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The phonon dispersion relation in face-centered-cubic rhodium has been investigaaedifitio local-
density functional(LDF) calculations and inelastic neutron-scattering measurements. The LDF calculations
have been performed both using ultrasoft pseudopotentials and a plane-wave basis and norm-conserving
pseudopotentials and a mixed basis set and include also all-electron calculations at a few high-symmetry
points. Theory predicts the existence of Kohn anomalies that can be interpreted in terms of the calculated
Fermi surfaces. The neutron-scattering experiments confirm thadkhiaitio calculations are accurate to
within 3% (including the position and amplitude of the anom3ali¢S0163-18208)00801-7

I. INTRODUCTION etry. The size of the supercell is determined by the range of
the interatomic interactions which can be quite substantial
Over the past 40 years phonon spectra of crystals havier systems showing phonon anomalies such as Nb or Mo,
been determined by neutron-scattering experiments for but also Pd and Pt. This method has been used in the past
wide class of systems ranging from elements to multicompomostly for simple metalS and more recently for semicon-
nent materials, from metals to semiconductors, insulatorsjuctors and semimetal8. Calculations for transition and
and alloys'* A notable exception is the face-centered-cubicnoble metals have been restricted to Cu, Ag, Pd, and Pt using
transition metal rhOdiUm—deSpite its teChnOlOgical impor'norm_conserving pseudopotentia|s and a mixed basis de-
tance in many catalytic applications. Very recently, dEta”edscription for dealing with strongly localized electrons:’8
experimental investigations of surface phonons for the-or systems withd electrons a convergence of the plane-
Rh(111) surface have been presentedut the phonon dis- 1 expansion of the wave functions is difficult to achieve,
persion relat|c_>n In th_e bulk remains unknown. even with present-day computer resources. In all these stud-
With _the Increasing computatlonal power of modern ies, however, the main emphasis has been on surface prop-
workstationsab initio calculations of phonons have become .
erties and thus the bulk results have only been used to assure

possible. These investigations are all based on density fun?ﬁat the theoretical description of the bulk was consistent

tional theory*® differ, however, in the treatment of the i th 4 oh X d thus al ith th
tightly bound core electrons and/or in the basis set used fof! € measured phonon spectra an us also wi N

describing the wave functions. Since very accurate fu”_atomic force constants that are needed for a full understand-

potential  calculations [e.g., full-potential linearized [N of the lattice dynamics. New developments in th‘;’ con-
augmented-plane wav&LAPW)] are very time consuming, Struction of pseudopotentiafsitrasoft pseudopotentiali$®%
even with modern workstations, most of the studies havé@nd new algorithms for the self-consistent iterative diagonal-
been restricted to selected phonon modes usingfrieen  ization of the LDA Hamiltonian(conjugate gradient, re-
phononapproactf. Calculations of the entire phonon spec- siduum minimization, . . -3 together with increasing com-
trum have been carried out in the past mostly using generaputer power have made it possible to deal now also with
ized response theofyBaroni and co-workers, as well as transition metals in a pure plane-wave basis. This has the
other groups used the formalism within a plane-wave basiadvantage that an accurate calculation of the forces is simple,
and pseudopotentiafs®  Linearized-muffin-tin-orbital  which is a nontrivial task in the mixed basis description of
(LMTO) versions**2and FLAPW version's have also been the wave function?*=2’ Since phonon modes are very sen-
developed. A very useful review of response theories in latsitive to all kinds of approximations it is now possible to
tice dynamics and related fieldsvith many further refer- assess in detail the limits inherent in the theoretical approxi-
ence$ has recently been presented by Gotfze. mations(LDA) as well as in the numerical treatmerfslI-

An alternative method is the direct calculation of inter- potential—-pseudopotential; norm-conserving-potential—
atomic or interplanar force constants using a supercell geomiltrasoft potential, mixed-basis—plane-wave basis
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In this paper we attempt to answer some of these ques
tions. Our studies have concentrated on Rh since this is on
of the few elemental systems for which so far no measurec-
phonon spectra have been published. Similar to Pd anc
P829we expect anomalies in the dispersion relation which -
constitute a severe test for any theoretical treatment. Furtherz
more the surface properties of Rh are of great interest sincit
Rh is an important catalyst for nitric oxide reduction and %
hydrotreating reactions. However, before studying the sur-=
face, bulk properties have to be known. This becomes very
obvious in connection with recent He-scattering studies on
Rh(112)®> where the authors could interpret their surface re-
sults only b_y makingad hoc as_sumptions Concem,ing the FIG. 1. Phonon frequencies of Rh at 297 K. Discrete symbols:
bulk propertles. These as_sumpt'o,ns_’ however, are in Cor‘traﬁ&utron-scattering experiments. The lines are the result of a fit with
to our theoretical predictiongpreliminary results on bulk ;54 parameter Born von Karman model.
and surface phonons for Rh have been published in Ref. 30
Our calculations are supported by recent neutron-scatteri

expenments,.res.ults of V\.’h'Ch are included in this paper. monochromator was used to improve the resolution. In a first
The organization of this paper is as follows. In Sec. Il we xperiment we had restricted our measurements to the

present the results of inelastic neutron-scattering experimenf 00 0 and (1£0). directions. Analvsis of the
on the phonon dispersion relation of Rh, together with force'%ata)t’)y(f)f\e)r;ogﬁg%logica(llrgno)dels showea that)t/he calculated
IrE

e analyzer in most cases. In some measurements$ld Qu

Sv%ngéasrgri?g%ﬁljﬂﬁtiﬁg ;?J tgscgl]legsurrggcw}g??ﬁs.cg:cslea%o honon density of states depended much more sensitively on
y P PP uatl Fe number of allowed interactions than should be expected

of interplanar force constants. The size of the supercells thq m differences in the reproduction of the phonon data in

i?\etl;/(raaigrafcufzfgeisir? fnoer][zlesq?nenigc?iizhii?:?f&;zn?he naturefq ections covered by the experiment. This clearly indicated
P € US€ Ohat the experimental information was not sufficient to set up

all-electron t_)and-structure techniques a_n_d SUggests  diaple lattice dynamical models. We found that the
pseudopotential-based approach. For transition metals theB?anches in the (2 £,£,¢) direction should yield the most

are the alternatives to use either a norm-conserving pseucIB'sefuI information to further pin the model parameters. For

potential treated within a mixed-basis description or an UItra"[his reason additional measurements were carried out in this

soft pseudopotential and a pure plane-wave basis set. Sec“%ﬂection. The two upper branches can be measured in an

IV is devoted to a det_auled comparison of the pseudopoten01_1 orientation of the sample. The lowest branch, how-
tials and a confrontation of the pseudopotential results for . . : :

; . _—ever, is polarized perpendicular to this plane and has a struc-
lattice constants, bulk modulus, and the energy of high-

symmetry frozen phonons with the results of aII-eIectronture factor ider_1tical to zero in this configuration. Our c_hoice

[full-potential linearized augmented-plane waif APW)] to measure t_hIS branch was to start from the 310 reciprocal
. ; : . : : |I:atuce point in an 001 orientation of the sample and to run

calculations. Section V describes the dispersion relation Caalong the line (3-£1+ &) by continuously tilting the arcs

culated via theab initio force-constant method and in Sec. f the goniometer (’)f thé sample

VI a detailed analysis of the phonon anomalies in terms of 9 pie.

Fermi-surface nesting and electron-phonon-coupling matrix

elements is given. A discussion of the relevance of our re- B. Results and analysis

sults will be presented in the last section. The results of the experiment are depicted in Fig. 1. Un-

certainties in the frequencies arising from the counting sta-
Il. DETERMINATION OF THE PHONON DISPERSION tistics are smaller than 1%. Shifts in the low LO frequencies
CURVES BY INELASTIC NEUTRON SCATTERING caused by a relaxed vertical collimation in the neutron beam
have been corrected for by a computer program. Small sys-
tematic errors may arise from the strong absorption in the
Rhodium is one of the very few metallic elements for sample and uncertainties in the calibration of the spectrom-
which no experimental phonon data exist in the literatureeter. From a comparison of data obtained under different
This is mainly due to the large absorption cross section foexperimental configurations and reference scans on a Cu
thermal neutrons of 145 barns at 2200 m/s which corresingle crystal we estimate that uncertainties due to these ef-
sponds to a mean free path for absorption of 1 mm only. Irfects are well below 0.1 THz. Anomalous structures are ob-
order to reduce absorption losses in the various scatteringerved in several branches in particular in the TA branches of
configurations four differently oriented samples were cutthe (££0) direction, which reflect the topology of the Fermi
from a commercial single crystal that had 4.0 direction  surface. They will be analyzed in detail in Sec. VI. When
about 30° off the cylinder axis. Two of the samples in thetrying to describe these features by force constant models
shape of thin plates had tl601) axis vertical, the two oth- interactions up to large distances have to be taken into ac-
ers were optimized for 1-10 orientations. Measurementsount which implies a large number of model parameters.
were performed at 297 K on the triple axis spectrometer 2TWe have carried out systematic studies using a variety of
located at the Orphee reactor at Saclay. Doubly focussingnodels in order to arrive at an optimum description of the
PGO002 crystals were used both for the monochromator anexperimental dispersion curves with a minimum of fitting

A. Experimental
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TABLE I. Force constants of a 24 parameter mixed TF/AS Bornbased on total-energy and force calculations within local-
von Karman model in dyn/cm. The force constants for neighborsiensity-functional theor§> To simplify the task we elimi-
6-9 are axially symmetric and are represented by two parameteigate the tightly bound electrons by using the pseudopotential
fi, fi. The mean deviation between model and experiment is 0.03¢oncept®? To obtain the phonon dispersion curves we need

THz. to know the interatomic force constants. In principle we can
i : calculate the force constants using a supercell approach. The
NN Indices ik Force constantéFl ., f . f;) displacement of a single atom within the supercell induces
1 110 xx zz xy 18431 —689 22462 forces on the surrounding atoms, which can be calculated
2 200 xxyy 6962 —2320 using the Hellman-Feynman theorem. From the variation of
3 21 1 xx yy yz x2 3382 1408 510 1391 the forces with the amplitude of the displacement the force
4 2 20 xx zz xy 496 —193 848 constants can be calculated. Group theory can be used to
restrict the number of atomic displacements to a mininttim.
5 31 0 xx yy zz xy 240 453 —-113 382 . . .
This technique works very well with supercells of modest
6 2 2 2 f f —1153 804 . . .
7 321 f f 750 —253 size (64 atoms for semiconductors such as diamoruit
8 400 f' ft 696 411 already for the semimetal graphite the supercells must be
Lot extended to 144 atonis.For metals the interatomic forces
9 330 f f 1953 467

are notoriously long ranged. In this case it is easier to start by
calculating the interplanar force constants describing the

parameters. It turned out that the inclusion of interaction$0upling between lattice planes perpendicular to the disper-
with atoms of the ninth nearest-neighdN) shell (330) is  Sion direction. These force-constants can bg callculated t_Jy
crucial for a good reproduction of the anomalous structure§etting up supercells elongated along the direction one is
in the branches of the 110 direction. Furthermore, it wadnterested in and restricted to aX1l) geometry in the plane
found that the force constants of the ninth NBB0) and  Perpendicular to it. The long dimension of these cells is de-
tenth NN (411) interactions are significantly different al- termined by the range of interaction. For rhodium we have
though the interatomic distances are identical. Indeed, thesed cells with up to 18 lattice planes to account for the
tenth NN force constants can be put to zero without sacrificlong-range interactions. Starting from the equilibrium posi-
ing goodness of the fit. The dispersion curves in Fig. 1 werdion and distorting the central lattice plane from the equilib-
calculated with an “optimized” model using tensor forces fium positions in three orthogonal directions, we calculated
(TF) up to the fifth NN and axially symmetri¢AS) forces  the forces acting on all other lattice planes in the unit cell.
for interactions 6 to 9. The agreement between experimen-[h's_a”()ws |mmed|ately the calculation of the force-constant
and model fit is excellent. The choice of AS forces at largeMatrices coupling the layers. Knowledge of the force-
distances was guided by the intention to restrict the totafonstant matrices allows to set up the dynamical matrix. Ei-
number of fit parameters. A full TE model increases thedenvalues and eigenvectors are obtained via diagonalization.
number of parameters from 24 to 29 without significant im-For the high symmetry directions eigenvectors are known
provement of the fit. The parameters of the model are liste@d €igenvalues are given in terms of reciprocal lattice sums
in Table I. The model was used to calculate the phonorPVer the dynamical matrix multiplied by the eigenvectors.
density of state§°DOS which is shown in Fig. 2. In spite of ~ From the long-wavelength limit of the phonon dispersion
the complex force field the PDOS shows the typical shape dihe elastic constants can be determined. However, this is a

a fcc metal with dominant first NN interaction. very delicate procedure since small errors in long-range cou-
plings are strongly influencing the result. Alternatively the
lIl. Ab initic FORCE CONSTANT METHOD elastic constants can be calculated via static deformations of

the primitive unit cell either as the second derivative of the

We outline here the method which has been used to catotal energy with respect to the deformation or from the

culate the phonon dispersion curves. All investigations aretress/strain relationéhe stress can also be calculated via
the Hellman-Feynman theoréfn?23334,

0.6 The procedure outlined above for calculating phonon
branches and elastic constants has been carried out with a
norm-conserving potent&°in the mixed basis representa-
tion and with an ultrasoft pseudopotentfatising a plane-
wave basis. Technical details concerning the calculations
based on the mixed-basis approach are given in Ref. 36
while those for the approach based on the ultrasoft pseudo-
potentials can be found in Refs. 21-23.
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IV. COMPARISON OF NORM-CONSERVING
4 6 8 AND ULTRASOFT PSEUDOPOTENTIALS

(=]

o
N

Frequency [THz] A norm—conserving pseudopotential to be used in mixed—
basis calculations was constructed according to the prescrip-
FIG. 2. Phonon density of states of Rh calculated with thetion of Hamanret al.3"*® as adapted by Elsaeret al* for
model described in the text. a mixed-basis set appropriate to transition metals. The calcu-
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FIG. 3. Real-space representation of the pseudopotentirls: (
Norm-conserving pseudopotentiaRZ) ultrasoft pseudopotential.
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lation is based on the Hedin-Lundgw$parametrization of

the exchange-correlation functional in the scalar relativistic 2

LDF Hamiltonian. All-electron eigenvalues and eigenfunc-

tions have been calculated for an atomid®45s°2%5p0-2° 3 5 " 0 " 5

reference configuration, the logarithmic derivatives of the ) - )

norm-conserving pseudo-orbitals and their energy deriva- E (Ry)

tives calculated at the atomic eigenvalues of the reference

configuration are fitted to the all-electron functions around a FIG. 4. Logarithmic derivatives of the pseudopotentils and

cutoff radius ofR; 4=0.74 a.u.R; s=1.64 a.u.R; ,=1.82 P2 (dashed linesand of the all-electron potentidull lines). The

a.u. equal to the experimental nearest-neighbor distance. Tisgmbols mark the reference energies.

angular momentum-dependent ionic pseudopotentials P1 are

shown in Fig. 8a), thes component of the pseudopotential is ergy. The difference between the pseudoelectron and all-

chosen as the local pseudopotential. Figuf@ 4hows the electron charges withiR; | is described in terms of a small

logarithmic derivatives of the pseudo-orbitals in comparisornumber of localized augmentation functiofi€® Plane-wave

to the all-electron values. The mixed basis consists of planeonvergence can be further improved by a proper construc-

waves(cutoff energyE = 10.5 Ry, corresponding to 60—70 tion of the pseudo-wave-functions. Kresse and Hafhro-

plane waves per atonplus five localizedd orbitals derived posed to follow Rappeet al*® in expanding the pseudo-

from the atomic 4 pseudo-orbitals by cutting off the tails orbitals in terms of spherical Bessel functions, choosing the

beyond a cutoff radiuR,,= 2.55 a.u(see Elsaseret al*®.  minimal set of three Bessel functiongq,,r), m=1,3 with

The mixed basis leads to a generalized eigenvalue problethe g,’s determined such that the logarithmic derivatives

which is transformed to standard form by Cholesky-join smoothly the logarithmic derivatives of the all-electron

decomposition and then solved numerically by straightforfunctions and that there arent-1) nodes forr <R;, (see

ward diagonalization. Ref. 20 for details It is also advantageous to “pseudize”
The principle of ultrasoft pseudopotentials is based orthe augmentation functions in terms of “hard-core” norm-

Vanderbilt$® observation that the requirement of norm con-conserving pseudo-orbitals with a small augmentation radius

servation applied to the pseudo-orbitals imposes an uppdtag (see again Ref. 20 for detajlsThe starting point is

limit to the cutoff radii where the pseudo-orbitals are again the scalar-relativistic LDF Hamiltonian with the

matched to the all-electron wave functions. Small cutoff radiiexchange-correlation functional constructed by Ceperley and

lead to high cutoff energies, Vanderbilt proposed to drop theAlder as parametrized by Perdew and ZurfjeFhe atomic

norm-conserving requirement and, in order to achieve optireference configuration wasi#ss?, i.e., the atomic ground-

mum transferability, to fit the logarithmic derivatives of the state configuration. The components of the pseudopotential

all-electron wave functions at more than one reference erare described by ultrasoft pseudopotentials with cutoff radii
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TABLE II. Lattice constanta (in A), bulkmodulusB (in GPa,  properties based on the two pseudopotentials and we con-
and phonon frequencies at thepoint (in THz) calculated with the  front them with the results of all-electron calculations per-

pseudopotentialsR1 and P2) and within a FLAPW calculation formed using the full-potential linearized augmented plane-
(Ref. 43. Experimental data are from Refs. 49 and 50, and thisyave (FLAPW) method'*® and the same exchange-

work. correlation functional as used for the ultrasoft
pseudopotential. This comparison also includes phonon fre-
a B Xong Ktrans guencies at th& point calculated using the frozen-phonon
P1 3.81 283.5 7.15 556 method and a doubled unit cell. The results of this compari-
p2 377 308.5 705 580 son shows that there is an essentially perfect agreement of
FLAPW 3.77 305.9 7.43 578 the results obtained with the ultrasoft pseudopotential,
Exp. 3.80 268.6 7,04 556 whereas agreement with experiment is slightly better with

the norm-conserving pseudopotential. Similar agreement be-
tween ultrasoft pseudopotentials and FLAPW has already
Rea=Rcp=2.65 a.u. and augmentation radii for the con- been documented for intermetallic compoutidmd has re-
struction of the pseudized augmentation functions ofcently been shown to extend to the structural and magnetic
Rauga=2.15 a.u. andRy,qp= 2.36 a.u. Thes component was phase diagram of the transition met#lave think that it is
described by a norm-conserving pseudopotential with twdegitimate to say that FLAPW is at the moment the most
reference energiésandR, ;=2.36 a.u. accurate LDF-based all-electron technique for calculating to-
For thes andd components one reference energy is al-tal energies. Hence we can see that the ultrasoft pseudopo-
ways the eigenvalue of the atomic reference configurationientials reproduce the LDF standard. The remaining discrep-
the second energy is chosen such as to span the expect@.@py with eXperIment represents the Characte!‘lstlc LDF-over-
band width, for thep component the reference energies arebinding error. For the lighter elementincluding the 3
E=0 Ry andE=—0.2 Ry (the precise choice of the refer- Series it is well documented that generalized gradient cor-
ence energies has only a small influence on the pseudopoteifctions(GGC) (see, e.g., Ref. 43ead to an improved pre-
tial). The all-electron potential truncated Bf,,=1.82 a.u. diction of the cohesive properties, alb%n with a certain ten-
. 44,46,47 ;
was chosen as the local part of the pseudopotential. The redlency to over-correct the LDF errd: For the heavier

space form of this pseudopotenti@Z) and the logarithmic ~ €lements(starting with the 4l serieg where the LDF error

shown in Figs. &) and 4b). comes larger than the LDF err8ft*’ In the present case the
The comparison of the logarithmic derivatives with the GGC prediction for the lattice constant as=3.85 A (error
corresponding all-electron values shows both pseudopotent 1.3%) and for the bulk modulu=243 GPa (error
tials to be of comparable transferability and accuracy—with—9.7%). We conclude that for the heavy elements correc-
slight advantages for the ultrasoft pseudopoterfal For  tions to the GGC functionals are necessary before they can
P2 we have included also thie states in order to demon- D€ considered as a genuine improvement over LDF theory.
strate that the potential is very accurate for excited states ak€ norm-conserving pseudopotentials agree better with ex-
well. The differences of the real-space form are mainly in the?€fiment(although they do not reach the LDF standaithe
description of thed components and of the local part, while Slight improvement in the prediction of the lattice constant
thes andp components are rather similar. THecomponent leads to a more substantial improvement f_or the bulk modu-
of the ultrasoft potential is much softer—this explains thelus and zone boundary frequencies. We think that apart from
better plane-wave convergence. Note also that the comp& we_ak |anuenqe from the different .exchange—correlatlon
nents of both pseudopotentials merge with the all-electrofinctional the difference is to be attributed mostly to the
potential at approximately the same distance from thdifferent d.eSCHptIOI’I of the local potential. The ch0|c§ made
nucleus, although the cutoff radii are formally quite differ- for potential P2 (truncated all-electron potentjatiescribes
ent. The reason is that in the ultrasoft pseudopotentia‘ihe interaction of the ions Wlth the h!gher angular momentum
scheme as set up by Kresse and Haffi¢he wave functions Components of th_e electrqnlc_ orbltal_s very well, V\_/hereas
are matcheat R, | , whereas in the norm-conserving schemeW!th potenua}Pl this attractive interaction |s.underest|mated
of Hamannet al®” R, is the characteristic distance of a With the choice of the weak-electron potential.
cutoff function varying steeplyaround R, so that wave
functions_ and potentials match e>_<actly pnly_at considerably V. PHONON DISPERSION
larger dlstances(seg also the_ dlscusspn_ in Kress_e and FROM ab initio CALCULATIONS
Hafnef?). A further important difference is in the choice of
the local potential—remember that the local potential acts on Figure 5 shows the phonon dispersions along the main
all angular momentum components without separate nonlassymmetry directions calculated with the two sets of poten-
cal projectorqi.e., all components with>2). For the norm- tials. The calculations have been performed for supercells
conserving potentialP1 the choice of thes-pseudopotential stretching in the direction of the phonon wave vector. For the
leads to a weak local potential, whereas for the ultrasoftalculation using®1 cells with 18 layers have been uggéar
pseudopotentiadP2 the local potential is the all-electron po- calculations with 9 layers see Ref.)48hereas the compu-
tential truncated at a radil®,.=1.82 a.u. and this leads to a tation with P2 has been performed with only 12 rhodium
much more attractive electron-ion interaction for the higheratoms per cell. This means théven if the forces would
angular momentum components. have infinite rangefor the calculation using the first setup
In Table Il we compare the predictions of the static latticethe frequencies at nine equidistdnpoints along each direc-




57 PHONON DISPERSION RELATION IN RHODIUM: ... 329

T
(THz)

Frequency (THz)

T
Frequency

- N w A d® O
T
VI,/
Mo
M j
— N w A a o w

o

o
—
—
o
o
<
—
—
o
1
—
—
—
—

FIG. 5. Dispersion relation for rhodium calculated with norm-  FIG. 6. Measured dispersion relation for rhodiusymbols.
conserving pseudopotentiBll (dashed lingand ultrasoft pseudo- The full line indicates the calculated dispersion relatipseudopo-
potentialP2 (dashed ling tential P2) which has been scaled by 97% for a better comparison.

tion are accurate in the sense of a frozen-phonon calculatioqvhereg denotes the-vector relative to the distance of the
whereas for the second setup only six such points exist fofey reciprocal lattice point in that directidie., £=0.5 at
each dire_ctiqn._ For_all_ othek points the evaluatio_n of the the zone boundajyand @, is thenth interplanar force con-
frequencies is in principle based on the assumption that thg, ¢ From the calculated slopes the elastic constants can be
range of the forces caused by the distortion of one layer ig, 5 ,ated easily. Alternatively, the elastic constants can be
limited only to lattice planes belonging to the same supercellyeiyeq from the total energy differences calculated for the
Nevertheless the agreement concerning the shape of ﬂ%‘?/mmetric and homogeneously deformed unit cefiethod
curves shows that already with the shorter cells the descrips; homogeneous deformationsOur results obtained with
tion of the dispersion relation is satisfying. Altogether the . potentials are compiled in Table II, the slopes of the
frequencies calculated with the uItras_oft pseudopotential araispersion relation df corresponding to thé elastic constants
about 3% higher than those derived from the nomMi .,y yhe homogeneous deformation method are given in Fig.

conserving po_tentiaPl, some phonon anomalies are More€s \whereas with potentidP2 a reasonable consistency of
pronounced witlP1 than withP2. The 3% difference in the both sets of elastic constants can be achieftiel discrep-

frequencies is just what we would expect on the basis of th%ncy is 2.6% for the bulk modulus and 7—8 %
differences in the lattice constants. :
Figure 6 compares the frequencies calculated ViAth

for the shear
constants somewhat larger differences are found with the

force constants derived with potenti®dl, although one

along all symmetry lines with the experimental values. ;rhewould expect a better agreement for the larger cell. The rea-
the_o_retlcal frequenmgs have be_en _downscgled t_’y 3% Qon for this discrepancy is the structure of EL). In the sum
f§C|I|tate_ the comparison of details in the dispersion relay,q torce constants are weighted with the square of their
tion. This comparison demonstrates that all features of th@igiance, which means that the last accessible force constant
phonon dispersion relation are adequately reproduced by thfgr the larger cell P1) has already a weight of 81, so al-

ab 'n't'(,) calculations. The physical origin of the p'hon(.)n ready very small numerical errors in these force constants
anomalies observed along most of the symmetry dlrectlonﬁave a vast influence to the whole result

will be discussed in more detail in the next section.

Theab initio force constants can also be used to calculate
the elastic constants via th@ethod of long wavesThat V1. DISCUSSION OF THE ANOMALIES
means that the slopes of the dispersion relatiod” atre

> In this section we will analyze the origin of the anomalies
calculated according to

in the calculatedand measureddispersion relation, in par-

= ticular those in the transverse branches along(1i€) di-
_ iz 2 rection following two different approaches. First we perform
5:0—27T n CDn, (1) . . . .
mp=1 a purely geometrical analysis of the Fermi surface to find

dw
dé

TABLE Ill. Elastic constants for rhodium in GPa. The calculated reslith P1 andP2) have been
obtained by homogeneous deformations of the unit o&)l &nd by a least square fit of the slopes of the
dispersion relation in the high symmetry directio®) ( method of long wavesee text and Fig. 5.

Experiment P1 P2
A B AAB [%] A B AAB [%]
Ci1 422.1 411.5 402.2 —-23 481.8 477.0 -1.0
Ciw 191.9 2195 196.4 —10.5 221.9 236.5 +6.6
C’ 115.1 146.0 102.9 —29.5 129.5 120.3 -7.1
Cus 194.0 163.0 162.2 -0.5 205.6 192.4 -6.4
B 268.6 283.5 265 —-6.5 308.5 316.7 +2.7
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possible nesting vectors for Kohn anomalies, following the X w X
method used by Miiller for investigating phonon anomalies
in Pt (Ref. 29 and Pd?® The second approach includes in ) .
addition to a Fermi-surface analysis, a quantitative estimate N S
of the strength of the electron-phonon coupling. For free- N
electron-like metals it has been shathat the interaction &
of the conduction electrons with the lattice vibrations
changes abruptly when the sum of the phonon wave vector
and a reciprocal lattice vector is just equal teg2 i.e., if "l\‘k‘
normal- or Umklapp-scattering processes occur between
states on the Fermi sphere, ""'., W

la+G| =K"=kl =[x 2KE . 2

|:’<|::
The physical origin of this effect is the discontinuous
change in the occupation of the eigenstates at the Fermi leve
causing the well-known logarithmic singularity @t 2« in
the susceptibility of the electron gas. ., o "
In the phonon dispersion relation the effect leads to weak "\\
logarithmic singularities indw(q)/dq known as Kohn
anomalies. For simple metals the Kohn anomalies confirm I' X
the existence of an almost spherical Fermi surface, detailed

; 2Pan 53,54
studies have been reported, e.g., for d Al For bands along th€100) plane, calculated by mapping out the plane

transition metals and their Compou_nds, _the Fermi Surf""ce\?\‘/ith 120x120k points and marking those within an interval of 25
are far from spherical. However, in this case the Kohny .y around the Fermi level.

anomalies can even be much more pronounced ih&sting

condition some representative transitions corresponding to the Kohn
Gk —k 3 anomalies in th€110) direction are sketched. All transitions

qQtG=K—K, 3 but one are Umklapp processes and hence contribute to

k’,k on the Fermi surface is satisfied not 0n|y for iso]a’[edanoma”es in the IOngitUdinal as well as transverse branches.

points on the Fermi surface, but if tnesting vecto(q+ G) In the second step of our analys_is we estimated th_e influ-
connects two parallel flat pieces of the Fermi surface. On thig§nce of the electron phonon matrix elements, following an
basis a detailed discussion of the origin of the strong anoma@PProach used by Web®tWeber showed that the dominant
lies in the phonon dispersion relations of Nb, Mo, NbC, etc. contribution to the anomalies in Nb and Mo comes from a
has been given by Webet al*® It has also been shown that term (calledD,) describing second order corrections to the
the less spectacular broad and shallow anomalies observedRRonon eigenvalues due to first order displacements of an ion
the phonon spectra of Pt and Pd can be traced back to ain directiona. D, is defined as

number ofnesting vectorglustering in a certain region of

the Brillouin zone?®28 W X

Here we analyze the origin of the phonon anomalies
marked in the dispersion relation in terms of Fermi-surface
nesting. Figure 7 shows the intersection of the Fermi sur-
faces of the third to the sixth band with tH&00 plane K
[constructed by mapping out tHe,(k) surfaces on a 120
X 120 grid ofk points as shown in Fig. 11 for the fifth band N
and plotting all points within 25 meV from the Fermi en- .
ergy]. Our Fermi-surfaces are very similar to those described 2 = ‘-"'r .
in detail by AnderseR® The dominant contribution to the .
density of states at the Fermi-level comes from flat parts of
the bands around th¢ point and alond™-K. In our plots this
is reflected by a broader linewidth in Fig. 7. Since the
strength of the Kohn effect is proportional to the square of
the electron-phonon matrix element summed over initial and
final states, the scattering processes within those regions
(band 5 will be by far the most important.

Wave vectorg) that satisfy thenesting conditiolEq. (3)] -
define the Kohn surfacg:?® The Kohn surfaces for intraband y T B
transitions of the fifth band within the.00) plane are shown . X
in Fig. 8. Along the(110 direction there are in a small
interval many intersections, exactly in the region where we FIG. 8. Cut through the Kohn surfaces along t1€0 plane,
found the anomalies in the transverse branches. In Fig. See text.

FIG. 7. Cut through the Fermi surfaces of the third to the sixth

.-'x..."—"-'-'- -
"o
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X W X w X
a
K K 300
W W 200
100
I
N C 1
) C r « x
W W b
300
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FIG. 9. Cut through the Fermi surface for the fifth band along 100
the (100) plane. The arrows indicate nesting vectors corresponding
to points at thg110) axes in the Kohn surface.
T K X
, ka - ko ca B FIG. 10. The upper curves show the phonon dispersion relation
Da(ka,k'Bl)== Okukru Ok'u ku  (mw?) for a transvers¢(110) (a) and the longitudina(110) (b)]

kup' k'=k+q €k~ Ek’u’ . 7
i 4 Tku o Tkip 4) branch inN/m?, the lower ones- D3*P*for the same polarizations

arbitrarily scaled, see text.
with f,, being the occupancy of the electronic bamdat k
pointk with the corresponding eigenvaleg,, , andg{(‘z’k,ﬂ, have large velocities of opposite sign in the direction of the
the electron-phonon matrix element. Very similar analysespolarization vectora and parallel velocities and minor dis-
but without considering the matrix elements have also beepersion in the directions orthogonal to it. When we look at
used by Sinhat al®® and Reeset al®’ to explain the pho- the graphical representation of the Fermi surface of the fifth
non anomalies for Yttrium and Thorium. band in the(100 plane (Fig. 11, compare Fig. 10 for the
The sum in principle has to be carried out over all banddocation of the nesting vectojswe find that the sections
w,u’ and allk pointsk,k’ that can be connected via the determined by the geometrical analysis of the Kohn curves
phonon wave vectog. To simplify the calculation we re- fulfill exactly these criteria.
strict the summation to intraband transitions within the fifth
band (u=u'=5) and only tok points within the (100 VIl. SUMMARY AND CONCLUSION
plane. As a further simplification we use the approximation . ) )
to the electron-phonon matrix-element proposed by W&ber [N this paper we have presented detailed experimental and
theoretical studies of the lattice dynamics of face-centered-
Ot (V= V1), (5)

wherevy, is the electron velocityey, /K, . This approxi-
mation is exact in an energy band model with osHike
orbitals and nearest-neighbor transfer integrals. Borthis
leads to

fk_fk’ « a
-DFPalg)=c > (vE—vE)2. (6)
k.k'=k+q,u=5 €k €k’

In a qualitative way the approximation holds rather well,
even for transition metals. In Fig. 10 we have plotted
—D&PP"* and mw? for the (110 and the(110) branches
along the(110 direction. Because of the unknown propor-
tionality factor in Eq.(5) we can use only arbitrary units for
the representation of- D5PP®*. Nevertheless we see that
maxima of —D35PP™ coincide well with depressions in the
dispersion relation.

Pronounced maxima ir- D3PP"* appear at phonon wave FIG. 11. Potential energy surface of the fifth band over(flg®)
vectors linking flat parallel pieces of the Fermi surfaces thaplane. The bright stripe indicates the Fermi level.

r
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cubic rhodium. Our inelastic neutron-scattering measuredifferent choice of the local component of the pseudopoten-
ments demonstrate the existence of anomalous structures fial.

several branches of the phonon dispersion relatiorpar- The excellent agreement between theory and experiment
ticular in the TA branches of the£€0) directiod which  includes also the quantitative description of the phonon
reflect the topology of the Fermi surface. anomalies. A detailed analysis of the Fermi and Kohn sur-

In a first step, the measured dispersion relation has beeaces establishes a one-to-one correlation between the posi-
analyzed using empirical force-constant models. We find thations of the observed and calculated phonon anomalies and
tensor forces up to the fifth nearest neighbors and axiallyesting vectorsonnecting flat pieces of the Fermi surface. A
symmetric forces for the interaction with the sixth to ninth quantitative analysis of the strength of the anomalies has
neighbor shells are necessary to achieve a perfect fit with theeen performed along the lines proposed by Wébeée.,
measured phonon frequencies. This demonstrates the longalculating the dominant contribution to the dynamical ma-
range character of the interatomic forces in transition metaldrix in second-order perturbation theory and approximating

Detailedab initio calculations of the phonon frequencies the electron-phonon matrix element in terms of the differ-
have been performed using the@ect methodi.e., deriving ence in the electron velocities on the regions of the Fermi
the force constants from the forces induced by static atomisurface connected by the phonon wave vectors. This analysis
displacements in a supercell. However, due to the long-rangghows that—as proposed by Weber—dominant phonon
nature of the interatomic interactions in an fcc metal aanomalies appear at wave vectors linking flat regions on the
4x4x 4 supercell containing 256 atoms would be required Fermi-surface with large and opposite electron velocities in
The alternative is to derive sets of interplanar force constantthe direction of the phonon polarization vector and only
from 1X1Xn supercells elongated in the direction of the weak dispersion in the perpendicular directions.
phonon wave vector. Still such calculations require ex- In summary our work shows that pseudopotential tech-
tremely efficient tools for total energy calculations. At nigues may now be used to predict the lattice dynamics of
present the highest computational efficiency is certainly of{ransition metals with very high accuracy and to provide a
fered by pseudopotential codes. Because even today the atetailed understanding of the origin of phonon anomalies
curacy of pseudopotential techniques applied to transitiomnd their relation to details of the electronic structure. On a
metals is not entirely undisputed, we performed a detailednore technical level we find that different types of pseudo-
comparative study based on conventional norm-conservingotentials can do the job—uwith very careful chosen pseudo-
pseudopotentials and a mixed basis set and on ultrasgftotentials even 100% agreement with the most accurate all-
pseudopoentials and a pure plane-wave basis on the othelectron calculations can be achieved. A certain advantage of
hand. For comparison static lattice properties afigoint  the ultrasoft pseudopotentials and the plane-wave basis is
phonons have also been computed using the full-potentidhat the iterative techniques for the ground-state calculation
linearized augmented-plane waifLAPW) method. The re- show better scaling properties and hence can be extended to
sults may be briefly summarized as follows: All-electron andeven more complex systems.
ultrasoft pseudopotentials produce virtually identical results,
the difference between theory and experiment=i8.7% in
the lattice constant ang 3% in the phonon frequencies. The
norm-conserving pseudopotential leads to slightly better We thank Dr. Walter Wolf for performing the FLAPW
agreement with experiment(0.2% in the lattice constant, calculations. The Karlsruhe-Wien cooperation was supported
=<1% in the phonon frequencigdut is slightly off the “ex- by the Human Capital and Mobility Network Ab initio
act” LDA result provided by the FLAPW calculations. A (from electron structupecalculation of complex processes in
detailed analysis shows that—apart from a small differencesolids” (EU Contract No. ERBCHRXCT930369supported
coming from slightly different exchange-correlation in Austria by the Austrian Science Foundation under Project
functionals—the observed difference has to be attributed to dlo. P10015-PHYS.
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