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Phonon dispersion relation in rhodium: Ab initio calculations and neutron-
scattering investigations
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The phonon dispersion relation in face-centered-cubic rhodium has been investigated byab initio local-
density functional~LDF! calculations and inelastic neutron-scattering measurements. The LDF calculations
have been performed both using ultrasoft pseudopotentials and a plane-wave basis and norm-conserving
pseudopotentials and a mixed basis set and include also all-electron calculations at a few high-symmetry
points. Theory predicts the existence of Kohn anomalies that can be interpreted in terms of the calculated
Fermi surfaces. The neutron-scattering experiments confirm that theab initio calculations are accurate to
within 3% ~including the position and amplitude of the anomalies!. @S0163-1829~98!00801-7#
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I. INTRODUCTION

Over the past 40 years phonon spectra of crystals h
been determined by neutron-scattering experiments fo
wide class of systems ranging from elements to multicom
nent materials, from metals to semiconductors, insulat
and alloys.1,2 A notable exception is the face-centered-cu
transition metal rhodium—despite its technological imp
tance in many catalytic applications. Very recently, detai
experimental investigations of surface phonons for
Rh~111! surface have been presented,3 but the phonon dis-
persion relation in the bulk remains unknown.

With the increasing computational power of mode
workstationsab initio calculations of phonons have becom
possible. These investigations are all based on density f
tional theory,4,5 differ, however, in the treatment of th
tightly bound core electrons and/or in the basis set used
describing the wave functions. Since very accurate f
potential calculations @e.g., full-potential linearized
augmented-plane wave~FLAPW!# are very time consuming
even with modern workstations, most of the studies h
been restricted to selected phonon modes using thefrozen
phononapproach.6 Calculations of the entire phonon spe
trum have been carried out in the past mostly using gene
ized response theory.7 Baroni and co-workers, as well a
other groups used the formalism within a plane-wave ba
and pseudopotentials.8–10 Linearized-muffin-tin-orbital
~LMTO! versions11,12and FLAPW versions13 have also been
developed. A very useful review of response theories in
tice dynamics and related fields~with many further refer-
ences! has recently been presented by Gonze.14

An alternative method is the direct calculation of inte
atomic or interplanar force constants using a supercell ge
570163-1829/98/57~1!/324~10!/$15.00
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etry. The size of the supercell is determined by the range
the interatomic interactions which can be quite substan
for systems showing phonon anomalies such as Nb or
but also Pd and Pt. This method has been used in the
mostly for simple metals15 and more recently for semicon
ductors and semimetals.16 Calculations for transition and
noble metals have been restricted to Cu, Ag, Pd, and Pt u
norm-conserving pseudopotentials and a mixed basis
scription for dealing with strongly localizedd electrons.17,18

For systems withd electrons a convergence of the plan
wave expansion of the wave functions is difficult to achiev
even with present-day computer resources. In all these s
ies, however, the main emphasis has been on surface p
erties and thus the bulk results have only been used to as
that the theoretical description of the bulk was consist
with the measured phonon spectra and thus also with
atomic force constants that are needed for a full understa
ing of the lattice dynamics. New developments in the co
struction of pseudopotentials~ultrasoft pseudopotentials19,20!
and new algorithms for the self-consistent iterative diagon
ization of the LDA Hamiltonian~conjugate gradient, re
siduum minimization, . . .21,22! together with increasing com
puter power have made it possible to deal now also w
transition metals in a pure plane-wave basis. This has
advantage that an accurate calculation of the forces is sim
which is a nontrivial task in the mixed basis description
the wave functions.24–27 Since phonon modes are very se
sitive to all kinds of approximations it is now possible
assess in detail the limits inherent in the theoretical appro
mations~LDA ! as well as in the numerical treatments~full-
potential–pseudopotential; norm-conserving-potentia
ultrasoft potential; mixed-basis–plane-wave basis!.
324 © 1998 The American Physical Society
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57 325PHONON DISPERSION RELATION IN RHODIUM: . . .
In this paper we attempt to answer some of these qu
tions. Our studies have concentrated on Rh since this is
of the few elemental systems for which so far no measu
phonon spectra have been published. Similar to Pd
Pt28,29 we expect anomalies in the dispersion relation wh
constitute a severe test for any theoretical treatment. Furt
more the surface properties of Rh are of great interest s
Rh is an important catalyst for nitric oxide reduction a
hydrotreating reactions. However, before studying the s
face, bulk properties have to be known. This becomes v
obvious in connection with recent He-scattering studies
Rh~111!3 where the authors could interpret their surface
sults only by makingad hoc assumptions concerning th
bulk properties. These assumptions, however, are in con
to our theoretical predictions~preliminary results on bulk
and surface phonons for Rh have been published in Ref.!.
Our calculations are supported by recent neutron-scatte
experiments, results of which are included in this paper.

The organization of this paper is as follows. In Sec. II w
present the results of inelastic neutron-scattering experim
on the phonon dispersion relation of Rh, together with for
constant models fitted to the measured phonons. In Sec
we describe briefly the supercell approach for the calcula
of interplanar force constants. The size of the supercells
have to be used as a consequence of the long-range natu
interatomic forces in metals in practice excludes the use
all-electron band-structure techniques and suggest
pseudopotential-based approach. For transition metals t
are the alternatives to use either a norm-conserving pse
potential treated within a mixed-basis description or an ul
soft pseudopotential and a pure plane-wave basis set. Se
IV is devoted to a detailed comparison of the pseudopo
tials and a confrontation of the pseudopotential results
lattice constants, bulk modulus, and the energy of hi
symmetry frozen phonons with the results of all-electr
@full-potential linearized augmented-plane wave~FLAPW!#
calculations. Section V describes the dispersion relation
culated via theab initio force-constant method and in Se
VI a detailed analysis of the phonon anomalies in terms
Fermi-surface nesting and electron-phonon-coupling ma
elements is given. A discussion of the relevance of our
sults will be presented in the last section.

II. DETERMINATION OF THE PHONON DISPERSION
CURVES BY INELASTIC NEUTRON SCATTERING

A. Experimental

Rhodium is one of the very few metallic elements f
which no experimental phonon data exist in the literatu
This is mainly due to the large absorption cross section
thermal neutrons of 145 barns at 2200 m/s which co
sponds to a mean free path for absorption of 1 mm only
order to reduce absorption losses in the various scatte
configurations four differently oriented samples were
from a commercial single crystal that had the~110! direction
about 30° off the cylinder axis. Two of the samples in t
shape of thin plates had the~001! axis vertical, the two oth-
ers were optimized for 1–10 orientations. Measureme
were performed at 297 K on the triple axis spectrometer 2
located at the Orphee reactor at Saclay. Doubly focuss
PG002 crystals were used both for the monochromator
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the analyzer in most cases. In some measurements a Cu~111!
monochromator was used to improve the resolution. In a fi
experiment we had restricted our measurements to
(j00), (jj0), (jjj), and (1j0). directions. Analysis of the
data by phenomenological models showed that the calcul
phonon density of states depended much more sensitivel
the number of allowed interactions than should be expec
from differences in the reproduction of the phonon data
directions covered by the experiment. This clearly indica
that the experimental information was not sufficient to set
reliable lattice dynamical models. We found that t
branches in the (12j,j,j) direction should yield the mos
useful information to further pin the model parameters. F
this reason additional measurements were carried out in
direction. The two upper branches can be measured in
0121 orientation of the sample. The lowest branch, ho
ever, is polarized perpendicular to this plane and has a st
ture factor identical to zero in this configuration. Our choi
to measure this branch was to start from the 310 recipro
lattice point in an 001 orientation of the sample and to r
along the line (32j,11j,j) by continuously tilting the arcs
of the goniometer of the sample.

B. Results and analysis

The results of the experiment are depicted in Fig. 1. U
certainties in the frequencies arising from the counting s
tistics are smaller than 1%. Shifts in the low LO frequenc
caused by a relaxed vertical collimation in the neutron be
have been corrected for by a computer program. Small s
tematic errors may arise from the strong absorption in
sample and uncertainties in the calibration of the spectro
eter. From a comparison of data obtained under differ
experimental configurations and reference scans on a
single crystal we estimate that uncertainties due to these
fects are well below 0.1 THz. Anomalous structures are
served in several branches in particular in the TA branche
the (jj0) direction, which reflect the topology of the Ferm
surface. They will be analyzed in detail in Sec. VI. Whe
trying to describe these features by force constant mo
interactions up to large distances have to be taken into
count which implies a large number of model paramete
We have carried out systematic studies using a variety
models in order to arrive at an optimum description of t
experimental dispersion curves with a minimum of fittin

FIG. 1. Phonon frequencies of Rh at 297 K. Discrete symbo
neutron-scattering experiments. The lines are the result of a fit w
a 24 parameter Born von Karman model.
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326 57EICHLER, BOHNEN, REICHARDT, AND HAFNER
parameters. It turned out that the inclusion of interactio
with atoms of the ninth nearest-neighbor~NN! shell ~330! is
crucial for a good reproduction of the anomalous structu
in the branches of the 110 direction. Furthermore, it w
found that the force constants of the ninth NN~330! and
tenth NN ~411! interactions are significantly different a
though the interatomic distances are identical. Indeed,
tenth NN force constants can be put to zero without sacr
ing goodness of the fit. The dispersion curves in Fig. 1 w
calculated with an ‘‘optimized’’ model using tensor force
~TF! up to the fifth NN and axially symmetric~AS! forces
for interactions 6 to 9. The agreement between experim
and model fit is excellent. The choice of AS forces at lar
distances was guided by the intention to restrict the to
number of fit parameters. A full TF model increases t
number of parameters from 24 to 29 without significant i
provement of the fit. The parameters of the model are lis
in Table I. The model was used to calculate the phon
density of states~PDOS! which is shown in Fig. 2. In spite o
the complex force field the PDOS shows the typical shap
a fcc metal with dominant first NN interaction.

III. Ab initio FORCE CONSTANT METHOD

We outline here the method which has been used to
culate the phonon dispersion curves. All investigations

TABLE I. Force constants of a 24 parameter mixed TF/AS Bo
von Karman model in dyn/cm. The force constants for neighb
6–9 are axially symmetric and are represented by two parame
f l , f t . The mean deviation between model and experiment is 0.
THz.

NN Indices ik Force constants~FI ik , f l , f t)

1 1 1 0 xx zz xy 18431 2689 22462
2 2 0 0 xx yy 6962 22320
3 2 1 1 xx yy yz xz 3382 1408 510 1391
4 2 2 0 xx zz xy 496 2193 848
5 3 1 0 xx yy zz xy 240 453 2113 382
6 2 2 2 f l f t 21153 804
7 3 2 1 f l f t 2750 2253
8 4 0 0 f l f t 2696 411
9 3 3 0 f l f t 1953 467

FIG. 2. Phonon density of states of Rh calculated with
model described in the text.
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based on total-energy and force calculations within loc
density-functional theory.4,5 To simplify the task we elimi-
nate the tightly bound electrons by using the pseudopoten
concept.32 To obtain the phonon dispersion curves we ne
to know the interatomic force constants. In principle we c
calculate the force constants using a supercell approach.
displacement of a single atom within the supercell indu
forces on the surrounding atoms, which can be calcula
using the Hellman-Feynman theorem. From the variation
the forces with the amplitude of the displacement the fo
constants can be calculated. Group theory can be use
restrict the number of atomic displacements to a minimum16

This technique works very well with supercells of mode
size ~64 atoms for semiconductors such as diamond!, but
already for the semimetal graphite the supercells must
extended to 144 atoms.33 For metals the interatomic force
are notoriously long ranged. In this case it is easier to star
calculating the interplanar force constants describing
coupling between lattice planes perpendicular to the disp
sion direction. These force-constants can be calculated
setting up supercells elongated along the direction one
interested in and restricted to a (131) geometry in the plane
perpendicular to it. The long dimension of these cells is
termined by the range of interaction. For rhodium we ha
used cells with up to 18 lattice planes to account for
long-range interactions. Starting from the equilibrium po
tion and distorting the central lattice plane from the equil
rium positions in three orthogonal directions, we calcula
the forces acting on all other lattice planes in the unit c
This allows immediately the calculation of the force-consta
matrices coupling the layers. Knowledge of the forc
constant matrices allows to set up the dynamical matrix.
genvalues and eigenvectors are obtained via diagonaliza
For the high symmetry directions eigenvectors are kno
and eigenvalues are given in terms of reciprocal lattice su
over the dynamical matrix multiplied by the eigenvectors

From the long-wavelength limit of the phonon dispersi
the elastic constants can be determined. However, this
very delicate procedure since small errors in long-range c
plings are strongly influencing the result. Alternatively th
elastic constants can be calculated via static deformation
the primitive unit cell either as the second derivative of t
total energy with respect to the deformation or from t
stress/strain relations~the stress can also be calculated v
the Hellman-Feynman theorem20–22,33,34!.

The procedure outlined above for calculating phon
branches and elastic constants has been carried out w
norm-conserving potential27,35 in the mixed basis representa
tion and with an ultrasoft pseudopotential20 using a plane-
wave basis. Technical details concerning the calculati
based on the mixed-basis approach are given in Ref.
while those for the approach based on the ultrasoft pseu
potentials can be found in Refs. 21–23.

IV. COMPARISON OF NORM-CONSERVING
AND ULTRASOFT PSEUDOPOTENTIALS

A norm-conserving pseudopotential to be used in mix
basis calculations was constructed according to the pres
tion of Hamannet al.,37,38 as adapted by Elsa¨sseret al.35 for
a mixed-basis set appropriate to transition metals. The ca
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57 327PHONON DISPERSION RELATION IN RHODIUM: . . .
lation is based on the Hedin-Lundqvist39 parametrization of
the exchange-correlation functional in the scalar relativis
LDF Hamiltonian. All-electron eigenvalues and eigenfun
tions have been calculated for an atomic 4d8.55s0.255p0.25

reference configuration, the logarithmic derivatives of t
norm-conserving pseudo-orbitals and their energy der
tives calculated at the atomic eigenvalues of the refere
configuration are fitted to the all-electron functions aroun
cutoff radius ofRc,d50.74 a.u.,Rc,s51.64 a.u.,Rc,p51.82
a.u. equal to the experimental nearest-neighbor distance.
angular momentum-dependent ionic pseudopotentials P1
shown in Fig. 3~a!, thes component of the pseudopotential
chosen as the local pseudopotential. Figure 4~a! shows the
logarithmic derivatives of the pseudo-orbitals in comparis
to the all-electron values. The mixed basis consists of pl
waves~cutoff energyEcut510.5 Ry, corresponding to 60–7
plane waves per atom! plus five localizedd orbitals derived
from the atomic 4d pseudo-orbitals by cutting off the tail
beyond a cutoff radiusRcut52.55 a.u.~see Elsa¨sseret al.35!.
The mixed basis leads to a generalized eigenvalue prob
which is transformed to standard form by Cholesk
decomposition and then solved numerically by straightf
ward diagonalization.

The principle of ultrasoft pseudopotentials is based
Vanderbilts19 observation that the requirement of norm co
servation applied to the pseudo-orbitals imposes an up
limit to the cutoff radii where the pseudo-orbitals a
matched to the all-electron wave functions. Small cutoff ra
lead to high cutoff energies, Vanderbilt proposed to drop
norm-conserving requirement and, in order to achieve o
mum transferability, to fit the logarithmic derivatives of th
all-electron wave functions at more than one reference

FIG. 3. Real-space representation of the pseudopotentials: (P1)
Norm-conserving pseudopotential, (P2) ultrasoft pseudopotential.
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ergy. The difference between the pseudoelectron and
electron charges withinRc,l is described in terms of a sma
number of localized augmentation functions.19,20Plane-wave
convergence can be further improved by a proper const
tion of the pseudo-wave-functions. Kresse and Hafner20 pro-
posed to follow Rappeet al.40 in expanding the pseudo
orbitals in terms of spherical Bessel functions, choosing
minimal set of three Bessel functionsj l(qmr ), m51,3 with
the qm’s determined such that the logarithmic derivativ
join smoothly the logarithmic derivatives of the all-electro
functions and that there are (m21) nodes forr ,Rc,l ~see
Ref. 20 for details!. It is also advantageous to ‘‘pseudize
the augmentation functions in terms of ‘‘hard-core’’ norm
conserving pseudo-orbitals with a small augmentation rad
Raug,l ~see again Ref. 20 for details!. The starting point is
again the scalar-relativistic LDF Hamiltonian with th
exchange-correlation functional constructed by Ceperley
Alder as parametrized by Perdew and Zunger.41 The atomic
reference configuration was 4d85s1, i.e., the atomic ground-
state configuration. The components of the pseudopote
are described by ultrasoft pseudopotentials with cutoff ra

FIG. 4. Logarithmic derivatives of the pseudopotentialsP1 and
P2 ~dashed lines! and of the all-electron potential~full lines!. The
symbols mark the reference energies.
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328 57EICHLER, BOHNEN, REICHARDT, AND HAFNER
Rc,d5Rc,p52.65 a.u. and augmentation radii for the co
struction of the pseudized augmentation functions
Raug,d52.15 a.u. andRaug,p52.36 a.u. Thes component was
described by a norm-conserving pseudopotential with
reference energies46 andRc,s52.36 a.u.

For thes and d components one reference energy is
ways the eigenvalue of the atomic reference configurat
the second energy is chosen such as to span the exp
band width, for thep component the reference energies a
E50 Ry andE520.2 Ry ~the precise choice of the refe
ence energies has only a small influence on the pseudop
tial!. The all-electron potential truncated atRloc51.82 a.u.
was chosen as the local part of the pseudopotential. The
space form of this pseudopotential (P2) and the logarithmic
derivatives calculated at a distanceR53 a.u. are again
shown in Figs. 3~b! and 4~b!.

The comparison of the logarithmic derivatives with t
corresponding all-electron values shows both pseudopo
tials to be of comparable transferability and accuracy—w
slight advantages for the ultrasoft pseudopotentialP2. For
P2 we have included also thef states in order to demon
strate that the potential is very accurate for excited state
well. The differences of the real-space form are mainly in
description of thed components and of the local part, whi
thes andp components are rather similar. Thed component
of the ultrasoft potential is much softer—this explains t
better plane-wave convergence. Note also that the com
nents of both pseudopotentials merge with the all-elect
potential at approximately the same distance from
nucleus, although the cutoff radii are formally quite diffe
ent. The reason is that in the ultrasoft pseudopoten
scheme as set up by Kresse and Hafner,20 the wave functions
are matchedat Rc,l , whereas in the norm-conserving schem
of Hamannet al.37 Rc,l is the characteristic distance of
cutoff function varying steeplyaround Rc,l so that wave
functions and potentials match exactly only at considera
larger distances~see also the discussion in Kresse a
Hafner42!. A further important difference is in the choice o
the local potential—remember that the local potential acts
all angular momentum components without separate no
cal projectors~i.e., all components withl .2). For the norm-
conserving potentialP1 the choice of thes-pseudopotentia
leads to a weak local potential, whereas for the ultras
pseudopotentialP2 the local potential is the all-electron po
tential truncated at a radiusRloc51.82 a.u. and this leads to
much more attractive electron-ion interaction for the high
angular momentum components.

In Table II we compare the predictions of the static latt

TABLE II. Lattice constanta ~in Å!, bulkmodulusB ~in GPa!,
and phonon frequencies at theX point ~in THz! calculated with the
pseudopotentials (P1 and P2) and within a FLAPW calculation
~Ref. 43!. Experimental data are from Refs. 49 and 50, and t
work.

a B Xlong Xtrans

P1 3.81 283.5 7.15 5.56
P2 3.77 308.5 7.25 5.80
FLAPW 3.77 305.9 7.43 5.78
Exp. 3.80 268.6 7.04 5.56
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properties based on the two pseudopotentials and we
front them with the results of all-electron calculations pe
formed using the full-potential linearized augmented pla
wave ~FLAPW! method31,43 and the same exchange
correlation functional as used for the ultraso
pseudopotential. This comparison also includes phonon
quencies at theX point calculated using the frozen-phono
method and a doubled unit cell. The results of this comp
son shows that there is an essentially perfect agreemen
the results obtained with the ultrasoft pseudopotent
whereas agreement with experiment is slightly better w
the norm-conserving pseudopotential. Similar agreement
tween ultrasoft pseudopotentials and FLAPW has alre
been documented for intermetallic compounds34 and has re-
cently been shown to extend to the structural and magn
phase diagram of the transition metals.44 We think that it is
legitimate to say that FLAPW is at the moment the mo
accurate LDF-based all-electron technique for calculating
tal energies. Hence we can see that the ultrasoft pseud
tentials reproduce the LDF standard. The remaining discr
ancy with experiment represents the characteristic LDF-ov
binding error. For the lighter elements~including the 3d
series! it is well documented that generalized gradient c
rections~GGC! ~see, e.g., Ref. 45! lead to an improved pre
diction of the cohesive properties, albeit with a certain te
dency to over-correct the LDF error.34,44,46,47For the heavier
elements~starting with the 4d series! where the LDF error
decreases this leads to a situation where the GGC error
comes larger than the LDF error.46,47 In the present case th
GGC prediction for the lattice constant isa53.85 Å ~error
11.3%) and for the bulk modulusB5243 GPa ~error
29.7%). We conclude that for the heavy elements corr
tions to the GGC functionals are necessary before they
be considered as a genuine improvement over LDF the
The norm-conserving pseudopotentials agree better with
periment~although they do not reach the LDF standard!. The
slight improvement in the prediction of the lattice consta
leads to a more substantial improvement for the bulk mo
lus and zone boundary frequencies. We think that apart fr
a weak influence from the different exchange-correlat
functional the difference is to be attributed mostly to t
different description of the local potential. The choice ma
for potential P2 ~truncated all-electron potential! describes
the interaction of the ions with the higher angular moment
components of the electronic orbitals very well, where
with potentialP1 this attractive interaction is underestimat
with the choice of the weaks-electron potential.

V. PHONON DISPERSION
FROM ab initio CALCULATIONS

Figure 5 shows the phonon dispersions along the m
symmetry directions calculated with the two sets of pote
tials. The calculations have been performed for superc
stretching in the direction of the phonon wave vector. For
calculation usingP1 cells with 18 layers have been used~for
calculations with 9 layers see Ref. 48!, whereas the compu
tation with P2 has been performed with only 12 rhodiu
atoms per cell. This means that~even if the forces would
have infinite range! for the calculation using the first setu
the frequencies at nine equidistantk points along each direc
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57 329PHONON DISPERSION RELATION IN RHODIUM: . . .
tion are accurate in the sense of a frozen-phonon calcula
whereas for the second setup only six such points exist
each direction. For all otherk points the evaluation of the
frequencies is in principle based on the assumption that
range of the forces caused by the distortion of one laye
limited only to lattice planes belonging to the same superc
Nevertheless the agreement concerning the shape of
curves shows that already with the shorter cells the desc
tion of the dispersion relation is satisfying. Altogether t
frequencies calculated with the ultrasoft pseudopotential
about 3% higher than those derived from the nor
conserving potentialP1, some phonon anomalies are mo
pronounced withP1 than withP2. The 3% difference in the
frequencies is just what we would expect on the basis of
differences in the lattice constants.

Figure 6 compares the frequencies calculated withP2
along all symmetry lines with the experimental values. T
theoretical frequencies have been downscaled by 3%
facilitate the comparison of details in the dispersion re
tion. This comparison demonstrates that all features of
phonon dispersion relation are adequately reproduced by
ab initio calculations. The physical origin of the phono
anomalies observed along most of the symmetry directi
will be discussed in more detail in the next section.

Theab initio force constants can also be used to calcu
the elastic constants via themethod of long waves. That
means that the slopes of the dispersion relation atG are
calculated according to

dv

dj U j5052pA1

m(
n51

`

n2Fn, ~1!

FIG. 5. Dispersion relation for rhodium calculated with norm
conserving pseudopotentialP1 ~dashed line! and ultrasoft pseudo
potentialP2 ~dashed line!.
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wherej denotes theq-vector relative to the distance of th
next reciprocal lattice point in that direction~i.e., j50.5 at
the zone boundary! andFn is thenth interplanar force con-
stant. From the calculated slopes the elastic constants ca
evaluated easily. Alternatively, the elastic constants can
derived from the total energy differences calculated for
symmetric and homogeneously deformed unit cells~method
of homogeneous deformations!. Our results obtained with
both potentials are compiled in Table III, the slopes of t
dispersion relation atG corresponding to the elastic constan
from the homogeneous deformation method are given in F
5. Whereas with potentialP2 a reasonable consistency
both sets of elastic constants can be achieved~the discrep-
ancy is 2.6% for the bulk modulus and 7–8 % for the sh
constants!, somewhat larger differences are found with t
force constants derived with potentialP1, although one
would expect a better agreement for the larger cell. The r
son for this discrepancy is the structure of Eq.~1!. In the sum
the force constants are weighted with the square of th
distance, which means that the last accessible force con
for the larger cell (P1) has already a weight of 81, so a
ready very small numerical errors in these force consta
have a vast influence to the whole result.

VI. DISCUSSION OF THE ANOMALIES

In this section we will analyze the origin of the anomali
in the calculated~and measured! dispersion relation, in par-
ticular those in the transverse branches along the~110! di-
rection following two different approaches. First we perfor
a purely geometrical analysis of the Fermi surface to fi

FIG. 6. Measured dispersion relation for rhodium~symbols!.
The full line indicates the calculated dispersion relation~pseudopo-
tential P2) which has been scaled by 97% for a better comparis
he

TABLE III. Elastic constants for rhodium in GPa. The calculated results~with P1 andP2) have been

obtained by homogeneous deformations of the unit cell (A) and by a least square fit of the slopes of t
dispersion relation in the high symmetry directions (B), method of long waves, see text and Fig. 5.

Experimenta P1 P2
A B DAB @%# A B DAB @%#

C11 422.1 411.5 402.2 22.3 481.8 477.0 21.0
C12 191.9 219.5 196.4 210.5 221.9 236.5 16.6
C8 115.1 146.0 102.9 229.5 129.5 120.3 27.1
C44 194.0 163.0 162.2 20.5 205.6 192.4 26.4
B 268.6 283.5 265 26.5 308.5 316.7 12.7

aRef. 49.
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possible nesting vectors for Kohn anomalies, following t
method used by Miiller for investigating phonon anomal
in Pt ~Ref. 29! and Pd.28 The second approach includes
addition to a Fermi-surface analysis, a quantitative estim
of the strength of the electron-phonon coupling. For fre
electron-like metals it has been shown51 that the interaction
of the conduction electrons with the lattice vibratio
changes abruptly when the sum of the phonon wave ve
and a reciprocal lattice vector is just equal to 2kF , i.e., if
normal- or Umklapp-scattering processes occur betw
states on the Fermi sphere,

uq1Gu5uk82ku uku5uk8u5kF
52kF . ~2!

The physical origin of this effect is the discontinuo
change in the occupation of the eigenstates at the Fermi l
causing the well-known logarithmic singularity atq52kF in
the susceptibility of the electron gas.

In the phonon dispersion relation the effect leads to w
logarithmic singularities in]v(q)/]q known as Kohn
anomalies. For simple metals the Kohn anomalies confi
the existence of an almost spherical Fermi surface, deta
studies have been reported, e.g., for Pb52 and Al.53,54 For
transition metals and their compounds, the Fermi surfa
are far from spherical. However, in this case the Ko
anomalies can even be much more pronounced if thenesting
condition

q1G5k82k, ~3!

k8,k on the Fermi surface is satisfied not only for isolat
points on the Fermi surface, but if thenesting vector(q1G)
connects two parallel flat pieces of the Fermi surface. On
basis a detailed discussion of the origin of the strong ano
lies in the phonon dispersion relations of Nb, Mo, NbC, e
has been given by Weberet al.56 It has also been shown tha
the less spectacular broad and shallow anomalies observ
the phonon spectra of Pt and Pd can be traced back
number ofnesting vectorsclustering in a certain region o
the Brillouin zone.29,28

Here we analyze the origin of the phonon anomal
marked in the dispersion relation in terms of Fermi-surfa
nesting. Figure 7 shows the intersection of the Fermi s
faces of the third to the sixth band with the~100! plane
@constructed by mapping out theEn(k) surfaces on a 120
3120 grid ofk points as shown in Fig. 11 for the fifth ban
and plotting all points within 25 meV from the Fermi en
ergy#. Our Fermi-surfaces are very similar to those describ
in detail by Andersen.55 The dominant contribution to the
density of states at the Fermi-level comes from flat parts
the bands around theX point and alongG-K. In our plots this
is reflected by a broader linewidth in Fig. 7. Since t
strength of the Kohn effect is proportional to the square
the electron-phonon matrix element summed over initial a
final states, the scattering processes within those reg
~band 5! will be by far the most important.

Wave vectorsq that satisfy thenesting condition@Eq. ~3!#
define the Kohn surface.29,28The Kohn surfaces for intraban
transitions of the fifth band within the~100! plane are shown
in Fig. 8. Along the ~110! direction there are in a sma
interval many intersections, exactly in the region where
found the anomalies in the transverse branches. In Fig
e
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some representative transitions corresponding to the K
anomalies in the~110! direction are sketched. All transition
but one are Umklapp processes and hence contribut
anomalies in the longitudinal as well as transverse branc

In the second step of our analysis we estimated the in
ence of the electron phonon matrix elements, following
approach used by Weber.56 Weber showed that the dominan
contribution to the anomalies in Nb and Mo comes from
term ~called D2) describing second order corrections to t
phonon eigenvalues due to first order displacements of an
k in directiona. D2 is defined as

FIG. 7. Cut through the Fermi surfaces of the third to the si
bands along the~100! plane, calculated by mapping out the plan
with 1203120 k points and marking those within an interval of 2
meV around the Fermi level.

FIG. 8. Cut through the Kohn surfaces along the~100! plane,
see text.
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D2~ka,k8buq!52 (
kmm8,k85k1q

f k8m82 f km

«km2«k8m8

gkm,k8m8
ka gk8m8,km

k8b

~4!

with f km being the occupancy of the electronic bandm at k
point k with the corresponding eigenvalue«km , andgkm,k8m8

ka

the electron-phonon matrix element. Very similar analys
but without considering the matrix elements have also b
used by Sinhaet al.58 and Reeseet al.57 to explain the pho-
non anomalies for Yttrium and Thorium.

The sum in principle has to be carried out over all ban
m,m8 and all k points k,k8 that can be connected via th
phonon wave vectorq. To simplify the calculation we re-
strict the summation to intraband transitions within the fi
band (m5m855) and only tok points within the ~100!
plane. As a further simplification we use the approximat
to the electron-phonon matrix-element proposed by Web56

gkm,k8m8
a }~vkm

a 2vk8m8
a

!, ~5!

wherevkm
a is the electron velocity]«km /]ka . This approxi-

mation is exact in an energy band model with onlys-like
orbitals and nearest-neighbor transfer integrals. ForD2 this
leads to

2D2
approx~auq!5c (

k,k85k1q,m55

f k2 f k8

«k2«k8

~vk
a2vk8

a
!2. ~6!

In a qualitative way the approximation holds rather we
even for transition metals. In Fig. 10 we have plott
2D2

approx and mv2 for the ~110! and the~11̄0) branches
along the~110! direction. Because of the unknown propo
tionality factor in Eq.~5! we can use only arbitrary units fo
the representation of2D2

approx. Nevertheless we see tha
maxima of 2D2

approx coincide well with depressions in th
dispersion relation.

Pronounced maxima in2D2
approx appear at phonon wav

vectors linking flat parallel pieces of the Fermi surfaces t

FIG. 9. Cut through the Fermi surface for the fifth band alo
the ~100! plane. The arrows indicate nesting vectors correspond
to points at the~110! axes in the Kohn surface.
s,
n

s

n

,

t

have large velocities of opposite sign in the direction of t
polarization vectora and parallel velocities and minor dis
persion in the directions orthogonal to it. When we look
the graphical representation of the Fermi surface of the fi
band in the~100! plane ~Fig. 11, compare Fig. 10 for the
location of the nesting vectors.! we find that the sections
determined by the geometrical analysis of the Kohn cur
fulfill exactly these criteria.

VII. SUMMARY AND CONCLUSION

In this paper we have presented detailed experimental
theoretical studies of the lattice dynamics of face-center

g

FIG. 10. The upper curves show the phonon dispersion rela

(mv2) for a transverse@(1 1̄0) ~a! and the longitudinal~110! ~b!#
branch inN/m2, the lower ones2D2

approxfor the same polarizations
arbitrarily scaled, see text.

FIG. 11. Potential energy surface of the fifth band over the~100!
plane. The bright stripe indicates the Fermi level.
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332 57EICHLER, BOHNEN, REICHARDT, AND HAFNER
cubic rhodium. Our inelastic neutron-scattering measu
ments demonstrate the existence of anomalous structur
several branches of the phonon dispersion relation@in par-
ticular in the TA branches of the (jj0) direction# which
reflect the topology of the Fermi surface.

In a first step, the measured dispersion relation has b
analyzed using empirical force-constant models. We find
tensor forces up to the fifth nearest neighbors and axi
symmetric forces for the interaction with the sixth to nin
neighbor shells are necessary to achieve a perfect fit with
measured phonon frequencies. This demonstrates the l
range character of the interatomic forces in transition met

Detailedab initio calculations of the phonon frequencie
have been performed using thedirect method, i.e., deriving
the force constants from the forces induced by static ato
displacements in a supercell. However, due to the long-ra
nature of the interatomic interactions in an fcc metal
43434 supercell containing 256 atoms would be requir
The alternative is to derive sets of interplanar force consta
from 1313n supercells elongated in the direction of th
phonon wave vector. Still such calculations require e
tremely efficient tools for total energy calculations. A
present the highest computational efficiency is certainly
fered by pseudopotential codes. Because even today th
curacy of pseudopotential techniques applied to transi
metals is not entirely undisputed, we performed a deta
comparative study based on conventional norm-conser
pseudopotentials and a mixed basis set and on ultra
pseudopoentials and a pure plane-wave basis on the o
hand. For comparison static lattice properties andX-point
phonons have also been computed using the full-poten
linearized augmented-plane wave~FLAPW! method. The re-
sults may be briefly summarized as follows: All-electron a
ultrasoft pseudopotentials produce virtually identical resu
the difference between theory and experiment is'0.7% in
the lattice constant and'3% in the phonon frequencies. Th
norm-conserving pseudopotential leads to slightly be
agreement with experiment ('0.2% in the lattice constant
&1% in the phonon frequencies!, but is slightly off the ‘‘ex-
act’’ LDA result provided by the FLAPW calculations. A
detailed analysis shows that—apart from a small differe
coming from slightly different exchange-correlatio
functionals—the observed difference has to be attributed
s

n

c

-
in

en
at
ly

he
g-

s.

ic
ge

.
ts

-

f-
ac-
n
d
g

oft
her

al

,

r

e

a

different choice of the local component of the pseudopot
tial.

The excellent agreement between theory and experim
includes also the quantitative description of the phon
anomalies. A detailed analysis of the Fermi and Kohn s
faces establishes a one-to-one correlation between the
tions of the observed and calculated phonon anomalies
nesting vectorsconnecting flat pieces of the Fermi surface.
quantitative analysis of the strength of the anomalies
been performed along the lines proposed by Weber,56 i.e.,
calculating the dominant contribution to the dynamical m
trix in second-order perturbation theory and approximat
the electron-phonon matrix element in terms of the diff
ence in the electron velocities on the regions of the Fe
surface connected by the phonon wave vectors. This ana
shows that—as proposed by Weber—dominant pho
anomalies appear at wave vectors linking flat regions on
Fermi-surface with large and opposite electron velocities
the direction of the phonon polarization vector and on
weak dispersion in the perpendicular directions.

In summary our work shows that pseudopotential te
niques may now be used to predict the lattice dynamics
transition metals with very high accuracy and to provide
detailed understanding of the origin of phonon anoma
and their relation to details of the electronic structure. O
more technical level we find that different types of pseud
potentials can do the job—with very careful chosen pseu
potentials even 100% agreement with the most accurate
electron calculations can be achieved. A certain advantag
the ultrasoft pseudopotentials and the plane-wave bas
that the iterative techniques for the ground-state calcula
show better scaling properties and hence can be extende
even more complex systems.
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