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Structural and electronic properties of neutral and charged silicalike clusters
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The electronic and structural properties of neutral and charged SinOn clusters, withn53, 4, and 5, and
related clusters, are examined using the higher-order finite-difference pseudopotential method. The ground-
state structures for these clusters are determined via a simulated annealing procedure. The photoemission
spectra for negatively charged clusters SinOn

2 are simulated at finite temperatures using quantum forces
coupled with Langevin dynamics. The simulated spectra are in good agreement with measured spectra. In
contrast to previously predicted structures, we find the lowest-energy structures for Si4O4 and Si5O5 corre-
spond to nonplanar rings.@S0163-1829~98!03005-7#
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I. INTRODUCTION

Silica is an important technological material. Uses
silica span applications from passivation of electronic ma
rials to vitrification of materials for waste disposal. Howev
at the microsopic level, our understanding of silica is inco
plete. For example, the process by which oxidation occ
the role of defects in oxides, the nature of amorphous st
tures, and the evolution of macroscopic properties from a
mistic constituents are all important unresolved issues.

Clusters provide an interesting source of information
the bonding properties of matter.1 The bonds in clusters ar
often in unusual configurations relative to macrosco
pieces of the solid state. For example, in tetrahedral se
conductor clusters the coordination number may be 2, 3,
in contrast to a diamond crystal value of 4. Also, the surfa
of a cluster dominates its electronic and structural propert
the atoms in a cluster may be considered all ‘‘surface’’ ato
if the cluster is only 10–20 atoms large. In this situation,
cluster can have thermodynamic properties far removed f
‘‘bulk properties.’’ These properties may include a reduc
melting point and complete solubility between normally i
soluble consituents. In short, an understanding of silica
clusters will allow one to develop insights into bonding
silica and similar materials.2

One of the chief problems in understanding clusters
assessing the accuracy of predicted electronic and struc
properties. Unlike crystalline matter, where x-ray diffracti
can be used to extract an accurate picture of structure, c
ters cannot be so easily probed. The procedure for cluste
quite indirect. One can calculate a property such as the
man spectra3 or photoelectron spectra,4,5 and compare the
theoretical calculation to experiment. For semiconduct
clusters,3–5 small differences in the structure can result
large differences in the photoelectron spectra. In such ca
which are by no means universal, some candidate struct
can be eliminated. In other cases, two structures which m
be different in terms of their topology may possess sim
photoemission spectra and no distinction between clus
can be determined via the simulation. Here we will consi
similar calculations for silica clusters. In particular, we a
interested in making comparisons to recent photoelec
570163-1829/98/57~6!/3333~7!/$15.00
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spectroscopy measurements of SinOn
2 clusters6 and in pre-

dicting the structure of both charged and neutral clusters

II. COMPUTATIONAL METHODS

Our theoretical approach centers onab initio
pseudopotentials7 which have been constructed within th
local density approximation using the procedure of Troull
and Martins.8 The atomic configuration used for the co
struction of the Si potential was 3s23p2 with the core size
parameters fixed tor s5r p52.50 a.u. (1 a.u.50.529 Å!.
For the O potential, the configuration was 2s2p4 with the
core size taken to ber s51.30 a.u. andr p51.65 a.u. The
local part of the pseudopotential was taken to bel 50; only
l 51 nonlocal terms were included in the pseudopotent
The exchange-correlation potential was from the work
Ceperley and Alder9 as parametrized by Perdew an
Zunger.10

The resulting one-electron Schro¨dinger equation was
solved in real space on a uniform grid via a higher-ord
finite-difference method.11 The grid spacingh was fixed to
be 0.325 a.u. We can roughly estimate the plane wave cu
as 1

2 (p/h)2 or about 90 Ry. This can be compared to a pla
wave cutoff of 64 Ry commonly used for crystalline silica.12

Our use of a uniform grid may be contrasted with other a
proaches such as adaptive grids.13 The use of adaptive grids
allows one to account for different length scales. For e
ample, the grid may be finer around the oxygen atom a
coarser around the silicon atom. Unfortunately, adapt
grids can greatly complicate the calculations. This is es
cially true for situations in which the atoms are allowed
move. The grids must be updated continuously as the at
move, and determining accurate forces is complex as
‘‘basis’’ changes with the grid.

An important factor in any real space method is t
‘‘smoothness’’ of the pseudopotential. In plane wave calc
lations, the pseudopotential is expanded in reciprocal lat
vectors. This set of vectors is often terminated by a vec
commensurate with the shortest wavelength present in
wave function. The termination procedure in some sens
equivalent to a ‘‘low-pass’’ filter. Short-ranged fluctuation
in the potential are effectively removed. This issue is no
3333 © 1998 The American Physical Society
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trivial and has resulted in some very poor convergences
some pseudopotentials. In particular, Gygi and Galli fou
that with a CO2 molecule, even with a grid spacing of les
than 0.25 a.u. the eigenvalues and eigenvectors were not
converged.13 They attributed this problem to the use of
Hamann-Schlu¨ter-Chiang potential14 which is not especially
well suited for real space grids.11 These potentials can pos
sess fluctuations in the potential near the core radii. In c
trast, work using the Troullier-Martins potentials8 found the
molecular wave functions and eigenvalues to be well c
verged at these grid spacings.15

Our higher-order finite-difference expansion of the kine
energy operator includes terms up to 12th order. The res
ing eigenvalue problem was solved using a generali
Davidson procedure.16 This method takes advantage of th
sparsity and well-defined structure of the Hamiltonian m
trix. A block diagonalization procedure was used to find t
eigenvalue-eigenvector pair. Preconditioning consisted
averaging over neighboring grid points. This simple prec
ditioning accelerates the convergence by approximately 3
in terms of the computing time. We also dynamically alter
the tolerance criteria for setting the accuracy of t
eigenvalue-eigenvector pairs. All eigenvalues were requ
to be converged within 0.1 eV at the initial self-consisten
loop. This criterion was made more stringent by a factor o
after each iteration until a value of 0.005 eV was establish
This dynamic tolerance can reduce the computational t
by a factor of 2. We note that our tolerance criteria is on
for the highest eigenvalue computed.16 The other eigenvalue
are converged to much more stringent tolerance, e.g., t
cally ;1024 eV.

The boundary conditions for the eigenvalue problem w
to demand the wave function vanish outside a sphere w
contains the cluster. The size of the sphere was set so tha
surface of the sphere was at least 5 a.u. removed from
atom within the cluster. A multipole expansion was pe
formed to determine the Hartree potential outside of th
domains. This expansion was used to fix the boundary c
dition in solving Poisson’s equation with a conjugate gra
ent method.16

The solution of the eigenvalue problem allows one
compute the total electronic energy of the cluster as a fu
tion of the atomic coordinates; i.e., it allows the computat
of thequantuminteratomic forces. This is an important issu
for clusters of silica as the nature of the Si-O bond is
entirely ionic or covalent. As such, simple interatomic pote
tials, which do not contain many-body forces, are not like
to be very accurate for Si-O clusters.

A serious consideration in any cluster calculation co
cerns the determination of the ground-state structure o
least a ‘‘realistic’’ description of the structure. This is
highly nontrivial problem owing the numerous degrees
freedom and the existence of numerous energetically de
erate structures. There are several approaches to this pro
in the literature. Most approaches are based on either s
lated annealing17,18or on genetic algorithms.19 In the genetic
algorithm method, a set of ‘‘parent clusters’’ are selected a
‘‘offspring clusters’’ are created by ‘‘cutting and pasting
the parents. The cutting procedure is based on bisecting
cluster with a random plane. Often thousands of generat
are considered; at each generation, the most energeti
endowed offspring are retained and remated. This proce
or
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works very well for escaping from the minimum, or avoidin
metastable structures, relative to simulated annealing. Un
tunately, the use of this algorithm is not straightforward. It
still possible in some circumstances to be trapped in a p
ticular structural topology. In these cases, one must introd
‘‘mutations’’ into the process to transit to a new structur
type.19

In the simulated annealing approach, such as with Lan
vin dynamics, a random configuration of clusters is cons
ered at a hot temperature.17,18 The clusters are allowed to
interact via interatomic forces as determined by quantum
culations~or by empirical force fields! and with a fictive heat
bath. The bath imparts stochastic forces which are dissip
by a viscous damping term. If the system is cooled slow
one hopes to quench out a reasonable structure. Simu
annealing works quite well for small clusters, e.g., clust
with less than a dozen atoms or so. However, once the n
ber of atoms is increased, the procedure becomes comp
tionally intractable. Larger clusters have been treated dire
via Langevin dynamics using physical or chemical insig
to expedite the procedure. In this work, we utilize Langev
dynamics to obtain ‘‘realistic structures’’ for SinOn and re-
lated clusters.

III. STRUCTURAL PROPERTIES OF H 2Si2O3 ,H2Si2O5

AND Si3O4 CLUSTERS

Clusters can be used as models for the bulk to determ
bond-stretching forces for the Si-O bond and to determ
bond-bending forces for the Si-O-Si and O-Si-O bonds20

Several of the most useful interatomic silica potentials ha
been constructed in this manner. For example, the wid
used Tsuneyuki potential21 was constructed by fitting anad
hoc potential to Hartree-Fock calculations. In this cas
bond-bending forces were not included.

To test our pseudopotential calculation, we have cal
lated the structures of H2SiO3 and H2Si2O5. H2SiO3 is the
silicon analog of carbonic acid and includes a Siv O double
bond. H2Si2O5 includes two silicons which are in a
tetrahedral-like environment. These structures have b
treated by a self-consistent field~SCF! molecular orbital
method.22 To initiate our finite-difference pseudopotenti
calculation, a similar geometry was assumed; this geom
was then allowed to relax fully. For the structural optimiz
tion, we have used the initially scaled version of Broyde
Fletcher-Goldfarb-Shanno~BFGS! quasi-Newton method23

with an inexact line search. The BFGS quasi-Newton meth
finds the minimum of a function iteratively. In all cases, w
iterated the structure until the magnitude of the largest fo
on any atom was less than 0.005 a.u. Since the role of H
these systems is only to passivate the oxygen dangling b
we have not tried to obtain a highly accurate potential. F
the hydrogen pseudopotential, we used a simple local po
tial. We do not expect the potential to be highly accurate
terms of the H-O bond. However, we do expect the rema
ing bonds to be accurately represented.

In Fig. 1, we illustrate the predicted molecular structu
In terms of comparing to the SCF molecular orbital work22

the predicted structures are remarkably similar. Ignoring
hydrogen bonds which tend to be about 0.08 Å shorter t
the SCF work, the largest difference for H2SiO3 occurs in
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57 3335STRUCTURAL AND ELECTRONIC PROPERTIES OF . . .
the Siv O double bond. The molecular orbital work predic
the double bond to be 1.50 Å whereas the pseudopote
local density approximation~LDA ! value is 1.52 Å. The O-
Si-O bond angle is 106.0° whereas the pseudopotential v
is 101.1°. In the case of H2Si2O5, the largest difference in
bond length is less than 0.01 Å.

We note that the SCF molecular orbital calculations dif
in a number of technical details from our work. The SC
molecular orbital calculations include all the electronic sta
and, more importantly, do not utilize the local density a
proximation. Also, the molecular orbital method involves
explicit Gaussian basis while the finite-difference meth
does not use a basis at all. Thus, it is somewhat surprisin
find that the calculated structures agree so well.

Another structure we examined is the Si3O4 cluster. Pre-
vious theoretical24 and experimental work6 suggests that this
structure has aD2h symmetry with two Si2O2 rhombuses
sharing one silicon atom. The central silicon atom is in
tetrahedral environment while the two terminal silicon ato
are connected to two oxygens. The predicted structure, o
mized as before, is shown in Fig. 2.

We can compare our structure to recent theoret
calculations.24 The predicted structures are similar. We find
relatively small, but systematic, difference between our c
culations and those from quantum chemistry methods.
Si-O bonds are shorter in our work by about 0.03–0.04 Å
about 2% when compared to other calculations. This is
accuracy we expect from the local density approximati
With respect to the bond angles, they are consistent with
‘‘rescaled’’ bond lengths: the Si-O-Si and O-Si-O angl
agree to within a degree.

This cluster has an intriguing behavior when negativ
charged. The lowest unoccupied states are doubly degen
and are highly localized on opposing terminal silicon atom

FIG. 1. Predicted ground-state structures for H2SiO3 and
H2Si2O5 clusters.
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Occupying only one of these states causes some difficult
obtaining a self-consistent field. In principle, the syste
should undergo a strong Jahn-Teller distortion and break
symmetry between these states: lowering the energy of
occupied state at the expense of the empty state. Howe
during the SCF iteration procedure, a small difference in
geometry will result in a large change in the energy of the
states. This situation made obtaining a SCF in the traditio
manner impossible because of large oscillations in the po
tial which arose as one state emptied and the other bec
occupied. The procedure by which we obtained a SCF wa
choose one of the wave functions, e.g., the one which res
in a dipole pointing to a particular terminal silicon atom. W
then constrained this wave function to be occupied rega
less of whether it was above or below the competing sta

The structure of the negatively charged Si3O4 cluster is
also presented in Fig. 2. The Si-O bond lengths involving
charged terminal silicon atom are lengthened from 1.68 Å
1.83 Å. However, the Si-O bond lengths for the oppos
terminal silicon atom remain essentially unchanged. T
Si-O bond lengths on the tetrahedrally coordinated silic
atom are equal before charging. After charging, the bo
lengths on the side of the charged terminal silicon atom
lengthened from 1.64 Å to 1.70 Å. The other bonds a
shortened from 1.64 Å to 1.60 Å.

The electronic configuration resulting from our calcul
tion for the negatively charged cluster is also consistent w
previous work.24 In Fig. 3, we illustrate the charge densi

FIG. 2. Predicted ground-state structures for Si3O4 and
Si3O4

2 clusters.

FIG. 3. Charge density for the LUMO in Si3O4
2. The contours

correspond to intervals which double with each contour. The ma
mum density is 0.8 a.u.
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3336 57JAMES R. CHELIKOWSKY
for the highest occupied state. The density is strongly loc
ized on a terminal silicon: in particular the terminal Si ato
with the longer Si-O bond length. This is expected as
extra charge weakens the Si-O bond. The charge densit
the added electron isp-like with the p state oriented perpen
dicular to the plane containing the terminal silicon a
neighboring oxygens.

IV. STRUCTURAL PROPERTIES OF Si nOn CLUSTERS:
NEUTRAL AND CHARGED

Ringlike structures such as Si3O3 are thought to play an
important role in the properties of silica. For example, th
have been proposed to account for the anomalies in the
man spectra of vitreous silica.25 Here we examine SinOn
clusters withn53, 4, and 5 in both the charged and neut
states.

For small rings, a planar geometry is thought to be
ground-state structure.6,26 We considered a Si-O ring with
planar geometry as the initial candidate structure and u
simulated annealing with Langevin dynamics to verify t
proposed structure. In terms of some of the computatio
details, the viscosity of the bath was taken to be 1025 a.u.
Initially the cluster was heated to about 2000 K and cooled
a temperature of 300 K. The integration time step was ta
to be 100 a.u.~or about 2.4 fs!. Typically, several hundred
time steps were used with a total annealing time of; 1 ps.
This simulation time is adequate for the relatively small clu
ter sizes considered in this work. After the simulated anne
ing procedure, we then quenched the cluster to the grou
state structure again using the BFGS quasi-New
minimization procedure. We made no attempt to ‘‘fine-tun
the clusters by imposing any special symmetry. The resul
structures are shown in Fig. 4 for both the neutral a
charged states.

One advantage of using a real space method is that t
is no need for a compensating background as would be
case for a supercell calculation. We simply modify t
boundary conditions in calculating the charged cluster; i
we add a monopole term~1e2/r ! to the Hartree potentia
outside the spherical domain of the cluster.

For Si3O3, we find that the lowest-energy structure is p
nar. This is consistent with previous theoretical and exp
mental evidence.6 The two angles for Si-O-Si and O-Si-O a
not equal and are reminiscent of what one might expect fr
forms of solid silica. In many crystalline silicas,27 the build-
ing block is a tetrahedral unit of SiO4 in which the O-Si-O
angle is close to the tetrahedral value of 109.5°. Also, m
crystalline polymorphs of silica differ only in how the tetra
hedral units are arranged. Typically, the Si-O-Si bond an
is ‘‘floppy’’ with a typical value near;140°. In Si3O3, the
O-Si-O bond angle is 102° and the Si-O-Si angle is 134°
we negatively charge this cluster, the structure devia
somewhat from a planar structure. The additional charg
localized on an oxygen atom which moves out of the pla
~Fig. 4!. This change in geometry upon charging is also c
sistent with previous work.6 As in the case of the Si3O4
cluster, the bonds to the charged atom are weakened by
additional charge and they become longer by about 2–
than in the neutral cluster.

In contrast to the structure of Si3O3, the predicted struc-
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ture of Si4O4 is not planar. We find a ‘‘buckled’’ ring struc-
ture for Si4O4. Although we initiated the simulated anne
with a planar structure, the stochastic element of the ann
allows symmetry breaking. We found the original plan
cluster quickly deviated to a structure as in Fig. 4. We a
examined the Si4O4 via a constrained minimization; i.e., w
minimized the energy for a planar geometry. The nonpla
structure is favored by an energy difference of more th
;0.3 eV/atom. We found at least one other calculation
the geometry of Si4O4.28 This calculation predicted a plana
structure which is at variance with our results. We note t
our constrained minimization agrees with the previous pla
structure: We find a Si-O bond length of 1.60 Å, a Si-O-
bond angle of 165°, and an O-Si-O bond angle of 105°. T
previous calculation found a bond length of 1.65 Å and bo
angles of 166.6°~Si-O-Si! and 103.4°~O-Si-O!. It is not
clear that the previous work found a global minimum as
phase space explored was considerably smaller than the
rent work. The bond angles we find are in line with what o
would expect for silica. For example, the bond angle
166.6° for the Si-O-Si angle in the planar structure is mu
larger than in the Si3O3 cluster or what one expects from
crystalline silica.

When negatively charged, the Si4O4
2 cluster behaves in a

similar fashion to the Si3O3
2 cluster. The extra electron i

localized in a state on the anion. Moreover, the bond leng
to this anion are lengthened by about;3 –4 %.

The Si5O5 cluster is also buckled with a geometry simil
to the Si4O4 cluster. One noticeable difference is the lack

FIG. 4. Predicted ground-state structures for SinOn and SinOn
2

clusters.
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57 3337STRUCTURAL AND ELECTRONIC PROPERTIES OF . . .
change in the cluster geometry when charged. The bon
one of the anions is lengthened, but the angle changes
smaller and the charge localization is not nearly as stro
One would expect that as the cluster increases in size,
role of charging on the structural energy would become le
However, the similarity between the Si5O5 cluster and the
Si5O5

2 cluster is somewhat surprising.
The energy differences as a function of cluster size are

large. If we take the total energy for Si3O3 as our zero ref-
erence, then Si4O4 and Si5O5 are both within; 0.1 eV/atom
of the reference energy. The clusters become slightly
stable with increasing size. This is also true for the char
clusters. Perhaps the similarities in total energy are not
prising considering the similarity of the clusters in terms
bond angles and bond lengths.

V. SIMULATED PHOTOEMISSION SPECTRA OF Si nOn
2

CLUSTERS

A central advantage of our method when compared
other ab initio methods is that we can simulate the pho
emission spectra via molecular dynamics with quant
forces. Other methods, e.g., quantum chemistry meth
which include configuration interactions, are too compu
tionally intensive to permit such simulations. The proced
we use has been used previously for examining the ph
emission of negatively charged silicon and germani
clusters.5,18 Here we focus on the charged clusters SinOn

2

with n53, 4, and 5 and compare to recent photoemiss
work.6 One significant drawback of the photoemission m
surements is the limited energy window. Only a; 2–3 eV
energy window exists.

Our simulation is initiated by assuming the lowest-ene
structure~Fig. 4!. Again, the cluster is placed in a fictive he
bath at a temperature commensurate with the experime
conditions. In this case, we are using Langevin technique
a ‘‘thermostat’’ in contrast to the simulated anneali
procedure.18 Langevin dynamics can be justified as a therm
stat for statistical averages in the same fashion as other
namics, e.g., the use of Nose´ dynamics29 in the Car-
Parrinello method.30 We note that unlike the Car-Parrinell
dynamics, we do not use fictitious electron dynamics.
stead, we quench the system to the Born-Oppenheimer
face at each time step in the simulation. We have taken
temperature of the clusters to be 500 K. After a short th
malization time of about 100 time steps, each cluster w
examined for an additional 300 time steps or about 0.7
This time scale is sufficient for the cluster to sample a r
sonable number of configurations given the relatively l
temperature.

In making comparisons to experiment, we average
eigenvalue spectrum of the cluster over the simulation tim
We have not included any matrix elements in the avera
eigenvalue spectrum, and so only the peak positions
‘‘gaps’’ should be compared. This is not a bad approxim
tion as the contributions to the photoemission spectra co
primarily from p-like oxygen states and, as such, strong m
trix element effects are not likely to be present.

Given that photoemission samples occupied states, we
pect that the peak positions should be reasonably accura
Fig. 5, we illustrate the averaged eigenvalue spectra for
to
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cluster. In order to simulate the experimental resolution,
have convoluted this spectra with a Gaussian with 0.2 eV
the half-width at half-maximum.

The spectra for these clusters all have one feature in c
mon: a small peak separated from the main part of the sp
tra. For the neutral clusters, a gap of;1 –2 eV exits between
the highest occupied molecular orbital~HOMO! and the low-
est unoccupied molecular orbital~LUMO!. If an electron is
added to the LUMO orbital, and no relaxation occurs, t
orbital will appear as a peak in the photoemission spec
The contribution from this orbital will be separated from th
remaining spectra by the HOMO-LUMO gap. Of course,
laxation effects will change this gap. As such, the HOM
LUMO gap for the neutral cluster need not be accurat
reflected in the photoemission spectra for the charged clu

In the case of Si3O3
2, the contribution from the added

electron results a broad feature. This feature indicates
there is a large geometry change between the charged cl
versus the neutral cluster.6 This is consistent with our calcu
lation. In particular, Si3O3 becomes nonplanar when charg
in contrast to Si4O4 and Si5O5. The HOMO-LUMO gap for
the neutral cluster is 2.9 eV. Upon charging the separatio
reduced to 1.7 eV. Experimentally, the separation is diffic
to determine because of the broad peak, but a value of 2.2
is a reasonable estimate. Given the simplicity of our analy
the line shapes are in good agreement.

For Si4O4
2, the HOMO-LUMO gap as indicated by th

photoemission spectrum is smaller than in Si3O3
2. This is

consistent with the theoretical predictions. The HOM
LUMO gap in the neutral cluster is 2.0 eV and when charg
it is reduced to about 1.3 eV for the ground-state structu
The gap from the photoemission measurement is about
eV, or roughly 0.5 eV smaller than in Si3O3

2. It is interest-
ing to note that the gap from the simulation tends to be lar
than for the ground state; i.e., the gap between the peak
the simulation is about 1.9 eV. This is not surprising. In t
simulation, there is noa priori reason to believe the level

FIG. 5. Simulated photoemission spectra for SinOn
2 clusters.

The theoretical spectra are shown by dashed lines. The solid
are from experiment, Ref. 6. The energy zero corresponds to
highest occupied state in the simulation.
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will fluctuate in the ‘‘heat bath’’ in a symmetric fashion.
The simulation for Si5O5

2 is reassuring. For this cluste
there is some additional structure in the photoemission wh
appears to be accurately replicated by the simulation. In
ticular, there is a doublet peak in the photoemission spe
at 21.7 eV and22.5 eV. This is replicated in the theoretic
simulation. Consistent with the trend from Si3O3

2 to
Si4O4

2, the gap is reduced in the photoemission spectrum
about 1.4 eV. In the neutral case, the HOMO-LUMO gap
1.4 eV and is reduced to about 1.2 eV for the charged c

In Fig. 6, we illustrate the eigenvalue spectra for Si5O5
and Si5O5

2. The spectra were created by broadening e
eigenvalue for the cluster with a Gaussian as done in
simulations of the photoemission spectra. The eigenva
spectra for the charged and neutral cases appear similar.
confirms a ‘‘band-filling’’ picture; i.e., the addition of an
electron fills the lowest empty level without significant rea
rangement of the remaining energy levels. In Si5O5 there is
little structural rearrangement upon charging, and so chan

FIG. 6. Comparison of the ‘‘density of states’’ for a neutral a
charged Si5O5 cluster. The energy zero corresponds to the HOM
state in the neutral case. The position of the Fermi levelEF is
indicated for the charged cluster.
ue
.

.

d,
h
r-
ra

to
s
e.

h
e
e
his

es

in the eigenvalue spectra represent differences in the e
tronic potential. The general features of the Si5O5 eigenvalue
spectrum are shared by the other clusters; e.g., the widt
the occupied eigenvalue spectra is about 21 eV and a ga
about 1–2 eV exists between the HOMO and LUMO leve
The cluster spectra cannot be compared directly to a b
silica density of states. For example, in quartz, the electro
properties are dominated by SiO4 tetrahedra which are ab
sent in these clusters. Nonetheless, the width of the vale
band in quartz is consistent with the spectrum for the clus
The main spectral difference is the existence of a large ga
quartz which is absent in the clusters.

VI. CONCLUSIONS

We have examined the electronic and structural proper
of neutral and charged SinOn clusters, withn53, 4, and 5,
and related clusters, using the higher-order finite-differe
pseudopotential method. We determined the ground-s
structures for these clusters via a simulated annealing pr
dure. We also simulated the photoemission spectra for
negatively charged clusters SinOn

2 at finite temperatures us
ing quantum forces coupled with Langevin dynamics. T
simulation allowed us to compare to recent experimen
measurements of the photoemission spectra. We found s
lated spectra to be in good agreement with measured spe
This agreement suggested that our predicted structures
an eigenvalue spectra consistent with experiment and af
the validity of our predicted structures. In contrast to pre
ous work, we predicted the ground-state structure for Si4O4
and Si5O5 to correspond to nonplanar rings.
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