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Shapes of flux domains in the intermediate state of type-I superconductors
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In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of
highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently
proposed ‘‘current-loop’’ model@R. E. Goldstein, D. P. Jackson, and A. T. Dorsey, Phys. Rev. Lett.76, 3818
~1996!# that models the intermediate state as a collection of tense current ribbons flowing along the
superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this
model is tested through a detailed reanalysis of Landau’s original conformal mapping treatment of the laminar
state, in which the superconductor-normal interfaces are flared within the slab, and of a closely related straight-
lamina model. A simplified dynamical model is described that elucidates the nature of possible shape insta-
bilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those insta-
bilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability
commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the
elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest
several experiments to explore flux domain shape instabilities, including an Eckhaus instability induced by
changing the out-of-plane magnetic field and an analog of the Helfrich-Hurault instability of smectics induced
by an in-plane field.@S0163-1829~98!01005-4#
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I. INTRODUCTION

A long-standing problem in macroscopic superconduc
ity is that of understanding the complex patterns of flux p
etration in the intermediate state of a type-I superconduc
This state occurs when a thin superconducting slab is pla
in a perpendicular magnetic field. Unlike type-II superco
ductors, in which the field penetrates through tubes each
a quantum of magnetic flux, type-I systems form intricate
branched and fingeredmacroscopicflux domains.1–3 Thus,
instead of a Meissner phase, in which the magnetic induc
B50 uniformly, the demagnetizing effects of the large a
pect ratio force the sample to break up into regions, som
which are uniformly superconducting~with B50 inside! and
others that are normal (BÞ0). Figure 1 shows a typical ex
ample of these patterns observed by decoration.3 Other im-
aging techniques~Hall probes4 and magneto-optics5! reveal
similar structures.

The sample in Fig. 1 has an applied fieldHa close to the
critical field Hc at which the sample would be complete
normal, so the minority phase is superconducting. Sim
patterns are observed whenHa /Hc is very small, but the
minority phase is normal; the sample consists of branc
flux domainsin a matrix of superconductor. These have
characteristic field-dependent finger width and threefold v
tices. More ordered domains may be observed in the p
ence of a small in-plane component of the applied field.6

The domain morphology depends on the path in fie
temperature space through which the sample has b
brought to a given point.3 For instance, cooling in zero field
below the transition temperature and then applying the fi
tends to produce patterns in which normal domains are
570163-1829/98/57~5!/3058~15!/$15.00
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bedded in a matrix of superconductor, whereas when
same point inT-H space is reached by cooling belowTc in
a fixed field the normal domains connect to the sam
edges.1 These observations suggest that the patterns are
true ground states of the system: The sample is not in
thermodynamic equilibrium.

Despite their ubiquity, until recently there has been
theoretical explanation for these patterns. The earliest
tempt, prior to the experiments described above, was La
au’s treatment of the laminar state,7 a periodic array of su-
perconducting and normal domains~Fig. 2!. Exploiting the
translational invariance of the pattern along the stripes,
cross-sectional shape of the domain walls and the bendin
the magnetic field lines become purely two-dimensio
problems solved by conformal mapping techniques, yield
the free energy as a function of lamina spacing, applied fi

FIG. 1. Intermediate state of indium, in which superconduct
regions ~black! are decorated with niobium. The applied field
close to the critical field (Ha /Hc50.931). Adapted from Haenssle
and Rinderer~Ref. 3!.
3058 © 1998 The American Physical Society
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superconductor-normal surface energy, and slab thickne
This free energy depends on two parameters: the

fraction of the normal state and the repeat distance of
structure. For thick slabs, one finds that the equilibrium a
fraction is set by the reduced fieldh5Ha /Hc . Deep within
the slab the domain walls are aligned with the field, but th
flare along with the magnetic field lines near the surfa
Subsequent experiments1–3 found field-dependent widths in
good agreement with theory. Stability calculations about t
state are, however, precluded by the reliance on confor
mapping techniques; no calculations of this type have b
performed. Subsequently, and in light of experiments sh
ing nearly circular flux domains, several calculations of t
energies of periodic arrays of simple geometric structu
were performed,8 showing that there is little thermodynam
driving force preferring one over the other. None of the
theories offers an explanation for the appearance of branc
flux domains.

The features of disordered domain shapes and path de
dence to the patterns show that an understanding of the
termediate state requires a theory that treats
superconductor-normal~SN! interfaces as afree-boundary
problem and addresses thedynamicsof those interfaces. The
relevance of an interfacial representation, rather than a m
microscopic approach based on dynamics of the super
ducting order parameter and vector potential, is clear by
strongseparation of scalesbetween the domain size~typi-
cally fractions of a millimeter! and the width of the SN in-
terface. For a strongly type-I superconductor the width is
by the coherence lengthj, which is on the order of 0.2mm.

Recent studies9,10 have emphasized strong connectio
between the motion of SN interfaces in a magnetic fi
and the dynamics of solid-liquid interfaces during solidific
tion. The key to this relationship is the diffusion of ma
netic field in the normal state,11 analogous to the diffusion
of latent heat in crystallization. This suggests that adiffu-
sional instability such as the Mullins-Sekerka instability12

should occur during flux invasion. Numerical studies of t
time-dependent Ginzburg-Landau model confirmed these
stabilities, which can lead to highly ramified domain pa
terns.

Asymptotic methods13 also show that in the sharp
interface limit it is possible to integrate out the magne
field contributions and arrive at a nonlocal free-bound
theory for the SN interface alone. The nonlocality is bo
temporal and spatial, the latter given by a Biot-Savart int
action between segments of the interface. This form of c
pling reminds us that the supercurrents that provide
screening of the applied magnetic field flow along the
interfaces. Many years ago Pearl14 and later Fetter and

FIG. 2. Laminar state in a thin slab. The applied fieldHa is
normal to the slab. An ordered laminar structure is obtained with
additional in-plane componentHi .
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Hohenberg15 showed that the interactions between curre
flowing in thin slabs are long ranged. Thus vortices in a th
film interact with a potential whose long-range form is u
screened,V(r );1/r , while at short distancesV(r ); ln(L/r),
whereL is a cutoff. Screening is unimportant at long di
tances because the interaction energy is dominated by
electromagnetic fields~in vacuo! above and below the slab

Based on these observations, we proposed recently16 a
‘‘current-loop’’ ~CL! model as an approximate description
the intermediate state. The model treats the patterns
collection of tense current ribbons, interacting with the Bio
Savart force of currents in free space and subject to glo
flux conservation. It is based on several simplifying assum
tions. First, the domain walls are taken to be vertical, rat
than flared as in Landau’s calculation. Second, only sup
currents in those walls are considered: Surface supercurr
on the slab top and bottom are ignored. These approxi
tions allow for an averaging process over the slab thickn
that maps the model onto one of self-interacting contours
the plane. Such free-boundary approaches are well kn
for hydrodynamic problems such as Saffman-Tay
fingering,17 as well as in reaction-diffusion systems.

While important phenomena such as domain fission
precluded in this model, it has the virtue of providing
simple picture of the mechanism of shape instabilities in t
system and a useful starting point for a more prec
treatment.18 It is strikingly similar to models of interfacia
pattern formation in a variety of other systems that disp
‘‘labyrinthine’’ patterns from a competition between interfa
cial tension and electromagnetic interactions.19 These in-
clude magnetic fluids,20–24 Langmuir monolayers,25–27 and
thin magnetic films.28 It is also related to a reaction-diffusio
system29–32 in which chemical frontsbetween two locally
stable states form disordered labyrinths like those seen in
reactors.33,34

In Sec. II we set the stage for a macroscopic model of
intermediate state by recalling both the sharp-interface li
of the time-dependent Ginzburg-Landau~TDGL! model for
nonequilibrium superconductivity and the derivation of lon
range interactions between currents in the slab geome
The conformal mapping solution to Landau’s model of t
intermediate state and the simplerstraight-laminamodel are
derived in Sec. III, with careful attention paid to the cons
quences of those long-range interactions. The free energ
the two models is shown to be essentially equivalent, as
their predictions for the equilibrium stripe width. Th
current-loop model is described and applied to the lami
state in Sec. IV, while instabilities of single flux stripes a
the elastic properties of the laminar state are found in Sec
Section VI summarizes the experimental predictions a
open issues.

II. PROPERTIES OF THE MACROSCOPIC MODEL

A. The sharp-interface limit

The microscopic parameters in the TDGL model inclu
the chargee* and massm of a Cooper pair, a dimensionles
order parameter relaxation timeg, and the conductivitys of
the normal phase. The equations of motion for the or
parameterc and the scalar and magnetic vector potentialsf
andA are

n
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\gS ] t1
ie*

\
f Dc5

\2

2m S “2
ie*

\
AD 2

c1ac2bucu2c,

~2.1!

“3“3A54p~Jn1Js!, ~2.2!

whereJn andJs are the normal and supercurrents

Jn5s~2¹f2] tA!,

Js5
\e*

2mi
~c* “c2c“c* !2

e* 2

m
ucu2A. ~2.3!

The parametera5a0(12T/Tc) controls the correlation
length j5\/(2muau)1/2 and penetration depth
l5@mb/4pe* 2uau#1/2. Whenj is small the SN interface is
sharp; the inverse distance from the critical point measu
that smallness. Settinga5 ã /e2 and rescaling distances an
fields with powers ofe, one finds that bothl and j scale
identically. The sharp-interface limit is thenj,l→0 with
k[l/j fixed, distinguishing between type-I (k,1/&) and
type-II (k.1/&) systems.

Derivations of interface motion in this context presum
translational invariance along the direction of the field and
describe ‘‘bulk’’ superconductors.13 They show that far from
the interface~the ‘‘outer’’ solution!, the magnetic field in
normal regions diffuses,

ht5D¹2h, ~2.4!

with D51/4ps. The boundary condition on the magnitud
hi of h on the interfaceC is

huC5HcF12
4p

Hc
2 ~sSNK1G21vn!G , ~2.5!

wheresSN is the interfacial tension,K is the interface cur-
vature,G is a kinetic coefficient, andvn5n̂•r t is the normal
component of the interface velocity.

The equation of motion expressingvn in terms ofr (s,t)
follows from a solution to the diffusion equation~2.4! given
Eq. ~2.5! as a convolution over past times and all spa
WhenD→` ~vanishing normal state conductivity!, the tem-
poral nonlocality disappears, yielding

G21n̂•r t~s,t !5
Hc

22Ha
2

8p
1sSNK2

Hc
2

8p2 R ds8
R3 t̂~s8!

R2 ,

~2.6!

with R5r (s)2r (s8). Equation~2.6! has the variational form

r t52G
1

Ag

dHeff

dr
, ~2.7!

where g is the interface metric and the effective interfa
Hamiltonian for a single domain is

Heff@r #52
Hc

22Ha
2

8p
A1sSNL

2
Hc

2

8p R ds R ds8 t̂~s!• t̂~s8!G~R!, ~2.8!
s

o

.

with terms proportional to the domain areaA, from the field
and condensation energy, and perimeterL, from the surface
tension, while the distortion energy of the field lines is t
self-induction of the boundary, withG(R)52(1/2p)ln R the
Green’s function of the two-dimensional Laplacian.

A temporally local but spatially nonlocal contour dynam
ics appears as well in a simpler reaction-diffusion system
recent interest.29–32This is the FitzHugh-Nagumo model35 of
the coupled dynamics of an activatoru and inhibitorv in two
spatial dimensions

ut5D̄¹2u2F8~u!2r~v2u!,

ev t5¹2v2v1u. ~2.9!

These partial differential equations are written in a resca
form in which the activator diffusion constantD̄ is normal-
ized to that of the inhibitor, whilee is a ratio of their char-
acteristic times. The functionF(u), whose derivativeF8(u)
appears, is a double-well potential that describes the a
catalytic bistability of the activator. WheneÞ0, the coupled
dynamics is not a gradient flow in any standard form.

The two systems~2.2! and ~2.9! share many features. In
each case there is a field~c or u! with an underlying bifur-
cation ~continuous forc, first order foru!, coupled to a dif-
fusing field~unscreened or screened!. In the superconductor
the second field can be integrated out in exchange for
instantaneous nonlocal coupling of the fieldc. An identical
feature appears in the reaction-diffusion problem when
parametere is small, for then the inhibitor relaxes on time
short compared to that of the activator and is slaved tou.
Setting ev t50, the field inhibitor isv5*Gu, with G the
Green’s function for the modified Helmholtz operator. Th
produces a nonlocal variational dynamics foru,
ut52dE/du, with

E@u#5E d2xH 1

2
D̄u“uu21F~u!2

1

2
r2J

1
1

2
rE d2xE d2x8u~x!G~ ux2x8u!u~x8!.

~2.10!

In the limit D̄→0 Eq. ~2.10! reduces to a functional of the
contours bounding regions in whichu takes on values corre
sponding to the minima ofF. That functional of the position
vectorsr i(s) of domain boundaries is29,30

DE@$r i%#5 ḡ(
i

L i1DF(
i

Ai

2
r

2 (
i , j

R ds R ds8 t̂ i• t̂ jG~ ur i2r j u!,

~2.11!

with ḡ the line tension andLi andAi the domain perimeter
and enclosed area. The nonlocal term is again the self-
mutual-induction of~here fictitious! currents.
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B. Long-range forces

As further motivation for the CL model, we recall Pearl
derivation14 of the unscreened potential between point vo
ces in a thin film. The starting point is the supercurrent s
rounding a single vortex at the origin. The order parame
has the simple form

c~r !5c0f ~r !eiu ~0<z<d!, ~2.12!

wherec0 is the far-field value ofc, which vanishes forz,0
andz.d. The functionf (r ) describes the vortex core stru
ture and we takef 51 on the~large! scales of interest. The
second Ginzburg-Landau equation is

“3“3A54pJs5
1

l2 F c0

2pr
û2AG . ~2.13!

If the film is sufficiently thin, then we may average over t
film thicknessd to obtain

“3“3A5
d

l2 F c0

2pr
û2AGd~z!. ~2.14!

In this form, it is readily apparent from the appearance of
term 2(dA/l2)d(z) on the right-hand side that the scree
ing is confined solely to the slab.

The solution to this can be obtained through the use
Fourier-Hankel transforms and yields the supercurrent

Js~r !52
f0

8pL2 FH1~r /L!2Y1~r /L!2
2

pG û, ~2.15!

whereH1 and Y1 are Hankel functions and the penetrati
depth for the thin film isL52l2/d. The interaction poten-
tial of a point vortex a distancer from the first is obtained by
multiplying Eq. ~2.15! by f0 and integrating,

V~r !5
f0

2

8pL
@H0~r /L!2Y0~r /L!#. ~2.16!

At distancesr /L@1, this is an unscreened potential

V~r !.
f0

2

4p2r
, ~2.17!

whereas asr→0 the familiar logarithmic interaction betwee
vortices appears,

V~r !.
f0

2

4p2L
lnS eCr

2L D , ~2.18!

with C being Euler’s constant. We anticipate therefore t
the interactions between Meissner currents in a thin typ
slab should have a similar long-range character.

III. THE LAMINAR STATE

A. Landau’s free-boundary solution

First, we calculate the shape and optimal spacing for
assumed laminar geometry for the intermediate state. W
our work reproduces Landau’s original calculation,7 the
method is quite different and provides an explicit express
for the functionf (h) ~see below!. We include this material in
part to clarify this derivation but more importantly this ‘‘ex
-
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act’’ result, for flared normal laminae, can be compared
simpler models of straight laminae and used as a test of
current-loop model.

In the semi-infinite geometry considered here~Fig. 3! the
sample occupies the regionz,0 with its surface in thex-y
plane. The applied field is perpendicular to the samp
Ha5Haẑ, producing an array of normal-superconducti
laminae periodic in thex direction, and straight alongŷ. The
normal and superconducting laminae have asymptotic wid
an andas , respectively, so the period of the entire structu
is a5as1an .

Since the SN interfaces are sharp compared to the lam
spacing we work with the macroscopic Maxwell equation
In the normal regions“3B50 and“•B50, which can be
solved by introducing either the scalar potentialf through
B52“f, so that¹2f50, or the vector potentialA through
B5“3A, which in the gauge¹•A50 satisfies¹2A50. To
solve this Laplace equation in thex-z plane, we use complex
variable methods; for the laminar structure the only nonz
component of the vector potential isAy and we introduce the
complex potentialw5f1 ic5f1 iAy so that the complex
magnetic field is

B5Bx2 iBz52
dw

dz
, z5x1 iz. ~3.1!

The boundary condition asz→` is that the field becomes
the uniform applied fieldHaẑ, sow→ iH az. Since the mag-
netic field vanishes in the superconducting regions, conti
ity of its normal component implies that the field is pure
tangential both along the normal-superconducting interf
PnQn and the ‘‘nose’’ OPn ~Fig. 3!. In the first case, the
assumption of thermodynamic equilibrium at this interfa
implies that the magnitudeHn of the tangential component i
a constant~as yet unknown!, so that the vector potentialAy is
also constant along any one interface. Along the nose
magnetic field is parallel to the surface (H5Hxx̂) but with a
varying magnitude. The fieldHn and the periodsan andas
are determineda posterioriby minimizing the energy. They
are constrained by flux conservation,Haa5Hnan , so for
fixed external fieldHa the energy is determined bya andan .

FIG. 3. Laminae in the intermediate state. Superconducting
gions are shaded. Reference pointsPn , Qn , Pn8 , etc., are discussed
in the text. The dashed line shows the contour used for the en
calculation.
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TABLE I. Analogies between free streamline flow in fluids and lamina formation in the intermediate
of type-I superconductors.

Free streamline flow around a plate Laminae in superconductors

complex potentialw5f1 ic complex potentialw5f1 iAy

complex fluid velocityu2 iv52dw/dz complex magnetic fieldB5Bx2 iBz52dw/dz
streamlines field lines~lines of force!
free streamline superconducting-normal interface
free streamline velocityU superconducting critical fieldHc

region of fluid flow normal phase with nonzero magnetic field
cavity behind plate superconducting phase
Riabouchinsky flow lamina in a finite thickness plate
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1. Exact determination of the lamina shape

The position of the SN interface is not knowna priori and
must be discovered in the process of solving the probl
This seemingly formidable task is simplified by recognizi
that our magnetostatics problem is formally equivalent to
flow of an ideal incompressible fluid around an array
plates, the plates being the noses of the laminae. The
lines would be the fluid streamlines; the SN interfaces c
respond to ‘‘free streamlines’’ that have separated from
flow behind the plate. The full correspondence is given
Table I. The shape of the free streamlines can be determ
by using thehodograph method,36,37 which recognizes tha
while the field lines in thez plane may be complicated, th
field configuration in thew andH planes is quite simple; a
conformal transformation mapping thew plane onto theH
plane leads to a relation betweenw anddw/dz, the solution
of which determines the interface shape. Consider first thw
plane. Since the magnetic field is tangent to both the n
segment and to the SN interface, the magnitude of the ve
potential is constant on these segments, as well as on
centerline shown dashed in Fig. 3. Far from the sample~at a
fixed z→`!, Ay;Hax; therefore, for laminae separated by
distancea, the vector potential on the interface of thenth
lamina isAy5Hana. The potentialf behaves as2zHa as
z→`, hence the laminae correspond to the positive hal
thef axis. Figure 4~a! shows the field configuration in thew
plane. Next we consider theH plane and introduce the nor
malized magnetic field

FIG. 4. w ands planes.
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h5
H

Hn
52

1

Hn

dw

dz
. ~3.2!

On the interfaceuhu51, and so seth52e2 iu, whereu,
the tangent angle~as in Fig. 3!, changes as we traverse th
interface from the pointPn to Qn ; this produces a semicircle
in the h plane. On the nosehx50, so the segmentPn8Pn

maps onto a horizontal straight line in theh plane. There-
fore, the regionexterior to the superconducting lamina
maps onto theinterior of a semicircle, as shown in Fig. 5~a!
~the hodographfor the field!.

The map from thew plane onto theh plane is most easily
carried out by first taking care of the periodicity in thew
plane by mapping it onto thes plane with the transformation
s5exp(2pw/Haa)21, so that thes plane has a single cu
along the positive real axis@Fig. 4~b!#. Next, map thes plane
onto the lower half of thel plane withl5(k2/s)1/2 @Fig.
5~b!#, wherek is set by boundary conditions. Finally, ma
the h plane onto thel plane using the Joukowsky transfo
mation l5(1/h1h)/2. To determinek, we notice that as
z→`, w→2`, so thats521 andh5Ha /Hn . Defining
ha[Ha /Hn , we havek25(12ha

2)2/4ha
2 .

These transformations yield the complex potential

w5
Haa

2p
lnF ~h21ha

2!~h21ha
22!

~11h2!2 G . ~3.3!

The shape of the lamina is found using Eq.~3.2!,

FIG. 5. h andl planes.
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dz

dh
5

dz

dw

dw

dh
52

1

Hn

1

h

dw~h!

dh

52
a

p

~12ha
2!2

ha

12h2

~h21ha
22!~h21ha

2!~h211!
.

~3.4!

Integrating by a partial fraction expansion and fixing an
tegration constant withh(z50)50, we have

z~h!52
iaha

p F 1

2ha
lnS ha2 ih

ha1 ih D1
ha

2
lnS ha

212 ih

ha
211 ih D

2 lnS 12 ih

11 ih D G , ~3.5!

which implicitly determines the magnetic fieldh as a func-
tion of positionz. Though this parametrization differs from
Landau’s,7,38 it is equivalent to and coincides with that o
Fortini and Paumier,39 although the method of derivation i
entirely different. The equivalent fluid problem is separa
flow past a plate placed symmetrically in a channel, wh
solution @Ref. 37, p. 39, Eq.~25a!# is Eq. ~3.5! above.

To calculate the lamina shape, recall the relat
h52e2 iu on the SN interface. Substituting into Eq.~3.5!,
we obtain after a great deal of algebra two parametric eq
tions for the interface position:

x~u!5
a

2 F12ha2
~12ha

2!

p
tan21S 2ha cosu

12ha
2 D G ,

z~u!5
a

4p F ~11ha
2!lnS 11ha

212ha sin u

11ha
222ha sin u D

24ha lnS cosu

12sin u D G . ~3.6!

The width 2b of the nose can now be determined from E
~3.6! by settingu50, with the result

b5
a

2
~12ha!2

a

2p
~12ha

2!sin21~2ha /11ha
2!. ~3.7!

Lamina shapes calculated from Eq.~3.6! at different applied
fields ha are shown in Fig. 6.

2. Energy of the laminar structure

The total free energy of the laminar state has contri
tions from the condensation energy, the magnetic fie
and the SN interfaces. The first is2Hc

2/8p times the vol-
ume occupied by the superconducting phase. If the
interfaces did not bend at all, this energy would be2(Hc

2/
8p)(Nas)Lyd, with N the total number of laminae andLy
the length of the sample in they direction @note that the
sample has a total areaA5(Na)Ly#. To this we add the
condensation energy lost from the thinning of supercond
ing regions near the slab surfaces, obtaining

Ec

A
52

Hc
2d

8p

as

a
1

4

a

Hc
2

8p E
2`

0 Fas

2
2x~z!Gdz, ~3.8!
-

d
e

n

a-

.

-
,

N

t-

the factor of 4 in front of the integral accounting for the fo
corners of the lamina. The integral is

E
2`

0 Fas

2
2x~z!Gdz52E

0

p/2Fas

2
2x~u!G dz

du
du

5
a2ha~12ha

2!

2p2 E
0

p/2

du

3
tan21~p cosu!~12cos2 u!

cosu~11p2 cos2 u!
,

~3.9!

where p52ha /(12ha
2) and the second line was obtaine

with Eq. ~3.6!. A partial fraction expansion and integration
by parts reduce the integral in Eq.~3.9! to ~p/2!@ln(p1q)
2(q/p)ln q], with q5(11p2)1/2. The condensation energ
is then

Ec

A
52

Hc
2d

8p
1

Hc
2d

8p Fan

a
1

a

d
f c~ha!G , ~3.10!

with

f c~h!5
12h2

2p
@~11h!2 ln~11h!1~12h!2 ln~12h!

2~11h2!ln~11h2!#. ~3.11!

The magnetic field energy is found by integratingB2/8p
over the space inside and outside the sample. For our p
odic structure this energy per unit area is

Em

A
5

2

a E
C

B2

8p
dxdz, ~3.12!

where the factor of 2 accounts for the top and bottom s
faces of the sample and the integral is over the areaC of one
cell ~Fig. 3!. In this two-dimensional geometryB25(“Ay)

2,
and with¹2Ay50 Eq.~3.12! becomes a line integral aroun
the unit cell boundary]C:

Em

A
5

2

8pa E
]C

Ay~s!Bs~s! ds, ~3.13!

FIG. 6. Lamina shapes calculated from Eq.~3.6!.
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with Ay(s) the vector potential on the boundary andBs(s)
the tangential component of the magnetic field.

The advantage of this representation of the field energ
that the vector potential isconstanton the boundaries an
can therefore be brought outside the integral. Let us cons
the various contributions to the integral. On the SN interfa
~segmentsQ8P8 and PQ! the integral*Bsds vanishes, as
the field points in the same direction on the left and rig
halves of the superconducting lamina. On the midline
tween laminae n21 and n, the vector potential is
Haa(n21)/2, while on the next midline up it is
Ha(n11)/2; the integral*Bsds is equal in magnitude bu
opposite in sign for these two segments since the integra
paths are in opposite directions. Adding these two contri
tions and usingBs52]f/]s we have

Em

A
5

Ha

4p
@f~a/2,2d/2!2f~a/2,Lz/2!#, ~3.14!

whereLz is some large distance away from the top surface
the sample. The entire calculation of the field energy th
reduces to finding the asymptotic behavior of the scalar
tential along one of the streamlines~the midline, in this
case!. Examining the behavior of Eq.~3.3! for the complex
potential w and Eq.~3.5! for the positionz, as h→1 and
h→ha , we find the asymptotic behavio
f(a/2,Lz/2);2HaLz/22(Haa/2p)f1 , where

f15 ln 41~11ha
2!ln~11ha

2!2~11ha!2 ln~11ha!

2~12ha!2 ln~12ha!, ~3.15!

andf(a/2,2d/2);2Hna/22(Hna/2p)f2 , where

f25~12ha!2 ln~12ha!12ha ln4ha

2~11ha!2 ln~11ha!. ~3.16!

Substituting into Eq.~3.14!, we have

Em

A
5

Ha
2

8p
Lz1

HnHa

8p
d1

Hn
2

4p
a fmag~ha!, ~3.17!

with

f mag~ha!5
ha

2p
@~11ha!3 ln~11ha!22ha ln 8ha

2~12ha!3 ln~12ha!2ha~11ha
2!ln~11ha

2!#.

~3.18!

The first term in Eq.~3.17! is the energy of the external fiel
in the absence of the sample, which is of no interest
henceforth neglected. The second term is the bulk magn
field energy of a uniformly magnetized sample40 and the
third arises from demagnetizing fields~due to the partition-
ing of the sample into domains!.

Finally, we calculate the surface energy. IfsSN is the
surface tension, then the energy for a single interface
sSNdLy .41 Since there are two interfaces per lamina andN
laminae in the sample, the total interfacial energy
2sSNdLyN52sSNA(d/a). Introducing the lengthD, essen-
tially the width of the interfaces, throughsSN5(Hc

2/8p)D,
the interfacial energy per unit area is
is

er
e

t
-

n
-

f
n
-

d
tic

is

s

Eint

A
5

Hc
2

8p

2Dd

a
. ~3.19!

Summing the contributions~3.10!, ~3.17!, and~3.19! and
using flux conservation, we find

E

A
5

Hc
2d

8p H 211Fan

a
1h2

a

an
G

12S D

a
1

a

d F2 f c~ha!1
Hn

2

Hc
2 f mag~ha!G D J , ~3.20!

with h[Ha /Hc . Minimizing this with respect to botha and
an results in very cumbersome expressions. Instead,
minimize the first term in brackets with respect toan , which
yields an5ha, so thatHn5Hc ~andha5h!. This is the re-
sult used by Landau and is reasonably accurate as long a
surface and demagnetizing energies are small. Substitu
back into the energy, we obtain

E

A
52

Hc
2d

8p
1

HcHad

4p
1

Hc
2d

4p FDa 1
a

d
f L~h!G , ~3.21!

with

f L~h!52 f c~h!1 f mag~h!

5
1

4p
@~11h!4 ln~11h!1~12h!4ln~12h!

2~11h2!2 ln~11h2!24h2 ln 8h#. ~3.22!

This function is plotted in Fig. 7. Its asymptotic behavi
as h→0 is of interest in comparison with other approach
and has the formf L(h).(h2/p)ln(0.56/h). Finally, the
equilibrium laminar period is obtained simply by minimizin
with respect toa, yielding

a* 5F Dd

f ~h!G
1/2

. ~3.23!

This implies that the spacing diverges for smallh as

FIG. 7. Functions f L(h) in Landau’s model, f s(h) in the
straight-lamina approximation, andf CL(h) from the current-loop
model.
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a* .
~Dd!1/2

h F p

ln~0.56/h!G
1/2

. ~3.24!

B. Energy of a straight-lamina model

It is useful to compare the results from the Landau mo
to an alternativestraight-lamina model, in which the seg-
mentsPnQn of Fig. 3 are made straight. In this model th
field is still tangent to the SN interface, but the magnitude
the field is not constant along the interface. The field and
complex potential can be obtained using standard confor
mapping methods; the problem is equivalent to an ideal fl
flowing in a channel with an abrupt step.36 The solution is

w5
Haa

2p
lnS h211

h21ha
2D , ~3.25!

z5
as

2
1

iaha

2p F lnS h1 i

h2 i D2
1

ha
lnS h1 iha

h2 iha
D G .

Under the simplifying assumption thatHn5Hc , the total
energy in this model is

E

A
52

Hc
2d

8p
1

HcHad

4p
1

Hc
2d

4p FDa 1
a

d
f s~h!G , ~3.26!

with

f s~h!5
h

2p
@~11h!2 ln~11h!2~12h!2 ln~12h!

22h ln 4h#. ~3.27!

This function is plotted in Fig. 7 for comparison with Land
au’s result ~3.22!. At small h it behaves as
f s(h).(h2/p)ln(0.68/h), very close tof L(h). The total en-
ergy ~3.26! has the same qualitative dependence upon
lamina spacinga as the Landau model, although the latt
has lower energy for any reduced fieldh.

C. Lamina shapes in finite-thickness plates

In the analyses above we assumed that the supercond
slab is sufficiently thick that the shapes of the lamina wa
can be computed as for a semi-infinite slab. When the th
nessd becomes small enough the wall shapes will chan
From the asymptotic behavior of the semi-infinite solutio
~3.6!, we deduce that the thickness approaches its asymp
values forz→2` as

a

2
~12ha!2x~z!;

4ha

p
exp~pz/aha!. ~3.28!

The decay lengthaha /p should then determine when finite
slab thickness effects become important. The asymptotic
sults show that the productah vanishes very slowly~loga-
rithmically! as h→0, so that while such finite-thicknes
effects become important in that limit, practically the re
evant fields are very small. The crossover fieldhx for
aha /p5d is on the order ofhx;0.56 exp(2D/pd). For
h<hx the slab thickness has no significant effect on the
main wall shapes. In the fluid dynamical analogy, the fini
l

f
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e
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s
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e.
s
tic

e-

-
-

thickness calculation is equivalent to Riabouchinsky flo
aroundtwo plates, the details of which are found in standa
references.37

IV. THE CURRENT-LOOP MODEL

The analysis above of the laminar state shows that in
counting for the flaring of the normal domains Landau
free-boundary approach yields a lower-energy structure t
a model with straight walls. However, the analytical and n
merical differences between the two approaches are mi
In both models the supercurrents flow along the SN int
facesand on the top and bottom surfaces of the sample.18,42

Just as the magnetic field in a solenoid is more uniform wh
it is a tall thin cylinder than when it is short and wide, so to
the contributions from circulating currents along the SN
terfaces should dominate when the flux domains are nar
and tall, at low fields. This suggests that the basic physic
the laminar state can be understood from those circula
currents alone. We now develop this current-loop model a
show that it rather accurately reproduces the results of L
dau’s model, an important test of an approach that can ea
be generalized to SN interfaces of arbitrary shape.

A. Energetics of the current-loop model

In this model, as above, the intermediate state is descr
in macroscopic terms, but now the SN interfaces encircl
each of the normal regions belong to a set$Di% each with
areaAi and perimeterLi . The two phases occupy volume
Vs and Vn5d( iAi , with Vs1Vn5V. Parametrizing each
boundary by arclength, the position vectors of the interfa
are r i(s). As in the straight-lamina model,r i is assumed
independent ofz, neglecting the flaring of the domain wall
near the film surfaces.

The total energy isE@$r i%#5Ec1Eint1Em , a sum of the
condensation energyEc , the interfacial energyEint , and the
magnetic field energyEm . As before,

Ec5V
Hc

2

8p
rn , Eint5

Hc
2

8p
Dd(

i
L i , ~4.1!

wherern5An /A is the area fraction of the normal phase a
Ec is measured with respect to the purely superconduc
state. Flux conservation relates the field in the normal
gions to the applied field,Hn5Ha /rn , and by the tangentia
continuity of H across a SN interface the field in the supe
conducting region isHs5Hn . The perfectly diamagnetic su
perconducting regions each have a magnetiza
M52(Hn/4p)êz , related to the~Meissner! currents that
flow along the SN~and top and bottom sample! boundaries.

We compute the magnetic field energy as a sum of t
contributions, the first of which is that of the domain ma
netizations M in the presence of the external fie
(2*d3r Ha•M ). The second is the self- and mutual indu
tion of the current ribbons. Expressing these in terms of
macroscopic quantitiesrn , etc., we have
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Em5V
HaHn

4p
~12rn!

2
1

2
M2(

i , j
E

0

d

dzE
0

d

dz8 R ds R ds8
t̂ i• t̂ j

Ri j
,

~4.2!

where M52Hn/4p. The unit tangent vectorst̂ i(s) to the
current ribbons label the direction of the current flow. By t
usual screening processes in superconductors, the dire
of the flow is so as to cancel the applied field in the sup
conducting regions and augment it in the normal regio
~Fig. 8!. Of course, the scalar productt̂ i• t̂ j is invariant under
the overall reversal of the parametrizations (s→2s). The
free-space current-current interaction is Coulombic, w
Ri j 5$@r i(s)2r j (s8)#21(z2z8)2%1/2. Performing thez and
z8 integrals, the field energy becomes

Em5V
HaHn

4p
~12rn!

2M2d(
i , j

R ds R ds8 t̂ i• t̂ jF~Ri j /d!, ~4.3!

where now the elementary free boundaries arecontours in
the plane, interacting with the potential

FIG. 8. Current loop.
e
tion
r-

ns

th

F~R/d!5
1

2d E
0

d

dzE
0

d

dz8@R21~z2z8!2#21/2

5sinh21~d/R!1R/d2A11~R/d!2, ~4.4!

whereR5uRu with R(s,s8)5r (s)2r (s8) the in-plane vector
between points labeled bys and s8. As discussed
elsewhere,23 this potential is Coulombic forR@d, F'd/2R,
but for R!d, F' ln(2e21d/R), with the film thicknessd act-
ing as a cutoff. Note the interesting parallel with Pear
vortex interaction potential~2.16! in thin films. The appear-
ance of the potentialF in the free-boundary approach to
number of other systems~see Table II! offers an explanation
for the similarity in their behavior.

B. Current-loop description of the laminar state

Now we calculate the energy of the laminar state in t
CL model, using the same geometrical quantities as bef
The nonlocal magnetic contribution is the only difficult on
It proves convenient to return to the self-induction form
the current ribbons and to introduce a Fourier representat
which for a uniform laminar structure yields the magne
field energyEm per unit area

Em

A
52

M2

a (
n52`

` E
2`

`

dyE
0

d

dzE
0

d

dz8

3E d3q

~2p!3

4p

q2 ei [nqxa1qyy1qz~z2z8!]~12eiqxan!.

~4.5!

Several straightforward integrations reduce this to

Em

A
52

aM2

p2 (
n51

`
@12cos~2pnan /a!#

n3

3S 2pnd

a
1e22pdn/a21D . ~4.6!

Note that the last term contains all of thed dependence of
the sum. The leading contribution in the limit of large sla
TABLE II. Analogies between interfacial energetics of type-I superconductors and other systems. The energy of a set$Di% of domains

is written asE@$r i%#5P( iAi1g( iL i2
1
2 Vrdsrds8 t̂ i• t̂ jF i j (Ri j /j). The symbols denote the following:sFW , ferrofluid water surface

tension;M , ferrofluid magnetization;gLE-LC , line tension between liquid expanded~LE! and liquid condensed~LC! phases in a Langmuir
monolayer;Dm, discontinuity in electric dipole moment density between LE and LC phases;dmol , a molecular cutoff of monolayer
thickness.

System P g V F j

type-I superconductorsa (Hc
2d/8p)(rn1h2/rn) Hc

2dD/8p Hn
2d/8p2 sinh21(1/z)1z2A11z2 d

magnetic fluidsb Lagrange multiplier dsFW 2dM2 sinh21(1/z)1z2A11z2 d
Langmuir monolayersc Lagrange multiplier gLE-LC (Dm)2 1/2ze dmol

FitzHugh-Nagumo modeld DF D̄ r K0(z) 1f

aPresent work.
bReferences 23 and 24
cReferences 26 and 27.
dEquation~2.9! and Refs. 29 and 30.
eThis limiting form is supplemented with a cutoff procedure. See Ref. 27.
fThe system of units in Eq.~2.9! sets the inhibitor screening length equal to unity.
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thickness is a ‘‘bulk’’ contribution expressible simply i
terms of the stripe dimensions

(
n51

`
12cos~2pnan /a!

n2 5p2
an~a2an!

a2 . ~4.7!

It follows that the form of the free energy is like that in Eq
~3.20! and ~3.21!, but with a new functionf ,

f CL~h,d,a!5
1

2p3 (
n51

`
sin2~nph!

n3 @12e22pnd/a#.

~4.8!

As in Landau’s calculation, finite-thickness effects show
whend is comparable toa.

There are several noteworthy features of the funct
f CL(h), particularly in the limit d/a@1 considered here
First, as shown in Fig. 7, it is rather close to the Land
function and hence its implications for the equilibrium lam
nar thickness are in reasonable accord with experime16

Second, it has the same structure asf L as h→0,
f CL(h).(h2/2p)ln(0.71/h). Third, it has anexactsymmetry
under the transformationh→12h, a reflection of the
straight SN interfaces presumed in the model. This symm
is absent in Landau’s calculation and in the straight-lam
model by virtue of the currents on the slab faces. Finally,
form of the magnetic field energy in Eq.~4.6! is identical to
the field energy of a stripe array in a thin ferromagne
film.43,44

C. A dynamical model

The competition between surface tension and s
induction in the current-loop model appears in a number
other contexts~Table II!, where it has been shown to produ
also a rich dynamical behavior. While the precise connec
between the Young-Laplace and Biot-Savart forces and
interface dynamicsdepends on the physical setting~e.g.
Hele-Shaw flow with Darcy’s law, surfactant monolaye
with coupling to the fluid subphase, and reaction-diffusi
systems!, the phenomenon of branching instabilities produ
ing disordered lamellar structures is ubiquitous. This s
gests that much can be learned from the very simplest
namical law for interface motion, thelocal dissipation
model,23 in which a local viscous force acting at the interfa
balances the pressure difference, expressed as a funct
derivative~2.7!.

A first step toward a full study of themany-interface
current-loop model is the simplest mean-field description
a singlecurrent loop. That loop is assigned to a cell~analo-
gous to a Wigner-Seitz cell! of areaAcell from which we
compute the area fractionrn5An /Acell . In this approxima-
tion, the self-induction of the loop is retained, but the mut
induction term in the energy associated with all other loo
only contributes a bulk energy term like that in the lamin
calculation~4.7!. Moreover, the amplitude of the circulatin
currents is taken to beHc rather than the actual local field
equivalent to assuming that the actual area fraction is nea
equilibrium value. The system is then characterized b
single geometrical parameterp[2Requiv/d describing the as-
pect ratio, whereRequiv is the radius of the circle whose are
p

n

u

.

ry
a
e
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n
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-
-
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f

l
s
r
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a

is that of the initial condition, and a single energetic para
eter, the reduced magnetic fieldh. All other parameters sim-
ply rescale time.

In this model, the interface velocity is

n̂•r t~s!5
Hc

2d

8ph H P2DK~s!

2
1

2pd R ds8R̂3 t̂~s8!C~R/d!J , ~4.9!

with K(s) the curvature andC(j)5F8(j)512(11j22)1/2

the generalization of the Biot-Savart force to finite-thickne
slabs.23 The pressure term is

P5h2/rn
221. ~4.10!

The kinetic coefficienth may be estimated13 from results on
the bulk properties of strongly type-I systems,

h5
Hc

2dD

8p

p\

8kBTcj0
2 , ~4.11!

where againTc is the critical temperature andj0 is the bare
correlation length.45

A contour dynamics such as Eq.~4.9! is readily general-
ized to account for surface tension anisotropy, a mate
feature that has long been suggested to play a role in
morphology of the intermediate state patterns,1 as it does in
problems such as dendritic growth.46 When the anisotropy is
q-fold, the parameterD has the formD5D0@11e cos(qu)#.
Typical experiments show aq54 or q56 anisotropy.47 Our
intuition suggests that the variation ofsSN through D will
bias instabilities towardq-fold symmetry and lead to pre
ferred orientations of flux stripes produced from those ins
bilities.

D. Instabilities: Numerical studies

Two regular geometries of flux domains have historica
been of interest: circles and stripes. In Sec. V we conside
detail the stability of stripes and stripe arrays; here we fo
on fingering and branching instabilities of circular domain
Since linear stability analyses for circular interfaces ha
been presented in detail elsewhere in the context of clo
related models,22–24,26,27,30we do not repeat them here. Tw
important qualitative results are that for a given domain
dius and slab thickness~i! there exists a finite applied field
above which azimuthal modes become active and~ii ! insta-
bilities of increasing mode number occur with ever larg
applied field. Numerical studies of the contour dynamics
lustrate these properties and allow us to see the highly n
linear regime far beyond the instabilities.

An efficient numerical method for studying this nonloc
interface dynamics has been described in de
elsewhere.27,30 It uses pseudospectral techniques to solve
the time evolution of the local tangent angleu(s), from
which the@x(s),y(s)# coordinates of the interface are com
puted by basic differential geometry. For the purposes
verifying the analytical stability results as well as investig
ing such phenomena as mode competition, the initial cont
is given a curvatureK perturbed from that of a circle
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K(a)51/R01(n52@an cos(na)1bn sin(na)#, where R0 is
the unperturbed radius anda5s/R0 .

Figure 9 shows three basic phenomena described by
contour dynamics. The first@Fig. 9~a!#, is the relaxation of a
weakly perturbed circular domain whose initial area fract
is not at equilibrium. Thisstablerelaxation to a circle occurs
if the applied fieldh is below the instability value.

Apart from a small correction due to surface tension,
area fraction at long times isrn.h @Fig. 9~d!#. The elemen-
tary elongationalinstability of a circular flux domain@Fig.
9~b!# that occurs at higherh is one means by which finite
stripes may form in the intermediate state. The area frac
evolves towardrn5h, but now the deviation is significan
due to larger contributions from the Biot-Savart integral. T
curious feature of bulbous tips to the stripe is a rather co
mon observation in dipolar systems. It suggest that the in
bility is related to the fissioning of the original circle into tw
smaller ones. Energetic arguments based on this pic
show that it rather accurately predicts the onset of t
instability.27 The third phenomenon is thebranching insta-
bility that occurs for still higher values ofh @Fig. 9~c!#. The
initial condition for this simulation was a circle perturbe
with a small-amplitude mode of azimuthal number 3. Ra
growth of that mode is followed by relaxation to ‘‘arms’’ o
rather uniform width. The angles of the three arms form
the vertex are close to 120°, as is typical in systems gover
by surface tension. We conclude from these studies th
physical mechanism to produce the branched and fing
stationaryshapes of flux domains in the intermediate state
the mechanical instability illustrated in Figs. 9~a!–9~c!.

Finally, Fig. 10 shows the effects of surface tension
isotropy on the branching instability of the same initial co
dition as in Fig. 9~c!. While the time evolution first produce

FIG. 9. Numerical studies of the current-loop model at asp
ratio p55.0. Dashed circles in~a!–~c! indicate the unit cell.~a!
Stable relaxation of a nearly circular initial condition to a circle
smaller radius,~b! elongational instability of a circular flux domain
~c! branching instability, and~d! time evolution of the normal area
fraction rn for cases~a!–~c!. Dashed lines indicate the relatio
rn5h determined by the bulk energetic contributions alone.
he
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a fourfold vertex, it subsequently fissions into two threefo
vertices that move away from each other. The branche
the pattern have oriented themselves with respect to the
tension directions determined by the anisotropy~indicated by
arrows!. The instability of vertices of higher order than thre
is a common feature of dipolar systems.

V. PERTURBATIONS AROUND THE LAMINAR STATE

In the absence of an in-plane magnetic field, flux doma
in the intermediate state often have the shape of buck
laminae. The conformal mapping algorithm for the lamin
state is not generalizable to such truly three-dimensio
structures and there does not appear to have been any s
ity calculation of the laminar state. In the following sectio
we compute the linear stability and linear elastic propert
of flux stripes.

A. Energy and stability of a single flux stripe

Consider first a single flux stripe as described by
current-loop model, with widthw in thex direction, lengthl
in the y direction, and the plate spacingd. The reduced
energyẼ[E/2sSNA due to the self- and mutual induction o
the currents flowing along the edges is

Ẽ5
1

a
2

NB

a E
0

`

dj@F~j!2F~Aj21a2!#, ~5.1!

where a5w/d and NB52M2d/sSN is the dimensionless
magnetic Bond number. Integration yields

FIG. 11. Stripe energy density as a function of stripe width,
various magnetic Bond numbers.

t

FIG. 10. Branching instability with fourfold surface tension a
isotropy (e50.1). Arrows indicate easy axes.
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Ẽ5
1

a
1

NB

4a
@a2 ln~11a22!14a tan21 a2 ln~11a2!#.

~5.2!

Figure 11 showsẼ(a) for various Bond numbers. The min
mum of this energy becomes sharper asNB increases. Mini-
mizing Ẽ with respect toa at fixed areaA yields a relation
betweena andNB ,

12
NB

4
@a2 ln~11a22!1 ln~11a2!#50. ~5.3!

Now we connect this result to stripe stability. As shown
Figs. 12~a! and 12~b!, there are two classes of small disto
tions. The first~‘‘peristaltic’’ ! involves antisymmetric pertur
bations and changes the local stripe width. This will be
higher energy than the symmetric~or ‘‘serpentine’’! distor-
tions of Fig. 12~b!, which preserve the width. It is most con
venient to calculate the linearizedforce acting on the inter-
face, using Eq.~4.9!.

After a ceremony of relentless algebra we obtain the fo
associated with a monochromatic perturbation of redu
wave vectorq5dk; for serpentine perturbations,

Fs~q!5q222NBH gE1 lnS aq

2A11a2D 1K0~q!1K0~aq!

2K0~A11a2q!J , ~5.4!

and for the peristaltic perturbation,

Fp~q!5q222NBH 2gE1 lnS a

A11a2D 2 ln~q/2!2K0~q!

2K0~aq!1K0~A11a2q!J . ~5.5!

In the limit of smallq for serpentine perturbations,

Fs~q!5H 12
NB

4
@a2 ln~11a22!1 ln~11a2!#J q2

2
NB

64
$~11a2!2 ln~11a2!2a4 ln~a2!26a2

FIG. 12. ~a! Peristaltic and~b! serpentine perturbations of a flu
stripe.~c! Illustration of the change in stripe width upon a unifor
rotation.
f

e
d

3~12 2
3 gE!%q42

NB

16
a2q4 ln~ 1

2 q!

1O~q6,q6 ln q!. ~5.6!

Serendipitously, the condition of stripe equilibrium~5.3!
is precisely that which sets the coefficient ofq2 in Eq. ~5.6!
equal to zero. This can be interpreted as a consequenc
rotational invariance. Note that by assigning the same fu
tion z(y) to the two edges of the stripe we have maintain
its width atw to linear order inz, but not to quadratic order
~Fig. 12!. Now a uniform tilt of the stripe edgeszy5const
@Fig. 12~c!# leads to a width of the rotated strip
w85w/A11zy

2.w2(w/2)zy
21••• . This tilt will cost en-

ergy through the ‘‘bulk’’ term E(w) in Eq. ~5.1! as
E(w8)2E(w).2(w/2)E8(w)zy

2 , whereE8[dE/dw. The
coefficient of q2 in Eq. ~5.6! is an effective line tension,
associated with an energy

E5
1

2
geffE dyzy

2 . ~5.7!

Rotational invariance thus shows that the apparent surf
tension vanishes at the equilibrium stripe width. The terms
O(q4) look like a bending energy,

E;
1

2 E dy zyy
2 , ~5.8!

an interpretation spoiled by the termq4 ln(q), which reflects
the nonlocality of the magnetic interactions.

The force for peristaltic perturbations has a finite value
q→0 reflecting the compressibility of the stripe. The sma
q expansion is

Fp522NB lnS a2

11a2D1H 12
NB

2
@a2 lna2~11a2!

3 lnA11a2#J q21O~q4,q4 ln q!. ~5.9!

FIG. 13. Critical Bond number for serpentine instability as
function of stripe size. Typical values ofw/d are indicated for three
experimental systems.
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The equilibrium value of the stripe width deduced fro
Eq. ~5.3! defines the boundary of stability of stripes to se
pentine perturbations~Fig. 13!. At fixed a, instability occurs
with increasingNB and likewise at fixedNB it sets in with
increasinga. The figure shows aspect ratiosa corresponding
not only to type-I superconductors but also to magnetic flu
~with slab thicknesses and stripe widths in the millimeter
centimeter range! and Langmuir monolayers~with domains
tens of micrometer across and amolecularthickness!.

At its equilibrium width, the energy of small distortions
positive, vanishing asq→0. It seems impossible to find
field at which the stripe would be unstable to a finit
wavelength modeif the stripe width has its equilibrium valu
~5.3!. Fortuitously, the elegant experimental observations
buckling instabilities in Langmuir monolayers48 have shown
what happens when this equilibrium is not reached. Th
observations concerned the dynamics of buckling when
temperature was slowly increased. Since these system
near a critical point of phase separation, small tempera
changes produce large changes in the discontinuity in dip
densityDm between the phases and in the line tension. Th
directly affect the stability of stripes, quantified by the ass
ciated electric Bond number. It was observed that slow te
perature ramps produced no buckling, while rapid heat
showed buckling. This implicates49 mass transport as a rate
limiting step as the stripe width adjusts to keep up with
temperature. Under rapid ramps, the width is out of equi
rium, yielding a nonzero~and potentially destabilizing! coef-
ficient of q2. In the laminar state, we speculate that in t
early stages of flux penetration such a mismatch between
actual and equilibrium widths allows the buckling instabili
to occur.

B. Elastic properties of the laminar state

The CL model can be used to determine the elastic pr
erties of the laminar state by considering as in Fig. 12 sm
displacementsz i(y) of the SN interfaces. In the long
wavelength~continuum! limit, z i(y) becomes a displacemen
field u(x,y), with an elastic free energy

Fel5E d2r FB

2 S ux1
1

2
uy

2D 2

1
K1

2
uyy

2 G , ~5.10!

with B the bulk ~compressional! modulus andK1 the bend-
ing modulus. This result applies to serpentine perturbati
of the lamina; peristaltic perturbations are gapped like o
cal phonons and do not contribute to the long-wavelen
properties. This form of the free energy could have be
anticipated from the single stripe results of Sec. V A; in p
ticular, we see that distortions in they direction appear as
uyy

2 @or ky
4uu(k)u2 in Fourier space#, again signifying that the

effective surface tension is zero. The nonlinear terms
required to preserve the rotational invariance of the free
ergy ~note that we are considering elastic properties in
absence of an in-plane field, although such a field is typic
necessary initially to produce the ordered laminae!. Equation
~5.10! is identical to the elastic free energy of a tw
dimensional smectic liquid crystal,50 a useful analogy as th
properties of smectic liquid crystals are well studied; pro
lems such as mechanical instabilities, thermal fluctuation
-
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fects, and defect structures have been considered. We ex
many of these same phenomena to occur in the laminar s

Since published calculations exist of the elastic moduli
striped phases in two-dimensional dipolar ferromagnets51,52

and in ferrofluids53,54 and the calculation for the lamina
phase is identical, we include here only the final results. T
bending modulus is

K15
3M2a3

8p4 (
m51

`
sin2 mph

m5 H 12F11S 2pdm

a D
1

1

3 S 2pdm

a D 2Ge22pdm/aJ , ~5.11!

where the magnetization isM52Hc/4p and the equilibrium
spacinga5ADd/ f CL, with f CL(h,d,a) given by Eq.~4.8!. In
the thick-film limit this becomes

K15
3M2a3

8p4 (
m51

`
sin2 mph

m5 . ~5.12!

The bulk modulus is

B5a2F]2~ECL /A!

]a2 G
h

5
4sSNd

a
2

2M2d2

a
lnF11

sin2 ph

sinh2~pd/a!G . ~5.13!

For thick films this becomesB54sSNd/a. The bending and
bulk moduli may be combined to form the length sca
l̃5AK1 /B, a persistence length for distortions of the lam
nar structure~not to be confused with the superconducti
penetration depth!. In thick films,

l̃2/a25
3

32p2

(
m51

`

sin2~mph!/m5

(
m51

`

sin2~mph!/m3

. ~5.14!

C. Dislocations in the laminar state

In the laminar state1 one often observes edge dislocation
where half of a normal lamina has been inserted into
laminar structure. The elastic theory also determines the
placement field of such a dislocation; our calculation clos
follows the analogous problem studied in the context of tw
dimensional smectic liquid crystals.55 We begin with the lin-
earized Euler-Lagrange equations for the defect displacem
field uD(x,y),

uxx
D 2 l̃2uyyyy

D 5mad8~x!u~y!, ~5.15!

where the source term on the right-hand side accounts for
presence of the dislocation in such a way that the line in
gral of “u around the dislocation isma ~Burger’s vector!,
with m the number of half sheets inserted anda the lamina
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spacing. Solving Eq.~5.15! with Fourier transforms,55 the
result isuD(x,y)5mG(r ), with

G~r !5
a

4
sgn~x!@erf~y/A4l̃ uxu!11#. ~5.16!

For a collection of dislocations centered at$r i%
with strengths $mi%, we may introduce the dislocatio
density m(r )5( imid(r2r i), so that the displacemen
field is obtained by linear superposition,uD(r )
5*d2r 8m~r 8)G(r2r 8). The free energyFD of the defects is
then obtained by substitutinguD into the the elastic free en
ergy and using the ‘‘harmonic conjugate’’ trick of Toner an
Nelson.55 The final result is

FD5
1

2 E d2r 1 E
ur12r2u.a

d2r 2m~r1!m~r2!U~r12r2!

1EDE d2rm2~r !, ~5.17!

where the interaction potential is

U~r !5
a2B

4
S l̃

puxu D
1/2

e2y2/4l̃ uxu ~5.18!

and the defect core energy is

ED5
B

2 E d2r @ l̃2~Gyy!
21~Gx!

2#5
1

8Ap
Ba2S l̃

a
D 1/2

.

~5.19!

The core energy can be calculated as a function of the
duced fieldh by using the results of Sec. V B@Eqs. ~5.13!
and~5.14!#. A rough estimate shows that this energy is ge
erally of order 1023(Hc

2/8p)a3 and can therefore be quit
small; as a result, it should be easy to nucleate dislocation
the laminar phase.

VI. DISCUSSION

The free-boundary approach to the intermediate state
led to a picture of the shape instabilities of individual flu
domains and ordered arrays. In addition, the correspond
with smectic liquid crystals suggests phenomena that sh
occur in type-I superconductors. Below we suggest exp
ments to visualize these effects, starting from the orde
laminar state. Experiments by Reisin and Lipson56 have
shown some of these.

(i) The buckling instability.Rapid changes in the applie
normal field may allow buckling instabilities to occur i
much the same way as observed in Langmuir monolayers
interest would be the dependence of buckling wavelength
the magnitude of the field jump.

(ii) The chevron instability.If the in-plane magnetic field
is applied at an angle with respect to the laminae, we exp
an instability toward a zigzag or chevron pattern as the la
e-

-

in

as

ce
ld
i-
d

Of
n

ct
i-

nae attempt to reorient. This is like the Helfrich-Hurault e
fect in smectic liquid crystals,50 wherein a field componen
normal to smectic layers, producing a torque on them,
duces an undulatory instability.

(iii) The Eckhaus instability.If the normal magnetic field
is slowly changed in magnitude the stripe width and spac
must adjust to stay in equilibrium. As in convectiv
systems,57 this may occur through an Eckhaus-like nucl
ation phenomenon to create or destroy laminae. Dislocat
can be produced that will move toward the sample edge
annihilate at the center in accord with the direction in whi
the wavelength must adjust. Their climb and glide dynam
will provide an important testing ground for the theory
interface dynamics.

(iv) Critical-point effects.In the simplified contour dy-
namics in which the local field is taken to beHc , the Bond
number depends only on the ratiod/D(T). Near the zero-
field superconductor-normal critical temperature the inter
cial width D(T) diverges as (Tc2T)/Tc . This should pro-
duce characteristic changes in the equilibrium stripe width
well as possible instabilities.

We close by emphasizing what hasnot been accom-
plished here. First, we have considered laterally infin
samples, ignoring the whole issue of flux penetration at
edges. This can be very significant in both type-I and type
superconductors.58 A treatment of these effects requires n
only the electromagnetics of fields near the slab edges
also consideration of processes such as domain fission.
ond, we have presented an oversimplified dynamical pict
in which diffusional instabilities are absent. The interpl
between the Mullins-Sekerka and these mechanical insta
ties has not been considered theoretically and may shed
on various problems in flux domain pattern formation. Thi
a large-scale numerical study of the many-domain prob
has not been attempted, precluding a clear understandin
the true ‘‘energy landscape’’ of this strongly interacting sy
tem. Fourth, the effects of in-plane components to the
plied magnetic fields have not been incorporated into
free-boundary approach in any quantitative way. This will
important for an understanding of the instabilities describ
above. Fifth, the extension of matched asymptotic meth
used in purely two-dimensional systems to the slab geom
of the intermediate state has not been developed and w
greatly clarify the free-boundary approach to flux doma
shapes. Finally, coarse-graining approaches to domain
namics analogous to Otto and Kohn’s recent study of m
netic fluid pattern formation59,60 may prove quite fruitful.
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