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Monte Carlo simulations in conjunction with finite-size scaling analysis are used to investigate the
(H,T)-phase diagram in uniaxial anisotropic high-superconductors, both in zero magnetic fieBd=0) and
in intermediate magnetic fields 0B<B_,) for various mass anisotropies. The model we consider is the
uniformly frustrated anisotropic Villain model, which is dual to the lattice London model with an infinite
London penetration length. The quantities we consider are various helicity moduli, the structure function, the
specific heat, and the distribution of closed non-field-induced vortex loops as a function of the loop size. In
zero magnetic field, and for all anisotropies considered, we find one single second-order phase transition,
mediated by an Onsager vortex-loop unbinding transition, or blowout. This is the superconductor—normal-
metal transition. A comparison with numerical simulations and a critical scaling analysis of the zero-field loop
transition yields the same exponent of the loop-distribution function at the critical point. In the intermediate
magnetic-field regime, we find two anomalies in the specific heat. The first anomaly at a temp€gatsire
associated with the melting transition of the flux-line lattice. The Lindemann ratio at the melting is given by
¢, ~0.24. The second anomaly at a temperafiyés one where phase coherence in the BCS order parameter
across the sample along the field direction is destroyed. We arguf thal, in the thermodynamic and
continuum limit. Hence, there is no regime where the flux-line lattice melts into a disentangled flux-line liquid.
The loss of phase coherence parallel to the magnetic field in the sample is argued to be due to the proliferation
of closed non-field-induced vortex loops on the scale of the magnetic length in the problem, resulting in
flux-line cutting and recombination. In the flux-line liquid phase, therefore, flux lines appear no longer to be
well-defined entities. Above the melting temperature, the system always exhilits@rerent vortex-liquid
phasecharacterized by lack of phase coherence in the BCS order parameter parallel to the magnetic field. For
increasing anisotropy, we resolvesdunction peak in the specific heat. A finite-size scaling analysis of the
&function peak specific-heat anomaly at the melting transition is used to extract the discontinuity of the
entropy at the melting transition. This entropy discontinuity is found to increase rapidly with mass anisotropy,
at least for not too layered compounfiS0163-18268)01105-9

[. INTRODUCTION transition takes place at roughly the same temperature as a
“blowout” of non-field-induced degrees of freedom involv-

A number of recent experiments have reported results of ing closed vortex loops, resulting in a flux-line liquid phase
first-order melting transition of the Abrikosov flux-line lat- with considerably larger entropy than what the field-induced
tice (FLL).1™® The reported magnitudes of the latent heatvortices alone can provide.
have all in general been in surprisingly good agreement with  As a step towards understanding these experimental re-
apredictionof Hetzel and co-workers for the discontinuity in sults, we carry out extensive Monte Carlo simulations, to-
the entropy at the melting transition based on extensivgether with a finite-size scaling analysis, on the uniformly
Monte Carlo simulations of the uniformly frustrated three-frustrated anisotropic Villain model, to be defined below.
dimensional3D) XY model® This model will be argued to be appropriate for describing

Schilling et al. have reported calorimetric measurementsthe physics in extreme type-Il superconductors such as the
on an untwinned YB#u;0; (YBCO) single crystal, in the high-T. superconductors. Here, we present a short review of
intermediate field regimB e (1-7) T, and find a FLL melt- our results.
ing transition with a virtually field-independent entropy jump  For the cas®=0, we find that the Villain model hasne
AS~0.45%g per vortex per layef. In Bi,SrL,CaCu,Og single second-order phase transition of the BP-type for
(BSCCO single crystal at very low magnetic inductiors, all anisotropies considered’he phase transition in zero
e(1-375) G, it was found that a FLL melting transition magnetic field is caused exclusively by a vortex loop “blow-
occurs with an enormous entropy junyS(B=1 G)~ 6kg out,” to be explained below. This is confirmed by a detailed
per vortex per layet.Furthermore, it was found thatS(B) calculation of the distribution function for loops of a given
decreases for increasir, and vanishes aB~375 G#* It perimeter, as a function of the perimeter, for various tem-
appears thaA S(B) increases dramatically only whéi—-0,  peratures. In the low-temperature regime, this distribution
T—T.. Infact, it might be argued on the basis of the data offunction is an exponentially decreasing function of the pe-
Zeldov et al. that AS(B) divergesin this limit. rimeter, indicating that there exists a length scale in the prob-

Recently, Téanovid? and Nguyen, Sudhoand Hetzéft  lem associated with a typical size of thermally induced
have proposed an explanation for the inordinately large enelosedvortex loops in the system. However, in zero mag-
tropy jump found in Ref. 4. The idea is that the FLL melting netic field there exists a temperature scale, which we denote
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asT., at which the distribution function is an algebraically the flux lines cannot be considered as well defined in the
decreasing function of the perimeter of vortex loops, indicatliquid phase. Second, in the present simulations on the an-
ing that there no longer exists a length scale associated witisotropic, uniformly frustrated Villain model, we never ob-
typical sizes of thermally induced closed vortex loops. In thisserve an entangled flux-liniattice phaseof the type de-
case, such vortex loops exist ali length scales in the prob- Scribed by Frey, Nelson, and Fisfiéfor the layered case.
lem, up to and including the system size. However, we cannot access extreme anisotropies in our
This means that the system experiences a thermally irsimulations, for reasons to be explamed in Sec. Il D, and
duced proliferation of unbounded closed vortex loops, a situtherefore do not rule out the existence of a “supersolid
ation for which Onsager coined the term “vortex-loop Phase” such as proposed in Ref. 18.
blowout”.®® In zero magnetic field, such a blowout marks ~We also observe a crossover that takes place at a tempera-
the transition from a normal metal to a superconductinguré that marks the onset of strong diamagnetism, not asso-
state, or vice vers¥2 Many years ago, the vortex-loop ciated with global phase coherence in the superconducting
blowout transition was suggested to occur in teaitralsu-  BCS order parameter, but with phase coherence throughout
perfluid Hé at the transition'® The loop transition in H& finite domains. It tal_<es place at a temperature well ebove
has more recently been reinvestigated by several authorsPoth Tm and T, which we denote a3g.,. Usually, this
In the context othargedsuperfluids inzero magnetic fiela ~ crossover is identified witB.,, the upper critical field, and
corresponding loop transition was suggested to occisdn signals the onset of strong dlamagr_letlc fluctuations. This
tropic lattice superconductor models several years ago b§rossover is the remnant of the zero-field second-order phase
Dasgupta and Halperilf,and more recently by Korshundv. ~ transition that merks the onset of the transition from metallic
The suggestion that features of this zero-field transition maj© Superconducting behavior. The filling fractions we con-
survive in finite magnetic fields, and thus be of importanceSider in this paperf = 3; andf= 7;, may be converted into a
for the statistical mechanics of thertex-liquid phasehas ~ Magnetic field of the order of 10 T, which is not particularly
been suggested by Tawmvic'® and considered recently by low. The present paper, therefore, does not address the issue
us in detailed Monte Carlo simulations of the lattice LondonOf how the crossover &, in finite large fields evolves into
model*! the sharp second-order transition in zero field. This issue is
The main purpose of the present paper is to study, vi®f fundamental importance, and remains open.
detailed Monte Carlo simulations, the fate of the zero-field The rest of this paper is organized as follows. In Sec. Il
Onsager-Dasgupta-Halperin transition when a magnetic fiel/® describe the uniformly frustrated anisotropic Villain
is applied to an extreme type-Il superconductor, using thénodel along with the approximations inherent in this de-

somewhat simpler more familiar uniformly frustrated aniso-Scription of a superconductor. We also give the connection
tropic Villain model, which is related to the lattice London between these models and the lattice London model. Then

model via a duality transformation. we define the physical quantities to be considered, and their

For finite fieldsB+0, we find two sharp features in the Measurements in the simulations. In Secs. Il and IV we
specific heat and helicity modulus. In addition, we observeshow and discuss our results for the zero-field case and the
what appears to be a crossover at a considerably larger terf{pite-field case, respectively. Finally, in Sec. V we summa-
perature, in agreement with recent simulatiéhy. rize our main flndlngs. The derivations qf the heI|C|t_y moduli

The first sharp feature we find, at a temperature that wave consider, both in terms of phase variables and in terms of
denote asT,,, is identified as the first-order melting transi- Vorticities, are given in two appendixes.
tion of the FLL. The second sharp feature is more subtle. It
takes place at a temperature that we denotd ,asAt the [l. THE MODEL AND DEFINITIONS
temperaturé’z_, we find that the phase coherence in the I_BCS A. The model
superconducting order parameter across the sample in the
direction of the magnetic field is destroyed. We also find, via Our starting point is the anisotropic lattice superconductor
our computations, that flux-line cutting and the amount ofmodel (LSM) (that semantically should be distinguished
intersecting flux lines dramatically increasesTat Conse-  from the lattice London modgt**>*°defined by the parti-
quently, aboveT,, phase coherence along the field directiontion function
is destroyedFurthermore, for the anisotropies considered in o
this paper, it occurs that J~T,, from above as the system Z=H H (fw % E o dA )
size is increasedr, never drops below ,, for reasons to be r w2 m = Jow
explained below. We emphasize that we at this stage are

v=X.y,Z

limiting this statement to the case dffinite penetration Xexp(—Hism/kgT),

depth, since the results are obtained within the uniformly 3

frustrated Villain model only. _vo _ A2
From this we draw two conclusions. First, when the flux- Hisu=7 zr: M;Xj‘y,z @u(Vuf=2mm, = A,)

line lattice melts, it does not melt into a flux-line liquid that
has phase coherence along the direction of the applied mag-
netic field in any temperature regime. This however does not
mean that the flux-line liquid is an entangled vortex sys-
tem: AtT,—T, we find that flux-line cutting and intersec- Here,J, is the energy scale for the system. Furthermore,
tioning of flux lines with closed vortex loops of diameter on «,, is the anisotropy parameter along thedirection, andv

the scale of the magnetic length, increases abruptly. Hencégnotes a lattice derivative. The varialfler) e[ — 7, 7) is

2

A
+d—’2‘(VxA)i : (2)
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FIG. 1. (a) The ground-state flux-line configuration fo= 1/32 and system sizds=8,16,24.(b) A cubic unit cell with two elementary
vortex segments penetrating two plaquettes of the unit @IThe ground-state current pattern in thie plane in units of 2r/384 for the
8% 8 vortex lattice unit cell. The arrows indicate the direction of the currents on each link. The current pattern in this ground state is
complicated, but nevertheless exhibits a high degree of symmetry.

the phase of the complex superconducting order parametenagnetic inductiorB, is taken along the crystalaxis. Here,

W (r) at siter of a three-dimensional numerical lattice with A\, and\ . are the penetration depths in the crysthl plane
lattice constand, m,(r) are integer variables defined on the (CuG, plang and along the crystal axis, respectively. Sub-
directed link between site and siter +&,, wheree,, is the  sequently, we will take the limik,, N\;—¢, but in such a
primitive vectors for the cubic unit cen|”eM|=d, Fig. D.  way that the ratio../\, is maintained constant. We take our
The contributionA ,(r) to the gauge-invariant phase of the coordinate %,y,z) axis parallel to the crystala(b,c) axis,
order parameter is related to the vector poterigl(r) by  respectively. Periodic boundary conditions in all directions
aregassumed. The basic parameters of the LSM are given

_277 r+Ae/" ’ byl
A#(f)=¢#ofr dr-A,p(r’),

2 2
where ®,=2.07x 10 1° T m? is the flux quantum. Finally, 3= Pod :)‘a
0= 7~ 3\ 2 aM F

A\, is the London penetration depth along thedirection. 167N\ g p

In this model, we neglect fluctuations of the amplitude in
the complex superconducting order parameter, ie(r) Here,d may tentatively be interpreted as the distance be-
=|¥(r)|e’I~Ww,e ", The lattice London model is ob- tween two Cu@ layersin adjacent unit cellsThe vorticities
tainable from the lattice superconductor model by explicitlyn,(r),n,(r) [corresponding to fundamental vortex-line seg-
performing thed and A, integrations in Eq(1), as shown ments parallel to theb plane, defined in Eqi4)] are as-
first by Korshunov and more recently by Carneird® sumed to exisin betweenCuGO, double or multiple layers in

To study the physics of higfiz superconductors, we con- compounds such as YBCO and BSCCO. We use the numeri-
sider a three-dimensionalbic lattice, with linear dimension cal lattice unit as a measure of the in-plane coherence length,
Ld, and with a uniaxial anisotropf’=A./\,. In these ¢,~d. (Note that since the numerical factor relatiéig to
simulations the applied magnetic field, and hence the ned is not uniquely determined in our approach, the filling
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fraction f does not uniquely determine the magnitude of thephase coherence. Ultimately, the choice of model to use in
applied magnetic field. Variation df may thus be viewed as simulations is dictated exclusively by convenience, and de-
a variation ofB, but alternatively a reduction df may be pends to a large degree on what problems to consider. One
viewed as an improvement of the approximation to the conproblem where the lattice London model appears to present
tinuum limit at fixed inductiorB.) clear advantages over the Villain model is the problem of

As for the London model, the LSM is appropriate for numerical simulations of flux creep in the presence of pin-
describing the physics of extreme type-ll superconductorsing.

(N> &) in the field regimeB<B,,, whereB,, is the upper The uniformly frustrated anisotropic Villain model is ap-
critical magnetic field, implying,> &, . Thus, spatial varia- propriate for describing the physics of extreme type-Il super-
tions of theamplitudeof the superconducting order param- conductors in the limit where the penetration depth is larger
eter may be neglected. In these simulations it is also postier comparable to the system sizeero magnetic field or

lated that the penetration length is essentially infinite, whichwhen the penetration depth is much larger than the average
in practice means that they are at least much larger than tiéistance between flux lines>a, (finite magnetic fields
average distance between vortex lines, when the field is fi-

nite. Hence we also have the requiremBatB;,. In terms

of magnetic induction, our simulations are thus, strictly B. The ground state

speaking, limited to the field regimB.;<B<B,, when fi-
nite fields are consideredror our zero-field results, the com-
plete suppression of gauge fluctuations implies that the pe
etration depth of the model must be at least larger than an . A
system sizgs considered. ’ g Ju(r)=0(r+e,)=6(r) =Au(r),

The Monte Carlo simulation timéyc for the LSM on a s defined on the directed link between siteand siter
cubic system with linear dimension is of orderL®. The +8&,,j,(r)e[—m,m). This current obeys two condi-
suppression of the gauge-field fluctuations, using the limitions: (1) There are no net current sinks or sources in the
A=, reduces the required computer time dramatically,ground state
tuc to ~L3. The neglect of gauge fluctuations reduces the
LSM to the uniformly frustrated anisotropic Villain

The current corresponding to the gauge invariance phase
rg_ifferences

model***"2* which is the model used in this paper. It is V:; , V.,i(r)=0. 3
defined by the following partition function after performing v
the sum ovem,(r) in Eq. (1) explicitly, (2) The counterclockwise line integral of the currents around

any plaquette of the numerical lattice with a directed surface
normal in theu direction at siter must alwayshe

z=11 U” :—i)exq—HvlkBT),

T 2 un=2aln,(n—1,]. (4)
Here,Ci is the closed path traced out by the links surround-
HU=JOE E Vu(V,0—-A,T), ing an arbitrary plaguette, and represents the Cartesian
O components of the current in the directions of the links that

comprise the closed pat@i. Furthermoren,(r)=0, +1
represents a vortex segmepgnetrating the plaguette en-
kgT - Joa,, 5 closed by the path CiThe situation is illustrated in Fig. 1.
Vi) ==—73~1In > exg- ST (X~ 2mm)7 Furthermoref , is the filling fraction along the direction,
0 B 2 defined in Eq(5). In this way, we can findhe distribution of
vortex segmentsi(r), by calculating the counterclockwise
The advantage of the Villain model compared to the latticdine integral of the currents around every plaquette in the
London model used in earlier large-scale simulations wesystem. Hence, the distribution of gauge-invariant current
have performed on the Abrikosov vortex lattiCeis that is  also gives information, essentially by a duality transforma-
allows considerably larger system sizes to be studied thation, about the FLL structure function.
with the lattice London model. The latter model has the in- To perform a finite-size scaling analysis, we employ the
tuitively appealing feature of allowing simulations on line- following procedure to find the current pattern in the ground
like objects, but as we have seen, the Villain model and thetate. Given a density of flux lineb=3;, we design an
lattice London model are in principle equivalent representa8x 8 vortex lattice unit cellnot to be confused with the unit
tions of a lattice superconductor model. One other majocell of the numerical lattice. This vortex lattice unit cell has
advantage of the Villain model compared to the lattice Lon-two vortices, Fig. 1. The current patteffig. 1) is found by
don model is that, while it is straightforward to extract un-requiring the currents to obey E(B) on every link and Eg.
ambiguous information about vorticities from the phases of4) on every plaquette throughout the vortex lattice unit cell.
the Villain model, it is impossible to reconstruct unambigu- It is possible to reduce the number of unknown currents by
ous phase information from the vortex degrees of freedom imequiring the current pattern to have the same symmetry as
the lattice London model. Thus the Villain model straight- the ground-state vortex lattice. Periodic boundary conditions
forwardly provides information on vorticities as well as at the boundaries of the vortex lattice unit cell are used. By

m=—o
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repeating the vortex lattice unit cell, we can design the curtinuum substrate in 3D, one carefully has to choose sample
rent pattern of all systems with size8xn8xIl, (m,n,l) geometry in simulations as follows: It is crucial to have a

being positive integers. sample geometry where the distance between flux lines is
The flux-line density along the direction is defined as tailored to suit the thickness of the sample in such a way that
f,, and is given by the commensuration potential along the direction of the flux
lines does not cause pinning to the numerical lattice at the

3.n,(r) temperatures of interest. This implies that simulations must

f”:T' (5) be carried out on relatively flat slabs. Simulations on

“tower”-shaped slab¥’ are probably not able to capture the
In the ground state, a uniform magnetic induction along the}por;tlnuu;n lm&'t' Iirr11r?ilrjlr Stl:nlfllla}:;ogsfrwr?] htavenChneg:iiiltr?telsnh
crystal ¢ axis B=BZ gives a periodic structure of straight taﬁ Su? a tept 9 a;iéDo hgch is ielg the tem-
flux lines aligned withB with hexagonal symmetry on a aer:u?ezcgfar%ae}m?ﬁtrear:st I-’|evxcle irI1 our s\i,rvnulations the
continuum substrateb plane, the well-known hexagonal P P Y ' '

Abrikosov vortex lattice. In terms of the above densitigs f;”}:mﬂg'}‘rgg:gﬁ;‘?rj _}Oa?]z ?ieique:;e;yclg\rlmrl&kuenﬂ. Ili\rl:iieisthat
this is expressed as 8 15,

not mimicked satisfactorily. In these cases, it is clear that
) pinning to the numerical mesh strongly influences the re-
f :ﬂff f=f. =0 sults. In this paper, we consider mainly the case of0
o, ' andf=35, while some results are also obtained fof 5.

In our simulations, it is not possible to exactly load the C. The Monte Carlo simulation
hexagonal Abrikosov vortex lattice onto our numerical mesh, The statistical mechanics of the Villain model of an ex-
which we have chosen to be square. This means that thgeme type-Il superconductor is investigated by employing
underlying numerical mesh necessarily introduces a distorthe following Monte Carlo procedure on numerical cubic
tion of the hexagonal ground state. The numerical mesh repattices with linear dimensions L
resents a commensuration potential that acts as a perturbaq{8,16,24,32,40,48,64,80,96 Identical sets of current
tion on the ground state, and tends to “freeze” the flux linespatterns are loaded onto each layer of the numerical lattice.
into a structure commensurate with it. The flux lines will For the filling fractionf=35, this current pattern is illus-
however tear themselves off such a commensuration potefrated in Fig. 1. We update the system, heating the system
tial caused by the numerical lattice at a high enough temfrom the ground state consisting tif straight field-induced
perature, which we denote a “depinning” temperatﬂ'r(‘ﬁ)_ flux lines. A SIte_Of the numerical lattice is chosen rand(_)mly,_
Note that this depinning temperature has nothing to do witfnd an attempt is made to change the phase on that site with
a real pinning potential, it is purely an artifact of the under-& random amound e[ —m,m). The phase change is ac-
lying numerical lattice. In the continuum limit, it would be C€Pted or rejected according to the standard Metropolis algo-

zero. It is at present unclear to what extent the numericarl'thl?"h doh H H lnk
mesh represents a singular perturbation on the continuum [T IN€ accepted phase change causes the current on a lin

limit in a 3D system. The well-known results of Nelson and ) «(f) t0 fall outside the rangg,(r) [ —,7), we add an
Halperirt andeoun§5 concerning the effects of periodic amount= 27 to the current, such thaf,(r) is brought back

: o - . .o~ into the primary intervalj ,(r) e[ —m,7). An important
commensuration potent|a_1ls in 2D, |_nd|cates that if the filling point is that this operation can only generate a closed unit
fraction is small enough in 20(, will be smaller than any

h | le in th bl This h | vortex loop around the link where the current is changed,
other relevant energy scale in the problem. This has alsg,qrepy conserving the net induction of the system. No net

been nicely %onﬁrmed in & number of recent simulations onqicity is ever introduced by the procedure, and the proce-
2D systems® Note that, by using a square numerical gyre aiso guarantees that no flux line can start or end within
mesh, we counteract the disadvantage of the distortion of thgye sample. It is also important to note that the Monte Carlo
hexagonal lattice by a reduction in the strong commensurayrocedure described above satisfies detailed balance. Hence,
tion effects we would have encountered if we had chosen ghe entire phase space of the Villain model is guaranteed to
triangular numerical mesh, which admits an exact hexagonale exhausted provided the simulations are run for a long
lattice ground state. enough time. Another point is that the above procedure for
By using low enough filling fractions§,, it may be hoped limiting the currents to the primary interval also limits the
even in 3D to achieve a satisfactory approximation to thenumber of vortex segments penetrating a plaquette to at most
continuum limit. That is, we hope that the depinning tem-one per plaquette. In this way, the Villain model differs from
peratureTy,, which appears purely as an artifact of defining the lattice London model, where the number of vortices pen-
the model on a numerical lattice, drops below all other rel-etrating each plaquette can be arbitrary. This difference how-
evant temperatures in the problem, including the putativeever only becomes important in the high-temperature regime.
melting temperaturd ,, of the FLL. The Monte Carlo procedure really updates the gauge-
That such a thermal depinning from the numerical latticeinvariant phase differences, or currefigr). The simula-
can actually be achieved in higher dimensions than 2D is byions are therefore carried out in a manifestly gauge-invariant
no means clear, since commensuration effects are muahanner. One Monte Carlo sweep consistd dfattempts to
more pronounced in 3D than in 2D. In fact, in the thermo-change the phase¥r) onL® randomly chosen sites through-
dynamic limit, thermal depinning from the numerical lattice, out the lattice. Thus, by such a move we simultaneously
strictly speakingcannothappen in 3D. Therefore, in order to change the gauge-invariant phase differences on the six links
mimic the statistical mechanics of the FLL defined on a con-associated with the relevant lattice point. Each data point for
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the quantities we consider is obtained after discarding thésotropy of the system is increased such that the bare inter-
first 100 000(30 000 sweeps for equilibration. The subse- plane coupling is reduced, one must make sure that the di-
guent 400 00(’70 000 sweeps are used to obtain averagesmensions of the system in the directions parallel to dle
The numbers in parentheses represent the number of swegpanes are large enough to allow the required renormaliza-
we have for the case df=1. To ensure that measurementstion of the coupling constants to run its course without being
are independent of each other, we do one measurement peutoff prematurely by the system size. Equivalently, one may
100 sweeps. rescale the size of the system in thdirection, by the factor
1T'. Thus, the transverse system size must be tailored to the
anisotropy of the system in such a way that critical behavior
D. Anisotropy and finite-size effects we study takes place atlawer temperature than the energy

*
For B=0 and isotropic couplings, the LSM, th¥Y scalekgT™ set by

model, and the Villain model all have one single phase tran- £)2
sition at kgT./Jy=3.0. The transition is characterized by kBT'Z(—) J,.
stiffness in the phase of the superconducting order parameter d

being lost across th? system in all directions, due to a blowi—|ere,JL is the bare interplane coupling in the Villain model,
out of thermally excited closed vortex loops.

For the anisotropic case, the bare coupling between Ianeandg is the coherence length of the phase of the supercon-

3. in the Villain mopdel s sr’naller than thgin-g lane cou ﬁin asucting order parameter at the relevant temperature. If the

L . . ; plane coupiing system is too small in the transverse direction, the renormal-
J,. Thus, in the very anisotropic case, the excitation energ

Yzation of the bar ling i ff by th m siz
of a unit vortex loop parallel to thab plane is much smaller ation of the bare coupling is cut off by the system size

than the excitation energy for a unit vortex loop containing T* =123
segments perpendicular to tlad plane?® One would na- L

ively then expect that thermal excitation of vortex loop par-Hence, for a givert., we may choose an anisotropy such that
allel to theab planes would occur at correspondingly lower j s so small thaf™* becomes smaller than the actual tem-
temperatures than those for which vertical loops appear. Thigerature of the 3D critical phenomenon of interest, namely,
iS true for Unit vortex |OOpS, but SUCh |00pS are Unimportan&he VOI’tex_'oop b|owout_ We Wou|d then Observe a decou_
for critical behavior. From the point of view of considering pling of planes due to a proliferation of vortex loops in the
B=0 critical phenomena, the important issue is how the angyy, plane that would be unphysical.
isotropy affects large vortex loops, including vortex loops of  Thjs finite-size effect limits the anisotropies we can study
order the system size. This is an issue to which we nowonsistently, at least in zero magnetic field. In zero field, we
briefly turn. It is convenient to carry out this discussion in find ourselves limited to anisotropies bt 4.
terms of the phases of the superconducting order parameter, A final technical point is that, although a finite magnetic
rather than in terms of vorticities. _ field a priori allows larger anisotropies to be studied, the
When the temperature approaches the Kosterlitz-Thoulesgjjjain potential itself becomes virtually featureless as a
(KT) temperature from above in a quasi-2D system, thgunction of its arguments, Eq. (2), for large anisotropies.

phase-coherence length gradually grows. In a strictly 2D sysgjence, simulations become impossible to perform meaning-
tem, it would diverge precisely at the KT transition. How- fyjy.

ever, as long as a small coupling between planes exists, no
matter how small, then as the KT transition is approached
from above, increasingly larger domains of correlated phases
are coupled together by the interplane coupling. This
strongly renormalizes the bare interplane coupling constant To probe the global phase coherence in the BCS super-
J, .1522Hence, the system is isotropized close to, but abovegonducting order parameter across the entire system, we con-
the KT transition, and the transition retains a 3D charactersider the helicity modulu¥',,, defined as the second deriva-
Thus, even an extremely anisotropic system exhibits, pretive of the free energy with respect to a phase twist inghe
cisely as in the isotropic case, one single 3D phase transitiomlirection?’ It basically measures the stiffness of the system
No decoupling transition as proposed in Ref. 23 exists irto a twist in the phase of the order parameter. In the aniso-
zero magnetic field. tropic case we have the following generalization of previ-

In simulations on finite systems, care must be taken t@usly obtained expressions for the helicity modulus for iso-
ensure that this physics is captured correctly. When the artropic superconductors:

E. The helicity modulus

\]% , ~ ~ ~ 2 ‘]% ! A a a ?
Y,u. L3kBT < =~ Vy[a(r+ev)_e(r)_Au(r)](eV'e,U,)> _w <(2 Vv[g(r+ev)_a(r)_Av(r)](eV'eM)) >

rv

J R A a
s <2 V’;[0<r+ey>—0(r>—Ay<r)]<ey-eM>2>. ®)
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For the details on the derivation of this expression, and dions, such closed paths of vortex segments can either belong
corresponding one in terms of vorticities, see Appendixes Ao a field-induced flux line or a non-field-induced closed vor-
and B. HereyV,, andV/, are the first and second derivatives, t€X loop. _ _
respectively, of the anisotropic Villain potentis], defined In the quantityD(p), we donotinclude the closed paths
in Eq. (2). For temperatureS<T, such thafY ,>0, there is associated with field-induced flux lines that close on them-
phase coherence across the entire system iuttizgection. ~ S€Ives merely due to periodic boundary conditions inzhe
Hence, the system can sustain a supercurrent incttizec- direction. Field-induced flux lines are characterized by a net
tion. At the temperaturdf=T, and above, such that, vorticity in thez d|rep_t|on,v2¢0. For the purposes of study—_
=0, phase coherence along thalirection is lost. Hence, the ing the loop tran3|_t|on, we are expluswely interested in
vanishing ofY , signals the superconducting—normal—metalClosed pqths associated wition-field-inducedsortex loops
transition in thﬂ direction with the transition temperatur that physically close on themselves regardless of boundary
Ta SFoO th - of f(_ec_to et'e' ; St'oo IeA PErature ., nditions. Hence, the relevant closed paths of vortex seg-
thMe ' co;tiniSriselimitlr;I(e rgr?gnY Ic s”r]]oLletl:dl Caiic:;\gx‘i 'g" ments are closed vortex loops with perimgpet| that have
v Ix y net vorticityv ,=0 in all directions.
7 i H )

temperature$’ since a cur_rent in thab_ plane Wo_uld exert a The proce<_jure for tr{:\cing out the relevant qlosed loops is
![_hOL:ser:jtiZs ;?g;teeOenncter;gyur\]/slr?;r??hzu:qgggls’ismd?;ltl:r:gti;h:dmbinigrepeated until all nonfield vortex segments in the system

! Y- : 0¢ Y Mhave been counted. F&+ 0, this procedure uniquely sepa-
:Loedr;jcilrllqgatgﬁer;ﬁg]negg?:)eﬁtgi%i’la? Ig":g egiri::%i)(l)rzoirs mag\(/)lng rates thermally excited closed vortex loops from the field-

induced flux lines.

introduced. The existence of a smallest energy to required |n the low-temperature regim&(p) depends on the ex-

move flux lines acts as an artificial pinning potential on thecitation energyE(p) ~ ep of the vortex loops with perimeter
pins” from the underlying discrete lattice at a finite tempera-

ture T,=T,>0. In the continuum limit, as long as no physi- ep p
cal pinning of the flux lines is present, we would havg D(p)~exp< - ﬁ) ~exp{ - L—)
=T,=0, and the flux lines are unpinned at all temperatures. B 0
To glwlsure thztghe t?bove art]f|c:allly .|ntr0dduced pmnflfng p?}’wheres is a constant representing a line tension, and
fflflinglilrjlsetraniitﬁoi gz(rjnzrr'lca tﬁtt'ce 0es n(;]t a etct t .?~ kgT/e is a typical perimeter of closed vortex loops present
. 9 .any other genuine phase transty, . given temperatuiia the low-temperature regimés we
tion we might want to consider, we should consider system

: T ; . Will see below, such low-temperature *“confined” vortex
W'.th.Tm S|gn|f|_cantly higher tha_r1TX. The way to achieve loops may be coarse grained away and are unimportant for
this is to consider low enough filling fractiorfs=f, of flux

X ) the statistical mechanics of the mixed state of an extreme
lines. Several authqlsz% havg in fact found thaff, de- type-Il superconductor. In this thermally activated regime,
creases for decreasing flux lines dendityand falls below 500 \ortex loops are exponentially suppressed. On the other
T for f<fe=gz. hand, at the critical point, vortex loops with all perimeters
are present. This leads to an algebraic decay of the loop-
distribution function vs loop perimeter at the critical point,
D(p)~p ¢, wherea is an exponent not to be confused with
As mentioned in the Introduction, in the LSM, Villain the critical exponent of the specific heat. Hence, monitoring
model, and lattice London model, the zero-field normal-the temperature wherB(p) changes its characteristic be-
metal-superconductor transition corresponds to a vortex-loohavior from exponential decay to algebraic decay, is a way
blowout analogous to what has long been suggested to occuf determining the vortex-loop unbinding temperature.
in the neutral superfluid He To study the blowout of a If we assume that the vortex-loop distribution function
closed vortex loop in extreme type-Il superconductors, wescales with the vortex-loop perimeter as some power law,
consider the quantity(p), which we denote the vortex- and furthermore assume that the perimeter scales with the
loop distribution function, and which is given as statistical vortex-loop radiug’, then we have
average of the total number of closedn-field-induced/or-

F. Vortex-loop distribution

tex loops with a given perimetgs, in our case normalized D(r)~r—¢.
by the volume of the systems we consider. The following
procedure is employed to compuidp). We now use a critical scaling analysis to determinia our

We start from an arbitrarily chosen unit cell containing atcase. The assumption is that the loop transition in zero field
least oneoutgoingvortex segment penetrating a plaquette ofrepresents a critical point. If we can then fit numerically
that unit cell. We then follow the direction of this vortex obtained exponents at the putative critical point to the scaling
segmeninto the neighboring unit cell. If there is more than results, this would provide further support for the assertion
one vortex segment leaving the unit cell, one of them igthat the loop blowout is responsible for destroying supercon-
chosen randomly. We continue tracing the path of vortexductivity in extreme type-Il superconductors.
segments until the path closes upon itself. When the path has The Villain-model is dual to a 3D Coulomb gas, and the
closed upon itself, we measure the lengthf the path, as vortex loops are analogous to the vortex-antivortex pairs of
well as the net vorticity, alongz axis of the path. Also, we the 2D Coulomb gas. We may determine the contribution to
remove the vortex segments along the path to prevent doubtee dielectric constant of the 3D Coulomb gas that such
counting of paths. Because of the periodic boundary condiloops give. Since the dielectric constant may be related to the
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inverse superfluid stiffness, whose scaling dimension is well G. Specific heat
known on general grounds, we may determinat the criti-
cal point.

The “dipole-moment” P(r) of a vortex loop scales with
d-2

In addition to indirect measurements of the latent heat of
melting, such as measured by local magnetization measure-
s ' ments on BSCCO,direct calorimetric measurements of the
r®”<.r, where the charge-r®~, and the dipole vectorr.  gpecific heat are also useful for estimating the latent heat of

The contribution to the dielectric constant, or the electricihe melting transition of the FLL, or any other phase transi-
susceptibility, coming from thermally induced loops of size o, the vortex system might suffer. Such measurements are

betweenr is given by now availablé both in zero field and in finite field. In Ref.
P 29, the specific-heat anomaly in a twinned YBCO sample is
xe(~e(r)~—=(r%"lcog ¢))| measured systematically with varying magnetic field. It
JE E=0 evolves smoothly from the zero-field result as the magnetic

h h hould b h | ith field is increased. Moreover, the integrated anomaly appears
‘év ﬁre the fv?rage shou € a thermal average wit thl% be approximately constant as the magnetic field increases.
oltzmann factor This raises the question of what sort of phase transition, if

d-1 any, the specific-heat anomaly in finite magnetic fields

exil —U(N/kgT]~D(r)exdr™ " cod ¢)/ksT]. shguld be aZSociated with. Due):o its smooth e?/olution from

Here E is an electric field polarizing the medium via the the zero-field case, it appears rather unlikely that this size-

“charge-loops” of the 3D Coulomb gas, anglis the angle able anomaly has anything whatsoever to do with FLL melt-
between the orientation of loops and the applied electric fieldng. Rather, it seems to suggest that there are remnants of the

polarizing the medium. We find zero-field transition, which we will describe in detail below,
at finite magnetic fields.
e(r)~rd-b-e We may investigate this issue, by calculating the specific

: .. ...heat of the Villain model, and correlate the specific-heat
On the o_ther_hand, in the superconductor, the _su_perflwd Stlft}E:momalies with the temperature dependence of Ft)he structure
nNeSS P \S/vrlfér(gal\ée?s byivg]: grar:ﬁ\e/egsrzeiuicr?g:gt'gy GNr (Ce;en’s function S(K) as well as with the phase stiffne¥s. Thus

Ps, 9 y P we should in principle be able to decide whether or not the

. . Z_d_n . .
“!”C“OWG r ’ anc! where_r; is the anqmalous scall_n_g major features in the specific heat have anything to do with
dimension of the Green’s function appearing due to CrltlcalFLL melting or vortex-loop blowout, also at finite fields. In

fluctuations, for the 3DXY model we haver=0.0334). zero field, we will be able to precisely correlate, for all

Now we use the fact that~p, ", to find anisotropies, the anomaly in the specific heat with the
vortex-loop blowout transition. In a finite field, the situation
is considerably more complicated. We find three anomalous
features in the specific heat. The major feature in the specific
heat, the remnant of the zero-field transition, occurs at tem-
In our case, we may evaluate the loop-distribution functionperatures well above those where the structure function of
at the anomalous peak in the specific heat, and fit the resulbe FLL, and the phase stiffness across the sample along the
to a power law with the exponent 3, obtained by assumingdield direction, vanishes.

critical scaling. We will see below that the fit is excellent, To calculate the specific heat per siie we use the usual
lending further support to the assertion that in zero field, thdluctuation formula

superconductor—normal-metal phase transition in an extreme

type-Il superconductor is due to a vortex-loop blowout tran- c 1 (H3>_<Hv>2

sition. ks L3 (kgD)?
It is also interesting to note that another way of estimating B B

the rglevance of clqseg vartex loops, 'ito Seﬁ whether t?e?‘he Villain model has a rather unusual property in that the
can be coarse grained away or not. A rough criterion folg i, nann  factor appearing in the partition function

coarse graining them away, would be that the loop distribu-., ; - _
tipn integrated over the volume of the system should be fia);%"gﬁg?' IE\(;(_)(IZV)?STEQ uesxﬂlc;tllgcttjg:igir?;?:ﬁu?; E)grn?heent
nite, i.e., specific heat is valid, strictly speaking only i is
A temperature-independent. Nevertheless, we will use the
f der(r)NJ' drrd-l-a_pd-a above standard expression for calculating the specific heat
0 for convenience, and neglect the extra terms that should be
included from the explicit temperature dependence of the
Villain potential, Eq.(2). We have checked the validity of
ﬁjis approximation by comparing the thus obtained specific
Feat per siteC with the alternative standard method of ex-

2(d=1)—a=d+n—2,

a=d—7.

Thus, loops may be coarse grained away provided ¢hat
>d. In the low-temperature regime, we have seen that th
loops are even exponentially suppressed, and certainly s
isfy this criterion. The marginal case=d gives an inte- . g . ; . o
grated distribution~InA. However, at the critical pointg f[ractmg the spe.cmc heat per sitfrom its basic definition
7 . . . . __in terms of the internal energy of the system

=d— 7 is less than the required value for coarse graining,
furthermore critical fluctuations as manifested by a nonzero

positive value of the exponent, will increase the relevance C 1 ¥H,)

of vortex loops, as expected. kg Nk A(kgT)"
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We find that these two ways of calculating the specific heatvhere N, is the total number of unit cells having 4 or 6
differs only in the very high-temperature regime, outside thevortex segments penetrating their plaquette, digdis the

temperature range of interest in this paper. number of field-induced flux lines in the system. Note that
with this definition, we only consides for the case of finite
H. The structure function fields. This quantity gives us some intuition on how well

) , defined we may expect individual field-induced flux lines to
To probe the FLL melting, we consider the structure func-pq in the liquid phase.

tion for n, vortex segments, i.e., vortex segments directed |, the villain model, each plaquette can carry at most one
along the ayerage induction. The structure func{R) is  ortex segment. This is because the vorticities are defined in
defined by™ terms of gauge-invariant phase differences, defined on the
) ’ interval j,(r) e[—m,7]. The distribution of vortex seg-
S(k)= (IZn,(r)exdik-r]| >. mentsn(r) has no divergenceX(, .,V ,n,(r)=0). Thus,
(fL3)? a single unit cell can only carry 0, 2, 4, or 6 vortex elements.
] ] L If a unit has more than 2 plaquettes that are pierced by vortex
For our ground state with the flux lines densfty- 3; (Fig.  segments, then that corresponds to one of the three following

1), the unit reciprocal lattice vectors for the FLL are situations: (1) an intersection between two different flux
lines; or(2) an intersection between a flux line and a closed
K,=2m[3,—%], K,=2@[03]. vortex loop; or(3) an intersection between two different
closed vortex loops.
In the FLL phaseS(k, ,k,=0) hasé&-function Bragg peaks Inside a unit cell, it is impossible to decide which possi-

at k, =K(m,n)=mK;+nK, (mn=0,=1,+2,+3,...). bhility is realized. In principlep as defined above counts all
The vectorsK are located within the first Brillouin zone. of these possibilities, while flux-line intersection and flux-
When the FLL melts, the Bragg peaks are smeared out. Thine cutting correspond to casg).

lowest temperatur@, whereS(K,k,=0) vanishes, thus de-

fines the FLL melting temperatur€,,. For simplicity, we IIl. RESULTS. ZERO MAGNETIC FIELD
consider only the structure functid®®(Q=S(K,,k,=0)).

We now present the results of our Monte Carlo simula-
I. Flux-line cutting and intersection tions, and consider first the case of zero magnetic induction
The issue of flux-line cutting and flux line and entangle-B=0- From now on we measure tspecific heat per site C
ment, as well as the suggested possible resulting vorte units of '432’ the helicity moduliY, in units of b, Y in
states originating from the latter, such as the analogs of 2Nits of /"%, and the temperature T in units op ks .
Bose superfluids and supersolids, and even topological vor- TWO values of’'=A./A,, the anisotropy parameter, are
tex glass states, have been issues of considerable controvefgnsidered: T'=1 andl"=3. We will present results for the
over the last ten years. In particular, the effect of entangleduantities relevant to the zero-field case, namely, the helicity
ment on the FLL melting transition and the statistical me-modulus, the vortex-loop distribution function, and the spe-
chanics of the FLL, has received considerable attention. ~ Cific heat. An important point is that we need to, in the zero-
In principle, flux-line entanglement could be responsiblefield case, to be able to correlate the temperature at which the
for the drop inY, we observe at the temperatuFe. Itis of  helicity modulusY, vanishes, with the temperature at which
interest to correlate the amount of “close vortex-line encounihe loop-distribution functio (p) qualitatively changes be-
ters” with the anomalies we obtain in the specific heat. Thishavior from an exponential dependence on the loop perim-
will allow us to at least tentatively decide whether or not flux eters to algebraic dependence on the loop perimeters. More-
lines start to intersect or cut at any of the temperatlrgs ~ Over, both these features must be correlated with the
T,, of Tgeo. temperature where an anomaly in the specific heat is found,
Intersection and cutting of flux lines tend to act as effi-@S discussed in Sec. Il D. For arbitrary anisotrdpythe
cient modes oflisentanglemenof flux lines. It is unlikely ~ System should only have one single phase transition, the
that a flux-line liquid phase that suffers large amounts offormal—metal-superconductor transition.
thermally induced collisions between flux-line segments,
which in turn strongly indicates that flux-line cutting takes A. Helicity modulus
place, can also sustain heavily entangled vortex configura- The results for the helicity modulus ,, Eq. (6), in zero
tions. Hence, if we can show that the amount of close Vortexf’nagnetic field and in the isotropic cabe 1. are shown in
segment encounters is substantial at the temperature wherr_.? '

Y t0 Zero. We m t least tentativel nclude that th g. 2. We have confirmed that all modui,,Y,,Y,, are
z YO€s 10 zero, we may at least tentatively conclude tha gqual in this case, and therefore only exhbjt. The results
drop inY, is not due to entanglement of flux lines.

To study the intersection and or cutting of flux lines, we are shown for the system sizes=8,32,64,96. Note that the

. o drop inY', becomes sharper as the system size increases, and
define a parametes, which is a measure of the amount of i
: : . ! . the value ofT whereY , appears to vanish, becomes smaller.
flux-line cutting and intersection that takes place in the flux- L2 )
L When\—o, Y,, which is the stiffness of the phase of the
line liquid. : o )
superconducting order parameter to a twist, is proportional to
N the superfluid densitps. (For a finite\ this identification
=_mn no longer holds, as emphasized in Ref.)2Ke have foun
) N ; ;

¢ from the numerics tha¥ ,~|T—T|?? consistent with the

=
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FIG. 2. Helicity modulusY, and the specific heat per sit& vs temperature, foB=0, I'=1 (isotropig and system size&
=8,32,64,96.

Josephson scaling relatign,~ | T—T¢|”, wherev is the cor-  tures at which the helicity modul',, Y vanish. (Y, and
relation length exponent=2/d= 2. Due to the identification Y, turn out identical in all our simulations, and we therefore
Y,~ps, we conclude that the vanishing of the helicity only exhibit Y,.) Note however that there is an important
modulus corresponds to the normal-metal-superconductdinite-size effect in the results: AsincreasesY, vanishes
transition. The transition occurs at the temperaiize€3.0 in  at progressively lower temperatures whifg, vanishes at
units of Jg/kg . progressively higher temperatures. Asincreases)Y, and
The results for the helicity modulus in the anisotropic Y, appear to approach zero at th&me temperaturédue to
casel'=3 are shown in Fig. 3. The situation at first glancethe limitations in available system sizes, we have not been
appears considerably more complicated than in the isotropiable to perform the simulations at higher anisotropies than
case, despite our expectations that the physics basically=3 for the zero-field caseAt lower anisotropies &I’
should be the same as in the isotropic case, cf. our discussien3, the same finite-size effect as described above is seen.
in Sec. Il D. A striking feature is that fof =3, the helicity =~ For lower values of the anisotropy it is also more obvious
modulusY , appears to vanish distinctly below the tempera-that the two temperatures at whidh, and Y, vanish, ap-
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FIG. 3. Helicity moduliY,, Y,, and the specific heat per si@vs temperature, foB=0, I'=3, and system sizds=8,32,64,96. For
increasing system size, T, approache3.=1.57 from above, and@, increases approachirig, from below. The layered system has only
one phase transition.



57 ONSAGER LOOP TRANSITION AND FIRST-ORDE. . . 3133

0.1 2
- T 01[ - T T . T T

[

=

A A=
wnwan

WM
LoomNm

0.01 [
0.001 |18 ]

0.0001 |

D(p)L’

1e-05 |

1e-06 |-

alin

1e-07 o . - l%@’_‘

50 100 150 200 250 300 350 400

FIG. 4. The distribution functio® (p)/L3 of thermally excited, non-field-induced, closed vortex loops per site as a function of perimeter

p, forB=0,I'=1,L=296, and various temperatures. It has been normalized this way to facilitate comparison between different system sizes.

ForT<T.=3.0,D(p) is best fit to an exponential decay. For T, D(p) is best fit to an algebraic dec®(p)~p~ ¢ with exponenta=3
excellently, indicating an Onsager loop-transitiomat T . The inset show® (p) on a log-log plot. The slope of the straight line, obtained
atT=T., is —3. At T<T, the curves show a marked downward curvature, indicating a faster-than-algebraic dé&qgy) ofhis point is
discussed in Sec. Il F.

proach each other with increasing system dizeFor the Hence, based on the above, we conclude th&t=a8.0, a
anisotropic casd'=3, the transition occurs ai=1.57 in  sharp phase transition occurs from a low-temperature phase
units of Jo/kg . where closed vortex loops are confined to some typical size

Lo(T), to a high-temperature phase where closed vortex
loops of all sizes up to and including the system size, exists.
Thus, in the isotropic case we have been able to precisely
In order investigate the excitations responsible for decorrelate the drop inY, with a vortex-loop blowout, and
stroying the superconducting phase coherence and the sup@fom the previous paragraph we must identify this as the
fluid stiffness as evidenced by our results %y, we probe  gynerconductor—normal-metal transition.
the amount of closed vortex loops that are thermally excited ¢ loop-distribution function for the anisotropic case
in the superconductor model at the temperature Wh&eé _3 is shown in Fig. 5. Due to the drop in the critical
vanishes. We first discuss the |sot_r0p|_c chisel. temperature of the system, we now shb\ip) as a function
The resugs forD(p).are shown mhFl?. 4, forhthe largest of p for temperatures in the range[0.7,2.1. Again, we
2% 2 Unclon of the Ioop permelegs for various tempera ODS1Ve  qualatve change in the behaviop) from
tures in the range €[ 2.3,3.3. Recall from above that in the exponential decay to algebraic decay, at a temperalure
: ~1.6, which correlates almost perfectly with the temperature

isotropic case, the helicity modulus vanished Tat3.0. - hich the helici dulv .
From Fig. 4, particularly from the inset of this figure, we | —1-27 at which the helicity modulY’; and Y, vanish for
I'=3.Ifwe fitD(p)~p~ « at this temperature, we again find

observe a qualitative change i(p) precisely at the tem- i ; _
peratureT = 3.0. The inset shows the distribution function on the exponentr=3, as in the isotropic case. o

a log-log plot, and it is seen that the decay is faster-than- So far, our expectations based on the discussion in Sec.
algebraic forT<T, while it is a precise power law with Il D are borne out. To illustrate the point further, in the inset
exponenty in good agreement with a scaling analysis assumof Fig. 5, we show the distribution functiod(p) for I'=3

ing that the vortex-loop blowout is a critical point. We at- and the same range of temperatures, for the smaller system
tribute the slight deviation in the exponeatbetween the L=16. The important difference between these two cases is
simulations and the theory as due to the presence of vortethat for L=16, algebraic decay dD(p) appears to persist
loops of more complicated shapes, such that the circumfeldown to lower temperatures than for=96. For larger sys-
ence of the loops do not all scale with their diameter. Wetems the vortex-loop blowout is suppressed due to the fact
have tentatively suggested an exponential decay in the lowthat the interplane coupling is allowed to renormalize further
temperature phase, but this is not unambiguous. Howevewithout being cutoff by a small system size. Hence, what
our main point is that folf <T, the decay cannot be a power appeared to be a separate vortex-loop blowout at a low tem-
law, while atT=T,, the power law we find is precisely the peratureT=1.1 forL=16, has been pushed up to the correct
same as the one we predict analytically assuming that theemperaturel ~ 1.6 in the larger systerh=96, as discussed
vortex-loop blowout is in fact a critical point. in Sec. I D.

B. Loop distribution
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FIG. 5. The distribution functio® (p)/L? of thermally excited closed vortex loops per site as a function of perinpetésr B=0, I’
=3,L =96, and various temperatures. Hox T,=1.6,D(p) is best fit to an exponential decay. For=T., D(p) is best fit to an algebraic
decay,D(p)~p~ ¢, with «=3 consistent with critical scaling of Sec. Il F. The inset shows the same figude=fd6. Note that forL
=16, D(p) incorrectly shows algebraic decay for=1.3<T.. This finite-size effect is discussed in Sec. II D.

C. Specific heat fects, makes us confident that our simulations are able to

We now present our results for the specific heat in zergapture the subtle zero-field physics correctly in the aniso-

magnetic field for the system sizés=8,32,64,96, and con- tropic case. This is a necessary prerequisite for being able to
sider first the isotropic casé=1. extract meaningful results from our finite-field simulations,

The specific heat in the isotropic case is shown in Fig. oto which we now turn.
The anomaly in the specific heat clearly correlates with the
temperature where the superfluid stiffness vanishes, which in IV. RESULTS, FINITE MAGNETIC FIELD
turn correlates precisely with the temperature where the o o ]
vortex-loop blowout is observed. As the system size in- Next, we present results for finite magnetic induction. We
creases the anomaly clearly also becomes sharper. We hatél consider the filling fractiorf = 3; corresponding to 32b
shown that the peak in the specific heat varies in very goo®lane plaquettes per field-induced flux line in the ground
agreement with Irk() as the system size is increased, furtherstate, depicted in Fig. 1. Again, we are primarily interested in
indicating a genuine thermodynamic phase transition. Thé&Orrelating temperatures where the helicity moduli vanish
shape of the specific-heat curve has a typkal behavior with temperatures where anomalies in specific heat occur, as
for this extreme type-Il superconductor-G ). This agrees yvell as \_Nith temperatures _whe_re we see a qualitative change
with previous results found by Dasgupta and Halperin for thén _the dlstnb_utlon of non-field-induced closed vortex Iqops.
lattice superconductor mod®. (Note that this contrasts It is also of interest to correlate these phenomena with the
sharply with the specific-heat results indicating iamerted ~ Melting of the FLL as evidenced by a drop in the structure
XY transition found by the same authors for finite, smaih ~ function at low-order Bragg peaks. Furthermore, due to the
the isotropic casiQualitatively, our results also agree well Presence of field-induced flux lines, it is also of interest to

with the specific-heat measurements on YBCO of Schi”ingmonitor_the amount of flux-line cutting occurring in the sys-
et al2® tem. This has bearing on the amount of entanglement of flux

The specific heat for the anisotropic cdse 3 is shown lines the molten vortex phase can.sustain. For fin.ite fields we
in Fig. 3 for the system sizes=8, 32, 64, 96. The situation presgnt results for helicity modull, vorteleoop d|§tr|butlon,
again at first glance appears to be more complicated than irpecific heat, structu_re function and flux-line cutting for the
isotropic case. However, as in the isotropic case, the peak iffV0 values of the anisotropy parameter=1 andl'=3.
the specific-heat anomaly increases with system size. More-
over, the temperature of the peak in the specific heat is re- A. Structure function
duced as the system size is increased, approaching the tem- , ,
peraturel = 1.57 at which botfY', andY, vanish, and where The results for t_he structure _funct@(Q) are shown in
the vortex-loop blowout appears to take place. the top panel of Fig. 6 for the isotropic cabe=1, for the

Hence, our simulations of the above three quantiies  reciprocal lattice vecto@= (K ,k,=0), K,=2{0,;], and
D(p), and specific heat correctly capture the physics thafor the system sizek =48, 64, 80, 96. In the top panel of
even in the very anisotropic case, only one single phase trarrig. 7, results forl'=3 and for various system sizds
sition occurs in the lattice superconductor model in zero=32,48 are also shown. The structure function exhibits a
magnetic field. The fact that our simulations do not reveal arsharp drop af =T,,, well below the temperature where the
artificial zero-field decoupling transition due to finite-size ef- phase coherence in the direction of the magnetic field van-
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—16,32,48,64,96. Note how for increasing system sigg, in- Note how for increasing system siZg,, |ncreas_e'_s slightly anE_le
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specific heat per sit€ vs temperature fof=1/32,I'=1, andL emperature fort = 1=, andL=.9,32,40. Nole the Wo
—16.32 48 64 96. separate specific heat per site anomalie§,at T, andT,. The
e specific-heat peak &k, becomes more prominent with increasing

. . . . it ize, while th k8 actually d ith i i
ishes.(We discuss the helicity modulug, in the next sec- zﬁtgm ?;Z while the peak &} actually decreases with Increasing

tion.) Note that the structure function vanishes essentially at

the same temperature as the temperature where the helicity

modulusY , vanishes. What this indicates is that the filling S(Q,T)=S(Q,0exp —G*u?). (8)

fraction we have used in our simulatiorfss %, is not suf-

ficiently small to study the melting of the FLL in the con- rq 5 riangular lattice, we find right below the melting tran-

tinuum limit. The FLL has not thermally “depinned” from ¢

the numerical mesh at the melting transition. Therefore, our

estimate for the FLL melting temperature as obtained in

these simulations is too high. However, from our earlier 8

work on the moderately anisotropic lattice London maddel, S(Q,T)= S(Q,O)GXF( —3 CE) 9

we know thatf= 4 suffices to produce a thermal “depin-

ning” temperature of the FLL off the numerical mesh at a

temperature distinctly below the observed melting temperawherec, is the Lindemann ratio. In our simulation, we find

ture of the FLL. Therefore, we expect that the present estithat the DW factor is 0.6 right below the melting transition,

mate forT,, should be quite good; only a minor reduction of and hencec, =0.24. Essentially the same result is found for

the filling fraction belowf= 3 is expected to suppress the the isotropic case, and is in reasonable agreement with the

“depinning” temperatureT, below the melting temperature valuec, =0.4 used in the best calculation so far to estimate

Tm. Itis also possible that the commensuration effect mighthe position of the FLL melting line in BSCCO and YBCO

tend to overestimate a first-order character of the FLL meltby employing the simple Lindemann criterion in conjunction

ing transition, should such a result be found. with the highly nontrivial fluctuation propagator found from
The reduction in the structure function below the meltinganisotropic and nonlocal elastic theory of the flux-line

temperature is due to the Debye-Wal({&W) factor lattice 3!
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e the interplane phase coupling. Hence, we see Thatrops
07 f=172 | well below Tg,, in finite fields, provided the system is in
06 . T=] e : the liquid phase. In the flux-linfattice phase, the coherence
T=3 o . .. . .
< 05 ] length is no longer limited by the magnetic length, there is
T ooal T ] now phase coherence throughout the sanfiple of a more
f‘N 03l complicated form then in the zero-field casélence, the
0z | renormalization of the interplane coupling described in Sec.
oil. IID again becomes active, suppressing the vortex-loop
e blowout. The flux-line lattice phase is therefore in some
%0 30 40 50 60 70 80 90 100 sense equivalent to the zero-field case with regards to a
L vortex-loop blowout, and a loss of phase coherence along the

field direction cannot take place within the lattice phase.

FIG. 8. The differencd,(L) ~Tr(L) as a function ok for f o061 cannot drop far below T, at least not for the case

=1/72,I'=1, andl’=3. Note that this quantity shows a monotoni-

cally (sublineay decrease witi.. Note also that the relative de- )‘ZI ’ . i hasized the i f
crease is larger foI'=1 than forI'=3. We attribute this to a N our previous work® we emphasized the importance o

slower relaxation in the anisotropic case than in the isotropic, sinc&l0sed loops, but suggested that the dropYipwithin the

both T,,, and T, are smaller fol =3 than forl'=1. liquid phase was a genuine phase transition from a coherent
vortex liquid characterized by ,# 0, to an incoherent vortex
B. Helicity modulus liquid characterized byY,=0. We strongly believe our

The results for the helicity modul, andY, are shown present simulations on much larger systems show that this in
for =1 and system sizels=16,32,4§,64,80,X96 in the top fact is not the c.ase:TZHTm as the system ;ize increases.
panel of Fig. 6. Likewise, similar results fér=3 are shown However, the final word on the issue, particularly for the

in the top panel of Fig. 7 for system sizes-16,32,48. Note isotropic casd’=1, remains to be said.

how the temperatur@, appears to decrease monotonically Note also that, cpmpared to the zero-field chseD, ¥Z
with system size. vanishes at a considerably lower temperature when.

An important issue is how,, will continue to vary when The helicity modulusY, vanishes at a finite temperature

the system size is increased indefinitely. Since there is nBeloxvaz. hatY ish fini .
obvious sign of saturation ifi, asL increases, it could con- The fact thatY, vanishes at a finite temperature is an

ceivably continue to decrease in the liquid phase, until i2'tifact of our discretizing thab plane. In the continuum
reachesT,,. Does this in fact happen, or &,>T,, in the imit, this helicity modulus would be zero for any finite tem-
thermodynrllémic and continuum limit? M perature when no physical pinning of the flux lines is

To answer this question, we have performed simulationgrese;]ft' On the other hanil, has little or no commensura-
on systems with filling fractiond =75, and computedr,, tion efiects in It. -
and T, as a function ofL. The point about going to lower The above result indicates that phase coherence across the

filing fractions is that we are approximating the continuumsample along the direction of the flux Ii'nes is lost at a finite
limit better. It is becoming increasingly clear from numerical MPeraturet,. Contrary to the zero-field case, there are

simulations that when they plane is discretized in order to several possible explanations for this loss of phase coherence

do the simulations one is introducing a long time scale intowhen a finite field is present. One possibility is that a vortex-

the problem: There is a gap for moving vorticities from oneIAOOp :Iowoult causes the; dI%SS ﬁf phase %ohereln_@aTz.
unit cell to another. When the filling fraction is lowered, the ANOther €xplanation could be that since the melting tempera-

continuum approximation is better approximated, and the refuré Tm is smaller thanT,, in FLL liquid phase flux lines

laxation time introduced by discretization is lowered. Hence Pecome entangled thereby destroying the phase coherence in
for f= we are better abie to equilibrate the systéhci- the supe_rconductln_g order parameter along the direction of
dentally, we believe the reason that no finite-size effect Wa%he fI_ux lines. A t_h'rd explanat|o_n could_be that transverse
seen inY, in Ref. 17 was precisely that the simulations were lux-line meanderlng_s and flux—llne_ cutting causes loss of
not run for a long enough timeThe results of our simula- phase cohgrence without a _rgs:qltlng entanglement of flux
tions for this case is shown in Fig. 8, where we show!nes- We discuss these possibilities in turn.
T,(L)—Tn(L) for '=1 andI'=3, for the casd =+. It is
seen thafl,(L)—T,(L) decreases monotonically as a func-
tion of L. Is it possible thafl, could drop arbitrarily far
below T,, when the anisotropy’ is increased indefinitely? The results for the distribution of closed vortex loops are
We believe that the answer far= is no, for the following  shown in Fig. 9, in the temperature range[0.9,2.5, for
reason. the anisotropyl’ =3 and the system size=48. This tem-
Recall our discussion in Sec. Il D, where it was shownperature range encompasses the melting of the FLL and the
that in zero field, no vortex-loop blowout can take placedestruction of phase coherence along the direction of the
below the zero-field transition temperature, due to the renormagnetic field. A feature which distinguishes the finite-field
malization of the interplane coupling. In finite fields, this is results forD(p) from the zero-field case, is that throughout
quite different, since the superconducting coherence length ihe temperature range where the FLL melig,~0.38 and
limited by themagnetic lengtras soon as the flux lines start where phase coherence is 03t,~0.65, the distribution
to fluctuate appreciably, cutting off the renormalization offunction D(p) decays more rapidly than at the critical point

C. Loop distribution
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decay, indicating a vortex loop blowout @g,>T,>T,.

in zero field. In the rangd <0.7 there is no obvious sign in close to the zero-field.. As discussed in the previous sec-
D(p) of a crossover to algebraic decay as a function of loogion, Tg, is also close to the temperature at where the dis-
perimeters. tribution functionD(p) of closed vortex loops changes be-
We conclude that the vanishing &f, is not, in this case, havior for exponential to algebraic decay. Hence, we
associated with a vortex-loop blowout on all length scales ofonclude that in the field regime corresponding tos;, the
the system. In other word, the vanishingf is not due to |00p transition appears close to the mean-fidlg(T) line.
a finite-field counterpart of the Onsager-loop blowout weWe caution the reader thdt=3; is not a particularly low
found in zero field. We find a change in the behaviobigp) ~ Magnetic field. If we estimate it for YBCO using the method
from exponential decay to algebraic decay at a much largep! Ref. 9, it corresponds to a magnetic field of the order of 1
temperaturd ~2.8 forl =1 andT~1.9 for[=3. The tem- |- AS recently anhaS'zed by Temvic® and Nguyen,
perature range over whicB(p) changes behavior is also Sudbig and Hetzet such magnetic fields may not be rel-

considerably broader than in the zero-field case, indicatin gvant for discussing the low-field experiments of Zeldov

that th tex| bl t ition that found 1o b %t al? Therefore, our simulations do not address the issue of
at the vortex-loop blowout transition that was found 0 beyq fa1e of the zero-field loop transition in asymptotically low
sharp at zero field, is replaced by a crossover.

magnetic fields, of the order of 100 G and below. Neither do

However, the interaction between closed vortex l00ps anghe “simulations address how this finite-field counterpart of
the flux-line lattice may be studied by considering the numM+ne zero-field vortex-loop transition interacts with the melt-

ber of closed vortex loops with a diameter given by the maging transition of the FLL and with the loss of phase coher-
netic length in the problem. This number scales Withat  ence along the field direction, in this low-field regime rel-
T,, and thus in the thermodynamic limit there are infinitely evant for discussing the results in Ref. 4.
many such vortex loops per flux line at the temperature We next turn to a discussion of the anomalies at the two
where the FLL melts. lower temperature3,, and T,, and base our discussion on
the lower panel of Fig. 7. It shows the specific heat for the
D. Specific heat filing f=4 and anisotrop)lfzs, for va_r@ous system sizes
L=16,32,48. The feature in the specific heatTat T, is

Our results for the specific heat are shown in the bottontlearly associated with FLL melting. One notable feature in
panel of Fig. 6 for the parametefs=5;, T'=1 andL  the specific heat anomaly @t=T,, is that its peak scales as
=16,32,48,64,80,96. Similar results for the anisotropic cas¢®, characteristic of dirst-order melting transition:? This
I'=3 are shown in the bottom panel of Fig. 7. It is clear thatfollows from the fact that a first-order phase transition is
the lowest anomaly in the specific heat correlates with theyenerally characterized by coexistence of two phases at the
melting of the FLL. There is also a broad feature at a muchtransition: one low-energy ordered phase and one high-
higher temperaturelz,~ 1.9, which is roughly equal to the energy disordered phase. Thus there is a discontinuity in the
temperature at which we see a sharp peak in the specific heiaternal energy of the system at the transition temperature,
in the zero-field case. and as-function peakin the specific heat. On a finite system

The feature atTg, is the remnant of the zero-field the s-function peak is converted to a peak of ortiér where
anomaly on the specific heat, previously shown in Fig. 3L is the linear dimension of the system, athds its dimen-
This broad peak in the specific heat is associated with theionality. In fact, the coefficient of thie term is the discon-
upper critical fieldH;,(T), and our results show that in the tinuity in the entropy of the system, at the transitférso for
extreme type-ll Villain model, thél.,(T) line is very steep the 3D case we obtain
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o ' ' ' ‘ T unphysical, at least in situations where the superconductor
ol f=1/32 ] can be viewed as an anisotropic continuum. The 2D case is
ol r=25 | in some sense a singular limit, as discussed in Sec. II D.
' Although it is expected on general grounds that the melting
o4 e 1 of the FLL is first order also in the isotropic case, it appears
T ol g to be too small to detect in our simulations. However, by
é extrapolation we may easily extract entropy jumps of the
o - l correct order of magnitude seen in calorimetric data on
osi | o 1 YBCO with I'~8,” sinceAS is expected to grow with fur-
el o ther increase il'. If we extrapolate our results =7, we
o obtain the valueA S=0.35%g/per vortex per layer, in very
e 1 good agreement with experimental data on YBCO. This es-
oss L s . . . timate is again in surprisingly good agreement with, and only
’ oo o 6°L°§° e e oo slightly larger than, the result obtained by Hetzel and co-
workers for the uniformly frustrated 3XY modef with a
04 . . , , : considerably more sophisticated technique, but where the ef-
sl 1732 fect of anisotropy was not fully accounted for.
There is also a weak specific-heat anomaliyf &tT,, as-
=T P sociated with the loss of phase coherence in the BCS order
oas | ] parameter along the field direction. What this specific-heat

anomaly conceivably could show, is that there is a phase

transition inside the flux-line liquid phase, from a low-

015 | 1 temperature flux-line liquid phase, to a high-temperature
flux-line liquid phase, as suggested by Feigel'neaml>? In

02

AS(kyp per vortex per layer)

0.1
o A2 Ref. 32, the low-temperature phase is suggested to corre-
T o spond to a flux-line liquid with no entanglement of flux lines,
0@ 1 while the high-temperature flux-line liquid phase is sug-
b , , , , , gested to correspond to a flux-line liquid with entanglement.
! 2 ¢ ‘ s ¢ 7 In the language of the 2D boson analdyhe former would

r correspond to a normal Bose liquid, while the latter would

FIG. 10. Top panel: The specific-heat maximum at the flux-correspond to a superfluid Bose liquid, the two being sepa-
line lattice melting transition, as a function of system size, for arated by a genuine phase transition.
given mass anisotropy =2.5. Such plots may be used to extract ~ Note however, that the temperaturg goes down with
the entropy discontinuity at the melting transition, as explained inincreasing system size, apparently with no sign of saturation,
the text. Bottom panel: Entropy discontinuity at the melting tran-approaching T, from above What this strongly indicates, is
sition as a function of the mass anisotropy. The first order charactethat the portion of the phase diagram with a flux-line liquid
of the flux-line lattice melting is seen to increase rapidly with in- phase with an apparent intact phase coherence in the BCS

creasingl. order parameter across the sample parallel to the magnetic
field, will vanish in the thermodynamic limit.

L3/ AS\? The question remains as to what the character of the flux-

C=const- - (I(B_Lg) : line liquid phase with no phase coherence along the magnetic

field, is. We have addressed the issue of whether the transi-
Thus we may use finite-size scaling of the specific heat tgjon atT,—T,, results in a flux-line liquid with well-defined
extractAS, or equivalently, the latent heat of the melting flux lines, by considering the amount of flux-line cutting and
transition. We find intersectioning of flux lines with closed vortex loops, that

takes place below and above the temperaiyre T,,.
AS~0.00kg /vortex per layer, '=1.0, P PETlEFe Tm

AS~0.0XKg/vortex per layer, I'=2.0, E. Flux-line cutting

A flux-line liquid with large amounts of flux-line cutting
events, is not likely to be able to sustain a heavily entangled
vortex configuration with well-defined flux lines. The
amount of flux-line intersectioning, Eqg. (7), is shown in
The results for a finite-size scaling of the specific heat peFig. 11. As we seep increases sharply from zero at
site C and the entropy discontinuity at the melting transition, =T,, and continues to increase monotonically as a function
are shown in Fig. 10A is seen to increase rapidly wifh. of temperature. Flux-line cutting is an efficient way of dis-
This is expected on general grounds, since the flux-line ligentangling flux lines, and the large valuespafuggest that in
uid in a very anisotropic superconductor is expected to exthe flux-line liquid phase, aboveg,, the flux-line liquid is
hibit more disorder than in an isotropic case due to the morincapable of sustaining an entangled configuration. Hence,
flexible nature ofndividual flux lines in layered compounds. the loss of phase coherence along the direction of the mag-
In our opinion, a reduction a S with increasind” would be  netic field essentially is due to intersectioning between flux

AS~0.05%g/vortex per layer, I'=2.5,

AS~0.1Kg/vortex per layer, I'=3.0.
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FIG. 11. The number of vortex-intersection events per flux finéor f=1/32,1'=3, andL=48.

lines, and between flux lines and vortex loops, with associeoherence length is essentially infinite for this case. Conse-
ated massive flux-line recombinations. Recall thatT, is  quently, for the casd =%, one cannot have a vortex-loop
also the temperature at which the number of closed vorteklowout transition far below the flux-line lattice melting tem-
loops of diameter equal to the magnetic length in the probperature
lem starts scaling with_,, and it is natural to associate the ~ As soon as the flux lines start to fluctuate appreciably,
increase irp with this limited proliferation of vortex loops in  Which only happens very close to the melting transition due
a finite field. Under such circumstances, a world-line picturd® the first-order character of the transition, the resulting
analogy to the flux-line liquid system. coupling facilitates a vortex-loop blowout virtually at the
same temperature as the flux lines start to fluctuate. We em-
phasize that these statements apply to the case of total sup-
V. SUMMARY pression of gauge fluctuations, o=, Even if vortex loops
As discussed in Sec. Il C, there can only be one single 35.10 not gxist on all length scales in thg proplem at the flux-
phase transition in the superconductor in zero field, regar ine Igtucg mgltmg temperatyre, they will senoysly affect the
less of the anisotropy as long as this is finltes . We have flux-line liquid phase pr_owded that they exist on length
shown that in zero field, the superconductor—normal—meta?_Cales up to the magnetic length _of_the probléirom our
transition is due to a vortex-loop transition analogous to thapimulations, we have found that this is always the case in the
thermodynamic limitThe number of such non-field-induced

first suggested to occur in neutral superfluids, such & He . )
by Onsagef? The transition is characterized by a vanishing closed vortex-loops scales with the thickness of the sample,
L,, whereas the number of field-induced flux lines obviously

vortex-loop line tension, giving a loop-distribution function . e
P giving P does not. Therefore there is an infinite number of closed

that decays as™ ¢ at the transition, where is the radius of . . .
vortex loops with a diameter equal to the magnetic length,

the loop. BelowT,, the decay of the loop-distribution func- flux line. H in the liauid oh flux I b

tion clearly appears to be faster-than-algebraic. If the anisofe' .léx |rlje. enﬁec,j '?. 3 'qﬂ. P _I"f‘f‘e ux 'neﬁ gapnod €

ropy is increased the vortex-loop unbinding temperature i$ONSI0€r€d as well-oetined entities. They are well-detined en-
ities in thelattice case

reduced, but the transition remains 3D. Close to the transi- . . .
_ When a flux-line lattice melts, the molten phase is an

tion the system is isotropized due to an upward renormaliza: h ¢ vortex-liguicch terived by | £ oh

tion of the interplane coupling as a consequence of a diver nconerent vortéx-iiquictharactérized by 10SS of phase co-

ing superconducting coherence length at the transition. erence along the .dlrectlon_ of the magnenc.ﬁeld._ This loss of
phase coherence is associated with a proliferation of closed

An important point is that in finite magnetic fields, the tex | d e flux-li i d bi
situation is qualitatively different. In this case, the magneticvOr €X 100ps and massive flux-line cutting and recombina-

length of the vortex system, i.e., the average distance béi_on. Such avortex-liq_uid ph_ase is unlikely o sustain heavil_y
tween the flux lines, cuts off the upward renormalization Ofentangled vortex configurations. Recent works from Hu, Mi-

; 134
the interplane couplind** Note that the magnetic length yashita, and Tachikl} as well as from Koshele?, support

only sets a new length scale for the phase coheraadeng the_conclusu_)n thaTZ_: Tm \l/vhen)\=oo, at Ieaslt |3r15 the field
as the flux lines actually fluctuatén the ground state, with regime considered, i.ef= 3 (Ref. 34 andf = .
no fluctuations in the Abrikosov vortex lattice, the zero-field ACKNOWLEDGMENTS
arguments apply*

Therefore, the perfect Abrikosov vortex lattice has no ef- Support from the Research Council of Norwéyorges
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APPENDIX A: HELICITY MODULUS IN TERMS
OF PHASE VARIABLES

In this appendix we derive the expression for the helicity

modulusY , (Eq. 6), for the uniformly frustratednisotropic
Villain model. The effective Hamiltonian for the uniformly

frustrated anisotropic Villain model is

‘JOaV

2KgT

H{0'(N}=Jo 2y V,[0'(r+&,)—6'(r—A,n],
V,(x)=— (x—277m)2H.

keT .n{ s F{
JO m=—cwx©
(A1)

Here,Jy, A,(r), anda, are defined in the texg, is the unit
vector for thev axis. In Eq.(AL), 6'(r) is the phase of the
complex superconducting order parame{et’.(r)} denotes
the functional ofd’(r). We now apply boundary conditions
such that the phase across the system ingihdirection is
twisted by an amourit 8. If x =2z, for example, we have the
following phase twist:

0'(x,y,z=L)—6'(x,y,z=0)=L4.

Now we define a set of hew phase variables

(A2)

6(r)=6'(r)—(r-e,)s.

(9 ~ ~
21 E{o(r)}[ir,y Vi(x)(e,-e,)

e~ Huf6(N}kgT

following periodic boundary conditions:
0(x,y,z=L)— 6(x,y,z=0)=0. (A3)

#he Hamiltonian for the uniformly frustrated anisotropic Vil-
lain model in terms of the new phase variables is

Hv{0’5}2J0 z

r,v=xX,

V,[0(r+&,)—6(r)—A,r)
Y,z
+(e,-€,)8].
The partition function in terms of the new phase variables is

2(5): E e—HU{B(r),ﬁ}/kBT,
{or)}

where we only sum over configuratiofg(r)} that satisfy
periodic boundary conditions. The total free energy is

F(8)=—kgT In Z(5).

The helicity modulusy , is defined as the second derivative
of the free energy with respect to a phase twist across the
sample in thew direction. Thus,

)5=o.

Y

I

1 (aZF(a)
L3

96°
Using the definition
X= 0(r+év)_ a(r)_Av(r)+(éV'é#)5,

ax

a6

we can writeY , in the following form:

e,e,.

v - ax
EOLS kgT Z(6=0)

2

(9 ~ ~
32 2{0(f)}[2r,vavv()()(ev'eu)

2 2
d A
J E{H(r)} EI’,V 0-)X2 VV(X)(eV'eIu)Z e_HU{o(r)}/kBT
0
+ —
L3 Z(6=0)

e~ Hul0(NYkeT

L3 kT Z(6=0)

which is Eq.(6) written in a more explicit form. The sum-
mations over the configuratiof#(r;)} are restricted to con-
figurations satisfying periodic boundary conditions.

APPENDIX B: HELICITY MODULUS IN TERMS
OF VORTEX SEGMENTS CORRELATIONS

In this appendix we derive the helicity modulus for the
anisotropic LSM Y ,(k), expressed in terms of vortex
density-density correlation function®ef. 11, uw=(x,y,2).

In the continuum limit, the effective Hamiltonian for the an-
isotropic LSM can be written as

H{v,f}=% f d3r[v(r)-M-v(r)+2m\3f(r)-f(r)],
(BY)

the energy per unit lengthy, = ®2/167°\2. Here,v(r) is the
superfluid velocity

v(r)=vo(r)—A(r),

6(r) is the phase of the complex superconducting order pa-
rameter,®,A(r)/2m is the_vector potential, and, is the

flux quantum. In Eq(B1), M is the anisotropic mass tensor,
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100 Y. ()= J°F

oo “ (g e, ([T(k)-M-8&,]
describing uniaxiat anisotropy. The anisotropy parameter V# “ kgTV
I'=X\c./N;, Ny and\ are explained in the text. In E¢B1), A e
f(r) is the local density of the magnetic flux quanta, X[&,-M-v(=K)]o). (B3)

B(r) 1 The subscript 0 denotes the unperturbed system with no
f(r )_ =_— VXA(r). applied phase twistév(k)=0. In Eqg. (B3), we have used
(v(k))o=(v(—Kk))o=0, since the Hamiltonian Eq(B2)

Here,B(r) is the local magnetic induction. In evaluating Eq. contains only quadratic terms lik¢v,(K)v,(—K)] (v

(B1), the integration must be cutoff at the core of the vortex:X’y'Z)' Because of the ;ymmetry in whidhg ".’mdA enter
segments, so that the energy stays finite v(r), Y (k) can also be interpreted as the linear response

The partition functionZ is computed averaging over in- coefficient of the supercurrent induced by a perturbation in

47
dependently fluctuating(r) and f(r), subject to the con- the vector potentia,
straint{f(r))=fe, for a constant uniform average magnetic

inductionBe,, where( . . .) denotes a thermal average, and Ju(K) ==Y (k) 6A,(K).
e, is the unit vector along the: axis. Using the Fourier There are three interesting helicity moduli to be consid-
transform ered: (1) Yx(kéy), which is the energy cost corresponding
to a compressional perturbation of the flux-line systém,
U(k):f dre®ry(r) Y,(ke,), which is the energy cost correspondiAng to a tilting
' perturbation of the flux-line system, afi®) Y ,(ke,), which

is the energy cost corresponding to a shearing of the flux-line
system.
_ oA To find an expression onM(kéy) (u#v) expressed in
H{v(k),f(k)}= >V > H(K), terms of vortex segments density correlations, we need to
k write the parts oH containingke, in a diagonal form. De-
fining the vortex segment density

the Hamiltonian in Eq(B1) can be written as

H' (K)=[0(k)-M-T(—k)+2m\ZF (k) - T (—K)],
(B2)

whereV is the volume of the system. An applied twist in the

phase of the superconducting order parameter, alongithe We can write the superfluid velocity in the following gauge-
direction, as considered in the previous Appendix, correinvariant form?’

sponds to a change in the superfluid velocity kx[n(k)—F(K)]

(k) =2 ky(k)+ 2

Here, x(r) is a smooth scalar function which describes the
In terms of velocities, therefore, the helicity modulig (k) longitudinal part ofv(k). The transverse part af (k) is

is defined as the second derivative of the free endérgy  determined byW Xv(r)=2a[n(r)—f(r)].

—kgT InZ with respect to a change in the superfluid velocity = Substituting Eq(B4) into H' (k) [Eq. (B2)], we get the
along theu direction. Hence, following diagonal form forH’ (k) for the case ok=ke,:

1
n(r)=—V><V0,

(B4)
V(k)—=v(k)+ v (K)e,.

H . .
—(zei) k?x (k&) x(—k&) +As(K)ny (ke ny(— k&) + Ax(K)n,(K&)n,( — k&) + By (k) 8f (k&) 5f y( —key)

+By(k) of (k) 5F (—key),

H
T(Qey—) k? (key)X( key)+A1(k)n (key)n (— key)+A2(k)n (key)n( key)+B (k) &t (key)éf (— key)

+Ba(K) BF,(KB,) 5 (—kB,),

H'(ke,)
472

= (KIT)?x (k&) x(— k&) + Ag(k)ny(k&)n,( —ke,) + Ay(k)ny (k& )ny( —ke,) + Bo(k) 8 (k&) of x( — k&)

+By(K) 8f (k&) 8f (—k&,). (BS)
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Here,
2 2
A= Trazg A= e
B, (k)= 1+T2\%g? B, (k)= 1+\2%g?
1 - F2q2 ' 2 - q2 '

In Eq. (B5), 8f(k)=T(k)— f°(k) is the fluctuation of the

magnetic flux density away from the vaIEé’(k) minimiz-
ing the Hamiltonian for
configuratior®

n(k) (I'2—1)[A(k)-q]\*q
1+22%k2 1+N\AK2+(I2-1)\ %2
where g=kXxz. To compute the partition functio@, we
should sum ovefl) all smooth functiong(r), (2) all n(k)
that_satisfy k-n(k)=0, and (3) all &f(k) that satisfy
k- 6f(k)=0. The constraint$2) and (3) come from the re-

(k)=

A. K. NGUYEN AND A. SUDBO

a given vortex segments

Eqg. (B5) to evaluate the average ovgtk) and 5'fv(k). For
the case ok=ke, we obtain

Jy A2K?
V 1+[146, (T?—1)]\%3

Y, (ke,)=

477‘]1 )\2<nv(k’év)nu(_k’év)>0
keTV 1+[1+6, (= 1)I]\%k?)’
(B6)

(u,v,0) are cyclic permutation of,y,z). The generalization
of Eqg. (B6) to a lattice superconductor is

X

(Nd)?Q?
1+[1+5, (I?=1)](Md)?Q?
4mdy  (Md)Xn,(k&,)n,(—k&,))o
 kgTL3 1+[1-6, (T?—1)](\/d)?Q?)’
(B7)

~ 0
Yﬂ(ke,,)= F

striction of no divergence in the vortex segments density anevhere Q=2 sink,d/2), Q=3 ,Q%, k, is the u compo-
no divergence in the local magnetic-field induction. Substi-nent ofk, andd is the lattice constant of thimple cubig
tuting Eq.( B4) into Eq.(B3), and using the the Hamiltonian underlying numerical lattice.
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