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Shapes of flux domains in the intermediate state of type-l superconductors
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In the intermediate state of a thin type-lI superconductor magnetic flux penetrates in a disordered set of
highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently
proposed “current-loop” mod€]R. E. Goldstein, D. P. Jackson, and A. T. Dorsey, Phys. Rev. 7613818
(1996] that models the intermediate state as a collection of tense current ribbons flowing along the
superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this
model is tested through a detailed reanalysis of Landau’s original conformal mapping treatment of the laminar
state, in which the superconductor-normal interfaces are flared within the slab, and of a closely related straight-
lamina model. A simplified dynamical model is described that elucidates the nature of possible shape insta-
bilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those insta-
bilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability
commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the
elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest
several experiments to explore flux domain shape instabilities, including an Eckhaus instability induced by
changing the out-of-plane magnetic field and an analog of the Helfrich-Hurault instability of smectics induced
by an in-plane field[S0163-182@08)01005-4

[. INTRODUCTION bedded in a matrix of superconductor, whereas when the
same point inT-H space is reached by cooling beldw in

A long-standing problem in macroscopic superconductiv-a fixed field the normal domains connect to the sample
ity is that of understanding the complex patterns of flux pen€dges: These observations suggest that the patterns are not
etration in the intermediate state of a type-l superconductoitrue ground states of the system: The sample is not in true
This state occurs when a thin superconducting slab is place@ermodynamic equilibrium.
in a perpendicular magnetic field. Unlike type-Il supercon- Despite their ubiquity, until recently there has been no
ductors, in which the field penetrates through tubes each witkheoretical explanation for these patterns. The earliest at-
a quantum of magnetic flux, type-l systems form intricatelytempt, prior to the experiments described above, was Land-
branched and fingereshacroscopicflux domainst=® Thus, ~au's treatment of the laminar stdte periodic array of su-
instead of a Meissner phase, in which the magnetic inductioRerconducting and normal domaifiig. 2). Exploiting the
B=0 uniformly, the demagnetizing effects of the large as-translational invariance of the pattern along the stripes, the
pect ratio force the sample to break up into regions, some d§ross-sectional shape of the domain walls and the bending of
which are uniform|y Superconductir(g]ith B=0 |ns|de and the magnetic field lines become pUrEIy two-dimensional
others that are normaB( 0). Figure 1 shows a typical ex- Problems solved by conformal mapping techniques, yielding
ample of these patterns observed by decorationher im-  the free energy as a function of lamina spacing, applied field,
aging techniquegHall probed and magneto-optics reveal
similar structures.

The sample in Fig. 1 has an applied field close to the
critical field H; at which the sample would be completely
normal, so the minority phase is superconducting. Similar
patterns are observed wheih, /H. is very small, but the
minority phase is normal; the sample consists of branched
flux domainsin a matrix of superconductor. These have a
characteristic field-dependent finger width and threefold ver-
tices. More ordered domains may be observed in the pres-
ence of a small in-plane component of the applied field.

The domain morphology depends on the path in field-
temperature space through which the sample has been F|G. 1. Intermediate state of indium, in which superconducting
brought to a given point.For instance, cooling in zero field regions (black are decorated with niobium. The applied field is
below the transition temperature and then applying the fieldlose to the critical fieldl,/H.=0.931). Adapted from Haenssler
tends to produce patterns in which normal domains are emand RinderefRef. 3.
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H, Hohenberd® showed that the interactions between currents
flowing in thin slabs are long ranged. Thus vortices in a thin
film interact with a potential whose long-range form is un-
screenedy(r)~ 1/r, while at short distanceg(r)~In(A/r),
where A is a cutoff. Screening is unimportant at long dis-
tances because the interaction energy is dominated by the
electromagnetic field§n vacug above and below the slab.

FIG. 2. Laminar state in a thin slab. The applied field is Based on”these observations, we proposed re_&éraly
normal to the slab. An ordered laminar structure is obtained with an current-loop” (CL) model as an approximate description of
additional in-plane componet; . the intermediate state. The model treats the patterns as a

collection of tense current ribbons, interacting with the Biot-
superconductor-normal surface energy, and slab thickness.savart force O.f currents in free space an_d squgct to global
féux conservation. It is based on several simplifying assump-

This free energy depends on two parameters: the are . . ;
fraction of the normal state and the repeat distance of th ons. First, the domain walls are taken to be vertical, rather
an flared as in Landau’s calculation. Second, only super-

structure. For thick slabs, one finds that the equilibrium ared - .
fraction is set by the reduced fielt=H ,/H, . Deep within currents in those walls are considered: Surface supercur_rents

the slab the domain walls are aligned with the field, but the){.) llow f ) the slab thick
flare along with the magnetic field lines near the surface!'ONS allow foran averaging process over the siab thickness

Subsequent experiment found field-dependent widths in that maps the model onto one of self-interacting contours in
good agreement with theory. Stability calculations about thi he prllage. dSUCh _free-botl)JIndary apprr]oachessarf? weIITkn(I)wn
state are, however, precluded by the reliance on conformgf’ Y 2‘3 ynamlllc pro emfs S(;‘?f as ? man-Taylor
mapping techniques; no calculations of this type have bee n%smg'. as v;/e tashln reaction-di #S|ondsys emsf_. .
performed. Subsequently, and in light of experiments show- | Ide dlmpotrhan P O(Ianlor_r;errl\a S;Jhc "’}St om]:eun |s.sd|'on are
ing nearly circular flux domains, several calculations of thePreciuded in this modei, it has the virtue of providing a
energies of periodic arrays of simple geometric structure§Imple picture of the meCha”_'Sm of _shape instabilities in th's
were performed,showing that there is little thermodynamic system an a us_eful starting point for a more precise
driving force preferring one over the other. None of thesetreatmentl. It IS smkmgly §|m|lar to models of mterfac_:lal
theories offers an explanation for the appearance of branche; ttern fO.I’m?.tIOI’] in a variety of othe_r systems that_ display
flux domains. abyrinthine” patterns from a competition between interfa-

The features of disordered domain shapes and path depe ial tension and electromagnetic interactiohsThese in-

. . 120-24 . 5-27
dence to the patterns show that an understanding of the ir?—Ude magnetic fluid&)"** Langmuir monolayers,™*" and

termediate state requires a theory that treats théhin mngg_";‘;tﬁc ﬁlm.§'8 Itis aI:_so bbbl
superconductor-normalSN) interfaces as dree-boundary syste n Wh'Ch. chemical fron.tsbetvx_/een two Iocally
problem and addresses ttgnamicsof those interfaces. The stable stgt:g‘s form disordered labyrinths like those seen in gel
relevance of an interfacial representation, rather than a mo'rgactorsg. ’ .

In Sec. Il we set the stage for a macroscopic model of the

microscopic approach based on dynamics of the supercon-

: o termediate state by recalling both the sharp-interface limit
ducting order parameter and vector potential, is clear by th&! : !
strong separation of scalebetween the domain sizgypi-  ©F the time-dependent Ginzburg-Land@lDGL) model for

cally fractions of a millimeterand the width of the SN in- nonequilibrium superconductivity and the derivation of long-

terface. For a strongly type-l superconductor the width is se ange interactions bgtween currents in the, slab geometry.
by the coherence lengf) which is on the order of 0.2m. . he conf_ormal mapping SOI”“O” to_ Landaq s mode| of the
Recent studids® have emphasized strong Connections|ntermed|ate state and the simp#traight-laminamodel are
between the motion of SN interfaces in a magnetic fieldderived in Sec. Ill, with careful attention paid to the conse-
and the dynamics of solid-liquid interfaces during solidifica- 4U€Nces of thosg long-range mteracﬂqns. The 'free energy In
tion. The key to this relationship is the diffusion of mag- the two models is shown to be essentially equivalent, as are

netic field in the normal staté, analogous to the diffusion their predictions fqr the gquilibrium str_ipe width. The
of latent heat in crystallization. This suggests thadifiu- current-loop model is described and applied to the laminar

sional instability such as the Mullins-Sekerka instabifity state in sec. IV, V‘.’h"e instabiliti.es of single flux stripes and
should occur during flux invasion. Numerical studies of thethe elastic properties of the laminar state are found in Sec. V.

time-dependent Ginzburg-Landau model confirmed these inoection VI summarizes the experimental predictions and

stabilities, which can lead to highly ramified domain pat-°P€" ISSUES.
terns.
Asymptotic method$ also show that in the sharp- Il. PROPERTIES OF THE MACROSCOPIC MODEL

interface limit it is possible to integrate out the magnetic
field contributions and arrive at a nonlocal free-boundary
theory for the SN interface alone. The nonlocality is both The microscopic parameters in the TDGL model include
temporal and spatial, the latter given by a Biot-Savart interthe chargee* and massn of a Cooper pair, a dimensionless
action between segments of the interface. This form of couerder parameter relaxation time and the conductivityr of
pling reminds us that the supercurrents that provide théhe normal phase. The equations of motion for the order
screening of the applied magnetic field flow along the SNparameter/ and the scalar and magnetic vector potentigls,
interfaces. Many years ago Péérland later Fetter and andA are

A. The sharp-interface limit
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2 with terms proportional to the domain ar@a from the field
y+ay—blyl?y, and condensation energy, and perimétefrom the surface
(2.1) tension, while the distortion energy of the field lines is the
self-induction of the boundary, wit(R) = — (1/27)In Rthe

. ie* _h? v ie*A
N e am V-

VXVXA=4m(d,+Jq), (2.20  Green's function of the two-dimensional Laplacian.
A temporally local but spatially nonlocal contour dynam-
whereJ, andJ are the normal and supercurrents ics appears as well in a simpler reaction-diffusion system of

recent interest® 32 This is the FitzHugh-Nagumo modebf
the coupled dynamics of an activatoand inhibitorv in two
spatial dimensions

Jh=0(=Vg—3aA),

* * 2

Jm g (VU= UV - —[uPA (23

2mi u,=DV2u—F'(u)—p(v—u),

The parametera=ay(1—T/T.) controls the correlation
length  £=#/(2ml|a|)¥? and  penetration  depth v =V —v+u 2.9
A=[mb/dre*?|a|]¥% When¢ is small the SN interface is ‘ ' '
sharp; the inverse distance from the critical point measureghese partial differential equations are written in a rescaled
that smallness. Setting=a/e” and rescaling distances and form in which the activator diffusion constabt is normal-
fields with powers ofe, one finds that bothx and & scale  jzed to that of the inhibitor, while: is a ratio of their char-
identically. The sharp-interface limit is thefiA—0 with  acteristic times. The functioB(u), whose derivative=’ (u)
x=N\/§ fixed, distinguishing between type-k(1#2) and  gppears, is a double-well potential that describes the auto-
type-Il (x>1W2) systems. S catalytic bistability of the activator. Whes¥ 0, the coupled
Derivations of interface motion in this context presumedynamics is not a gradient flow in any standard form.
translational invariance along the direction of the field and so ™ The two systemg2.2) and (2.9) share many features. In
describe “bulk” superconductors. They show that far from  gach case there is a fiefg or u) with an underlying bifur-
the interface(the “outer” solution), the magnetic field in  cation (continuous fory, first order foru), coupled to a dif-
normal regions diffuses, fusing field (unscreened or screeneth the superconductor,
h.=DV2h (2.4 the second field can be integrated out in exchange for an
t ' ' instantaneous nonlocal coupling of the fieldd An identical
with D= 1/47. The boundary condition on the magnitude feature appears in the reaction-diffusion problem when the
h; of h on the interface is parametere is small, for then the inhibitor relaxes on times
short compared to that of the activator and is slaved.to
A _ Setting ev;=0, the field inhibitor isv=fGu, with G the
hlc=H. 1— F(O'SNIC‘FF vn) |, (29 Green’s function for the modified Helmholtz operator. This
¢ produces a nonlocal variational dynamics fou,
where ogy is the interfacial tensionkC is the interface cur- u,=— &/ éu, with

vature,I' is a kinetic coefficient, and,=n-r, is the normal

component of the interface velocity. 1 1

The equation of motion expressing, in terms ofr(s,t) 5[U]=f dzx[ > D|Vul>+F(u)— 592}
follows from a solution to the diffusion equatid@.4) given
Eqg. (2.5 as a convolution over past times and all space. 1 ) 9 , ,
WhenD— o (vanishing normal state conductivitythe tem- + EF’J d XJ d*X"u()G([x=x"u(x").

oral nonlocality disappears, yieldin
p y pp Yl g 2.10
- H2—H2 H2 RXt(s') _
I n-r(s,t)= s TosWT gz j; ’T, In the limit D—0 Eq.(2.10 reduces to a functional of the
(2.6) contours bounding regions in whiehtakes on values corre-
' sponding to the minima df. That functional of the position

with R=r(s)—r(s'). Equation(2.6) has the variational form vectorsr,(s) of domain boundaries 3&3°

1 SHeg
=T 2.7 AL{riH=y2Z LiTAFDY A

g i i
whereg is the interface metric and the effective interface p L
Hamiltonian for a single domain is 5 > dds % ds't-t;G(|ri—rj)),

L
H2_H2 (2.11
Hel1]=— —g—A+osi

H2 with 7the line tension andl; and A; the domain perimeter
_ e ey T and enclosed area. The nonlocal term is again the self- and
8w 3§ ds % ds't(s)-t(s")G(R), (2.8 mutual-induction of(here fictitioug currents.
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B. Long-range forces

As further motivation for the CL model, we recall Pearl’s
derivatiort* of the unscreened potential between point vorti-
ces in a thin film. The starting point is the supercurrent sur-
rounding a single vortex at the origin. The order parameter
has the simple form

P(r)=yof(r)e'? (0=<z=d), (2.12

whereyy, is the far-field value off, which vanishes for<0
andz>d. The functionf(r) describes the vortex core struc-
ture and we takd =1 on the(large) scales of interest. The
second Ginzburg-Landau equation is

o
2

(2.13 FIG. 3. Laminae in the intermediate state. Superconducting re-
gions are shaded. Reference poifts Q,, P;,, etc., are discussed

in the text. The dashed line shows the contour used for the energy
calculation.

VXVXA=47)= 6—Al.

\2
If the film is sufficiently thin, then we may average over the
film thicknessd to obtain

act” result, for flared normal laminae, can be compared to
o(2). (2149 simpler models of straight laminae and used as a test of the
current-loop model.
In this form, it is readily apparent from the appearance of the |n the semi-infinite geometry considered héfég. 3) the
term — (dA/NZ) 8(z) on the right-hand side that the screen-sample occupies the regi@x0 with its surface in the-y
ing is confined solely to the slab. plane. The applied field is perpendicular to the sample,

The solution to this can be obtained through the use of_| HaZ, producing an array of normal-superconducting

Fourier-Hankel transforms and yields the supercurrent laminae periodic in the direction, and straight alorg The
bo 21. normal and superconducting laminae have asymptotic widths
Js(r)z - W {Hl(r/A)—Yl(r/A)— ;

_ o -
VXVXA—F ﬁ 6—A

6, (2.15 a, anda, respectively, so the period of the entire structure
isa=agta,.

whereH,; and Y, are Hankel functions and the penetration Since the SN interfaces are sharp compared to the lamina
depth for the thin film isA =2\?/d. The interaction poten- spacing we work with the macroscopic Maxwell equations.
tial of a point vortex a distancefrom the first is obtained by In the normal region¥ XB=0 andV -B=0, which can be

multiplying Eg. (2.19 by ¢ and integrating, solved by introducing either the scalar poteniakhrough
¢> B=—V ¢, so thatV2¢=0, or the vector potentig through
%o B=V XA, which in the gaug® - A=0 satisfiesV2A=0. To

vin)= A g LHo(T/A)=Yo(r/A)]. (216 solve this Laplace equation in tlxez plane, we use complex

variable methods; for the laminar structure the only nonzero

At distanceg/A>1, this is an unscreened potential component of the vector potentialAs, and we introduce the

¢g complex potentialw= ¢+ig=¢+iA, so that the complex
- magnetic field is
whereas as— 0 the familiar logarithmic interaction between . dw )
vortices appears, B=B,—iB,=— a7 {=x+iz. 3.9
¢5 [ N . _
V(r)z_zA In oK (219  The boundary condition a&— is that the field becomes
4m the uniform applied fieldH,z, sow—iH  {. Since the mag-

with C being Euler's constant. We anticipate therefore thatetic field vanishes in the superconducting regions, continu-
the interactions between Meissner currents in a thin type-ity of its normal component implies that the field is purely

slab should have a similar long-range character. tangential both along the normal-superconducting interface
P,Q, and the “nose” OP, (Fig. 3. In the first case, the
IIl. THE LAMINAR STATE assumption of thermodynamic equilibrium at this interface
implies that the magnitudd , of the tangential component is
A. Landau’s free-boundary solution a constantas yet unknow) so that the vector potential, is

First, we calculate the shape and optimal spacing for ailso constant along any one interface. Along the nose the
assumed laminar geometry for the intermediate state. Whileragnetic field is parallel to the surfack € H,x) but with a
our work reproduces Landau’s original calculatfothe  varying magnitude. The fielt,, and the periods,, andag
method is quite different and provides an explicit expressiorare determine@ posterioriby minimizing the energy. They
for the functionf (h) (see below. We include this material in are constrained by flux conservatioHsa=H,a,, so for
part to clarify this derivation but more importantly this “ex- fixed external fieldH, the energy is determined layanda,, .
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TABLE I. Analogies between free streamline flow in fluids and lamina formation in the intermediate state

of type-I superconductors.

Free streamline flow around a plate

Laminae in superconductors

complex potentialv= ¢+iy
complex fluid velocityu—iv=—dw/d{

complex potentialv=¢+iA,
complex magnetic field=B,—iB,= —dw/d{

streamlines field linedlines of force

free streamline superconducting-normal interface

free streamline velocity) superconducting critical fieleH

region of fluid flow normal phase with nonzero magnetic field
cavity behind plate superconducting phase

Riabouchinsky flow lamina in a finite thickness plate

1. Exact determination of the lamina shape 1 dw

H
The position of the SN interface is not knowrpriori and T"H, H,dl 3.2
must be discovered in the process of solving the problem.
This seemingly formidable task is simplified by recognizing

. , : On the interfacd =1, and so sety=—e"'?, where®,
that our magnetostatics problem is formally equivalent to th%he tangent angléas in Fig. 3, changes as we traverse the
flow of an ideal incompressible fluid around an array of. P4

plates, the plates being the noses of the laminae. The fiel:xriqt?rfce fﬁg?ethgr?(?cw:nnfsQn ;:tglssp())rc;ﬁgcsez artr;eg!(;rcle
lines would be the fluid streamlines; the SN interfaces cor- 7 P - &x="1, S0 9 n"n
aps onto a horizontal straight line in theplane. There-

respond to “free streamlines” that have separated from th th . terior to th qucting lami
flow behind the plate. The full correspondence is given in ore, the regionexterior to the superconducting faminae

Table I. The shape of the free streamlines can be determiné@naprs] (:jnto thélaq}terig]r 0;. 6} semicircle, as shown in Fig(&
by using thehodograph methad3” which recognizes that ('€ nodographior the ield.

while the field lines in the, plane may be complicated, the T_he map ”O”? thev p_Iane onto they plane_: is_”_‘OSF easily
field configuration in thev andH planes is quite simple; a carried out by first taking care of the periodicity in the

conformal transformation mapping the plane onto theH plane by mapping it onto the plane with the transfprmation
plane leads to a relation betweenanddw/d{, the solution o=exp(ZmwH.a)~-1, so that theo plane has a single cut

of which determines the interface shape. Consider firstwthe along the positive real ax|§ig. 4(b)]. Next, map ther plane

: e nto the lower half of thex plane withx = (k*/o)¥? [Fig.
plane. Since the magnetic field is tangent to both the nosagéb)]’ wherek is set by boundary conditions. Finally, map
f

ment an he SN interf he magni fthe v )
segment and to the SN interface, the magnitude of the vect e n plane onto thex plane using the Joukowsky transfor-

potential is constant on these segments, as well as on t . . ;
centerline shown dashed in Fig. 3. Far from the sangia mation A= (1/7+ »)/2. To determine, we notice that as
z—», W— —, so thateo=—1 and »=H,/H, . Defining

fixed z—), Ay~H_x; therefore, for laminae separated by a:" 2 22 a2
distancea, the vector potential on the interface of thén ha=H./H,, we havek =(l.— hs)</4h;. _
lamina isA,=H,na. The potential$ behaves as-zH, as These transformations yield the complex potential
z—o, hence the laminae correspond to the positive half of

the ¢ axis. Figure 4a) shows the field configuration in the H.a

plane. Next we consider the plane and introduce the nor- W= 2 n
malized magnetic field

(3.3

(?+h2)(n*+h?)
(1+n%)?

The shape of the lamina is found using E8.2),

v [w
3aH, o =
2aH, \
a) ’ B f ’ \\\\ \
aH, = Z; , . Ren
N s ) Ima (A
b) b ? o Rec .
P Q¢

FIG. 4. w and o planes. FIG. 5. » and\ planes.
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df dfdw 1 1dw(yp) e e
dy dwdy  Hy7 dy :
04— h,=0.2
_a(1-h?? 1- 72 T ]
7 ha (P Hh ) (P +h)( 1) 0s =

(3.9

Integrating by a partial fraction expansion and fixing an in-
tegration constant witly(z=0)=0, we have

0.2

0.1 0.8
_dah,[ 1 [h,—in) hy [hit=ip ]
)= 2h, Mhating) T 2 M iy ool b u L]
0.0 0.2 0.4 0.6 0.8 1.0
1-iy z/a
—In 151/ | (3.5

FIG. 6. Lamina shapes calculated from E8.6).
which implicitly determines the magnetic fielgas a func-
tion of position¢. Though this parametrization differs from the factor of 4 in front of the integral accounting for the four
Landau’'s’*8 it is equivalent to and coincides with that of corners of the lamina. The integral is
Fortini and Paumiet® although the method of derivation is
entirely different. The equivalent fluid problem is separated 0 _ ™2 ag
flow past a plate placed symmetrically in a channel, whose f " dz=-— fo f_x( 0)
solution[Ref. 37, p. 39, Eq(253] is Eq. (3.5 above.
To calculate the lamina shape, recall the relation azha(l—hi) fﬁlzda
B 2772 0

as

dzdo
dé

n=—e"'% on the SN interface. Substituting into E@.5),
we obtain after a great deal of algebra two parametric equa-
tions for the interface position: tan (p cos 6)(1—cos 6)

cosf(1+p?cos 0) '

a (1—h2) 2h, cos @
x(¢9)=E 1-h,— % tan'? ﬁ , (3.9
a
where p=2ha/(1—h§) and the second line was obtained
a o (1 h2+ 2h, sin ¢ with Eq. (3.6). A partial fraction expansion and integrations
2(0)= 7| (1+ha)in| 77 h2—2h, sin 6 by parts reduce the integral in E(.9) to (m/2)[In(p+q)

—(g/p)In g, with g=(1+p?)¥2 The condensation energy

| ( cos § } a8 is then
—4ng In| —— 1| .
1=sing E. H2d HZd[a, a
The width 2o of the nose can now be determined from Eq. A 8w 8w §+ afc(ha) ' (3.10

(3.6) by setting#=0, with the result )
with

a a
b= (1—hy)— 5—(1—h2)sin }(2h,/1+h2). (3. —h?
2( a) 271_( a)Sin""(2h,/1+h3). (3.7 fc(h)zlz: [(1+h)2 In(1+h)+(1—h)? In(1—h)

Lamina shapes calculated from E.6) at different applied 5 )
fields h, are shown in Fig. 6. —(1+h9)In(1+h%)]. (3.1

2. Energy of the laminar structure The magnetic field energy is found by |ntegrat|B6’87T

: . over the space inside and outside the sample. For our peri-
_ The total free energy of the laminar state has cpntr_lbu-odic structure this energy per unit area is
tions from the condensation energy, the magnetic field,
and the SN interfaces. The first isH§/87-r times the vol- En 2 B2
ume occupied by the superconducting phase. If the SN A a J’CﬁdXdZ (3.12
interfaces did not bend at all, this energy would b(eHﬁ/

8m)(Nag)L,d, with N the total number of laminae arld,  where the factor of 2 accounts for the top and bottom sur-
the length of the sample in thg direction [note that the faces of the sample and the integral is over the érefione
sample has a total area=(Na)L,]. To this we add the cell (Fig. 3. In this two-dimensional geomet5'2=(VAy)2,

condensation energy lost from the thinning of superconductand withVZAy:O Eqg.(3.12 becomes a line integral around

ing regions near the slab surfaces, obtaining the unit cell boundarycC:
Eo_ Meda, 4Hc (oo, dz, (3.8 En_ 2 f A(s)Bq(s) d (313
A 8w a as8mw —wl| 2 X(z) |dz, (3.8 A 8wa s y(s «(S) ds, .




3064 ALAN T. DORSEY AND RAYMOND E. GOLDSTEIN 57
with A (s) the vector potential on the boundary aBd(s) Y
the tangential component of the magnetic field. r 1
The advantage of this representation of the field energy is - .
that the vector potential isonstanton the boundaries and 0.03 [ f ]
can therefore be brought outside the integral. Let us consider r ° ]
the various contributions to the integral. On the SN interface - .
(segmentsQ’P’ and PQ) the integral/B.ds vanishes, as g 0.02 — fL ]
the field points in the same direction on the left and right h i Jo— 1
halves of the superconducting lamina. On the midline be- - ) 1
tween laminaen—1 and n, the vector potential is oot~ f 7ty v\ -
H,a(n—1)/2, while on the next midline up it is [ / % 1
H.(n+1)/2; the integralfB.ds is equal in magnitude but N/ N\
opposite in sign for these two segments since the integration ool bl b 10N
paths are in opposite directions. Adding these two contribu- 00 0z 04 06 08 10
tions and usin@Bs= — d¢/Js we have h
E, Ha FIG. 7. Functionsf (h) in Landau’s model,fy(h) in the
T: E[gb(a/Z,— di2)—¢(al2L,/2)], (3.14 straight-lamina approximation, anfd, (h) from the current-loop

model.
whereL, is some large distance away from the top surface of
the sample. The entire calculation of the field energy then
reduces to finding the asymptotic behavior of the scalar po-
tential along one of the streamlindthe midline, in this
casg. Examining the behavior of E43.3) for the complex
potentialw and Eg.(3.5 for the position{, as »—1 and

Eme  HE 2Ad

A 8r a (3.19

Summing the contribution&3.10, (3.17), and(3.19 and
using flux conservation, we find

n—h,, we find the asymptotic behavior
¢(al2L,2)~—H,L,/2—(H,al2w) ¢, , where E Hgd[ a, e a}
¢, =In4+(1+h2)In(1+h3)—(1+hy)? In(1+hy) A 8w a an
—(1-hy2 In(1—hy), (3.15 a H3
2)” In(1=h, t2| Sy 2fc(ha)+H—2fma9(ha) , (3.20
and ¢(a/2,—d/2)~—H,al2— (H,al27) ¢_ , where c

with h=H,/H.. Minimizing this with respect to both and

a, results in very cumbersome expressions. Instead, we
minimize the first term in brackets with respectp, which
yields a,=ha, so thatH,=H_ (andh,=h). This is the re-
sult used by Landau and is reasonably accurate as long as the
2 surface and demagnetizing energies are small. Substituting
(3.17  backiinto the energy, we obtain

¢_=(1—h,)? In(1—h,)+ 2h, Indh,

—(1+hy)? In(1+hy). (3.16

Substituting into Eq(3.14), we have

Em_Hi  HoHa  HG
A 8r o gr 0T gp2fmada)

A

with g+gfL(h)}, 3.21)

E HXd HH.d H
A 87T+ 41 +47T

h
fmag(ha)zﬁ[(uha)?» In(1+h,)—2h, In 8h, with

—(1—hy)® In(1—hy) — ha(1+h2)In(1+h?)]. fL(h)=2fc(h)+Tmadh)

(3.18

The first term in Eq(3.17) is the energy of the external field

in the absence of the sample, which is of no interest and

= i[(1+ h)4 In(1+h)+(1—h)%n(1—h)
4

—(1+h?®2In(1+h?)—4h2Ingh].  (3.22

henceforth neglected. The second term is the bulk magnetic

field energy of a uniformly magnetized sanffflend the
third arises from demagnetizing fielddue to the partition-
ing of the sample into domains

Finally, we calculate the surface energy.dfy is the

This function is plotted in Fig. 7. Its asymptotic behavior
ash—0 is of interest in comparison with other approaches
and has the formf (h)=(h? )In(0.56h). Finally, the
equilibrium laminar period is obtained simply by minimizing

surface tension, then the energy for a single interface igith respect taa, yielding

osndLy . * Since there are two interfaces per lamina &hd

laminae in the sample, the total interfacial energy is

205\dLyN=20gyA(d/a). Introducing the length, essen-
tially the width of the interfaces, througdnSN=(H§/87-r)A,
the interfacial energy per unit area is

(3.23

Ad 1/2
a*= —}

f(h)

This implies that the spacing diverges for sntalas
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(Ad)Y? T 12 thickness calculation is equivalent to Riabouchinsky flows
* = h In(0.56h) (3.29 aroundtwo plates, the details of which are found in standard
references’
B. Energy of a straight-lamina model
It is useful to compare the results from the Landau model IV. THE CURRENT-LOOP MODEL

to an alternativestraight-lamina modelin which the seg- . ) .
mentsP,Q, of Fig. 3 are made straight. In this model the Thga analysis abov.e of the laminar state shqws that in ac-
field is still tangent to the SN interface, but the magnitude ofcounting for the flaring of the normal domains Landau’s
the field is not constant along the interface. The field and thé&'ee-boundary approach yields a lower-energy structure than
complex potential can be obtained using standard conformd model with straight walls. However, the analytical and nu-
mapping methods; the problem is equivalent to an ideal fluidnerical differences between the two approaches are minor.
flowing in a channel with an abrupt st&pThe solution is In both models the supercurrents flow along the SN inter-
facesand on the top and bottom surfaces of the santpf&.

_Haa 7 +1 (3.25 Just as the magnetic field in a solenoid is more uniform when
W= 7>+hi)’ ' itis a tall thin cylinder than when it is short and wide, so too
the contributions from circulating currents along the SN in-
a, iah, n+i 1 [ np+ih, terfaces should _dominat_e when the flux domain_s are narrow
== —]——1In - . and tall, at low fields. This suggests that the basic physics of
2 27 n—i hy '\ 7»—ih,

the laminar state can be understood from those circulating
Under the simplifying assumption théi,=H., the total  currents alone. We now develop this current-loop model and
energy in this model is show that it rather accurately reproduces the results of Lan-
dau’s model, an important test of an approach that can easily

E H3d HH,d HXA[A a be generalized to SN interfaces of arbitrary shape.

—=— + —+ = fy(h)|, (3.26

A 8w 4 47 |a d

with A. Energetics of the current-loop model
h In this model, as above, the intermediate state is described
fo(h)==—[(1+h)2 In(1+h)—(1—h)2 In(1—h) in macroscopic terms, but now the SN interfaces encircling

2 each of the normal regions belong to a §&} each with
—2h In 4h]. (3.27) areaA; and perimeteL;. The two phases occupy volumes

Vg and V,=dZ;A;, with V,+V,=V. Parametrizing each
This function is plotted in Fig. 7 for comparison with Land- boundary by arclength, the position vectors of the interfaces
au's result (3.22. At small h it behaves as arer;(s). As in the straight-lamina modet; is assumed
fs(h)=(h? )In(0.68h), very close tof, (h). The total en- independent of, neglecting the flaring of the domain walls
ergy (3.26 has the same qualitative dependence upon theear the film surfaces.
lamina spacinga as the Landau model, although the latter The total energy i€[{r;}|=E.+Ej+ Ep,, a sum of the
has lower energy for any reduced figid condensation enerdy., the interfacial energ¥;.;, and the

magnetic field energ¥,,. As before,

C. Lamina shapes in finite-thickness plates

In the analyses above we assumed that the superconductor H2 H2
slab is sufficiently thick that th_e_sha_pes of the lamina ngls Ec:VS—CPn, EintZS_CAdE L, 4.2
can be computed as for a semi-infinite slab. When the thick- ™ ™ [
nessd becomes small enough the wall shapes will change.
From the asymptotic behavior of the semi-infinite solutions

(3.6), we deduce that the thickness approaches its asymptotf€répn=An/A is the area fraction of the normal phase and
values forz— — < as E. is measured with respect to the purely superconducting

state. Flux conservation relates the field in the normal re-
a 4h, gions to the applied fieldd ,=H,/p,, and by the tangential
E(l—ha)—x(z)~ —exp(wz/ahy). (3.28 continuity of H across a SN interface the field in the super-
o . . . . .
conducting region i$l;=H,. The perfectly diamagnetic su-
The decay lengtlah, /= should then determine when finite- perconducting regions each have a magnetization
slab thickness effects become important. The asymptotic reM = — (H,/4w)e,, related to the(Meissney currents that
sults show that the produeth vanishes very slowlyloga-  flow along the SN(and top and bottom samplboundaries.
rithmically) as h—0, so that while such finite-thickness = We compute the magnetic field energy as a sum of two
effects become important in that limit, practically the rel- contributions, the first of which is that of the domain mag-
evant fields are very small. The crossover fiddd for  netizations M in the presence of the external field
ah,/7=d is on the order ofh,~0.56 expf-A/md). For  (—fd® H,-M). The second is the self- and mutual induc-
h=<h, the slab thickness has no significant effect on the dotion of the current ribbons. Expressing these in terms of the
main wall shapes. In the fluid dynamical analogy, the finite-macroscopic quantities,,, etc., we have
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: 1 (d [(d
®(RId)= 5 fo dzJ0 dz/[R%+(z—2')%]" %2

=sinh }(d/R)+R/d—V1+(R/d)?, (4.4

whereR=|R| with R(s,s’)=r(s)—r(s’) the in-plane vector
between points labeled bys and s’. As discussed
elsewheré; this potential is Coulombic foR>d, ®~d/2R,

but for R<d, ®~In(2e"d/R), with the film thicknessl act-
FIG. 8. Current loop. ing as a cutoff. Note the interesting parallel with Pearl’'s
vortex interaction potential2.16) in thin films. The appear-
ance of the potentia® in the free-boundary approach to a
number of other system(see Table )l offers an explanation
for the similarity in their behavior.

En=V

1 f ] _ - .
_ _MZE dzf dz’ § ds 35 ds’ B. Current-loop description of the laminar state

Now we calculate the energy of the laminar state in the
4.2 CL model, using the same geometrical quantities as before.
The nonlocal magnetic contribution is the only difficult one.

R It proves convenient to return to the self-induction form of
where M =—H/47. The unit tangent vectorg(s) to the the current ribbons and to introduce a Fourier representation,
current ribbons label the direction of the current flow. By thewhich for a uniform laminar structure yields the magnetic
usual screening processes in superconductors, the directifield energyE,, per unit area
of the flow is so as to cancel the applied field in the super-

conducting regions and augment it in the normal regions E;, i J d j q J d
(Fig. 8. Of course, the scalar produgti; is invariant under A ? N y],dz), dz
the overall reversal of the parametrizatiors{—s). The 5
free-space current-current interaction is Coulombic, with d>q 477 ailnga+ayy+a,(z-2)] ia.a
_ N 12172 - X baTdyy+az (1—e'%3n),
Rij={[ri(s)—r;(s")]°+(z— ')} Performing thez and 2m)3
Z' integrals, the field energy becomes 45

Several straightforward integrations reduce this to

En=V

[1 cos(277nan/a)]
ns

HVERS dsﬂgds’fi-f,@(Rij/d), @3
N +e727'rdn/a_1 . (46)

where now the elementary free boundaries @watours in  Note that the last term contains all of tdedependence of
the plane interacting with the potential the sum. The leading contribution in the limit of large slab

TABLE Il. Analogies between interfacial energetics of type-1 superconductors and other systems. The energy{ b Jacdetomains
is written asE[{r;}]=IIS;A;+ y=iL;— 3Q¢dsfds't;-1;®;;(R;; /£). The symbols denote the following:ogy,, ferrofluid water surface
tension;M, ferrofluid magnetizationy, g, line tension between liquid expandédE) and liquid condense.C) phases in a Langmuir
monolayer;Au, discontinuity in electric dipole moment density between LE and LC phakgg; a molecular cutoff of monolayer
thickness.

System IT y Q D 3
type-l superconductots (H2d/87) (pn+h?py) H2dA/87 H2d/8x? sinh {(1/2) +z— 1+ 722 d
magnetic fluid8 Lagrange multiplier dopw 2dM? sinh Y(1/2) + z— 1+ 22 d
Langmuir monolayefs Lagrange multiplier YiELC (Ap)? 1/2z° Aol
FitzHugh-Nagumo mod@l AF D p Ko(2) 1f

3Present work.

bReferences 23 and 24

‘References 26 and 27.

YEquation(2.9) and Refs. 29 and 30.

€This limiting form is supplemented with a cutoff procedure. See Ref. 27.

The system of units in E¢(2.9) sets the inhibitor screening length equal to unity.
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thickness is a “bulk” contribution expressible simply in is that of the initial condition, and a single energetic param-

terms of the stripe dimensions eter, the reduced magnetic fihd All other parameters sim-
ply rescale time.
“. 1-cog2mna,/a) a(a—a,) In this model, the interface velocity is
> 2 =m' . (47
n=1 n a i gd
It follows that the form of the free energy is like that in Egs. n-ri(s) 87777(1] AK(s)

(3.20 and(3.21), but with a new functiorf, 1
——— O ds'Rxt(s"V(R/d)}, (4.9
1 sirf(nah) . 2md fﬁ

f h,d, - _ 727md/a.
ahda)=55 2 ——5[1-e ! with K(s) the curvature ant (&)=’ (£)=1— (1+ £ 2)12

(4.8 the generalization of the Biot-Savart force to finite-thickness

. P slabs?® The pressure term is
As in Landau’s calculation, finite-thickness effects show up

whend is comparable t@. 1=h2/p2-1. (4.10
There are several noteworthy features of the function

fcu(h), particularly in the limitd/a>1 considered here. The kinetic coefficienty may be estimated from results on

First, as shown in Fig. 7, it is rather close to the Landauthe bulk properties of strongly type-1 systems,

function and hence its implications for the equilibrium lami-

nar thickness are in reasonable accord with experiftfent. HﬁdA Th
Second, it has the same structure & as h—0, U P T (4.17)

fcL(h)=(h?/27)In(0.71h). Third, it has arexactsymmetry
under the transformatioh—1—h, a reflection of the where agairT is the critical temperature arg)}, is the bare
straight SN interfaces presumed in the model. This symmetrgorrelation lengtif®
is absent in Landau’s calculation and in the straight-lamina A contour dynamics such as E@.9) is readily general-
model by virtue of the currents on the slab faces. Finally, thézed to account for surface tension anisotropy, a material
form of the magnetic field energy in EG.6) is identical to  feature that has long been suggested to play a role in the
the field energy of a stripe array in a thin ferromagneticmorphology of the intermediate state pattetras it does in
film. 4344 problems such as dendritic growthWhen the anisotropy is
g-fold, the parameteA has the formA=A 1+ e cosQé)].
C. A dynamical model Typical experiments show@=4 or q=6 anisotropy.’ Our
. ) intuition suggests that the variation ofsy through A will
The competition between surface tension and selfyiag instabilities towardy-fold symmetry and lead to pre-

induction in the current-loop model appears in a number Ofgreq orientations of flux stripes produced from those insta-
other contextgTable Il), where it has been shown to produce jities.

also a rich dynamical behavior. While the precise connection
between the Young-Laplace and Biot-Savart forces and the
interface dynamics depends on the physical settir(g.g.
Hele-Shaw flow with Darcy’s law, surfactant monolayers Two regular geometries of flux domains have historically
with coupling to the fluid subphase, and reaction-diffusionbeen of interest: circles and stripes. In Sec. V we consider in
systemy, the phenomenon of branching instabilities produc-detail the stability of stripes and stripe arrays; here we focus
ing disordered lamellar structures is ubiquitous. This sugen fingering and branching instabilities of circular domains.
gests that much can be learned from the very simplest dySince linear stability analyses for circular interfaces have
namical law for interface motion, thdocal dissipation been presented in detail elsewhere in the context of closely
model?®in which a local viscous force acting at the interface related model&?-242527-3Qye do not repeat them here. Two
balances the pressure difference, expressed as a functiorialportant qualitative results are that for a given domain ra-
derivative (2.7). dius and slab thickness) there exists a finite applied field

A first step toward a full study of thenany-interface above which azimuthal modes become active @ndnsta-
current-loop model is the simplest mean-field description obilities of increasing mode number occur with ever larger
a singlecurrent loop. That loop is assigned to a dglhalo- applied field. Numerical studies of the contour dynamics il-
gous to a Wigner-Seitz cgllof areaA. from which we lustrate these properties and allow us to see the highly non-
compute the area fraction,=A, /A . In this approxima- linear regime far beyond the instabilities.
tion, the self-induction of the loop is retained, but the mutual An efficient numerical method for studying this nonlocal
induction term in the energy associated with all other loopsnterface dynamics has been described in detall
only contributes a bulk energy term like that in the laminarelsewheré/° It uses pseudospectral techniques to solve for
calculation(4.7). Moreover, the amplitude of the circulating the time evolution of the local tangent angt€s), from
currents is taken to bkl rather than the actual local field, which the[x(s),y(s)] coordinates of the interface are com-
equivalent to assuming that the actual area fraction is near ifsuted by basic differential geometry. For the purposes of
equilibrium value. The system is then characterized by averifying the analytical stability results as well as investigat-
single geometrical parametpr 2R.q,,/d describing the as-  ing such phenomena as mode competition, the initial contour
pect ratio, wherRy,, is the radius of the circle whose area is given a curvaturekC perturbed from that of a circle,

D. Instabilities: Numerical studies
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(ttree, g :

(c)
0.6 T IIIIII| 7T Illllll LI lIIIII| 1 llﬂlll T . . . ) B
:(d) ] FIG. 10. Branching instability with fourfold surface tension an-
____________C________- isotropy (e=0.1). Arrows indicate easy axes.
b 5 a fourfold vertex, it subsequently fissions into two threefold
B . vertices that move away from each other. The branches of
- - the pattern have oriented themselves with respect to the low-
C a ] tension directions determined by the anisotréipgicated by
T T T T s arrows. The instability of vertices of higher order than three
0.0 L i L1 |||n| Lot |||n| | |||||| L is a common feature of dip0|ar SyStemS.
1073 107% ¢ 107! 10°

V. PERTURBATIONS AROUND THE LAMINAR STATE

FIG. 9. Numerical studies of the current-loop model at aspect
ratio p=5.0. Dashed circles iii@)—(c) indicate the unit cell(a)
Stable relaxation of a nearly circular initial condition to a circle of
smaller radius(b) elongational instability of a circular flux domain,
(c) branching instability, andd) time evolution of the normal area
fraction p, for cases(a)—(c). Dashed lines indicate the relation
pn=h determined by the bulk energetic contributions alone.

In the absence of an in-plane magnetic field, flux domains
in the intermediate state often have the shape of buckled
laminae. The conformal mapping algorithm for the laminar
state is not generalizable to such truly three-dimensional
structures and there does not appear to have been any stabil-
ity calculation of the laminar state. In the following sections
we compute the linear stability and linear elastic properties

. . f fl tripes.
K(a)=1/Ry+2,-,[a, cosfia)+b, sin(na)], where Ry is Ot TLx Stripes

the unperturbed radius ang=s/R,.
Figure 9 shows three basic phenomena described by the A. Energy and stability of a single flux stripe
contour dynamics. The firgfig. Aa)], is the relaxation ofa  consider first a single flux stripe as described by the
weakly perturbed circular domain whose initial area fractioncyrrent-loop model, with widthv in the x direction, length
is not at equilibrium. Thistablerelaxation to a circle occurs i the y direction, and the plate spacirdy The reduced

if the applied fieldh is below ;he instability value. . energyEEE/erSNA due to the self- and mutual induction of
Apart from a small correction due to surface tension, the[he currents flowing along the edges is

area fraction at long times s,=h [Fig. 9(d)]. The elemen-
tary elongationalinstability of a circular flux domairFig. 1N
9(b)] that occurs at higheh is one means by which finite =_-__1B Jw _ [(25 2
stripes may form in the intermediate state. The area fraction = a a Jo A ()~ P(VeT+an)], ®3
evolves towardp,,=h, but now the deviation is significant
due to larger contributions from the Biot-Savart integral. Thewhere a=w/d and Ng=2M?2d/ogy is the dimensionless
curious feature of bulbous tips to the stripe is a rather commagnetic Bond number. Integration yields
mon observation in dipolar systems. It suggest that the insta-
bility is related to the fissioning of the original circle into two 15 T T
smaller ones. Energetic arguments based on this picture i ]
show that it rather accurately predicts the onset of this I e
instability?” The third phenomenon is tHeranchinginsta- | ]
bility that occurs for still higher values df [Fig. 9c)]. The 0], o -
initial condition for this simulation was a circle perturbed [ |
with a small-amplitude mode of azimuthal number 3. Rapid
growth of that mode is followed by relaxation to “arms” of
rather uniform width. The angles of the three arms forming
the vertex are close to 120°, as is typical in systems governed
by surface tension. We conclude from these studies that a
physical mechanism to produce the branched and fingered
stationaryshapes of flux domains in the intermediate state is
the mechanical instability illustrated in Figs.a®-9(c).

Finally, Fig. 10 shows the effects of surface tension an-
isotropy on the branching instability of the same initial con-  FIG. 11. Stripe energy density as a function of stripe width, for
dition as in Fig. 9c). While the time evolution first produces various magnetic Bond numbers.

E(a)d/27A

4 5

N N
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FIG. 12. (a) Peristaltic andb) serpentine perturbations of a flux E super- | Tulds monolayers 3
stripe. (c) lllustration of the change in stripe width upon a uniform 1072 Lol vl vl vl vl isd vond v i
rotation. 10721072107 10° 10 10® 10® 10* 10° 10°
w/d
=_ Br 2 -2 —1 2
E= ;-ﬁ- E[a In(l+a %)+4a tan = a—In(1+a”)]. FIG. 13. Critical Bond number for serpentine instability as a

(5.2) function of stripe size. Typical values wof/d are indicated for three
_ experimental systems.
Figure 11 show£(«) for various Bond numbers. The mini-
mum of this energy becomes sharpemgsincreases. Mini-

—_ B
mizing E with respect to at fixed areaA yields a relation X (1= 5 ye)lq'- Ea2q4 In(z q)

betweena andNg,
+0(q%q% In q). (5.6
No 2 “2)4] 2)]1=0 3
1= 7 le?In(l+a %) +in(1+a)]=0. 5.3 Serendipitously, the condition of stripe equilibriui®.3)
is precisely that which sets the coefficientgsfin Eq. (5.6)

Now we connect this result to stripe stability. As shown inequal to zero. This can be interpreted as a consequence of
Figs. 12a) and 12b), there are two classes of small distor- rotational invariance. Note that by assigning the same func-
tions. The firs{(*peristaltic” ) involves antisymmetric pertur- tion /(y) to the two edges of the stripe we have maintained
bations and changes the local stripe width. This will be ofits width atw to linear order in, but not to quadratic order
higher energy than the symmetiior “serpentine”) distor-  (Fig. 12. Now a uniform tilt of the stripe edges,=const
tions of Fig. 12b), which preserve the width. It is most con- [Fig. 12c)] leads to a width of the rotated stripe

venient to calculate the linearizédrce acting on the inter- ' =/ /1+ gyzzw_(w/z)g)2/+... . This tilt will cost en-
face, using Eq(4.9). ergy through the “bulk” term E(w) in Eq. (5.1) as

After a ceremony of relentless algebra we obtain the forc (W') — E(w)=— (W/2)E' (W) {2, whereE'=dE/dw. The
associated with a monochromatic perturbation of reduced ssicient ofq? in Eq. (5.6 2 an effective line tension
wave vectorg=dk; for serpentine perturbations, associated with an enérgy '

aq
Fo(q)=02—2Ng{ ye+In| —— | +Ko(q) +K 1
s(Q) q B[ YE zm O(q) o(CYQ) E= Eyeﬁf dy§)2/ (57)
—Ko(V1+aZq) |, (5.4) Rotqtional i.nvariance thus .s_ho_ws thqt the_ apparent surface
tension vanishes at the equilibrium stripe width. The terms at

0(qg* look like a bending energy,
and for the peristaltic perturbation, (@) g gy

1
E~3 f dy &2, (5.9

Fp(Q)=q2—2NB[ —yetin )—In(q/Z)—Ko(q)

23
V1+a?
an interpretation spoiled by the temft In(g), which reflects
—K T Ka(V1+a2a) . 5 the nonlocality of the magnetic interactions.
o)+ Kol “ q)} (69 The force for peristaltic perturbations has a finite value as

o _ ) g— 0 reflecting the compressibility of the stripe. The small-
In the limit of smallq for serpentine perturbations, q expansion is

N
Faq)=1{1— —[a? In(1+a ) +In(1+a?)]}q? a?
4 FpZ—ZNB In mz

N
+i1— TB[a/Z Ina—(1+ a?)

_B 2)2 ?)—a* In(a?)—6a? It a2
541(1+a)?In(1+a?) —a" In(a?) - 6a XInV1+ a2 g2+ 0(q%q* In q). (5.9
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The equilibrium value of the stripe width deduced from fects, and defect structures have been considered. We expect
Eq. (5.3 defines the boundary of stability of stripes to ser-many of these same phenomena to occur in the laminar state.
pentine perturbationd=ig. 13). At fixed «, instability occurs Since published calculations exist of the elastic moduli for
with increasingNg and likewise at fixedNg it sets in with  striped phases in two-dimensional dipolar ferromagtiéts
increasinga. The figure shows aspect ratiasorresponding and in ferrofluids®>* and the calculation for the laminar
not only to type-I superconductors but also to magnetic fluidgphase is identical, we include here only the final results. The
(with slab thicknesses and stripe widths in the millimeter tobending modulus is
centimeter rangeand Langmuir monolayerévith domains

tens of micrometer across andrelecularthickness. 3M%a® & sir® mwh 27dm
At its equilibrium width, the energy of small distortions is Ki=—5a mzl w11 1+(
positive, vanishing ag—0. It seems impossible to find a
field at which the stripe would be unstable to a finite- 1(2mwdm)? Cordmia
wavelength modé the stripe width has its equilibrium value + 3\ a e ' (5.11

(5.3. Fortuitously, the elegant experimental observations on
buckling instabilities in Langmuir monolayéfshave shown Wwhere the magnetization i = —H /47 and the equilibrium
what happens when this equilibrium is not reached. Thosspacinga= yAd/fc, with fc (h,d,a) given by Eq.(4.9). In
observations concerned the dynamics of buckling when th#éhe thick-film limit this becomes
temperature was slowly increased. Since these systems are
near a critical point of phase separation, small temperature 3M2a3 2 sir?
' . TR a Sirne marh
changes produce large changes in the discontinuity in dipole = . E — (5.12
densityAu between the phases and in the line tension. These 87" m=1 m
directly affect the stability of stripes, quantified by the asso-
ciated electric Bond number. It was observed that slow temThe bulk modulus is
perature ramps produced no buckling, while rapid heating

showed buckling. This implicatésmass transport as a rate- 2

N . ) ; ) I (EcL/A)

limiting step as the stripe width adjusts to keep up with the B=a’l—5—

temperature. Under rapid ramps, the width is out of equilib- oa h

rium, yielding a nonzergand potentially destabilizing-oef- 242 -

ficient of g%. In the laminar state, we speculate that in the _Aosd _ 2M7d inl 1+ S'nz—Wh . (513
early stages of flux penetration such a mismatch between the a sinit(md/a)

actual and equilibrium widths allows the buckling instability

to occur. For thick films this becomeB=4og\d/a. The bending and

bulk moduli may be combined to form the length scale

X =K,/B, a persistence length for distortions of the lami-

_ ) nar structure(not to be confused with the superconducting
The CL model can be used to determine the elastic proppenetration depdh In thick films,

erties of the laminar state by considering as in Fig. 12 smal

B. Elastic properties of the laminar state

displacementsZ;(y) of the SN interfaces. In the long- "
wavelengthcontinuunm) limit, ¢;(y) becomes a displacement 2 Sir2(marh)/m®
field u(x,y), with an elastic free energy - m=1
)\2/a2=32772 - (5.19
,[B 1,\% Ky, >, sirf(mmh)/m®
]-"e|=J der > Uy + Euy +7uyy , (5.10 m=1

with B the bulk (compressionalmodulus and, the bend- C. Dislocations in the laminar state

ing modulus. This result applies to serpentine perturbations |, the |laminar stafeone often observes edge dislocations,
of the lamina; peristaltic perturbations are gapped like optiywhere half of a normal lamina has been inserted into the
cal phonons and do not contribute to the long-wavelengthaminar structure. The elastic theory also determines the dis-
properties. This form of the free energy could have beemacement field of such a dislocation; our calculation closely
anticipated from the single stripe results of Sec. V A; in par-fo|iows the analogous problem studied in the context of two-
t|c2:u|ar, we see that distortions in thedirection appear as gimensional smectic liquid crystalSWe begin with the lin-

uyy [or kylu(k)|? in Fourier spack again signifying that the  earized Euler-Lagrange equations for the defect displacement
effective surface tension is zero. The nonlinear terms ar@eld u®(x,y),

required to preserve the rotational invariance of the free en-

ergy (note that we are considering elastic properties in the b ~2 D )

absence of an in-plane field, although such a field is typically Uy N “Uyyyy=mad’ (x) 6(y), (5.19
necessary initially to produce the ordered lamjn&sguation

(5.10 is identical to the elastic free energy of a two- where the source term on the right-hand side accounts for the
dimensional smectic liquid crystal,a useful analogy as the presence of the dislocation in such a way that the line inte-
properties of smectic liquid crystals are well studied; prob-gral of Vu around the dislocation ima (Burger's vectoy,

lems such as mechanical instabilities, thermal fluctuation efwith m the number of half sheets inserted aadhe lamina
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spacing. Solving Eq(5.15 with Fourier transforms® the  nae attempt to reorient. This is like the Helfrich-Hurault ef-
result isuP(x,y) =mG(r), with fect in smectic liquid crystal®) wherein a field component
normal to smectic layers, producing a torque on them, in-
a _ duces an undulatory instability.
G(r)= 7 sgr(x)[erf(y/V4N]|x|)+1]. (5.16 (iif) The Eckhaus instabilitylf the normal magnetic field
is slowly changed in magnitude the stripe width and spacing
must adjust to stay in equilibrium. As in convective
systems, this may occur through an Eckhaus-like nucle-
: . ation phenomenon to create or destroy laminae. Dislocations
density m(r)==;m;6(r—r;), so that the Q|§plac§ment can be produced that will move toward the sample edges or
f|eId2 is ,obtalned’ by linear ~superpositionu™(r)  gpnihilate at the center in accord with the direction in which
=/d*r'm(r")G(r—r'). The free energy; of the defectsis  the wavelength must adjust. Their climb and glide dynamics
then obtained by s;ubsntutlm?:jD into the the elastic free en- \yij| provide an important testing ground for the theory of
ergy ansg using the “harm_omc conjugate” trick of Toner and jhterface dynamics.
Nelson™™ The final result is (iv) Critical-point effects.In the simplified contour dy-
namics in which the local field is taken to b&., the Bond
1 5 5 number depends only on the ratitdA(T). Near the zero-
}—DZE J d°ry f|r . |>ad ram(ry)m(rz)U(ry—r) field superconductor-normal critical temperature the interfa-
v cial width A(T) diverges as T.—T)/T.. This should pro-

For a collection of dislocations centered afr;}
with strengths{m;}, we may introduce the dislocation

5 5 duce characteristic changes in the equilibrium stripe width as
+EDJ d“rm=(r), (517 \ell as possible instabilities.
] . o We close by emphasizing what ha®t been accom-
where the interaction potential is plished here. First, we have considered laterally infinite
samples, ignoring the whole issue of flux penetration at the
a2B [ N \Y? ) = edges. This can be very significant in both type-I and type-II
U(r)y=— (_) —y“lanx| (5.19 superconductoris. A treatment of these effects requires not
4 \7lx only the electromagnetics of fields near the slab edges but
also consideration of processes such as domain fission. Sec-
and the defect core energy is ond, we have presented an oversimplified dynamical picture
in which diffusional instabilities are absent. The interplay
B _ 1 T\ 12 between the Mullins-Sekerka and these mechanical instabili-
Ep=5% f d?r[N%(Gy,)?+(Gy)?]= —=Ba? —) ties has not been considered theoretically and may shed light
2 8\m a on various problems in flux domain pattern formation. Third,

(5.19 a large-scale numerical study of the many-domain problem
) has not been attempted, precluding a clear understanding of
The core energy can be calculated as a function of the rene trye “energy landscape” of this strongly interacting sys-
duced fieldh by using the results of Sec. VEEGs.(5.13  tem. Fourth, the effects of in-plane components to the ap-
and(5.14]. A rough estimate shows that this energy is gen-pjied magnetic fields have not been incorporated into the
erally of order 10%(HZ/87)a® and can therefore be quite free-boundary approach in any quantitative way. This will be
small; as a result, it should be easy to nucleate dislocations important for an understanding of the instabilities described
the laminar phase. above. Fifth, the extension of matched asymptotic methods
used in purely two-dimensional systems to the slab geometry
VI. DISCUSSION of the intermediate state has not been developed and would
reatly clarify the free-boundary approach to flux domain
apes. Finally, coarse-graining approaches to domain dy-
namics analogous to Otto and Kohn's recent study of mag-
;g%tic fluid pattern formatiot?®® may prove quite fruitful.

The free-boundary approach to the intermediate state h
led to a picture of the shape instabilities of individual flux
domains and ordered arrays. In addition, the corresponden
with smectic liquid crystals suggests phenomena that shou
occur in type-l superconductors. Below we suggest experi-

ments to visualize th_ese effects, s'ga_rting from the ordered ACKNOWLEDGMENTS
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