FIG. 1. The curvesn, =m, (») for the two values of the aniso-
confined in a quantum well whose width goes to zero. tropic polaron factoiN;=0.837,N,=1.085.

the experiments reported in Refs. 11 and 12 correspond in
Fig. 1 to the pointsH; (»=0.862,m, =0.29m,) and H,

We discuss the experiments of the cyclotron resonancér=0.863, m, =0.33my), respectively. Depending on the
phenomenon in red mercury iodider{Hgl,) performed by specific value of the anisotropic factor of the polaron spec-
Bloch et al'!* and Hodby and co-worker$, restricting our-  trum, induced by a supplemental measurement, the accept-
selves to the case of electrons. The aim of such experiment &ble effective masm, is obtained by comparing the experi-
to obtain the components of the effective mass tensor of thenental value of the cyclotron mass with those determined by
“bare” electron. Due to the involved axial symmetry, in Eg.(33), m, belonging to one of the curves of Fig. 1. Due to
addition to the measurement of the cyclotron resonance frethe fact that the Fifdich coupling functionsx ,(6) depend
qguency performed foB, directed along the optical axis, a on the values of the effective masses of the “bare” electron
supplemental source of information concerning the polarorthat at their term are derived from the cyclotron resonance
spectrum has to be considered. Thus, according to the resultseasurements, a self-consistent solution has to be found. Us-
obtained from the drift mobility measuremeRtsBloch  ing the expressiof83) and the values of the effective masses
et al take for the anisotropic polaron factbt=M, /M, , of the “bare” electron corresponding to the poirtts and
the valueN;=0.837. In the second papérthe cyclotron H, shown in Fig. 1, the dashed and the dotted curves marked
mass obtained foB, perpendicular to the optical axis was with (1) in Fig. 2 present the dependence of the cyclotron
identified with the expressiorM;M , )2 Though this result resonance frequency on the magnetic field. The dot corre-
is beyond our frame of the polaron problem, we shall take it
into consideration together with the value of the cyclotron g mev,”’
mass for B, parallel to the optical axis obtainingN, sl (0
=1.085, where, accordingly to Ref. 12, the small nonpara- ol _
bolicity of the polaron spectrum at low magnetic fields was N o
neglected. 06 |

Based on the knowledge of the parameters of the optical os |-
phonon modes from infrared reflectivity measureméhtis, SIS
order to analyze the results of the experiments we shall con- o

V. RESULTS AND DISCUSSION

sider the curves representing the functions 03 T
1« [a, (0)sif o T e
1+ 2 L 01}
27 s(6) I

N=vp

v a,u(ﬁ)COS?' 0
l+Z§ < s(6)

0.0 05 1.0 15 2.0 25
B(T)

>:me(V) (41 0.0 AT ' !

for diff t val f = h of th FIG. 2. The cyclotron resonance frequency vs magnetic field.
or difterent values of mass component . For each of the The solid, dashed, and dotted curves marked {lijfrcorrespond to

valuesN; andN, the expressioi41) permits us to obtain a .o yalues (m, =0.235my, m,=0.205m,), (M, =0.29m,, m,

set of values ifh, ,») that leads to the curves, =m, (»)  —(.25m,), and(m, =0.33m,, m,=0.285my), respectively. The
presented in Fig. 1. This curves present the possible valugges marked with2) are obtained, in the weak coupling formu-
m, and v determined by the anisotropic properties of thejation of the polaron problem, for the same values andm, . The
phononic spectra of this material compatible with the corredot marked on the first curve corresponds to the experimental value
sponding anisotropic factdd of the polaron spectrum. The of the cyclotron resonance frequency found in the experiment dis-
values of the “bare” electron effective masses inferred fromcussed in Ref. 11.
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“ T =1,3), due to their values, a perturbational approach to the
polaron problem seems to be inadequate.

The curves similar to those with the ind&l, obtained in
the frame of the weak electron-phonon coupling are marked
in Fig. 2 with the index 2.

The observed discrepancy between the curves lalié)ed
in Fig. 2 that are obtained in the context of intermediate
coupling theory and corresponding cury@s is due to the
large values of Frdlich’'s coupling constants. Thus, at very

. weak magnetic field, denoting the slopes of two correspond-

! w2 " ewmd) ing curves(l) and (2) by s, ands,, respectively, for the
relative variations, one obtains the expression

(2)

S,— S
s - 7s=——=(A ~1)% (42

Also the ratio of the deviations form the linearity of the
curves(1) and(2), plotted for the same values of, andm;,
representing the ratio of the coefficienyg and vy, of the
terms inB? is given by

Yol v,=Al. (43)

For the solid, dashed, and dotted curves, the valués afre
1.51, 1.57, and 1.60, respectively.

" g (rad)

(b) Thus, the discrepancy between the behaviors of two
curves(1) and(2), especially for large values &, increases

4 " with the strength of the electron-phonon interaction. Never-

| } theless, for the case of weak electron-phonon interaction the

above discrepancy is insignificant and the perturbational ap-
eI T proach is an adequate one.

] For the anisotropic polaron factdd,=1.085 reached

T 4_5;5'/ \*;-3 1 from the second experime?’?t,in a similar manner, for the

N effective masses of the “bare” electron one obtaimg

LE . =0.228mq andm;=0.269m, determining the point marked

L/ \, - on the corresponding curve of the Fig. 1. We believe that the

o . anisotropic features of this material could not support the
0 w2 "8 (rad) coexistence of both valueN,=1.085 andv=0.863 pro-

posed in Ref. 12. As concerns the paiiht shown in Fig. 1,
© we think that the difference between the values found by
Bloch et al!! for the components of the effective mass ten-

FIG. 3. The angular dependence of the coupling functions ¥ » . .
a,(0) for the three branches of the involved phonon modes. TheOr of the “bare” electron and ours is due to the underesti-

solid, dashed, and dotted curves correspond to the same values Bation of the electron-phonon interaction in the first case.
m, andm; as those presented in Fig. 2. Our results reflect mainly the strong contribution to the

electron-phonon interaction of the brangh=3 of the
sponds to the cyclotron resonance frequency found in thehonon modes with low frequencies, w3(6)
experiment! performed in the geometry considered through- ¢ [17.46 cm 1, 32.15 cm'Y].

out this paper. The solid curv@) in Fig. 2 was obtained for However in the circumstances of the existence of a large
m, =0.235m, and »=0.872, these values corresponding tofree-electron contribution to the dielectric tensor, the screen-
the point marked on the curve fot;=0.837 in Fig. 1. ing effect may be important leading to a reduction of corre-

Knowing the parameters of the optical phonons from in-sponding Fralich’s coupling functions. It is our intention to
frared reflectivity measuremeRtsand the values of the con- discuss this subject in the future.
sidered components of the effective mass tensor of the The central point of the method that we have developed is
“bare” electron, the angular dependencies of thetffich's  to consider the mean value of tlzecomponent of the total
phonon coupling functiona ,(¢), «=1,3 are plotted in Fig. angular momentum, which is a constant of motion, as a con-
3. The dotted, dashed, and solid curves are obtained for thetraint in the minimizing procedure of the polaron energy.

valuesm, andv corresponding to the points,, H;, and to As far as in the presence of a magnetic field the axial
that marked on the curve drawn in Fig. 1 fidg, respec- symmetry of the system is preserved, the method just pre-
tively. sented can be applied, allowing the study of the cyclotron

Excepting the contribution of the quasitransverse modesesonance in uniaxial crystals, quasi-two dimensional struc-
illustrated in Fig. 8b), for the other contributions i  tures, and anisotropic uniaxial quantum wells, as well.
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