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Onsager loop transition and first-order flux-line lattice melting in high-Tc superconductors
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Monte Carlo simulations in conjunction with finite-size scaling analysis are used to investigate the
(H,T)-phase diagram in uniaxial anisotropic high-Tc superconductors, both in zero magnetic field (B50) and
in intermediate magnetic fields (0!B!Bc2) for various mass anisotropies. The model we consider is the
uniformly frustrated anisotropic Villain model, which is dual to the lattice London model with an infinite
London penetration length. The quantities we consider are various helicity moduli, the structure function, the
specific heat, and the distribution of closed non-field-induced vortex loops as a function of the loop size. In
zero magnetic field, and for all anisotropies considered, we find one single second-order phase transition,
mediated by an Onsager vortex-loop unbinding transition, or blowout. This is the superconductor–normal-
metal transition. A comparison with numerical simulations and a critical scaling analysis of the zero-field loop
transition yields the same exponent of the loop-distribution function at the critical point. In the intermediate
magnetic-field regime, we find two anomalies in the specific heat. The first anomaly at a temperatureTm is
associated with the melting transition of the flux-line lattice. The Lindemann ratio at the melting is given by
cL'0.24. The second anomaly at a temperatureTz is one where phase coherence in the BCS order parameter
across the sample along the field direction is destroyed. We argue thatTm5Tz in the thermodynamic and
continuum limit. Hence, there is no regime where the flux-line lattice melts into a disentangled flux-line liquid.
The loss of phase coherence parallel to the magnetic field in the sample is argued to be due to the proliferation
of closed non-field-induced vortex loops on the scale of the magnetic length in the problem, resulting in
flux-line cutting and recombination. In the flux-line liquid phase, therefore, flux lines appear no longer to be
well-defined entities. Above the melting temperature, the system always exhibits anincoherent vortex-liquid
phasecharacterized by lack of phase coherence in the BCS order parameter parallel to the magnetic field. For
increasing anisotropy, we resolve ad-function peak in the specific heat. A finite-size scaling analysis of the
d-function peak specific-heat anomaly at the melting transition is used to extract the discontinuity of the
entropy at the melting transition. This entropy discontinuity is found to increase rapidly with mass anisotropy,
at least for not too layered compounds.@S0163-1829~98!01105-9#
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I. INTRODUCTION

A number of recent experiments have reported results
first-order melting transition of the Abrikosov flux-line la
tice ~FLL!.1–8 The reported magnitudes of the latent he
have all in general been in surprisingly good agreement w
a predictionof Hetzel and co-workers for the discontinuity
the entropy at the melting transition based on extens
Monte Carlo simulations of the uniformly frustrated thre
dimensional~3D! XY model.9

Schilling et al. have reported calorimetric measureme
on an untwinned YBa2Cu3O7 ~YBCO! single crystal, in the
intermediate field regimeBP(1 – 7) T, and find a FLL melt-
ing transition with a virtually field-independent entropy jum
DS;0.45kB per vortex per layer.7 In Bi2Sr2Ca1Cu2O8
~BSCCO! single crystal at very low magnetic inductions,B
P(1 – 375) G, it was found that a FLL melting transitio
occurs with an enormous entropy jumpDS(B51 G);6kB
per vortex per layer.4 Furthermore, it was found thatDS(B)
decreases for increasingB, and vanishes atB;375 G.4 It
appears thatDS(B) increases dramatically only whenB→0,
T→Tc . In fact, it might be argued on the basis of the data
Zeldov et al. that DS(B) divergesin this limit.

Recently, Tesˇanović10 and Nguyen, Sudbo”, and Hetzel11

have proposed an explanation for the inordinately large
tropy jump found in Ref. 4. The idea is that the FLL meltin
570163-1829/98/57~5!/3123~21!/$15.00
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transition takes place at roughly the same temperature
‘‘blowout’’ of non-field-induced degrees of freedom involv
ing closed vortex loops, resulting in a flux-line liquid pha
with considerably larger entropy than what the field-induc
vortices alone can provide.

As a step towards understanding these experimenta
sults, we carry out extensive Monte Carlo simulations,
gether with a finite-size scaling analysis, on the uniform
frustrated anisotropic Villain model, to be defined belo
This model will be argued to be appropriate for describi
the physics in extreme type-II superconductors such as
high-Tc superconductors. Here, we present a short review
our results.

For the caseB50, we find that the Villain model hasone
single second-order phase transition of the 3DXY-type for
all anisotropies considered.The phase transition in zero
magnetic field is caused exclusively by a vortex loop ‘‘blo
out,’’ to be explained below. This is confirmed by a detail
calculation of the distribution function for loops of a give
perimeter, as a function of the perimeter, for various te
peratures. In the low-temperature regime, this distribut
function is an exponentially decreasing function of the p
rimeter, indicating that there exists a length scale in the pr
lem associated with a typical size of thermally induc
closedvortex loops in the system. However, in zero ma
netic field there exists a temperature scale, which we den
3123 © 1998 The American Physical Society
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3124 57A. K. NGUYEN AND A. SUDBO”
asTc , at which the distribution function is an algebraical
decreasing function of the perimeter of vortex loops, indic
ing that there no longer exists a length scale associated
typical sizes of thermally induced closed vortex loops. In t
case, such vortex loops exist onall length scales in the prob
lem, up to and including the system size.

This means that the system experiences a thermally
duced proliferation of unbounded closed vortex loops, a s
ation for which Onsager coined the term ‘‘vortex-loo
blowout’’.13 In zero magnetic field, such a blowout mar
the transition from a normal metal to a superconduct
state, or vice versa.10,12 Many years ago, the vortex-loo
blowout transition was suggested to occur in theneutral su-
perfluid He4 at thel transition.13 The loop transition in He4

has more recently been reinvestigated by several autho14

In the context ofchargedsuperfluids inzero magnetic fielda
corresponding loop transition was suggested to occur iniso-
tropic lattice superconductor models several years ago
Dasgupta and Halperin,12 and more recently by Korshunov.15

The suggestion that features of this zero-field transition m
survive in finite magnetic fields, and thus be of importan
for the statistical mechanics of thevortex-liquid phase, has
been suggested by Tesˇanović,10 and considered recently b
us in detailed Monte Carlo simulations of the lattice Lond
model.11

The main purpose of the present paper is to study,
detailed Monte Carlo simulations, the fate of the zero-fi
Onsager-Dasgupta-Halperin transition when a magnetic fi
is applied to an extreme type-II superconductor, using
somewhat simpler more familiar uniformly frustrated anis
tropic Villain model, which is related to the lattice Londo
model via a duality transformation.

For finite fieldsBÞ0, we find two sharp features in th
specific heat and helicity modulus. In addition, we obse
what appears to be a crossover at a considerably larger
perature, in agreement with recent simulations.16,17

The first sharp feature we find, at a temperature that
denote asTm , is identified as the first-order melting trans
tion of the FLL. The second sharp feature is more subtle
takes place at a temperature that we denote asTz . At the
temperatureTz , we find that the phase coherence in the B
superconducting order parameter across the sample in
direction of the magnetic field is destroyed. We also find,
our computations, that flux-line cutting and the amount
intersecting flux lines dramatically increases atTz . Conse-
quently, aboveTz , phase coherence along the field directi
is destroyed.Furthermore, for the anisotropies considered
this paper, it occurs that Tz→Tm from above as the system
size is increased. Tz never drops belowTm , for reasons to be
explained below. We emphasize that we at this stage
limiting this statement to the case ofinfinite penetration
depth, since the results are obtained within the uniform
frustrated Villain model only.

From this we draw two conclusions. First, when the flu
line lattice melts, it does not melt into a flux-line liquid th
has phase coherence along the direction of the applied m
netic field in any temperature regime. This however does
mean that the flux-line liquid is an entangled vortex s
tem: At Tz→Tm we find that flux-line cutting and intersec
tioning of flux lines with closed vortex loops of diameter o
the scale of the magnetic length, increases abruptly. He
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the flux lines cannot be considered as well defined in
liquid phase. Second, in the present simulations on the
isotropic, uniformly frustrated Villain model, we never ob
serve an entangled flux-linelattice phaseof the type de-
scribed by Frey, Nelson, and Fisher18 for the layered case
However, we cannot access extreme anisotropies in
simulations, for reasons to be explained in Sec. II D, a
therefore do not rule out the existence of a ‘‘superso
phase’’ such as proposed in Ref. 18.

We also observe a crossover that takes place at a temp
ture that marks the onset of strong diamagnetism, not a
ciated with global phase coherence in the superconduc
BCS order parameter, but with phase coherence throug
finite domains. It takes place at a temperature well ab
both Tm and Tz , which we denote asTBc2 . Usually, this
crossover is identified withBc2 , the upper critical field, and
signals the onset of strong diamagnetic fluctuations. T
crossover is the remnant of the zero-field second-order ph
transition that marks the onset of the transition from meta
to superconducting behavior. The filling fractions we co
sider in this paper,f 5 1

32 and f 5 1
72 , may be converted into a

magnetic field of the order of 10 T, which is not particular
low. The present paper, therefore, does not address the
of how the crossover atBc2 in finite large fields evolves into
the sharp second-order transition in zero field. This issu
of fundamental importance, and remains open.

The rest of this paper is organized as follows. In Sec
we describe the uniformly frustrated anisotropic Villa
model along with the approximations inherent in this d
scription of a superconductor. We also give the connect
between these models and the lattice London model. T
we define the physical quantities to be considered, and t
measurements in the simulations. In Secs. III and IV
show and discuss our results for the zero-field case and
finite-field case, respectively. Finally, in Sec. V we summ
rize our main findings. The derivations of the helicity modu
we consider, both in terms of phase variables and in term
vorticities, are given in two appendixes.

II. THE MODEL AND DEFINITIONS

A. The model

Our starting point is the anisotropic lattice superconduc
model ~LSM! ~that semantically should be distinguishe
from the lattice London model!,12,15,19defined by the parti-
tion function

Z5)
r

)
n5x,y,z

S E
2p

p du

2p (
mn52`

` E
2`

`

d AnD
3exp~2HLSM /kBT!,

HLSM5
J0

2 (
r

(
m5x,y,z

Fam~¹mu22pmm2Am!2

1
lm

2

d2 ~“3A!m
2 G . ~1!

Here,J0 is the energy scale for the system. Furthermo
am is the anisotropy parameter along them direction, and“
denotes a lattice derivative. The variableu(r )P@2p,p) is
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FIG. 1. ~a! The ground-state flux-line configuration forf 51/32 and system sizesL58,16,24.~b! A cubic unit cell with two elementary
vortex segments penetrating two plaquettes of the unit cell.~c! The ground-state current pattern in theab plane in units of 2p/384 for the
838 vortex lattice unit cell. The arrows indicate the direction of the currents on each link. The current pattern in this ground
complicated, but nevertheless exhibits a high degree of symmetry.
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the phase of the complex superconducting order param
C(r ) at siter of a three-dimensional numerical lattice wi
lattice constantd, mm(r ) are integer variables defined on th
directed link between siter and siter1êm , whereêm is the
primitive vectors for the cubic unit cell~uêmu5d, Fig. 1!.
The contributionAm(r ) to the gauge-invariant phase of th
order parameter is related to the vector potentialAvp(r ) by

Am~r ![
2p

F0
E

r

r1êm
dr•Avp~r 8!,

whereF052.07310215 T m2 is the flux quantum. Finally,
lm is the London penetration depth along them direction.

In this model, we neglect fluctuations of the amplitude
the complex superconducting order parameter, i.e.,C(r )
5uC(r )ueiu(r );C0eiu(r ). The lattice London model is ob
tainable from the lattice superconductor model by explic
performing theu and Am integrations in Eq.~1!, as shown
first by Korshunov and more recently by Carneiro.15,19

To study the physics of high-Tc superconductors, we con
sider a three-dimensionalcubic lattice, with linear dimension
Ld, and with a uniaxial anisotropyG[lc /la . In these
simulations the applied magnetic field, and hence the
ter

et

magnetic inductionB, is taken along the crystalĉ axis. Here,
la andlc are the penetration depths in the crystalab plane
~CuO2 plane! and along the crystalĉ axis, respectively. Sub
sequently, we will take the limitla , lc→`, but in such a
way that the ratiolc /la is maintained constant. We take ou
coordinate (x̂,ŷ,ẑ) axis parallel to the crystal (â,b̂,ĉ) axis,
respectively. Periodic boundary conditions in all directio
are assumed. The basic parameters of the LSM are g
by19

J05
F0

2d

16p3la
2 , am5

la
2

lm
2 .

Here, d may tentatively be interpreted as the distance
tween two CuO2 layersin adjacent unit cells. The vorticities
nx(r ),ny(r ) @corresponding to fundamental vortex-line se
ments parallel to theab plane, defined in Eq.~4!# are as-
sumed to existin betweenCuO2 double or multiple layers in
compounds such as YBCO and BSCCO. We use the num
cal lattice unit as a measure of the in-plane coherence len
ja;d. ~Note that since the numerical factor relatingja to
d is not uniquely determined in our approach, the fillin
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3126 57A. K. NGUYEN AND A. SUDBO”
fraction f does not uniquely determine the magnitude of
applied magnetic field. Variation off may thus be viewed a
a variation ofB, but alternatively a reduction off may be
viewed as an improvement of the approximation to the c
tinuum limit at fixed inductionB.!

As for the London model, the LSM is appropriate f
describing the physics of extreme type-II superconduc
(la@ja) in the field regimeB!Bc2 , whereBc2 is the upper
critical magnetic field, implyingav@ja . Thus, spatial varia-
tions of theamplitudeof the superconducting order param
eter may be neglected. In these simulations it is also po
lated that the penetration length is essentially infinite, wh
in practice means that they are at least much larger than
average distance between vortex lines, when the field is
nite. Hence we also have the requirementB@Bc1 . In terms
of magnetic induction, our simulations are thus, stric
speaking, limited to the field regimeBc1!B!Bc2 when fi-
nite fields are considered. For our zero-field results, the com
plete suppression of gauge fluctuations implies that the p
etration depth of the model must be at least larger than
system sizes considered.

The Monte Carlo simulation timetMC for the LSM on a
cubic system with linear dimensionL is of order L6. The
suppression of the gauge-field fluctuations, using the li
lm5`, reduces the required computer time dramatica
tMC to ;L3. The neglect of gauge fluctuations reduces
LSM to the uniformly frustrated anisotropic Villain
model,14,17,21 which is the model used in this paper. It
defined by the following partition function after performin
the sum overmm(r ) in Eq. ~1! explicitly,

Z5)
r

S E
2p

p du

2p D exp~2Hv /kBT!,

Hv5J0(
r

(
m5x,y,z

Vm~¹mu2Am ;T!,

Vm~x;T!52
kBT

J0
lnH (

m52`

`

expF2
J0am

2kBT
~x22pm!2G J .

~2!

The advantage of the Villain model compared to the latt
London model used in earlier large-scale simulations
have performed on the Abrikosov vortex lattice,11 is that is
allows considerably larger system sizes to be studied t
with the lattice London model. The latter model has the
tuitively appealing feature of allowing simulations on lin
like objects, but as we have seen, the Villain model and
lattice London model are in principle equivalent represen
tions of a lattice superconductor model. One other ma
advantage of the Villain model compared to the lattice Lo
don model is that, while it is straightforward to extract u
ambiguous information about vorticities from the phases
the Villain model, it is impossible to reconstruct unambig
ous phase information from the vortex degrees of freedom
the lattice London model. Thus the Villain model straigh
forwardly provides information on vorticities as well a
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phase coherence. Ultimately, the choice of model to use
simulations is dictated exclusively by convenience, and
pends to a large degree on what problems to consider.
problem where the lattice London model appears to pres
clear advantages over the Villain model is the problem
numerical simulations of flux creep in the presence of p
ning.

The uniformly frustrated anisotropic Villain model is ap
propriate for describing the physics of extreme type-II sup
conductors in the limit where the penetration depth is lar
or comparable to the system size~zero magnetic field! or
when the penetration depth is much larger than the ave
distance between flux linesl@av ~finite magnetic fields!.

B. The ground state

The current corresponding to the gauge invariance ph
differences

j m~r !5u~r1êm!2u~r !2Am~r !,

is defined on the directed link between siter and site r
1êm , j m(r )P@2p,p). This current obeys two condi
tions: ~1! There are no net current sinks or sources in
ground state

(
n5x,y,z

¹n j n~r !50. ~3!

~2! The counterclockwise line integral of the currents arou
any plaquette of the numerical lattice with a directed surfa
normal in them direction at siter must alwaysbe

(
Ci

j n~r !52p@nm~r !2 f m#. ~4!

Here,Ci is the closed path traced out by the links surroun
ing an arbitrary plaquette, andn represents the Cartesia
components of the current in the directions of the links t
comprise the closed pathCi. Furthermore,nm(r )50, 61
represents a vortex segmentpenetrating the plaquette en
closed by the path Ci. The situation is illustrated in Fig. 1
Furthermore,f m is the filling fraction along them̂ direction,
defined in Eq.~5!. In this way, we can findthe distribution of
vortex segmentsn~r !, by calculating the counterclockwis
line integral of the currents around every plaquette in
system. Hence, the distribution of gauge-invariant curr
also gives information, essentially by a duality transform
tion, about the FLL structure function.

To perform a finite-size scaling analysis, we employ t
following procedure to find the current pattern in the grou
state. Given a density of flux linesf 5 1

32 , we design an
838 vortex lattice unit cell, not to be confused with the uni
cell of the numerical lattice. This vortex lattice unit cell ha
two vortices, Fig. 1. The current pattern~Fig. 1! is found by
requiring the currents to obey Eq.~3! on every link and Eq.
~4! on every plaquette throughout the vortex lattice unit ce
It is possible to reduce the number of unknown currents
requiring the current pattern to have the same symmetry
the ground-state vortex lattice. Periodic boundary conditio
at the boundaries of the vortex lattice unit cell are used.
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57 3127ONSAGER LOOP TRANSITION AND FIRST-ORDER . . .
repeating the vortex lattice unit cell, we can design the c
rent pattern of all systems with sizem83n83 l , (m,n,l )
being positive integers.

The flux-line density along them direction is defined as
f m , and is given by

f m5
( rnm~r !

L3 . ~5!

In the ground state, a uniform magnetic induction along
crystal ĉ axis B5Bẑ gives a periodic structure of straigh
flux lines aligned withB with hexagonal symmetry on
continuum substrateab plane, the well-known hexagona
Abrikosov vortex lattice. In terms of the above densitiesf m
this is expressed as

f z5
Bd2

F0
[ f , f x5 f y50.

In our simulations, it is not possible to exactly load t
hexagonal Abrikosov vortex lattice onto our numerical me
which we have chosen to be square. This means that
underlying numerical mesh necessarily introduces a dis
tion of the hexagonal ground state. The numerical mesh
resents a commensuration potential that acts as a pertu
tion on the ground state, and tends to ‘‘freeze’’ the flux lin
into a structure commensurate with it. The flux lines w
however tear themselves off such a commensuration po
tial caused by the numerical lattice at a high enough te
perature, which we denote a ‘‘depinning’’ temperatureTdp .
Note that this depinning temperature has nothing to do w
a real pinning potential, it is purely an artifact of the unde
lying numerical lattice. In the continuum limit, it would b
zero. It is at present unclear to what extent the numer
mesh represents a singular perturbation on the contin
limit in a 3D system. The well-known results of Nelson a
Halperin24 and Young25 concerning the effects of periodi
commensuration potentials in 2D, indicates that if the filli
fraction is small enough in 2D,Tdp will be smaller than any
other relevant energy scale in the problem. This has a
been nicely confirmed in a number of recent simulations
2D systems.26 Note that, by using a square numeric
mesh, we counteract the disadvantage of the distortion of
hexagonal lattice by a reduction in the strong commens
tion effects we would have encountered if we had chose
triangular numerical mesh, which admits an exact hexago
lattice ground state.

By using low enough filling fractionsf z , it may be hoped
even in 3D to achieve a satisfactory approximation to
continuum limit. That is, we hope that the depinning te
peratureTdp , which appears purely as an artifact of defini
the model on a numerical lattice, drops below all other r
evant temperatures in the problem, including the puta
melting temperatureTm of the FLL.

That such a thermal depinning from the numerical latt
can actually be achieved in higher dimensions than 2D is
no means clear, since commensuration effects are m
more pronounced in 3D than in 2D. In fact, in the therm
dynamic limit, thermal depinning from the numerical lattic
strictly speaking,cannothappen in 3D. Therefore, in order t
mimic the statistical mechanics of the FLL defined on a c
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tinuum substrate in 3D, one carefully has to choose sam
geometry in simulations as follows: It is crucial to have
sample geometry where the distance between flux line
tailored to suit the thickness of the sample in such a way
the commensuration potential along the direction of the fl
lines does not cause pinning to the numerical lattice at
temperatures of interest. This implies that simulations m
be carried out on relatively flat slabs. Simulations
‘‘tower’’-shaped slabs17 are probably not able to capture th
continuum limit. In our simulations, we have checked that
fact such a depinning transition from the numerical me
takes place at a temperatureTdp

3D , which is below the tem-
peratures of primary interest. Hence, in our simulations
continuum limit ought to be adequately mimicked. Note th
for filling fractions f 5 1

8 and f 5 1
15 , the continuum limit is

not mimicked satisfactorily. In these cases, it is clear t
pinning to the numerical mesh strongly influences the
sults. In this paper, we consider mainly the case off 50
and f 5 1

32 , while some results are also obtained forf 5 1
72 .

C. The Monte Carlo simulation

The statistical mechanics of the Villain model of an e
treme type-II superconductor is investigated by employ
the following Monte Carlo procedure on numerical cub
lattices with linear dimensions L
P@8,16,24,32,40,48,64,80,96#. Identical sets of curren
patterns are loaded onto each layer of the numerical latt
For the filling fraction f 5 1

32 , this current pattern is illus-
trated in Fig. 1. We update the system, heating the sys
from the ground state consisting off L2 straight field-induced
flux lines. A site of the numerical lattice is chosen random
and an attempt is made to change the phase on that site
a random amountDuP@2p,p). The phase change is ac
cepted or rejected according to the standard Metropolis a
rithm.

If the accepted phase change causes the current on a
j m(r ) to fall outside the rangej m(r )P@2p,p), we add an
amount62p to the current, such thatj m(r ) is brought back
into the primary interval j m(r )P@2p,p). An important
point is that this operation can only generate a closed
vortex loop around the link where the current is chang
thereby conserving the net induction of the system. No
vorticity is ever introduced by the procedure, and the pro
dure also guarantees that no flux line can start or end wi
the sample. It is also important to note that the Monte Ca
procedure described above satisfies detailed balance. He
the entire phase space of the Villain model is guarantee
be exhausted provided the simulations are run for a lo
enough time. Another point is that the above procedure
limiting the currents to the primary interval also limits th
number of vortex segments penetrating a plaquette to at m
one per plaquette. In this way, the Villain model differs fro
the lattice London model, where the number of vortices p
etrating each plaquette can be arbitrary. This difference h
ever only becomes important in the high-temperature regi

The Monte Carlo procedure really updates the gau
invariant phase differences, or currentsj m(r ). The simula-
tions are therefore carried out in a manifestly gauge-invar
manner. One Monte Carlo sweep consists ofL3 attempts to
change the phasesu~r ! on L3 randomly chosen sites through
out the lattice. Thus, by such a move we simultaneou
change the gauge-invariant phase differences on the six l
associated with the relevant lattice point. Each data point
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3128 57A. K. NGUYEN AND A. SUDBO”
the quantities we consider is obtained after discarding
first 100 000~30 000! sweeps for equilibration. The subs
quent 400 000~70 000! sweeps are used to obtain averag
The numbers in parentheses represent the number of sw
we have for the case ofG51. To ensure that measuremen
are independent of each other, we do one measuremen
100 sweeps.

D. Anisotropy and finite-size effects

For B50 and isotropic couplings, the LSM, theXY
model, and the Villain model all have one single phase tr
sition at kBTc /J0.3.0. The transition is characterized b
stiffness in the phase of the superconducting order param
being lost across the system in all directions, due to a bl
out of thermally excited closed vortex loops.

For the anisotropic case, the bare coupling between pla
J' in the Villain model is smaller than the in-plane couplin
Ji . Thus, in the very anisotropic case, the excitation ene
of a unit vortex loop parallel to theab plane is much smalle
than the excitation energy for a unit vortex loop containi
segments perpendicular to theab plane.20 One would na-
ively then expect that thermal excitation of vortex loop p
allel to theab planes would occur at correspondingly low
temperatures than those for which vertical loops appear. T
is true for unit vortex loops, but such loops are unimport
for critical behavior. From the point of view of considerin
B50 critical phenomena, the important issue is how the
isotropy affects large vortex loops, including vortex loops
order the system size. This is an issue to which we n
briefly turn. It is convenient to carry out this discussion
terms of the phases of the superconducting order param
rather than in terms of vorticities.

When the temperature approaches the Kosterlitz-Thou
~KT! temperature from above in a quasi-2D system,
phase-coherence length gradually grows. In a strictly 2D s
tem, it would diverge precisely at the KT transition. How
ever, as long as a small coupling between planes exists
matter how small, then as the KT transition is approach
from above, increasingly larger domains of correlated pha
are coupled together by the interplane coupling. T
strongly renormalizes the bare interplane coupling cons
J' .15,22Hence, the system is isotropized close to, but abo
the KT transition, and the transition retains a 3D charac
Thus, even an extremely anisotropic system exhibits, p
cisely as in the isotropic case, one single 3D phase transi
No decoupling transition as proposed in Ref. 23 exists
zero magnetic field.

In simulations on finite systems, care must be taken
ensure that this physics is captured correctly. When the
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isotropy of the system is increased such that the bare in
plane coupling is reduced, one must make sure that the
mensions of the system in the directions parallel to theab
planes are large enough to allow the required renormal
tion of the coupling constants to run its course without be
cutoff prematurely by the system size. Equivalently, one m
rescale the size of the system in thez direction, by the factor
1/G. Thus, the transverse system size must be tailored to
anisotropy of the system in such a way that critical behav
we study takes place at alower temperature than the energ
scalekBT* set by

kBT85S j

dD 2

J' .

Here,J' is the bare interplane coupling in the Villain mode
and j is the coherence length of the phase of the superc
ducting order parameter at the relevant temperature. If
system is too small in the transverse direction, the renorm
ization of the bare coupling is cut off by the system size

T* 5L2J' .

Hence, for a givenL, we may choose an anisotropy such th
J' is so small thatT* becomes smaller than the actual tem
perature of the 3D critical phenomenon of interest, name
the vortex-loop blowout. We would then observe a deco
pling of planes due to a proliferation of vortex loops in th
ab plane that would be unphysical.

This finite-size effect limits the anisotropies we can stu
consistently, at least in zero magnetic field. In zero field,
find ourselves limited to anisotropies ofG&4.

A final technical point is that, although a finite magne
field a priori allows larger anisotropies to be studied, t
Villain potential itself becomes virtually featureless as
function of its argumentsx, Eq. ~2!, for large anisotropies
Hence, simulations become impossible to perform mean
fully.

E. The helicity modulus

To probe the global phase coherence in the BCS su
conducting order parameter across the entire system, we
sider the helicity modulusYm , defined as the second deriva
tive of the free energy with respect to a phase twist in them
direction.17 It basically measures the stiffness of the syst
to a twist in the phase of the order parameter. In the an
tropic case we have the following generalization of pre
ously obtained expressions for the helicity modulus for is
tropic superconductors:17
Ym5
J0

2

L3kBT K (
r ,n

Vn8@u~r1ên!2u~r !2An~r !#~ ên•êm!L 2

2
J0

2

L3kBT K S (
r ,n

Vn8@u~r1ên!2u~r !2An~r !#~ ên•êm! D 2L
1

J0

L3 K (
r ,n

Vn9@u~r1ên!2u~r !2An~r !#~ ên•êm!2L . ~6!
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For the details on the derivation of this expression, an
corresponding one in terms of vorticities, see Appendixe
and B. Here,Vm8 andVm9 are the first and second derivative
respectively, of the anisotropic Villain potentialVm defined
in Eq. ~2!. For temperaturesT,Tm such thatYm.0, there is
phase coherence across the entire system in them direction.
Hence, the system can sustain a supercurrent in them direc-
tion. At the temperatureT5Tm and above, such thatYm

50, phase coherence along them direction is lost. Hence, the
vanishing ofYm signals the superconducting–normal-me
transition in them direction with the transition temperatur
Tm . For the case of finite magnetic induction alongẑ axis in
the continuum limit, Yx and Yy should vanish at all
temperatures,27 since a current in theab plane would exert a
Lorentz force on the unpinned flux lines, moving them a
thus dissipate energy. When the model is discretized by
troducing the numerical lattice, a finite energy for movi
them in a direction perpendicular to theẑ direction is also
introduced. The existence of a smallest energy to requ
move flux lines acts as an artificial pinning potential on t
FLL, causingTx (Ty5Tx) to be finite. Thus, the FLL ‘‘de-
pins’’ from the underlying discrete lattice at a finite tempe
tureTx5Ty.0. In the continuum limit, as long as no phys
cal pinning of the flux lines is present, we would haveTx
5Ty50, and the flux lines are unpinned at all temperatur
To ensure that the above artificially introduced pinning p
tential caused by the numerical lattice does not affect
FLL melting transition and any other genuine phase tran
tion we might want to consider, we should consider syste
with Tm significantly higher thanTx . The way to achieve
this is to consider low enough filling fractionsf 5 f z of flux
lines. Several authors11,26 have in fact found thatTx de-
creases for decreasing flux lines densityf , and falls below
Tm for f , f c. 1

32 .

F. Vortex-loop distribution

As mentioned in the Introduction, in the LSM, Villai
model, and lattice London model, the zero-field norma
metal-superconductor transition corresponds to a vortex-l
blowout analogous to what has long been suggested to o
in the neutral superfluid He4. To study the blowout of a
closed vortex loop in extreme type-II superconductors,
consider the quantityD(p), which we denote the vortex
loop distribution function, and which is given as statistic
average of the total number of closednon-field-inducedvor-
tex loops with a given perimeterp, in our case normalized
by the volume of the systems we consider. The followi
procedure is employed to computeD(p).

We start from an arbitrarily chosen unit cell containing
least oneoutgoingvortex segment penetrating a plaquette
that unit cell. We then follow the direction of this vorte
segmentinto the neighboring unit cell. If there is more tha
one vortex segment leaving the unit cell, one of them
chosen randomly. We continue tracing the path of vor
segments until the path closes upon itself. When the path
closed upon itself, we measure the lengthl of the path, as
well as the net vorticityvz alongẑ axis of the path. Also, we
remove the vortex segments along the path to prevent do
counting of paths. Because of the periodic boundary con
a
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tions, such closed paths of vortex segments can either be
to a field-induced flux line or a non-field-induced closed vo
tex loop.

In the quantityD(p), we donot include the closed path
associated with field-induced flux lines that close on the
selves merely due to periodic boundary conditions in thẑ
direction. Field-induced flux lines are characterized by a
vorticity in the ẑ direction,vzÞ0. For the purposes of study
ing the loop transition, we are exclusively interested
closed paths associated withnon-field-inducedvortex loops
that physically close on themselves regardless of bound
conditions. Hence, the relevant closed paths of vortex s
ments are closed vortex loops with perimeterp5 l that have
net vorticity vm50 in all directions.

The procedure for tracing out the relevant closed loop
repeated until all nonfield vortex segments in the syst
have been counted. ForBÞ0, this procedure uniquely sepa
rates thermally excited closed vortex loops from the fie
induced flux lines.

In the low-temperature regime,D(p) depends on the ex
citation energyE(p);«p of the vortex loops with perimete
p, with a Boltzmann factor,17

D~p!;expS 2
«p

kBTD;expS 2
p

L0
D ,

where « is a constant representing a line tension, andL0
;kBT/« is a typical perimeter of closed vortex loops prese
at a given temperaturein the low-temperature regime. As we
will see below, such low-temperature ‘‘confined’’ vorte
loops may be coarse grained away and are unimportan
the statistical mechanics of the mixed state of an extre
type-II superconductor. In this thermally activated regim
large vortex loops are exponentially suppressed. On the o
hand, at the critical point, vortex loops with all perimete
are present. This leads to an algebraic decay of the lo
distribution function vs loop perimeter at the critical poin
D(p);p2a, wherea is an exponent not to be confused wi
the critical exponent of the specific heat. Hence, monitor
the temperature whereD(p) changes its characteristic be
havior from exponential decay to algebraic decay, is a w
of determining the vortex-loop unbinding temperature.

If we assume that the vortex-loop distribution functio
scales with the vortex-loop perimeter as some power l
and furthermore assume that the perimeter scales with
vortex-loop radiusr , then we have

D~r !;r 2a.

We now use a critical scaling analysis to determinea in our
case. The assumption is that the loop transition in zero fi
represents a critical point. If we can then fit numerica
obtained exponents at the putative critical point to the sca
results, this would provide further support for the assert
that the loop blowout is responsible for destroying superc
ductivity in extreme type-II superconductors.

The Villain-model is dual to a 3D Coulomb gas, and t
vortex loops are analogous to the vortex-antivortex pairs
the 2D Coulomb gas. We may determine the contribution
the dielectric constant of the 3D Coulomb gas that su
loops give. Since the dielectric constant may be related to
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inverse superfluid stiffness, whose scaling dimension is w
known on general grounds, we may determinea at the criti-
cal point.

The ‘‘dipole-moment’’P(r ) of a vortex loop scales with
r d22

•r , where the charge;r d22, and the dipole vector;r .
The contribution to the dielectric constant, or the elect
susceptibility, coming from thermally induced loops of si
betweenr is given by28

xe~r !;«~r !;
]

]E
^r d21cos~f!&U

E50

,

where the average should be a thermal average with
Boltzmann factor

exp@2U~r !/kBT#;D~r !exp@r d21E cos~f!/kBT#.

Here E is an electric field polarizing the medium via th
‘‘charge-loops’’ of the 3D Coulomb gas, andf is the angle
between the orientation of loops and the applied electric fi
polarizing the medium. We find

«~r !;r 2~d21!2a.

On the other hand, in the superconductor, the superfluid s
ness rs is given by the transverse susceptibilityx';G
;rs , where G is given by the order-parameter Green
function,G;r 22d2h, and whereh is the anomalous scalin
dimension of the Green’s function appearing due to criti
fluctuations, for the 3DXY model we haveh50.033(4).
Now we use the fact that«;rs

21, to find

2~d21!2a5d1h22,

a5d2h.

In our case, we may evaluate the loop-distribution funct
at the anomalous peak in the specific heat, and fit the re
to a power law with the exponent 3, obtained by assum
critical scaling. We will see below that the fit is excellen
lending further support to the assertion that in zero field,
superconductor–normal-metal phase transition in an extr
type-II superconductor is due to a vortex-loop blowout tra
sition.

It is also interesting to note that another way of estimat
the relevance of closed vortex loops, is to see whether t
can be coarse grained away or not. A rough criterion
coarse graining them away, would be that the loop distri
tion integrated over the volume of the system should be
nite, i.e.,

E ddrD ~r !;E
0

L

dr r d212a;Ld2a.

Thus, loops may be coarse grained away provided thaa
.d. In the low-temperature regime, we have seen that
loops are even exponentially suppressed, and certainly
isfy this criterion. The marginal casea5d gives an inte-
grated distribution; lnL. However, at the critical point,a
5d2h is less than the required value for coarse graini
furthermore critical fluctuations as manifested by a nonz
positive value of the exponenth, will increase the relevance
of vortex loops, as expected.
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G. Specific heat

In addition to indirect measurements of the latent hea
melting, such as measured by local magnetization meas
ments on BSCCO,4 direct calorimetric measurements of th
specific heat are also useful for estimating the latent hea
the melting transition of the FLL, or any other phase tran
tion the vortex system might suffer. Such measurements
now available7 both in zero field and in finite field. In Ref
29, the specific-heat anomaly in a twinned YBCO sample
measured systematically with varying magnetic field.
evolves smoothly from the zero-field result as the magn
field is increased. Moreover, the integrated anomaly app
to be approximately constant as the magnetic field increa
This raises the question of what sort of phase transition
any, the specific-heat anomaly in finite magnetic fie
should be associated with. Due to its smooth evolution fr
the zero-field case, it appears rather unlikely that this s
able anomaly has anything whatsoever to do with FLL me
ing. Rather, it seems to suggest that there are remnants o
zero-field transition, which we will describe in detail below
at finite magnetic fields.

We may investigate this issue, by calculating the spec
heat of the Villain model, and correlate the specific-he
anomalies with the temperature dependence of the struc
function S(K ) as well as with the phase stiffnessYz . Thus
we should in principle be able to decide whether or not
major features in the specific heat have anything to do w
FLL melting or vortex-loop blowout, also at finite fields. I
zero field, we will be able to precisely correlate, for a
anisotropies, the anomaly in the specific heat with
vortex-loop blowout transition. In a finite field, the situatio
is considerably more complicated. We find three anomal
features in the specific heat. The major feature in the spe
heat, the remnant of the zero-field transition, occurs at te
peratures well above those where the structure function
the FLL, and the phase stiffness across the sample along
field direction, vanishes.

To calculate the specific heat per siteC, we use the usua
fluctuation formula

C

kB
5

1

L3

^Hv
2&2^Hv&

2

~kBT!2 .

The Villain model has a rather unusual property in that
Boltzmann factor appearing in the partition functio
exp(2H/kBT) involves an explicitly temperature-depende
Hamiltonian, Eq.~2!. The usual fluctuation formula for the
specific heat is valid, strictly speaking only ifH is
temperature-independent. Nevertheless, we will use
above standard expression for calculating the specific h
for convenience, and neglect the extra terms that should
included from the explicit temperature dependence of
Villain potential, Eq.~2!. We have checked the validity o
this approximation by comparing the thus obtained spec
heat per siteC with the alternative standard method of e
tracting the specific heat per siteC from its basic definition
in terms of the internal energy of the system

C

kB
5

1

L3

]^Hv&
]~kBT!

.
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We find that these two ways of calculating the specific h
differs only in the very high-temperature regime, outside
temperature range of interest in this paper.

H. The structure function

To probe the FLL melting, we consider the structure fun
tion for nz vortex segments, i.e., vortex segments direc
along the average induction. The structure functionS(k) is
defined by11,30

S~k!5
^u( rnz~r !exp@ ik•r #u2&

~ f L3!2 .

For our ground state with the flux lines densityf 5 1
32 ~Fig.

1!, the unit reciprocal lattice vectors for the FLL are

K152p@ 1
8 ,2 1

8 #, K252p@0,1
4 #.

In the FLL phase,S(k' ,kz50) hasd-function Bragg peaks
at k'5K (m,n)5mK11nK2 (m,n50,61,62,63, . . . ).
The vectorsK are located within the first Brillouin zone
When the FLL melts, the Bragg peaks are smeared out.
lowest temperatureT, whereS(K ,kz50) vanishes, thus de
fines the FLL melting temperatureTm . For simplicity, we
consider only the structure functionS(Q[S(K2 ,kz50)).

I. Flux-line cutting and intersection

The issue of flux-line cutting and flux line and entang
ment, as well as the suggested possible resulting vo
states originating from the latter, such as the analogs of
Bose superfluids and supersolids, and even topological
tex glass states, have been issues of considerable contro
over the last ten years. In particular, the effect of entang
ment on the FLL melting transition and the statistical m
chanics of the FLL, has received considerable attention.

In principle, flux-line entanglement could be responsib
for the drop inYz we observe at the temperatureTz . It is of
interest to correlate the amount of ‘‘close vortex-line enco
ters’’ with the anomalies we obtain in the specific heat. T
will allow us to at least tentatively decide whether or not fl
lines start to intersect or cut at any of the temperaturesTm ,
Tz , or TBc2 .

Intersection and cutting of flux lines tend to act as e
cient modes ofdisentanglementof flux lines. It is unlikely
that a flux-line liquid phase that suffers large amounts
thermally induced collisions between flux-line segmen
which in turn strongly indicates that flux-line cutting tak
place, can also sustain heavily entangled vortex config
tions. Hence, if we can show that the amount of close vort
segment encounters is substantial at the temperature w
Yz goes to zero, we may at least tentatively conclude that
drop in Yz is not due to entanglement of flux lines.

To study the intersection and or cutting of flux lines, w
define a parameterr, which is a measure of the amount
flux-line cutting and intersection that takes place in the flu
line liquid.

r[
Nint

Nf
, ~7!
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where Nint is the total number of unit cells having 4 or
vortex segments penetrating their plaquette, andNf is the
number of field-induced flux lines in the system. Note th
with this definition, we only considerr for the case of finite
fields. This quantity gives us some intuition on how we
defined we may expect individual field-induced flux lines
be in the liquid phase.

In the Villain model, each plaquette can carry at most o
vortex segment. This is because the vorticities are define
terms of gauge-invariant phase differences, defined on
interval j m(r )P@2p,p#. The distribution of vortex seg-
mentsn~r ! has no divergence (Sm5x,y,z¹mnm(r )50). Thus,
a single unit cell can only carry 0, 2, 4, or 6 vortex elemen
If a unit has more than 2 plaquettes that are pierced by vo
segments, then that corresponds to one of the three follow
situations: ~1! an intersection between two different flu
lines; or~2! an intersection between a flux line and a clos
vortex loop; or ~3! an intersection between two differen
closed vortex loops.

Inside a unit cell, it is impossible to decide which pos
bility is realized. In principle,r as defined above counts a
of these possibilities, while flux-line intersection and flu
line cutting correspond to case~1!.

III. RESULTS, ZERO MAGNETIC FIELD

We now present the results of our Monte Carlo simu
tions, and consider first the case of zero magnetic induc
B50. From now on we measure thespecific heat per site C
in units of kB , the helicity moduliYx in units of J0 , Yz in
units of J0 /G2, and the temperature T in units of J0 /kB .

Two values ofG5lc /la , the anisotropy parameter, ar
considered: G51 andG53. We will present results for the
quantities relevant to the zero-field case, namely, the heli
modulus, the vortex-loop distribution function, and the sp
cific heat. An important point is that we need to, in the ze
field case, to be able to correlate the temperature at which
helicity modulusYz vanishes, with the temperature at whic
the loop-distribution functionD(p) qualitatively changes be
havior from an exponential dependence on the loop per
eters to algebraic dependence on the loop perimeters. M
over, both these features must be correlated with
temperature where an anomaly in the specific heat is fou
as discussed in Sec. II D. For arbitrary anisotropyG, the
system should only have one single phase transition,
normal–metal-superconductor transition.

A. Helicity modulus

The results for the helicity modulusYm , Eq. ~6!, in zero
magnetic field and in the isotropic caseG51, are shown in
Fig. 2. We have confirmed that all moduliYx ,Yy ,Yz , are
equal in this case, and therefore only exhibitYz . The results
are shown for the system sizesL58,32,64,96. Note that the
drop inYz becomes sharper as the system size increases
the value ofT whereYz appears to vanish, becomes small
Whenl→`, Yz , which is the stiffness of the phase of th
superconducting order parameter to a twist, is proportiona
the superfluid densityrs . ~For a finitel this identification
no longer holds, as emphasized in Ref. 27.! We have found
from the numerics thatYz;uT2Tcu2/3, consistent with the
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FIG. 2. Helicity modulusYz and the specific heat per siteC vs temperature, forB50, G51 ~isotropic! and system sizesL
58,32,64,96.
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Josephson scaling relation,rs'uT2Tcun, wheren is the cor-
relation length exponentn52/d5 2

3 . Due to the identification
Yz;rs , we conclude that the vanishing of the helici
modulus corresponds to the normal–metal-supercondu
transition. The transition occurs at the temperatureT53.0 in
units of J0 /kB .

The results for the helicity modulus in the anisotrop
caseG53 are shown in Fig. 3. The situation at first glan
appears considerably more complicated than in the isotr
case, despite our expectations that the physics basic
should be the same as in the isotropic case, cf. our discus
in Sec. II D. A striking feature is that forG53, the helicity
modulusYz appears to vanish distinctly below the tempe
or

ic
lly
ion

-

tures at which the helicity moduliYx ,Yy vanish. ~Yx and
Yy turn out identical in all our simulations, and we therefo
only exhibit Yx .! Note however that there is an importa
finite-size effect in the results: AsL increases,Yx vanishes
at progressively lower temperatures whileYz vanishes at
progressively higher temperatures. AsL increases,Yz and
Yx appear to approach zero at thesame temperature. Due to
the limitations in available system sizes, we have not b
able to perform the simulations at higher anisotropies th
G53 for the zero-field case. At lower anisotropies 1,G
,3, the same finite-size effect as described above is s
For lower values of the anisotropy it is also more obvio
that the two temperatures at whichYz and Yx vanish, ap-
ly

FIG. 3. Helicity moduliYx , Yz , and the specific heat per siteC vs temperature, forB50, G53, and system sizesL58,32,64,96. For

increasing system sizeL, Tx approachesTc51.57 from above, andTz increases approachingTc from below. The layered system has on
one phase transition.
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FIG. 4. The distribution functionD(p)/L3 of thermally excited, non-field-induced, closed vortex loops per site as a function of perim
p, for B50, G51, L596, and various temperatures. It has been normalized this way to facilitate comparison between different syste
For T,Tc.3.0,D(p) is best fit to an exponential decay. ForT5Tc , D(p) is best fit to an algebraic decayD(p);p2a with exponenta53
excellently, indicating an Onsager loop-transition atT5Tc . The inset showsD(p) on a log-log plot. The slope of the straight line, obtain
at T5Tc , is 23. At T,Tc the curves show a marked downward curvature, indicating a faster-than-algebraic decay ofD(p). This point is
discussed in Sec. II F.
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proach each other with increasing system sizeL. For the
anisotropic caseG53, the transition occurs atT51.57 in
units of J0 /kB .

B. Loop distribution

In order investigate the excitations responsible for
stroying the superconducting phase coherence and the s
fluid stiffness as evidenced by our results forYz , we probe
the amount of closed vortex loops that are thermally exc
in the superconductor model at the temperature whereYz
vanishes. We first discuss the isotropic caseG51.

The results forD(p) are shown in Fig. 4, for the larges
system we have considered,L596. The figure showsD(p)
as a function of the loop perimetersp, for various tempera-
tures in the rangeTP@2.3,3.3#. Recall from above that in the
isotropic case, the helicity modulus vanished atT'3.0.
From Fig. 4, particularly from the inset of this figure, w
observe a qualitative change inD(p) precisely at the tem-
peratureT53.0. The inset shows the distribution function o
a log-log plot, and it is seen that the decay is faster-th
algebraic forT,Tc while it is a precise power law with
exponenta in good agreement with a scaling analysis assu
ing that the vortex-loop blowout is a critical point. We a
tribute the slight deviation in the exponenta between the
simulations and the theory as due to the presence of vo
loops of more complicated shapes, such that the circum
ence of the loops do not all scale with their diameter. W
have tentatively suggested an exponential decay in the
temperature phase, but this is not unambiguous. Howe
our main point is that forT,Tc the decay cannot be a powe
law, while atT5Tc , the power law we find is precisely th
same as the one we predict analytically assuming that
vortex-loop blowout is in fact a critical point.
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Hence, based on the above, we conclude that atT53.0, a
sharp phase transition occurs from a low-temperature ph
where closed vortex loops are confined to some typical s
L0(T), to a high-temperature phase where closed vor
loops of all sizes up to and including the system size, exi
Thus, in the isotropic case we have been able to preci
correlate the drop inYz with a vortex-loop blowout, and
from the previous paragraph we must identify this as
superconductor–normal-metal transition.

The loop-distribution function for the anisotropic ca
G53 is shown in Fig. 5. Due to the drop in the critic
temperature of the system, we now showD(p) as a function
of p for temperatures in the rangeTP@0.7,2.1#. Again, we
observe a qualitative change in the behavior ofD(p) from
exponential decay to algebraic decay, at a temperaturT
'1.6, which correlates almost perfectly with the temperat
T51.57 at which the helicity moduliYz andYx vanish for
G53. If we fit D(p);p2a at this temperature, we again fin
the exponenta53, as in the isotropic case.

So far, our expectations based on the discussion in S
II D are borne out. To illustrate the point further, in the ins
of Fig. 5, we show the distribution functionD(p) for G53
and the same range of temperatures, for the smaller sys
L516. The important difference between these two case
that for L516, algebraic decay ofD(p) appears to persis
down to lower temperatures than forL596. For larger sys-
tems the vortex-loop blowout is suppressed due to the
that the interplane coupling is allowed to renormalize furth
without being cutoff by a small system size. Hence, wh
appeared to be a separate vortex-loop blowout at a low t
peratureT51.1 forL516, has been pushed up to the corre
temperatureT'1.6 in the larger systemL596, as discussed
in Sec. II D.



3134 57A. K. NGUYEN AND A. SUDBO”
FIG. 5. The distribution functionD(p)/L3 of thermally excited closed vortex loops per site as a function of perimeterp, for B50, G
53, L596, and various temperatures. ForT,Tc.1.6,D(p) is best fit to an exponential decay. ForT5Tc , D(p) is best fit to an algebraic
decay,D(p);p2a, with a53 consistent with critical scaling of Sec. II F. The inset shows the same figure forL516. Note that forL
516, D(p) incorrectly shows algebraic decay forT51.3,Tc . This finite-size effect is discussed in Sec. II D.
er
-

. 2
th
h
th
in
h
oo
e
h

th

ll
in

t
k
or
r
te

ha
ra
er
a
f-

to
so-
le to
s,

e

nd
in

ish
r, as
nge
s.
the
re

the
to
s-
flux
we

n,
he

f

a
e
an-
C. Specific heat

We now present our results for the specific heat in z
magnetic field for the system sizesL58,32,64,96, and con
sider first the isotropic caseG51.

The specific heat in the isotropic case is shown in Fig
The anomaly in the specific heat clearly correlates with
temperature where the superfluid stiffness vanishes, whic
turn correlates precisely with the temperature where
vortex-loop blowout is observed. As the system size
creases the anomaly clearly also becomes sharper. We
shown that the peak in the specific heat varies in very g
agreement with ln(L) as the system size is increased, furth
indicating a genuine thermodynamic phase transition. T
shape of the specific-heat curve has a typicalXY behavior
for this extreme type-II superconductor (l→`). This agrees
with previous results found by Dasgupta and Halperin for
lattice superconductor model.12 ~Note that this contrasts
sharply with the specific-heat results indicating aninverted
XY transition found by the same authors for finite, smalll in
the isotropic case.! Qualitatively, our results also agree we
with the specific-heat measurements on YBCO of Schill
et al.29

The specific heat for the anisotropic caseG53 is shown
in Fig. 3 for the system sizesL58, 32, 64, 96. The situation
again at first glance appears to be more complicated than
isotropic case. However, as in the isotropic case, the pea
the specific-heat anomaly increases with system size. M
over, the temperature of the peak in the specific heat is
duced as the system size is increased, approaching the
peratureT51.57 at which bothYz andYx vanish, and where
the vortex-loop blowout appears to take place.

Hence, our simulations of the above three quantitiesYz ,
D(p), and specific heat correctly capture the physics t
even in the very anisotropic case, only one single phase t
sition occurs in the lattice superconductor model in z
magnetic field. The fact that our simulations do not reveal
artificial zero-field decoupling transition due to finite-size e
o
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fects, makes us confident that our simulations are able
capture the subtle zero-field physics correctly in the ani
tropic case. This is a necessary prerequisite for being ab
extract meaningful results from our finite-field simulation
to which we now turn.

IV. RESULTS, FINITE MAGNETIC FIELD

Next, we present results for finite magnetic induction. W
will consider the filling fractionf 5 1

32 corresponding to 32ab
plane plaquettes per field-induced flux line in the grou
state, depicted in Fig. 1. Again, we are primarily interested
correlating temperatures where the helicity moduli van
with temperatures where anomalies in specific heat occu
well as with temperatures where we see a qualitative cha
in the distribution of non-field-induced closed vortex loop
It is also of interest to correlate these phenomena with
melting of the FLL as evidenced by a drop in the structu
function at low-order Bragg peaks. Furthermore, due to
presence of field-induced flux lines, it is also of interest
monitor the amount of flux-line cutting occurring in the sy
tem. This has bearing on the amount of entanglement of
lines the molten vortex phase can sustain. For finite fields
present results for helicity moduli, vortex-loop distributio
specific heat, structure function and flux-line cutting for t
two values of the anisotropy parameter,G51 andG53.

A. Structure function

The results for the structure functionS(Q) are shown in
the top panel of Fig. 6 for the isotropic caseG51, for the

reciprocal lattice vectorQ5(K2 ,kz50), K252p@0,1
4 #, and

for the system sizesL548, 64, 80, 96. In the top panel o
Fig. 7, results forG53 and for various system sizesL
532,48 are also shown. The structure function exhibits
sharp drop atT5Tm , well below the temperature where th
phase coherence in the direction of the magnetic field v



a
lic
g

-

ou
i

ie
l,
-
a
ra
st
of
e
e
gh
el

ng

n-

d
n,
or
the

ate

n

e

e

g
g

57 3135ONSAGER LOOP TRANSITION AND FIRST-ORDER . . .
ishes.~We discuss the helicity modulusYz in the next sec-
tion.! Note that the structure function vanishes essentially
the same temperature as the temperature where the he
modulusYx vanishes. What this indicates is that the fillin
fraction we have used in our simulations,f 5 1

32 , is not suf-
ficiently small to study the melting of the FLL in the con
tinuum limit. The FLL has not thermally ‘‘depinned’’ from
the numerical mesh at the melting transition. Therefore,
estimate for the FLL melting temperature as obtained
these simulations is too high. However, from our earl
work on the moderately anisotropic lattice London mode11

we know that f 5 1
48 suffices to produce a thermal ‘‘depin

ning’’ temperature of the FLL off the numerical mesh at
temperature distinctly below the observed melting tempe
ture of the FLL. Therefore, we expect that the present e
mate forTm should be quite good; only a minor reduction
the filling fraction belowf 5 1

32 is expected to suppress th
‘‘depinning’’ temperatureTx below the melting temperatur
Tm . It is also possible that the commensuration effect mi
tend to overestimate a first-order character of the FLL m
ing transition, should such a result be found.

The reduction in the structure function below the melti
temperature is due to the Debye-Waller~DW! factor

FIG. 6. Top panel: Helicity moduliYx and Yz and structure
factor S(Q) vs temperature, for f 51/32, G51, and L
516,32,48,64,96. Note how for increasing system size,Tm in-
creases slightly, andTz decreases markedly. Lower panel: Th
specific heat per siteC vs temperature forf 51/32, G51, andL
516,32,48,64,96.
t
ity

r
n
r

-
i-

t
t-

S~Q,T!5S~Q,0!exp~2G2^u2&!. ~8!

For a triangular lattice, we find right below the melting tra
sition

S~Q,T!5S~Q,0!expS 2
8p

3
cL

2D , ~9!

wherecL is the Lindemann ratio. In our simulation, we fin
that the DW factor is 0.6 right below the melting transitio
and hencecL50.24. Essentially the same result is found f
the isotropic case, and is in reasonable agreement with
valuecL50.4 used in the best calculation so far to estim
the position of the FLL melting line in BSCCO and YBCO
by employing the simple Lindemann criterion in conjunctio
with the highly nontrivial fluctuation propagator found from
anisotropic and nonlocal elastic theory of the flux-lin
lattice.31

FIG. 7. Top panel: Helicity moduliYx and Yz and structure
factor S(Q) vs temperature, forf 51/32, G53, andL516,32,48.
Note how for increasing system size,Tm increases slightly andTz

decreases markedly. Lower panel: The specific heat per siteC vs
temperature forf 51/32, G53, and L516,32,48. Note the two
separate specific heat per site anomalies atTx5Tm and Tz . The
specific-heat peak atTm becomes more prominent with increasin
system size, while the peak atTz actually decreases with increasin
system size.
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B. Helicity modulus

The results for the helicity moduliYz andYx are shown
for G51 and system sizesL516,32,48,64,80,96 in the to
panel of Fig. 6. Likewise, similar results forG53 are shown
in the top panel of Fig. 7 for system sizesL516,32,48. Note
how the temperatureTz appears to decrease monotonica
with system size.

An important issue is howTz will continue to vary when
the system size is increased indefinitely. Since there is
obvious sign of saturation inTz asL increases, it could con
ceivably continue to decrease in the liquid phase, unti
reachesTm . Does this in fact happen, or isTz.TM in the
thermodynamic and continuum limit?

To answer this question, we have performed simulati
on systems with filling fractionsf 5 1

72 , and computedTm
and Tz as a function ofL. The point about going to lowe
filling fractions is that we are approximating the continuu
limit better. It is becoming increasingly clear from numeric
simulations that when thexy plane is discretized in order t
do the simulations one is introducing a long time scale i
the problem: There is a gap for moving vorticities from o
unit cell to another. When the filling fraction is lowered, th
continuum approximation is better approximated, and the
laxation time introduced by discretization is lowered. Hen
for f 5 1

72 we are better able to equilibrate the system.~Inci-
dentally, we believe the reason that no finite-size effect w
seen inYz in Ref. 17 was precisely that the simulations we
not run for a long enough time.! The results of our simula
tions for this case is shown in Fig. 8, where we sh
Tz(L)2Tm(L) for G51 andG53, for the casef 5 1

72 . It is
seen thatTz(L)2Tm(L) decreases monotonically as a fun
tion of L. Is it possible thatTz could drop arbitrarily far
below Tm when the anisotropyG is increased indefinitely?
We believe that the answer forl5` is no, for the following
reason.

Recall our discussion in Sec. II D, where it was sho
that in zero field, no vortex-loop blowout can take pla
below the zero-field transition temperature, due to the ren
malization of the interplane coupling. In finite fields, this
quite different, since the superconducting coherence leng
limited by themagnetic lengthas soon as the flux lines sta
to fluctuate appreciably, cutting off the renormalization

FIG. 8. The differenceTz(L)2Tm(L) as a function ofL for f
51/72,G51, andG53. Note that this quantity shows a monoton
cally ~sublinear! decrease withL. Note also that the relative de
crease is larger forG51 than for G53. We attribute this to a
slower relaxation in the anisotropic case than in the isotropic, s
both Tm andTz are smaller forG53 than forG51.
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the interplane phase coupling. Hence, we see thatTz drops
well below TBc2 , in finite fields, provided the system is i
the liquid phase. In the flux-linelattice phase, the coherenc
length is no longer limited by the magnetic length, there
now phase coherence throughout the sample~but of a more
complicated form then in the zero-field case!. Hence, the
renormalization of the interplane coupling described in S
II D again becomes active, suppressing the vortex-lo
blowout. The flux-line lattice phase is therefore in som
sense equivalent to the zero-field case with regards t
vortex-loop blowout, and a loss of phase coherence along
field direction cannot take place within the lattice pha
Hence, Tz cannot drop far below Tm , at least not for the case
l5`.

In our previous work11 we emphasized the importance
closed loops, but suggested that the drop inYz within the
liquid phase was a genuine phase transition from a cohe
vortex liquid characterized byYzÞ0, to an incoherent vortex
liquid characterized byYz50. We strongly believe our
present simulations on much larger systems show that th
fact is not the case: Tz→Tm as the system size increase
However, the final word on the issue, particularly for t
isotropic caseG51, remains to be said.

Note also that, compared to the zero-field casef 50, Yz
vanishes at a considerably lower temperature whenf 5 1

32 .
The helicity modulusYx vanishes at a finite temperatur
below Yz .

The fact thatYx vanishes at a finite temperature is a
artifact of our discretizing theab plane. In the continuum
limit, this helicity modulus would be zero for any finite tem
perature when no physical pinning of the flux lines
present. On the other hand,Yz has little or no commensura
tion effects in it.

The above result indicates that phase coherence acros
sample along the direction of the flux lines is lost at a fin
temperatureTz . Contrary to the zero-field case, there a
several possible explanations for this loss of phase coher
when a finite field is present. One possibility is that a vorte
loop blowout causes the loss of phase coherence atT5Tz .
Another explanation could be that since the melting tempe
ture Tm is smaller thanTz , in FLL liquid phase flux lines
become entangled thereby destroying the phase coheren
the superconducting order parameter along the direction
the flux lines. A third explanation could be that transver
flux-line meanderings and flux-line cutting causes loss
phase coherence without a resulting entanglement of
lines. We discuss these possibilities in turn.

C. Loop distribution

The results for the distribution of closed vortex loops a
shown in Fig. 9, in the temperature rangeTP@0.9,2.5#, for
the anisotropyG53 and the system sizeL548. This tem-
perature range encompasses the melting of the FLL and
destruction of phase coherence along the direction of
magnetic field. A feature which distinguishes the finite-fie
results forD(p) from the zero-field case, is that througho
the temperature range where the FLL melts,Tm'0.38 and
where phase coherence is lost,Tz'0.65, the distribution
function D(p) decays more rapidly than at the critical poi

e
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FIG. 9. The distribution functionD(p)/L3 of thermally excited closed vortex loops as a function of perimeterp, for f 51/32, G53,
L548, and various temperatures. ForT,TBc2.1.8,D(p) is best fit to an exponential decay. ForT.TBc2 , D(p) is best fit to an algebraic
decay, indicating a vortex loop blowout atTBc2@Tz.Tm .
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in zero field. In the rangeT,0.7 there is no obvious sign in
D(p) of a crossover to algebraic decay as a function of lo
perimeters.

We conclude that the vanishing ofYz is not, in this case,
associated with a vortex-loop blowout on all length scales
the system. In other word, the vanishing ofYz is not due to
a finite-field counterpart of the Onsager-loop blowout
found in zero field. We find a change in the behavior inD(p)
from exponential decay to algebraic decay at a much la
temperatureT'2.8 for G51 andT'1.9 for G53. The tem-
perature range over whichD(p) changes behavior is als
considerably broader than in the zero-field case, indica
that the vortex-loop blowout transition that was found to
sharp at zero field, is replaced by a crossover.

However, the interaction between closed vortex loops
the flux-line lattice may be studied by considering the nu
ber of closed vortex loops with a diameter given by the m
netic length in the problem. This number scales withLz at
Tz , and thus in the thermodynamic limit there are infinite
many such vortex loops per flux line at the temperat
where the FLL melts.

D. Specific heat

Our results for the specific heat are shown in the bott
panel of Fig. 6 for the parametersf 5 1

32 , G51 and L
516,32,48,64,80,96. Similar results for the anisotropic c
G53 are shown in the bottom panel of Fig. 7. It is clear th
the lowest anomaly in the specific heat correlates with
melting of the FLL. There is also a broad feature at a mu
higher temperature,TBc2'1.9, which is roughly equal to the
temperature at which we see a sharp peak in the specific
in the zero-field case.

The feature atTBc2 is the remnant of the zero-fiel
anomaly on the specific heat, previously shown in Fig.
This broad peak in the specific heat is associated with
upper critical fieldHc2(T), and our results show that in th
extreme type-II Villain model, theHc2(T) line is very steep
p
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close to the zero-fieldTc . As discussed in the previous se
tion, TBc2 is also close to the temperature at where the d
tribution functionD(p) of closed vortex loops changes b
havior for exponential to algebraic decay. Hence,
conclude that in the field regime corresponding tof 5 1

32 , the
loop transition appears close to the mean-fieldHc2(T) line.
We caution the reader thatf 5 1

32 is not a particularly low
magnetic field. If we estimate it for YBCO using the metho
of Ref. 9, it corresponds to a magnetic field of the order o
T. As recently emphasized by Tesˇanović10 and Nguyen,
Sudbo”, and Hetzel11 such magnetic fields may not be re
evant for discussing the low-field experiments of Zeld
et al.4 Therefore, our simulations do not address the issue
the fate of the zero-field loop transition in asymptotically lo
magnetic fields, of the order of 100 G and below. Neither
the simulations address how this finite-field counterpart
the zero-field vortex-loop transition interacts with the me
ing transition of the FLL and with the loss of phase coh
ence along the field direction, in this low-field regime re
evant for discussing the results in Ref. 4.

We next turn to a discussion of the anomalies at the t
lower temperaturesTm and Tz , and base our discussion o
the lower panel of Fig. 7. It shows the specific heat for t
filling f 5 1

32 and anisotropyG53, for various system size
L516,32,48. The feature in the specific heat atT5Tm is
clearly associated with FLL melting. One notable feature
the specific heat anomaly atT5Tm is that its peak scales a
L3, characteristic of afirst-order melting transition.12 This
follows from the fact that a first-order phase transition
generally characterized by coexistence of two phases at
transition: one low-energy ordered phase and one h
energy disordered phase. Thus there is a discontinuity in
internal energy of the system at the transition temperat
and ad-function peakin the specific heat. On a finite syste
thed-function peak is converted to a peak of orderLd, where
L is the linear dimension of the system, andd is its dimen-
sionality. In fact, the coefficient of theLd term is the discon-
tinuity in the entropy of the system, at the transition,12 so for
the 3D case we obtain
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C5const1
L3

4 S DS

kBL3D 2

.

Thus we may use finite-size scaling of the specific hea
extract DS, or equivalently, the latent heat of the meltin
transition. We find

DS'0.00kB /vortex per layer, G51.0,

DS'0.03kB /vortex per layer, G52.0,

DS'0.05kB /vortex per layer, G52.5,

DS'0.10kB /vortex per layer, G53.0.

The results for a finite-size scaling of the specific heat
siteC and the entropy discontinuity at the melting transitio
are shown in Fig. 10.D is seen to increase rapidly withG.
This is expected on general grounds, since the flux-line
uid in a very anisotropic superconductor is expected to
hibit more disorder than in an isotropic case due to the m
flexible nature ofindividual flux lines in layered compounds
In our opinion, a reduction ofDS with increasingG would be

FIG. 10. Top panel: The specific-heat maximum at the flu
line lattice melting transition, as a function of system size, fo
given mass anisotropyG52.5. Such plots may be used to extra
the entropy discontinuity at the melting transition, as explained
the text. Bottom panel: Entropy discontinuity at the melting tra
sition as a function of the mass anisotropy. The first order chara
of the flux-line lattice melting is seen to increase rapidly with
creasingG.
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unphysical, at least in situations where the supercondu
can be viewed as an anisotropic continuum. The 2D cas
in some sense a singular limit, as discussed in Sec. I
Although it is expected on general grounds that the melt
of the FLL is first order also in the isotropic case, it appe
to be too small to detect in our simulations. However,
extrapolation we may easily extract entropy jumps of t
correct order of magnitude seen in calorimetric data
YBCO with G'8,7 sinceDS is expected to grow with fur-
ther increase inG. If we extrapolate our results toG57, we
obtain the valueDS50.35kB/per vortex per layer, in very
good agreement with experimental data on YBCO. This
timate is again in surprisingly good agreement with, and o
slightly larger than, the result obtained by Hetzel and c
workers for the uniformly frustrated 3DXY model9 with a
considerably more sophisticated technique, but where the
fect of anisotropy was not fully accounted for.

There is also a weak specific-heat anomaly atT5Tz , as-
sociated with the loss of phase coherence in the BCS o
parameter along the field direction. What this specific-h
anomaly conceivably could show, is that there is a ph
transition inside the flux-line liquid phase, from a low
temperature flux-line liquid phase, to a high-temperat
flux-line liquid phase, as suggested by Feigel’manet al.32 In
Ref. 32, the low-temperature phase is suggested to co
spond to a flux-line liquid with no entanglement of flux line
while the high-temperature flux-line liquid phase is su
gested to correspond to a flux-line liquid with entangleme
In the language of the 2D boson analogy,33 the former would
correspond to a normal Bose liquid, while the latter wou
correspond to a superfluid Bose liquid, the two being se
rated by a genuine phase transition.

Note however, that the temperature Tz goes down with
increasing system size, apparently with no sign of saturat
approaching Tm from above. What this strongly indicates, is
that the portion of the phase diagram with a flux-line liqu
phase with an apparent intact phase coherence in the
order parameter across the sample parallel to the magn
field, will vanish in the thermodynamic limit.

The question remains as to what the character of the fl
line liquid phase with no phase coherence along the magn
field, is. We have addressed the issue of whether the tra
tion atTz→Tm results in a flux-line liquid with well-defined
flux lines, by considering the amount of flux-line cutting an
intersectioning of flux lines with closed vortex loops, th
takes place below and above the temperatureTz→Tm .

E. Flux-line cutting

A flux-line liquid with large amounts of flux-line cutting
events, is not likely to be able to sustain a heavily entang
vortex configuration with well-defined flux lines. Th
amount of flux-line intersectioning,r, Eq. ~7!, is shown in
Fig. 11. As we see,r increases sharply from zero atT
5Tz, and continues to increase monotonically as a funct
of temperature. Flux-line cutting is an efficient way of di
entangling flux lines, and the large values ofr suggest that in
the flux-line liquid phase, aboveTz , the flux-line liquid is
incapable of sustaining an entangled configuration. Hen
the loss of phase coherence along the direction of the m
netic field essentially is due to intersectioning between fl
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n
-
er
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FIG. 11. The number of vortex-intersection events per flux liner, for f 51/32,G53, andL548.
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lines, and between flux lines and vortex loops, with asso
ated massive flux-line recombinations. Recall thatT5Tz is
also the temperature at which the number of closed vo
loops of diameter equal to the magnetic length in the pr
lem starts scaling withLz , and it is natural to associate th
increase inr with this limited proliferation of vortex loops in
a finite field. Under such circumstances, a world-line pict
of 2D bosons appears unlikely to be a particularly use
analogy to the flux-line liquid system.

V. SUMMARY

As discussed in Sec. II C, there can only be one single
phase transition in the superconductor in zero field, rega
less of the anisotropy as long as this is finite,G,`. We have
shown that in zero field, the superconductor–normal-m
transition is due to a vortex-loop transition analogous to t
first suggested to occur in neutral superfluids, such as H4,
by Onsager.13 The transition is characterized by a vanishi
vortex-loop line tension, giving a loop-distribution functio
that decays asr 2a at the transition, wherer is the radius of
the loop. BelowTc , the decay of the loop-distribution func
tion clearly appears to be faster-than-algebraic. If the ani
ropy is increased the vortex-loop unbinding temperature
reduced, but the transition remains 3D. Close to the tra
tion the system is isotropized due to an upward renormal
tion of the interplane coupling as a consequence of a div
ing superconducting coherence length at the transition.

An important point is that in finite magnetic fields, th
situation is qualitatively different. In this case, the magne
length of the vortex system, i.e., the average distance
tween the flux lines, cuts off the upward renormalization
the interplane coupling.10,11 Note that the magnetic lengt
only sets a new length scale for the phase coherenceas long
as the flux lines actually fluctuate. In the ground state, with
no fluctuations in the Abrikosov vortex lattice, the zero-fie
arguments apply.11

Therefore, the perfect Abrikosov vortex lattice has no
fect on the vortex-loop blowout transition, since the pha
i-
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coherence length is essentially infinite for this case. Con
quently, for the casel5`, one cannot have a vortex-loo
blowout transition far below the flux-line lattice melting tem
perature.

As soon as the flux lines start to fluctuate appreciab
which only happens very close to the melting transition d
to the first-order character of the transition, the result
much smaller cutoff on the renormalization of the interpla
coupling facilitates a vortex-loop blowout virtually at th
same temperature as the flux lines start to fluctuate. We
phasize that these statements apply to the case of total
pression of gauge fluctuations, orl5`. Even if vortex loops
do not exist on all length scales in the problem at the flu
line lattice melting temperature, they will seriously affect t
flux-line liquid phase provided that they exist on leng
scales up to the magnetic length of the problem.From our
simulations, we have found that this is always the case in
thermodynamic limit: The number of such non-field-induce
closed vortex-loops scales with the thickness of the sam
Lz , whereas the number of field-induced flux lines obviou
does not. Therefore there is an infinite number of clos
vortex loops with a diameter equal to the magnetic leng
per flux line. Hence, in the liquid phase flux lines cannot
considered as well-defined entities. They are well-defined
tities in thelattice case.

When a flux-line lattice melts, the molten phase is
incoherent vortex-liquidcharacterized by loss of phase c
herence along the direction of the magnetic field. This loss
phase coherence is associated with a proliferation of clo
vortex loops and massive flux-line cutting and recombin
tion. Such a vortex-liquid phase is unlikely to sustain heav
entangled vortex configurations. Recent works from Hu, M
yashita, and Tachiki,34 as well as from Koshelev,35 support
the conclusion thatTz5Tm whenl5`, at least in the field
regime considered, i.e.,f 5 1

25 ~Ref. 34! and f 5 1
36 .35
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APPENDIX A: HELICITY MODULUS IN TERMS
OF PHASE VARIABLES

In this appendix we derive the expression for the helic
modulusYm ~Eq. 6!, for the uniformly frustratedanisotropic
Villain model. The effective Hamiltonian for the uniforml
frustrated anisotropic Villain model is

Hv$u8~r !%5J0 (
r ,n5x,y,z

Vn@u8~r1ên!2u8~r !2An~r !#,

Vn~x!52
kBT

J0
lnH (

m52`

`

expF2
J0an

2kBT
~x22pm!2G J .

~A1!

Here,J0 , An(r ), andan are defined in the text,ên is the unit
vector for then̂ axis. In Eq.~A1!, u8(r ) is the phase of the
complex superconducting order parameter.$u8(r )% denotes
the functional ofu8(r ). We now apply boundary condition
such that the phase across the system in them̂ direction is
twisted by an amountLd. If m̂5 ẑ, for example, we have the
following phase twist:

u8~x,y,z5L !2u8~x,y,z50!5Ld. ~A2!

Now we define a set of new phase variables

u~r !5u8~r !2~r•êm!d.
-
-

e
x

n-
m
k

in

If the phase variablesu8(r ) obey the twisted boundary con
ditions in Eq.~A2!, the new phase variablesu(r ) obey the
following periodic boundary conditions:

u~x,y,z5L !2u~x,y,z50!50. ~A3!

The Hamiltonian for the uniformly frustrated anisotropic Vi
lain model in terms of the new phase variables is

Hv$u,d%5J0 (
r ,n5x,y,z

Vn@u~r1ên!2u~r !2An~r !

1~ ên•êm!d#.

The partition function in terms of the new phase variables

Z~d!5 (
$u~r !%

e2Hv$u~r !,d%/kBT,

where we only sum over configurations$u(r )% that satisfy
periodic boundary conditions. The total free energy is

F~d!52kBT ln Z~d!.

The helicity modulusYm is defined as the second derivativ
of the free energy with respect to a phase twist across
sample in them̂ direction. Thus,

Ym[
1

L3 S ]2F~d!

]d2 D
d50

.

Using the definition

x[u~r1ên!2u~r !2An~r !1~ ên•êm!d,

]x

]d
5ên•êm .

we can writeYm in the following form:
Ym5
J0

2

L3

1

kBT
S ($u~r !%F( r ,n

]

]x
Vn~x!~ ên•êm!Ge2Hv$u~r !%/kBT

Z~d50!
D 2

1
J0

L3

($u~r !%F( r ,n

]2

]x2 Vn~x!~ ên•êm!2Ge2Hv$u~r !%/kBT

Z~d50!

2
J0

2

L3

1

kBT

($u~r !%F( r ,n

]

]x
Vn~x!~ ên•êm!G2

e2Hv$u~r !%/kBT

Z~d50!
,

pa-

r,
which is Eq.~6! written in a more explicit form. The sum
mations over the configurations$u(r i)% are restricted to con
figurations satisfying periodic boundary conditions.

APPENDIX B: HELICITY MODULUS IN TERMS
OF VORTEX SEGMENTS CORRELATIONS

In this appendix we derive the helicity modulus for th
anisotropic LSM Ym(k), expressed in terms of vorte
density-density correlation functions~Ref. 11!, m5(x,y,z).
In the continuum limit, the effective Hamiltonian for the a
isotropic LSM can be written as
H$v,f%5
J1

2 E d 3r @v~r !•MJ •v~r !12pl2f~r !•f~r !#,

~B1!

the energy per unit lengthJ15F0
2/16p3la

2. Here,v~r ! is the
superfluid velocity

v~r !5“u~r !2A~r !,

u~r ! is the phase of the complex superconducting order
rameter,F0A(r )/2p is the vector potential, andF0 is the
flux quantum. In Eq.~B1!, MJ is the anisotropic mass tenso
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MJ 5F 1 0 0

0 1 0

0 0 G2
G ,

describing uniaxialĉ anisotropy. The anisotropy paramet
G5lc /la , la andlc are explained in the text. In Eq.~B1!,
f~r ! is the local density of the magnetic flux quanta,

f~r !5
B~r !

F0
5

1

2p
“3A~r !.

Here,B~r ! is the local magnetic induction. In evaluating E
~B1!, the integration must be cutoff at the core of the vort
segments, so that the energy stays finite.

The partition functionZ is computed averaging over in
dependently fluctuatingv~r ! and f~r !, subject to the con-
straint ^f(r )&5 f êz for a constant uniform average magne
inductionBêz , where^ . . . & denotes a thermal average, a
êm is the unit vector along them̂ axis. Using the Fourier
transform

ṽ~k!5E d3reik•rv~r !,

the Hamiltonian in Eq.~B1! can be written as

H$v~k!, f̃ ~k!%5
J1

2V (
k

H8~k!,

H8~k!5@ ṽ~k!•MJ • ṽ~2k!12pl2 f̃ ~k!• f̃ ~2k!#,
~B2!

whereV is the volume of the system. An applied twist in th
phase of the superconducting order parameter, along thm̂
direction, as considered in the previous Appendix, cor
sponds to a change in the superfluid velocity

ṽ~k!→ ṽ~k!1dv~k!êm .

In terms of velocities, therefore, the helicity modulusYm(k)
is defined as the second derivative of the free energyF5
2kBT lnZ with respect to a change in the superfluid veloc
along them̂ direction. Hence,
x

-

Ym~k![
]2F

]@dv~k!#]@dv~2k!#
U

dv~k!5dv~2k!50

5
J1

V S êm•MJ •êm2
J1

kBTV
^@ ṽ~k!•MJ •êm#

3[ êm•MJ • ṽ~2k…‡‹0…. ~B3!

The subscript 0 denotes the unperturbed system with
applied phase twist,dv(k)50. In Eq. ~B3!, we have used
^ṽ(k)&05^ṽ(2k)&050, since the Hamiltonian Eq.~B2!
contains only quadratic terms like@vn(k)vn(2k)# (n
5x,y,z). Because of the symmetry in which“u andA enter
v~r !, Ym(k) can also be interpreted as the linear respo
coefficient of the supercurrent induced by a perturbation
the vector potential,27

j m~k!52Ym~k!dAm~k!.

There are three interesting helicity moduli to be cons
ered: ~1! Yx(kêy), which is the energy cost correspondin
to a compressional perturbation of the flux-line system,~2!
Yx(kêz), which is the energy cost corresponding to a tiltin
perturbation of the flux-line system, and~3! Yz(kêx), which
is the energy cost corresponding to a shearing of the flux-
system.

To find an expression forYm(kên) (mÞn) expressed in
terms of vortex segments density correlations, we need
write the parts ofH containingkên in a diagonal form. De-
fining the vortex segment density

n~r !5
1

2p
“3“u,

we can write the superfluid velocity in the following gaug
invariant form:27

ṽ~k!52p i S kx~k!1
k3@n~k!2f~k!#

k2 D . ~B4!

Here, x~r ! is a smooth scalar function which describes t
longitudinal part of ṽ(k). The transverse part ofṽ(k) is
determined by“3v(r )52p@n(r )2f(r )#.

Substituting Eq.~B4! into H8(k) @Eq. ~B2!#, we get the
following diagonal form forH8(k) for the case ofk5kên :
H8~kêx!

4p2 5k2x~kêx!x~2kêx!1A1~k!ny~kêx!ny~2kêx!1A2~k!nz~kêx!nz~2kêx!1B1~k!d f y~kêx!d f y~2kêx!

1B2~k!d f z~kêx!d f z~2kêx!,

H8~kêy!

4p2 5k2x~kêy!x~2kêy!1A1~k!nx~kêy!nx~2kêy!1A2~k!nz~kêy!nz~2kêy!1B1~k!d f x~kêy!d f x~2kêy!

1B2~k!d f z~kêy!d f z~2kêy!,

H8~kêz!

4p2 5~k/G!2x~kêz!x~2kêz!1A2~k!nx~kêz!nx~2kêz!1A2~k!ny~kêz!ny~2kêz!1B2~k!d f x~kêz!d f x~2kêz!

1B2~k!d f y~kêz!d f y~2kêz!. ~B5!



ts

an
st
n

3142 57A. K. NGUYEN AND A. SUDBO”
Here,

A1~k!5
l2

11G2l2q2 , A2~k!5
l2

11l2q2 ,

B1~k!5
11G2l2q2

G2q2 , B2~k!5
11l2q2

q2 .

In Eq. ~B5!, d f̃ (k)5 f̃ (k)2 f̃ 0(k) is the fluctuation of the

magnetic flux density away from the valuef̃ 0(k) minimiz-
ing the Hamiltonian for a given vortex segmen
configuration.36

f̃ 0~k!5
ñ~k!

11l2k22
~G221!@ ñ~k!•q#l2q

11l2k21~G221!l2q2 ,

where q5k3 ẑ. To compute the partition functionZ, we
should sum over~1! all smooth functionsx(r ), ~2! all ñ(k)
that satisfy k•ñ(k)50, and ~3! all d f̃ (k) that satisfy
k•d f̃ (k)50. The constraints~2! and ~3! come from the re-
striction of no divergence in the vortex segments density
no divergence in the local magnetic-field induction. Sub
tuting Eq.~ B4! into Eq.~B3!, and using the the Hamiltonia
an

,

.

.

-

H

.

a,

E

,

d
i-

Eq. ~B5! to evaluate the average overx~k! and d f̃ (k). For
the case ofk5kên we obtain

Ym~kên!5
J1

V

l2k2

11@11dm,z~G221!#l2k2

3S 12
4pJ1

kBTV

l2^ns~kên!ns~2kên!&0

11@11dm,z~G221!#l2k2D ,

~B6!

~m,n,s! are cyclic permutation of (x,y,z). The generalization
of Eq. ~B6! to a lattice superconductor is

Ym~kên!5
J0

L3

~l/d!2Q2

11@11dm,z~G221!#~l/d!2Q2

3S 12
4pJ0

kBTL3

~l/d!2^ns~kên!ns~2kên!&0

11@12dm,z~G221!#~l/d!2Q2D ,

~B7!

where Qm52 sin(kmd/2), Q25SmQm
2 , km is the m compo-

nent ofk, andd is the lattice constant of the~simple cubic!
underlying numerical lattice.
.
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ã(T5KKT)511a53, and thusa52 at the vortex-antivortex
unbinding temperature, J. M. Kosterlitz and D. J. Thouless
Phys. C6, 1181~1973!. For a detailed discussion of the 2D cas
see also G. Blatteret al., Rev. Mod. Phys.66, 1125~1994!, Sec.
8.

29A. Schilling and O. Jeandupeux, Phys. Rev. B52, 9714~1995!.
30R. Cavalcanti, G. Carneiro, and A. Gartner, Europhys. Lett.17,

449 ~1992!; Phys. Rev. B47, 5263~1993!.
31A. Houghton, R. A. Pelcovits, and A. Sudbo”, Phys. Rev. B40,

6763 ~1989!.



I.

57 3143ONSAGER LOOP TRANSITION AND FIRST-ORDER . . .
32M. V. Feigel’man, V. B. Geshkenbein, L. B. Ioffe, and A.
Larkin, Phys. Rev. B48, 16 641~1993!.

33D. R. Nelson, Phys. Rev. Lett.60, 1973~1988!; J. Stat. Phys.57,
511 ~1989!; D. R. Nelson and H. S. Seung, Phys. Rev. B39,
9153 ~1989!.
34X. Hu, S. Miyashita, and M. Tachiki~unpublished!.
35A. E. Koshelev~unpublished!.
36E. H. Brandt, J. Low Temp. Phys.26, 735 ~1977!; A. Sudbo” and

E. H. Brandt, Phys. Rev. Lett.66, 1781~1991!.


