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The electronic and structural properties of neutral and charggd, Silusters, withn=3, 4, and 5, and
related clusters, are examined using the higher-order finite-difference pseudopotential method. The ground-
state structures for these clusters are determined via a simulated annealing procedure. The photoemission
spectra for negatively charged clusterg@Bi~ are simulated at finite temperatures using quantum forces
coupled with Langevin dynamics. The simulated spectra are in good agreement with measured spectra. In
contrast to previously predicted structures, we find the lowest-energy structures,@r&®id SiOg corre-
spond to nonplanar ringgS0163-18208)03005-7

. INTRODUCTION spectroscopy measurements of@~ cluster§ and in pre-
dicting the structure of both charged and neutral clusters.
Silica is an important technological material. Uses of
silica span applications from passivation of electronic mate- II. COMPUTATIONAL METHODS
rials to vitrification of materials for waste disposal. However,
at the microsopic level, our understanding of silica is incom- Our theoretical approach centers omb initio
plete. For example, the process by which oxidation occurgpseudopotentialswhich have been constructed within the
the role of defects in oxides, the nature of amorphous strudocal density approximation using the procedure of Troullier
tures, and the evolution of macroscopic properties from atoand Martins? The atomic configuration used for the con-
mistic constituents are all important unresolved issues.  struction of the Si potential wass33p? with the core size
Clusters provide an interesting source of information forparameters fixed tos=r,=2.50 a.u. (1 a.4x=0.529 A.
the bonding properties of mattbThe bonds in clusters are For the O potential, the configuration was?p* with the
often in unusual configurations relative to macroscopiccore size taken to be;=1.30 a.u. and,=1.65 a.u. The
pieces of the solid state. For example, in tetrahedral semiocal part of the pseudopotential was taken tol 5€®; only
conductor clusters the coordination number may be 2, 3, or 6=1 nonlocal terms were included in the pseudopotential.
in contrast to a diamond crystal value of 4. Also, the surfacelThe exchange-correlation potential was from the work of
of a cluster dominates its electronic and structural propertiesCeperley and Aldér as parametrized by Perdew and
the atoms in a cluster may be considered all “surface” atomgZunger°
if the cluster is only 10—20 atoms large. In this situation, the The resulting one-electron Scliioger equation was
cluster can have thermodynamic properties far removed frorsolved in real space on a uniform grid via a higher-order
“bulk properties.” These properties may include a reducedfinite-difference method* The grid spacinch was fixed to
melting point and complete solubility between normally in- be 0.325 a.u. We can roughly estimate the plane wave cutoff
soluble consituents. In short, an understanding of silicalikeas3(/h)? or about 90 Ry. This can be compared to a plane
clusters will allow one to develop insights into bonding in wave cutoff of 64 Ry commonly used for crystalline silica.
silica and similar materials. Our use of a uniform grid may be contrasted with other ap-
One of the chief problems in understanding clusters igroaches such as adaptive griddhe use of adaptive grids
assessing the accuracy of predicted electronic and structurallows one to account for different length scales. For ex-
properties. Unlike crystalline matter, where x-ray diffraction ample, the grid may be finer around the oxygen atom and
can be used to extract an accurate picture of structure, clusoarser around the silicon atom. Unfortunately, adaptive
ters cannot be so easily probed. The procedure for clusters ggids can greatly complicate the calculations. This is espe-
quite indirect. One can calculate a property such as the Raially true for situations in which the atoms are allowed to
man spectrior photoelectron spectf&, and compare the move. The grids must be updated continuously as the atoms
theoretical calculation to experiment. For semiconductingnove, and determining accurate forces is complex as the
clusters>=® small differences in the structure can result in“basis” changes with the grid.
large differences in the photoelectron spectra. In such cases, An important factor in any real space method is the
which are by no means universal, some candidate structurésmoothness” of the pseudopotential. In plane wave calcu-
can be eliminated. In other cases, two structures which migHations, the pseudopotential is expanded in reciprocal lattice
be different in terms of their topology may possess similarvectors. This set of vectors is often terminated by a vector
photoemission spectra and no distinction between clustersommensurate with the shortest wavelength present in the
can be determined via the simulation. Here we will considemwave function. The termination procedure in some sense is
similar calculations for silica clusters. In particular, we areequivalent to a “low-pass” filter. Short-ranged fluctuations
interested in making comparisons to recent photoelectrom the potential are effectively removed. This issue is non-
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trivial and has resulted in some very poor convergences foworks very well for escaping from the minimum, or avoiding
some pseudopotentials. In particular, Gygi and Galli foundmetastable structures, relative to simulated annealing. Unfor-
that with a CG, molecule, even with a grid spacing of less tunately, the use of this algorithm is not straightforward. It is
than 0.25 a.u. the eigenvalues and eigenvectors were not wellill possible in some circumstances to be trapped in a par-
converged? They attributed this problem to the use of a ticular structural topology. In these cases, one must introduce
Hamann-Scfilter-Chiang potentiaf which is not especially “mutations” into the process to transit to a new structural
well suited for real space grid$.These potentials can pos- typel®

sess fluctuations in the potential near the core radii. In con-"" |, the simulated annealing approach, such as with Lange-
trast, work using the Troullier-Martins potentiaound the i gynamics, a random configuration of clusters is consid-
molecular wave functions and eigenvalues to be well CONgred at a hot temperatut&!® The clusters are allowed to

verged at these grid spacints. . L . . )
Our higher-order finite-difference expansion of the kineticmteraCt via interatomic forces as determined by quantum cal

X ulations(or by empirical force fieldsand with a fictive heat
energy operator includes terms up to 12th order. The resul vath. The bath imparts stochastic forces which are dissipated
ing eigenvalue problem was solved using a generalize ' P b

Davidson procedur® This method takes advantage of the y a viscous damping term. If the system is cooled ;Iowly,
oone hopes to quench out a reasonable structure. Simulated

sparsity and well-defined structure of the Hamiltonian ma . ;
annealing works quite well for small clusters, e.g., clusters

trix. A block diagonalization procedure was used to find the ith less than a dozen atoms or so. However. once the num-

eigenvalue-eigenvector pair. Preconditioning consisted of’ .
ber of atoms is increased, the procedure becomes computa-

averaging over neighboring grid points. This simple precon-; . :
ditioning accelerates the convergence by approximately 309 nally intractable. Larger clusters have been treated directly

in terms of the computing time. We also dynamically altered”'@ Langevin dynamics using physical or chemical insights
to expedite the procedure. In this work, we utilize Langevin

the tolerance criteria for setting the accuracy of the namics to obtain “realistic structures” for . and re
eigenvalue-eigenvector pairs. All eigenvalues were require a{ed c:usters : ISt uctu n

to be converged within 0.1 eV at the initial self-consistency
loop. This criterion was made more stringent by a factor of 2
aft{-zr each itgration until a value of 0.005 eV was egtablished. IIl. STRUCTURAL PROPERTIES OF H ,Si,05,H,S,0s
This dynamic tolerance can reduce the compl_Jta'[_|or}aI time AND Si;0, CLUSTERS
by a factor of 2. We note that our tolerance criteria is only
for the highest eigenvalue computédhe other eigenvalues Clusters can be used as models for the bulk to determine
are converged to much more stringent tolerance, e.g., typbond-stretching forces for the Si-O bond and to determine
cally ~10™4 eV. bond-bending forces for the Si-O-Si and O-Si-O boffts.
The boundary conditions for the eigenvalue problem weréSeveral of the most useful interatomic silica potentials have
to demand the wave function vanish outside a sphere whicheen constructed in this manner. For example, the widely
contains the cluster. The size of the sphere was set so that thged Tsuneyuki potentfdlwas constructed by fitting aad
surface of the sphere was at least 5 a.u. removed from arfjoc potential to Hartree-Fock calculations. In this case,
atom within the cluster. A multipole expansion was per-bond-bending forces were not included.
formed to determine the Hartree potential outside of these To test our pseudopotential calculation, we have calcu-
domains. This expansion was used to fix the boundary conlated the structures of }$i0; and HSi,0s. H,SiO; is the
dition in solving Poisson’s equation with a conjugate gradi-silicon analog of carbonic acid and includes &S0 double
ent method® bond. HSi,Os includes two silicons which are in a
The solution of the eigenvalue problem allows one totetrahedral-like environment. These structures have been
compute the total electronic energy of the cluster as a funcireated by a self-consistent fiekBCH molecular orbital
tion of the atomic coordinates; i.e., it allows the computationmethodz.2 To initiate our finite-difference pseudopotential
of the quantuminteratomic forces. This is an important issue calculation, a similar geometry was assumed; this geometry
for clusters of silica as the nature of the Si-O bond is notwas then allowed to relax fully. For the structural optimiza-
entirely ionic or covalent. As such, simple interatomic poten-tion, we have used the initially scaled version of Broyden-
tials, which do not contain many-body forces, are not likelyFletcher-Goldfarb-Shann@BFGS quasi-Newton methdd
to be very accurate for Si-O clusters. with an inexact line search. The BFGS quasi-Newton method
A serious consideration in any cluster calculation con-finds the minimum of a function iteratively. In all cases, we
cerns the determination of the ground-state structure or aterated the structure until the magnitude of the largest force
least a “realistic” description of the structure. This is a on any atom was less than 0.005 a.u. Since the role of H in
highly nontrivial problem owing the numerous degrees ofthese systems is only to passivate the oxygen dangling bond,
freedom and the existence of numerous energetically degemve have not tried to obtain a highly accurate potential. For
erate structures. There are several approaches to this probléhe hydrogen pseudopotential, we used a simple local poten-
in the literature. Most approaches are based on either simutiial. We do not expect the potential to be highly accurate in
lated annealintf**8or on genetic algorithm¥’ In the genetic  terms of the H-O bond. However, we do expect the remain-
algorithm method, a set of “parent clusters” are selected andng bonds to be accurately represented.
“offspring clusters” are created by “cutting and pasting” In Fig. 1, we illustrate the predicted molecular structure.
the parents. The cutting procedure is based on bisecting tHe terms of comparing to the SCF molecular orbital wéfk,
cluster with a random plane. Often thousands of generationigie predicted structures are remarkably similar. Ignoring the
are considered; at each generation, the most energeticallydrogen bonds which tend to be about 0.08 A shorter than
endowed offspring are retained and remated. This proceduitte SCF work, the largest difference for,$O; occurs in
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SN Occupying only one of these states causes some difficulty in

>O obtaining a self-consistent field. In principle, the system

should undergo a strong Jahn-Teller distortion and break the
symmetry between these states: lowering the energy of the
occupied state at the expense of the empty state. However,
during the SCF iteration procedure, a small difference in the

the Si= O double bond. The molecular orbital work predicts 960metry will result in a large change in the energy of these
the double bond to be 1.50 A whereas the pseudopotentiéltates- This situation made obtaining a SCF in the traditional

FIG. 1. Predicted ground-state structures fopSHD; and
H,Si,O5 clusters.

local density approximatiofLDA) value is 1.52 A. The O-
Si-O bond angle is 106.0° whereas the pseudopotential val
is 101.1°. In the case of }$i,0s, the largest difference in
bond length is less than 0.01 A.

manner impossible because of large oscillations in the poten-

Jial which arose as one state emptied and the other became

occupied. The procedure by which we obtained a SCF was to
choose one of the wave functions, e.g., the one which results

We note that the SCF molecular orbital calculations differ!n & dipole painting to a particular terminal silicon atom. We
in a number of technical details from our work. The SCFthen constrained this wave function to be occupied regard-

molecular orbital calculations include all the electronic stated€SS Of whether it was above or below the competing state.
and, more importantly, do not utilize the local density ap- _ 1he structure of the negatively chargedGj cluster is

proximation. Also, the molecular orbital method involves an@ISO presented in Fig. 2. The Si-O bond lengths involving the
explicit Gaussian basis while the finite-difference methodcharged terminal silicon atom are lengthened from 1.68 A to

does not use a basis at all. Thus, it is somewhat surprising 183 A. However, the Si-O bond lengths for the opposite
find that the calculated structures agree so well, terminal silicon atom remain essentially unchanged. The

Another structure we examined is the,Gj cluster. Pre- Si-O bond lengths on the tetrahedrally coordinated silicon

vious theoreticaf and experimental woPksuggests that this 0m are equal before charging. After charging, the bond
structure has @, symmetry with two SiO, rhombuses lengths on the side of the charged terminal silicon atom are
sharing one silicon atom. The central silicon atom is in alengthened from 1'61 A to 1.7,&0 A. The other bonds are
tetrahedral environment while the two terminal silicon atomsShortened from 1.64 A to 1.60 A.

are connected to two oxygens. The predicted structure, opti- T?e er:ectromc. c?nf|%urat|on Iresultmg Trom our calcula}-h
mized as before, is shown in Fig. 2. tion for the negatively charged cluster is also consistent wit

We can compare our structure to recent theoreticaPreVvious worké* In Fig. 3, we illustrate the charge density

calculations’* The predicted structures are similar. We find a
relatively small, but systematic, difference between our cal-
culations and those from quantum chemistry methods. The
Si-O bonds are shorter in our work by about 0.03—0.04 A or
about 2% when compared to other calculations. This is the
accuracy we expect from the local density approximation.
With respect to the bond angles, they are consistent with our
“rescaled” bond lengths: the Si-O-Si and O-Si-O angles
agree to within a degree.

This cluster has an intriguing behavior when negatively FIG. 3. Charge density for the LUMO in &,~. The contours
charged. The lowest unoccupied states are doubly degeneraigrrespond to intervals which double with each contour. The maxi-
and are highly localized on opposing terminal silicon atomsmum density is 0.8 a.u.
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for the highest occupied state. The density is strongly local-

ized on a terminal silicon: in particular the terminal Si atom 51303 51,0,
with the longer Si-O bond length. This is expected as the / - \ LA 66A
extra charge weakens the Si-O bond. The charge density for ‘\)0 o o ¥/ U\
the added electron is-like with the p state oriented perpen- 102 \ ) 106” T
dicular to the plane containing the terminal silicon and o l II»GSA
neighboring oxygens. S 134 0 Si gy 9" 1
’\Cj/ = o ’\Q—"‘,
L63A .7 - TL70A T
IV. STRUCTURAL PROPERTIES OF Si,O,, CLUSTERS:
NEUTRAL AND CHARGED Si4 04 ~ ) 5140;1 -
Ringlike structures such asg8l; are thought to play an B »:J’ ‘ \/‘ 1734
important role in the properties of silica. For example, they i / 127° B / 89‘><~ i
have been proposed to account for the anomalies in the Ra- N\ 0 W e e
man spectra of vitreous siliGa. Here we examine SO, 1'65A\; 104 O
clusters withn=3, 4, and 5 in both the charged and neutral ¥ \ 92
states. ¥
For small rings, a planar geometry is thought to be the - G
ground-state structufe?® We considered a Si-O ring with a . - )
planar geometry as the initial candidate structure and used 85 Os SisO5 L
simulated annealing with Langevin dynamics to verify the /T\ T T
proposed structure. In terms of some of the computational
details, the viscosity of the bath was taken to be 1@.u. e

Initially the cluster was heated to about 2000 K and cooled to
a temperature of 300 K. The integration time step was taken
to be 100 a.u(or about 2.4 fs Typically, several hundred
time steps were used with a total annealing time-ofl ps. -
This simulation time is adequate for the relatively small clus- 1 .
ter sizes considered in this work. After the simulated anneal-
ing procedure, we then quenched the cluster to the ground- FIG. 4. Predicted ground-state structures fqiCgiand Sj,0,,~
state structure again using the BFGS quasi-Newtorlusters.
minimization procedure. We made no attempt to “fine-tune”
the clusters by imposing any special symmetry. The resultingure of SjO, is not planar. We find a “buckled” ring struc-
structures are shown in Fig. 4 for both the neutral andure for S;O,4. Although we initiated the simulated anneal
charged states. with a planar structure, the stochastic element of the anneal
One advantage of using a real space method is that thesdlows symmetry breaking. We found the original planar
is no need for a compensating background as would be thduster quickly deviated to a structure as in Fig. 4. We also
case for a supercell calculation. We simply modify theexamined the S0, via a constrained minimization; i.e., we
boundary conditions in calculating the charged cluster; i.e.minimized the energy for a planar geometry. The nonplanar
we add a monopole terrtt-e?/r) to the Hartree potential structure is favored by an energy difference of more than
outside the spherical domain of the cluster. ~0.3 eV/atom. We found at least one other calculation for
For S;05, we find that the lowest-energy structure is pla-the geometry of $0,.28 This calculation predicted a planar
nar. This is consistent with previous theoretical and experistructure which is at variance with our results. We note that
mental evidencé@ The two angles for Si-O-Si and O-Si-O are our constrained minimization agrees with the previous planar
not equal and are reminiscent of what one might expect fronstructure: We find a Si-O bond length of 1.60 A, a Si-O-Si
forms of solid silica. In many crystalline silic&5the build-  bond angle of 165°, and an O-Si-O bond angle of 105°. The
ing block is a tetrahedral unit of Sjdn which the O-Si-O  previous calculation found a bond length of 1.65 A and bond
angle is close to the tetrahedral value of 109.5°. Also, moséngles of 166.6°(Si-O-S) and 103.4°(O-Si-O). It is not
crystalline polymorphs of silica differ only in how the tetra- clear that the previous work found a global minimum as the
hedral units are arranged. Typically, the Si-O-Si bond anglghase space explored was considerably smaller than the cur-
is “floppy” with a typical value near~140°. In SiO5, the  rent work. The bond angles we find are in line with what one
0-Si-0 bond angle is 102° and the Si-O-Si angle is 134°. Ifwould expect for silica. For example, the bond angle of
we negatively charge this cluster, the structure deviated66.6° for the Si-O-Si angle in the planar structure is much
somewhat from a planar structure. The additional charge ifarger than in the S0; cluster or what one expects from
localized on an oxygen atom which moves out of the planerystalline silica.
(Fig. 4). This change in geometry upon charging is also con- When negatively charged, the,8),~ cluster behaves in a
sistent with previous worR.As in the case of the §D,  similar fashion to the SD;~ cluster. The extra electron is
cluster, the bonds to the charged atom are weakened by thecalized in a state on the anion. Moreover, the bond lengths
additional charge and they become longer by about 2—3%o this anion are lengthened by abouB8—4 %.
than in the neutral cluster. The SEOg cluster is also buckled with a geometry similar
In contrast to the structure of {8);, the predicted struc- to the SjO, cluster. One noticeable difference is the lack of
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change in the cluster geometry when charged. The bond to
one of the anions is lengthened, but the angle changes are
smaller and the charge localization is not nearly as strong.
One would expect that as the cluster increases in size, the
role of charging on the structural energy would become less.
However, the similarity between thes8i5 cluster and the
SisOs~ cluster is somewhat surprising.

The energy differences as a function of cluster size are not
large. If we take the total energy for8); as our zero ref-
erence, then 30, and SiOs are both within~ 0.1 eV/atom
of the reference energy. The clusters become slightly less
stable with increasing size. This is also true for the charged
clusters. Perhaps the similarities in total energy are not sur-
prising considering the similarity of the clusters in terms of
bond angles and bond lengths.

V. SIMULATED PHOTOEMISSION SPECTRA OF Si ,0,,~
CLUSTERS

Energy (eV)

A central advantage of our method when compared to
other ab initio methods is that we can simulate the phOto'The theoretical spectra are shown by dashed lines. The solid lines

emission spectra via molecular dynamics W'th quantur'rhre from experiment, Ref. 6. The energy zero corresponds to the
forces. Other methods, e.g., quantum chemistry methodﬁghest occupied state in the simulation.

which include configuration interactions, are too computa-
tionally intensive to permit such simulations. The procedurecluster. In order to simulate the experimental resolution, we
we use has been used previously for examining the photdiave convoluted this spectra with a Gaussian with 0.2 eV for
emission of negatively charged silicon and germaniunmthe half-width at half-maximum.
clusters>!® Here we focus on the charged clustersGgi- The spectra for these clusters all have one feature in com-
with n=3, 4, and 5 and compare to recent photoemissionmon: a small peak separated from the main part of the spec-
work 8 One significant drawback of the photoemission meadra. For the neutral clusters, a gap-efL.—2 eV exits between
surements is the limited energy window. Only~-a2—-3 eV  the highest occupied molecular orbitelOMO) and the low-
energy window exists. est unoccupied molecular orbitdlUMO). If an electron is

Our simulation is initiated by assuming the lowest-energyadded to the LUMO orbital, and no relaxation occurs, this
structure(Fig. 4). Again, the cluster is placed in a fictive heat orbital will appear as a peak in the photoemission spectra.
bath at a temperature commensurate with the experimentdlhe contribution from this orbital will be separated from the
conditions. In this case, we are using Langevin techniques a&maining spectra by the HOMO-LUMO gap. Of course, re-
a “thermostat” in contrast to the simulated annealinglaxation effects will change this gap. As such, the HOMO-
procedure® Langevin dynamics can be justified as a thermo-LUMO gap for the neutral cluster need not be accurately
stat for statistical averages in the same fashion as other dyeflected in the photoemission spectra for the charged cluster.
namics, e.g., the use of Nosgynamicé® in the Car- In the case of 3037, the contribution from the added
Parrinello method® We note that unlike the Car-Parrinello electron results a broad feature. This feature indicates that
dynamics, we do not use fictitious electron dynamics. Inthere is a large geometry change between the charged cluster
stead, we quench the system to the Born-Oppenheimer swersus the neutral clust€iThis is consistent with our calcu-
face at each time step in the simulation. We have taken thkation. In particular, SiO; becomes nonplanar when charged
temperature of the clusters to be 500 K. After a short therin contrast to SiO, and SiO5. The HOMO-LUMO gap for
malization time of about 100 time steps, each cluster washe neutral cluster is 2.9 eV. Upon charging the separation is
examined for an additional 300 time steps or about 0.7 psieduced to 1.7 eV. Experimentally, the separation is difficult
This time scale is sufficient for the cluster to sample a reato determine because of the broad peak, but a value of 2.2 eV
sonable number of configurations given the relatively lowis a reasonable estimate. Given the simplicity of our analysis,
temperature. the line shapes are in good agreement.

In making comparisons to experiment, we average the For S0, , the HOMO-LUMO gap as indicated by the
eigenvalue spectrum of the cluster over the simulation timephotoemission spectrum is smaller than iaGi~. This is
We have not included any matrix elements in the averagedonsistent with the theoretical predictions. The HOMO-
eigenvalue spectrum, and so only the peak positions andUMO gap in the neutral cluster is 2.0 eV and when charged
“gaps” should be compared. This is not a bad approxima-it is reduced to about 1.3 eV for the ground-state structure.
tion as the contributions to the photoemission spectra com&he gap from the photoemission measurement is about 1.7
primarily from p-like oxygen states and, as such, strong maeV, or roughly 0.5 eV smaller than in &5 . It is interest-
trix element effects are not likely to be present. ing to note that the gap from the simulation tends to be larger

Given that photoemission samples occupied states, we exhan for the ground state; i.e., the gap between the peaks in
pect that the peak positions should be reasonably accurate. ihe simulation is about 1.9 eV. This is not surprising. In the
Fig. 5, we illustrate the averaged eigenvalue spectra for theimulation, there is na priori reason to believe the levels

FIG. 5. Simulated photoemission spectra forGBi~ clusters.
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in the eigenvalue spectra represent differences in the elec-
tronic potential. The general features of theChj eigenvalue
spectrum are shared by the other clusters; e.g., the width of
the occupied eigenvalue spectra is about 21 eV and a gap of
about 1-2 eV exists between the HOMO and LUMO levels.
The cluster spectra cannot be compared directly to a bulk
silica density of states. For example, in quartz, the electronic
properties are dominated by Si@etrahedra which are ab-
sent in these clusters. Nonetheless, the width of the valence
band in quartz is consistent with the spectrum for the cluster.
The main spectral difference is the existence of a large gap in
quartz which is absent in the clusters.

25 20 15 10 -5 0 5 10
Energy (eV) VI. CONCLUSIONS

FIG. 6. Comparison of the “density of states” for a neutral and V& have examined the electronic and structural properties
charged SjOs cluster. The energy zero corresponds to the HOMOOf neutral and charged &, clusters, withn=3, 4, and 5,
state in the neutral case. The position of the Fermi légelis ~ and related clusters, using the higher-order finite-difference
indicated for the charged cluster. pseudopotential method. We determined the ground-state
structures for these clusters via a simulated annealing proce-
dure. We also simulated the photoemission spectra for the

will fluctuate in the “heat bath” in a symmetric fashion. ) S o
The simulation for SjOs~ is reassuring. For this cluster, pegatlvely charged clusters,8}, = at finite temperatures us-

there is some additional structure in the photoemission whici'9 qlu?ntum"forc%s coutpled with Latngevm dtynamlcg. Tht'sl
appears to be accurately replicated by the simulation. In pars—'rnu ation aflowed us 1o compare (o recent experimenta

ticular, there is a doublet peak in the photoemission spectr?‘f%suremtentf %fthe phoéoemssuon ?pe_f[:rt]ra. We fOijnd swr:u-
at—1.7 eV and— 2.5 eV. This is replicated in the theoretical ated spectra to be in good agréeement with measured spectra.

simulation. Consistent with the trend from ;8= to Th|s.agreer|nent sugtgested t.h?t ?ur.{ohredmteq stn;ctu:;asf)f/]eld
SiyO,, the gap is reduced in the photoemission spectrum t n elgenvajue spectra consistent with expenment and atfirm

about 1.4 eV.. In the neutral case, the HOMO-LUMO gap is e validity of our predicted structures. In contrast to prgvi-
1.4 eV and is reduced to about 1.2 eV for the charged cas@US w_ork, we predicted the ground—stajte structure fQO3i

In Fig. 6, we illustrate the eigenvalue spectra fogCai and S§0s to correspond to nonplanar rings.
and SiOs;~ . The spectra were created by broadening each
eigenvalue for the cluster with a Gaussian as done in the
simulations of the photoemission spectra. The eigenvalue We would like to acknowledge support for this work by
spectra for the charged and neutral cases appear similar. Thise U.S. Department of Energy under Grant No. DE-FG02-
confirms a “band-filling” picture; i.e., the addition of an 89ER45391 and the Minnesota Supercomputer Institute. We
electron fills the lowest empty level without significant rear-would like to thank L.-S. Wang for data prior to publication.
rangement of the remaining energy levels. lgGgithere is  We also thank N. Binggeli and S.gix for helpful discus-
little structural rearrangement upon charging, and so changesions.
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