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Acoustic attenuation in a type-II superconductor at high magnetic fields

G. M. Bruun, V. Nikos Nicopoulos, and N. F. Johnson
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, England

~Received 8 August 1997!

We have calculated the longitudinal acoustic attenuation in a type-II superconductor in high magnetic fields
within a mean-field BCS theory. We predict two additional features in the corresponding attenuation signal as
compared to that of the Meissner state. Our analytical calculations predict the existence of oscillations in the
attenuation as the external magnetic field is varied—this effect is associated with the Landau-level structure of
the electron states and is analogous to the well-known de Haas–van Alphen oscillations in the mixed state. The
attenuation directly probes the quasiparticle energies; the presence of gapless points in the quasiparticle spec-
trum, which is characteristic of type-II superconductors at high magnetic fields, shows up in the frequencyv
and temperatureT dependence of the attenuation in the limit of lowv and and lowT, respectively. At lowT
there is no analog to the discontinuity in the attenuation observed in the Meissner state when\v52D, where
D is the quasiparticle energy gap. This result opens up the possiblity of experimentally determining the
existence and nature of the gapless points in the quasiparticle spectrum of a type-II superconductor in high
magnetic fields.@S0163-1829~98!03305-0#
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I. INTRODUCTION

The problem of understanding type-II superconductiv
in high magnetic fields has been a lively topic for some ye
now. WhenkBT,\vc , wherevc5eH/mc is the cyclotron
frequency, the Landau-level quantization of the electron l
els become important. This gives rise to a number of in
esting effects.1 One such effect is the existence of magne
oscillations in the free energy of the superconductor in
mixed state. These de Haas–van Alphen~dHvA! oscillations
were observed over 20 years ago2 and have since been ob
served in a number of materials. One important theoret
consequence of the Landau-level quantization is the pres
of gapless points in the quasiparticle spectrum. Theoret
investigations have shown3,4 that the quasiparticle spectrum
of the mixed state in high magnetic fields is characterized
a set of gapless points in the magnetic Brillouin zone~MBZ!.
These gapless point leads to an algebraic temperature de
dence of the thermodynamic functions and an algebraic v
age dependence in the tunneling conductance.4 It has been
suggested5 that the existence of the dHvA oscillations in th
mixed state is a consequence of these gapless points. It
out however, that it is rather difficult to develop a simple, y
consistent theory for the dHvA oscillations since both t
oscillatory behavior of the ground state energy and the g
less nature of the quasiparticle energies need to be taken
account.6 The interpretation of the experimental results f
the dHvA oscillations is consequently somewhat unclear
does not, in our opinion, give a completely unambiguo
signature for the presence of gapless modes.

In this paper we consider the attenuation of longitudin
acoustic waves in the mixed state where the order param
is assumed to form a vortex lattice. Since the absorption
the phonons is due to quasiparticle excitations, the exp
ment directly probes the quasiparticle density of states.
clean materials, theoretical results have proved rather d
cult to obtain since an expansion in powers of the or
parameter does not converge7 and the semiclassical approx
570163-1829/98/57~5!/3051~7!/$15.00
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mation leads to unphysical results.8 Since we consider the
superconductor at high magnetic fields, it is crucial to ta
into account the Landau-level quantization of the electro
levels. It turns out that by including this effect, one avoi
the difficulties encountered in the semiclassical approxim
tion as predicted by Scharnberg.8 We calculate analytically
the attenuation in two limits:kBT!\v andkBT@\v where
v is the frequency of the sound wave andT is the tempera-
ture. We predict that the attenuation will be an oscillato
function of the external magnetic field due to the Landa
level structure, in analogy with the usual dHvA oscillation
The frequency and temperature dependence of the atte
tion is determined by the existence and the nature of
gapless points in the quasiparticle spectrum forkBT!\v
and kBT@\v, respectively. This, in principle, gives an ex
perimental tool for probing the nature of the quasiparti
energies in the mixed state. Our analytical theory is s
ported by essentially exact numerical calculations for the
tenuation.

As the analysis in this article will show, the existence
the gapless points in the quasiparticle spectrum has sig
cant consequences on the longitudinal sound attenuation
would therefore expect that this should also hold for syste
with intrinsic gapless points even for no external field su
as high-temperature superconductors~high-Tc’s!, which
seem to have ad-wave gap symmetry. Hence a simila
analysis of the acoustic attenuation in these high-Tc’s as the
one presented in this paper for type-II superconductors
high magnetic fields would be very interesting, and we w
return to this in a future publication.

II. GENERAL THEORY

We consider a weak-coupling superconductor in three
mensions~3D! described within mean-field theory by th
following Hamiltonian:
3051 © 1998 The American Physical Society
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Ĥ5(
s

E drcs
†~r !S @p2~e/c!A#2

2m
2m Dcs~r !

1E dr @D~r !c↑
†~r !c↓

†~r !1c.c.#, ~1!

where the order parameter is defined asD(r )
5g^c↑(r )c↓(r )&, g is the coupling strength, andm is the
chemical potential. Our theory describes longitudinal ult
sonic waves in clean samples for high magnetic fields.
have for simplicity confined our theory to the case whenqiH
whereq is the wave vector of the sound wave andH is the
magnetic field. This simplifies our calculations since the c
pling between the collective modes associated with fluct
tions of the order parameter and the longitudinal phon
can be neglected to a good approximation.9,10 The attenua-
tion of sound waves is given by the imaginary part of t
retarded phonon self-energy. To lowest order in the electr
phonon coupling we get for the attenuationa(v):11

a~v!}2vIm$DR~q,v!%, ~2!

where DR(q,v) is the retarded density-density correlatio
function

iD R~x,x8,t2t8!5^@ ñ~x,t !, ñ~x8,t8!#&u~ t2t8! ~3!

and ñ(x,t)5n̂(x,t)2^n̂(x,t)& is the operator describing
density fluctuations. This function is evaluated as the ana
cal continuation of the thermal correlation function. We w
in this paper for simplicity ignore the electronic Zeeman
fect. The effect of a finite spin splitting on the magne
oscillations is well understood both in the normal state12 and
in the mixed state.6 Hence ignoring the spin splitting w
obtain

DR~q,v!5
2kBT

Vcell
(
vn

E
cell

d2rE d3r 8eqr8

3@G~r ,r 8,vn!G~r 8,r ,vn2vg!

2F†~r ,r 8,vn!F~r 8,r ,vn2vg!#u ivg→v1 id ,

~4!

where G(r ,r 8,vn) and F(r 8,r ,vn) are the one-particle
Green’s functions for the superconductor. The sym
*celld

2r implies integration over one vortex lattice cell in th
x-y plane whereas*d3r 8 means integration over the who
crystal. By treating the electron-phonon matrix element as
overall factor in our formalism@i.e., its frequency depen
dencev is included as a prefactor in Eq.~2!# we have made
use of the fact that the screening for longitudinal modes
essentially the same as in the normal phase.13 Since the order
parameter is assumed to form a vortex lattice, we can u
set of single-particle statesfnkkz

(r ) characterized by a

Landau-level indexn, a wave vectork5(kx ,ky) in the
MBZ, and a wave vectorkz along thez direction. These
basis states were introduced by Normanet al.3 In this basis
there is no mixing between differentk’s since the sound
wave travels along thez direction. Expanding the Green’
functions in this basis and using thek-space symmetry of the
problem due to the presence of the vortex lattice,3 we obtain
-
e

-
-
s

n-

i-

-

l

n

is

a

the following expression for the ultrasonic attenuation in t
mixed state of a type-II superconductor:

a~q,v!}
v

LxLy
(
nn8

(
k
E dkz$@ f ~E!2 f ~E8!#

3@d~E82E2v!~ uU8`Uu22V8`V* U8* `U !

2d~E2E82v!~ uV8* `Vu22U8* `UV8`V* !#

1@12 f ~E8!2 f ~E!#d~E81E2v!

3~ uU8`Vu21V8`UU8* `V* !%. ~5!

Here U[Ukkz

n (r ), V[Vkkz

n (r ), U8[Ukkz1q
n8 (r ), and V8

[Vkkz1q
n8 (r ) are the Bogoliubov functions. The quasipartic

energies are given byE[Ekz

n (k) and E8[Ekz1q
n8 (k); f (E)

51/@exp(E/kBT)11# and the` product means integration
over thexy plane. The quasiparticle energies and associa
wave functions can be found by solving the correspond
Bogoliubov–de Gennes~BdG! equations.14 We have set up a
program that solves the BdG equations self-consistently
3D such that we get the Bogoliubov functions as a funct
of H. The method for solving these equations numerically
2D is described in detail elsewhere.3,6 The extension to 3D is
straightforward although it is computationally significant
more demanding. We choose the normal-state dispersion
along the z direction to be either the plane-wave for
e(kz)5kz

2/2m, or more suitable for layered structures, t
tight-binding forme(kz)5tcos(kzaz) whereaz is the distance
between the planes.

In order to develop an analytical theory for the attenuat
we need to make some approximations. Near the upper c
cal field Hc2 and for quasiparticle levels close to the Fer
energy we can, as a first approximation, ignore the o
diagonal pairing~i.e., the so-called diagonal approximation!.
The quasiparticle energies are then given by15

Ekz

n ~k!5Ajn~kz!
21uD~k!u2 ~6!

and the corresponding Bogoliubov functions are given by

uUkkz

n ~r !u2

uVkkz

n ~r !u2 J 5
1

2S 16
jn~kz!

Ekz

n ~k!D ufnkkz
~r !u2. ~7!

Herejn(kz)5n\vc1e(kz)2m. It should be noted that this
approximation is only valid for energy levels close to t
Fermi energy. Further away from the Fermi level there
degeneracies between electron and hole states belongin
different Landau levels, hence our approximation will eve
tually break down. However, for low frequencies and te
peratures one can show that only levels for which Eqs.~6!
and~7! hold will contribute to the damping described by E
~5!. A closer examination shows the requirement for the
agonal approximation to hold to be max(kBT,v)&\vc/4. This
follows because mixing with hole levels become importa
for levels withE>\vc/4.6,16 Dukanet al.4,15 argued that the
off-diagonal pairing does not change the qualitative behav
of the superconductor in a high magnetic field for fields n
too far belowHc2, and that the quasiparticle spectrum r



a
l-

n
s

he
-

ue
en
t

gy

le

ar

te

e
ine
ar

d
in

tw
r
oo
fu

h
di
t

r-
ixed

the
ir-

ly
oxi-
on

he

ity

e
um

y.

en

ss
the
ar-

o

57 3053ACOUSTIC ATTENUATION IN A TYPE-II . . .
mains essentially the same when the off-diagonal terms
included. From the diagonal approximation, it directly fo
lows that there are gapless points in the MBZ@i.e., D(k)
50#. Even when the diagonal approximation breaks dow
there will still be points in the MBZ where the gap vanishe
It seems the role of the off-diagonal terms is to shift t
value of the Fermi momentumkz f where the gapless behav
ior occurs away from its diagonal approximation val
e(kz f)50.4 Eventually, true gapped behavior sets in wh
the superconducting order is strong enough to increase
energies of the quasibound states in the vortices above\vc .3

In Fig. 1 we have plotted the lowest quasiparticle ener
calculated numerically, along theG2M direction ink space
for two different values of the order parameterD(r ) at a low
temperature. The two pointsG5(p/4ax ,p/2ay) and M
5(3p/4ax ,p/2ay) are two of the corners in an irreducib
triangle reflecting the symmetry of the BdG equations ink
space.3 Hereax5 l (A3p/2)1/2 as we have chosen a triangul
symmetry for the vortex lattice,ay5 l 2/ax and l 25\c/eH is
the magnetic length. We have chosen the size of the sys
such thatp/(2axDkx)550 whereDkx52p/Lx andLx is the
extent of the system in thex direction. The dashed lines giv
the diagonal approximation to the energies and the solid l
the exact numerical result. The two highest-lying curves
calculated with^D(k)&.0.3\vc and the two lowest-lying
curves are witĥ D(k)&.0.05\vc . Here^D(k)& means the
k-space average of the diagonal matrix element in the B
equations. There are ten Landau levels within the pair
width and the dispersion law along thez direction ise(kz)
5tcos(kzaz). The value ofkz is chosen such thate(kz)50.
As can be seen, the diagonal approximation predicts
gapless points along thisk-space direction, both with a linea
dispersion law. For a small pairing parameter there is g
agreement between the diagonal approximation and the
calculation. For a larger pairing parameter, i.e.,^D(k)&
.0.3\vc , the approximation is less precise—indeed t
gapless points predicted by the diagonal approximation
appear in the full self-consistent calculation. This is due

FIG. 1. The lowest quasiparticle energy in units of\vc for two
different values of the order parameter@^D(k)&.0.3\vc and
^D(k)&.0.05\vc]. The k vector is measured in units of 2p/Lx

whereLx is the size of the sample in thex direction. The solid lines
show the exact numerical result while the dashed lines corresp
to the diagonal approximation.
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the off-diagonal pairing which become increasingly impo
tant as the pairing interaction increases deeper into the m
state. The gapless points are now at a different value ofkz .
We expect our theory to be valid reasonably close to
transition line such that we can ignore the off-diagonal pa
ing. As will be shown later, the major contribution actual
comes from the gapless points where the diagonal appr
mation is most valid. We will now calculate the attenuati
in two limits using this approximation.

III. LOW FREQUENCY

We will first treat the casev!kBT. In this limit we can
focus on the first two delta functions in Eq.~5! which de-
scribe the scattering of a quasiparticle. We will outline t
calculation for the dispersion lawe(kz)5kz

2/2m. Making the
approximationj8/E8.j/E which is valid for\v!kBT the
first two terms of Eq.~5! become

a~q,v!52
v2m

\LxLyq
(

n
(

k
E dkzd„kz2kz* ~n,k!…

3]Ef „Ekz

n ~k!…
ujn~kz!u

Ekz

n ~k!
. ~8!

Here kz* (n,k) is the solution to the equationEkz1q
n (k)

2Ekz

n (k)5v. From the Poisson formula we have the ident

(
n52`

`

]Ef „Ek
z*

n
~k!…

ujn~kz* !u

Ek
z*

n
~k!

5 (
j 52`

` E dx2 j p ix]Ef „Ek
z*

x
~k!…

ujx~kz* !u

Ek
z*

x
~k!

, ~9!

where jx(kz* )5x\vc1e(kz* )2m5(x2nf)\vc1e(kz* ).
Here nf[m/\vc20.5 is the Landau-level index at th
chemical potential. We have extended the Landau-level s
to go from2` as the low levels do not contribute anywa
Making the variable substitutionjx(kz* )5z\vc we end up
with

a~q,v!52
v2m

\LxLyq
(

k
(

j 52`

`

e2p i j @nf2e~kz* !/\vc#

3E
2`

`

dze2p i jz]Ef „Ez~k!…
ujzu

Ez~k!
, ~10!

whereEz(k)5@jz
21D(k)#1/2. We have approximatedkz* as

the corresponding normal-state solution~i.e., it is indepen-
dent ofn). This approximation which is only necessary wh
we calculate the oscillations of the attenuation@i.e., the terms
in Eq. ~10! with j Þ0#, should be good close to the gaple
points and is equivalent to ignoring any phaseshift in
oscillations due to the superconducting order. The 0th h
monic is given by thej 50 term. We get

a~q,v!05
2v2m

\2vcLxLyq
(

k

1

eD~k!/kBT11
. ~11!

nd
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Using an ansatz of a formal similarity between a pure type
superconductor in high magnetic fields and a curre
carrying superconductor Maki17 arrived at the following ex-
pression for the ratioaS /aN between longitudinal attenua
tion in the mixed state and in the normal state:

aS

aN
.12

D

2kBT
, ~12!

whereD2[^uD(r )u2& is the real-space average of the gap.
Maki used a semiclassical approximation he only calcula
the 0th harmonic. To compare with this result we expand
~11! to first order inD(k). We get

aS

aN
512

^uD~k!u&k

2kBT
, ~13!

where ^uD(k)u&k is the k-space average ofuD(k)u. We see
that our theory for the 0th harmonic, which is exact with
the diagonal approximation produces a term linear inD for
the ratioaS /aN as does Maki’s conjecture. This linear ter
is somewhat surprising as the Gor’kov expansion of
Green’s functions would seem to imply that the first corre
tion term is quadratic inD. However, even in the zero-fiel
BCS state one obtains13 aS /aN52/@exp(D/kBT)11# which
cannot be expanded inD2. So our theory confirms Maki’s
ansatz of a linear correction term for the damping. Thus
nonperturbative linear term in the quasiparticle energy
~6! coming essentially from the degeneracy of the Land
levels shows up in the attenuation result, making a calc
tion based on the Gor’kov expansion questionable. This i
contrast to the case of the expansion of the thermodyna
potential where contrary to earlier claims,18 it can be proven
that these nonperturbative terms cancel, thus making
Gor’kov expansion of the thermodynamic potential correc19

Our result substitutes Maki’s real-space averageD
5@^uD(r )u2&#1/2 with the k-space average ofuD(k)u.

For conventional superconductors in the Meissner s
we know that the finite gap for allk suppresses the attenu
tion by a factor 2/@exp(D/kBT)11#. We expect that the exis
tence of gapless points will now change this result sign
cantly. We therefore split the MBZ into two qualitativel
different regions: the ‘‘gapped’’ region where we assum
D(k)5^D(k)& where ^D(k)& is the k-space average o
D(k), a the ‘‘gapless’’ region where we assumeD(k)
5gkh. We furthermore assume that this latter dispersion
holds for allD(k)&kBT. This is a slight generalization of th
model used by Dukan and Tesˇanović5 in their theory for the
dHvA oscillations. We assume that the gapped region ta
up a fractionF of the MBZ. The contributiona(q,v)0,gapto
the attenuation from the gapped region is then

a~q,v!0,gap5
v2m2

\2qh
F

2

e^D~k!&/kBT11
, ~14!

whereh5\2p. As expected the attenuation from the gapp
part of the spectrum is strongly suppressed due to
2/@exp„^D(k)&/kBT…11# factor. This result for the 0th har
monic of the attenuation from the gapped part of the sp
trum in the mixed state is the same as for the total atten
tion in the Meissner state of a conventional superconduc
The qualitative new feature comes from the presence of
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gapless points. Solving the two-dimensionalk-space integral
in Eq. ~11! using the assumed dispersion law, we obtain
contributiona(q,v)gl from the gapless part as

a~q,v!0,gl5Qgl

mv2

\2vcqp
S kBT

g D 2/h 122122/h

h
GS 2

h D zS 2

h D ,

~15!

whereQgl is the number of gapless points in the MBZ. He
z(x) is Riemann’s zeta function andG(x) is the gamma
function. For a linear dispersion around the gapless po
we especially obtain

a~q,v!gl5Qgl

mv2p~kBT!2

12\2vcqg2
. ~16!

The relative size of the contributions from the gapped a
gapless parts of the spectrum is determined by^D(k)&/kBT,
F, andg. For ^D&*3kBT the contribution from the gappe
part can be ignored and the attenuation is given by Eq.~15!.
Since the normal-state attenuation is given bya(q,v)0,N
5m2v2/\2qh we get

a~q,v!0,gl

a~q,v!0,N
5Qgl

2\

mvc
S kBT

g D 2/h 122122/h

h
GS 2

h D zS 2

h D .

~17!

This calculation is valid in the clean case where the mom
tum is conserved during the scattering process. As a
approximation to the dirty limit we can assume that there
no momentum conservation in the scattering process
takekz andkz8 as free variables11 ~i.e., kz8Þkz1q). As in the
Meissner state, this relaxation does not alter the result st
in Eq. ~17!. This is due to the fact we are looking at energi
close to the Fermi level such that we can assume that
normal-state density-of-states is constant. It has b
shown20 that for small impurity concentrations and wea
scattering potentials the density of states behaves essen
in the same way as for the pure case. We therefore bel
that our results are somewhat insensitive to the presenc
impurities.

The Landau level structure of the normal-state elect
energies implies that there will oscillations in the attenuat
as the external field varies. The oscillatory terms are giv
by the j Þ0 terms in Eq.~10!. We end up with the following
expression for the first harmonica(q,v)gl,1 of the attenua-
tion from the gapless part of the spectrum:

a~q,v!gl,15Qgl

2mv2

\kBTqp
cos„2p@nf2e~kz* !/\vc#…

3E
0

`

kdkE
0

`

dx~e2Ax2\2vc
2
1g2k2h/kBT11!21

3~eAx2\2vc
2
1g2k2h/kBT11!21

3
cos~2px!xvc

Ax2\2vc
21g2k2h

. ~18!
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This integral can be solved in the case of a linear sp
trum around the gapless points~i.e., h51). In this case we
obtain for the first harmonic of the attenuation

a~q,v!gl,15Qgl

mv2

q\2vcp
S kBT

g D 2

cos„2p@nf2e~kz* !/\vc#…

3Fp2cosh~2p2kBT/\vc!

sinh2~2p2kBT/\vc!
2

1

~2pkBT/\vc!
2G .

~19!

For low temperatures this goes asT2. In the case of a genera
dispersion law around the gapless point given byD(k)
5gkh, the leading term for the first harmonic goes
(T/g)2/h. This should be contrasted to the Meissner state
the contribution from the gapped part of the spectrum, wh
the oscillatory terms will again be damped by a fac
2/@exp„^D(k)&/kBT…11#. In the case of the normal state, th
first harmonic is

a~q,v!N,15
m2v2

hq\3vc

4kBTp2

sinh~2p2kBT/\vc!

3cos„2p@nf2e~kz* !/\vc#…, ~20!

which is independent ofT for low temperatures. In the cas
of a dispersion law along thez direction given bye(kz)
5tcos(kzaz) we have to substitutem/q by 2/tazusin(kz*az)
2sin„(kz* 1q)az…u in Eq. ~15! and mcos„2p@nf2e(kz* )/
\vc] …/q by ( i 51,2cos„2p@nf2e(kz,i* )/\vc] …/tazusin(kz*az)
2sin„(kz* 1q)az…u in Eqs. ~19! and ~20! wherekz,i are the
two solutions of the equationtcos„(kz1q)az…2tcos(kzaz)
5\v.

In Fig. 2 we show an example of the acoustic attenuat
calculated numerically for two different coupling strengt
as a function ofnf . We have solved the BdG equation
self-consistently in 3D as a function of the external magne
field at constant chemical potential. In this paper we ha
chosen to work with a constant chemical potential. The d
ference between holding the chemical potential constant

FIG. 2. The attenuation as a function ofnf . The solid line is the
normal-state attenuation. The dashed line is for the coup
g/\vcl

357.85. The dash-dot line is forg/\vcl
358.7.
c-

r
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r
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c
e
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holding the number of particles constant is negligible in 3
for the normal state.12 Even in 2D it can be shown that th
superconducting order tends to suppress the difference
tween the two cases in the mixed state.6 The attenuation is
calculated via Eq.~5!. We have chosen parameters such t
vD /vc55, kBT/\vc50.05, andv/vc50.01 whennf512,
wherevD is the usual cutoff of the pairing interaction aroun
the Fermi surface. The solid curve is the normal-state atte
ation which is continued into the mixed-state to facilita
comparison with the mixed-state attenuation; the das
curve corresponds to the coupling strengthg/\vcl

357.85
while the dash-dot curve corresponds tog/\vcl

358.7. The
dispersion law along thez direction is e(kz)5tcos(kzaz)
wheret/\vc50.4. In Fig. 3 we have plotted the correspon
ing order parameter which in the lowest-Landau-level a
proximation for the pairing~which is valid close toHc2)1

can be characterized by the dimensionless numberD0
}D(k). The connection betweenD0 and D(k) or D(r ) is
given by an obvious generalization to 3D of the results
Normanet al.3 The phase transition between the normal a
the mixed state occurs fornf.7.6 with g/\vcl

358.7 and
for nf.9.5 withg/\vcl

357.85. As can be seen from Fig. 2
the oscillations of the attenuation due to the Landau-le
quantization persist into the mixed state, although they
damped as compared to the normal-state oscillations. E
tually the oscillations die out when the off-diagonal pairin
becomes dominant and the diagonal approximation bre
down. This happens fornf*11 with g/\vcl

358.7. Compar-
ing the attenuation for the two coupling strengths in the
gion 10<nf<11 we get a0(7.85)/a0(8.7).1.9 and
a1(7.85)/a1(8.7).2.4 wherea(g) i is the i th harmonic of
the attenuation for the coupling strengthg. Since^D(k)& can
be calculated3 directly from D0, and the coefficientg in the
dispersion law around the gapless points is proportiona
gD0, we can compare the numerical results with the anal
cal predictions outlined above. If the quasiparticle spectr
is essentially gapped, Eq.~14! predicts that a0(7.85)/
a0(8.7)5 f (^D7.85&)/ f (^D8.7&).8.8. If the attenuation is
primarily originating from gapless points in the quasipartic
spectrum, Eq. ~15! predicts that a0(7.85)/a0(8.7)
5@8.7D0(8.7)/7.85D0(7.85)#2/h. This gives 2.5 forh51
and 1.6 for h52. Hence the numerical calculatio
@a0(7.85)/a0(8.7).1.9# imply ~i! that the gapless point

g

FIG. 3. The order parameter as a function ofnf . The dashed
line is for the couplingg/\vcl

357.85, while the dash-dot line is
for g/\vcl

358.7.
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dominate the attenuation in agreement with our analyt
results and~ii ! that the dispersion law is somewhere betwe
h51 andh52, since the gapless predictions agree reas
ably well with the numerical results while the gapped p
dictions are qualitatively wrong. We cannot however mak
quantitative numerical determination of the dispersion l
around the gapless points. This is due to the fact that in o
to reduce the computation load, which is high in this 3
case, we have to choose ak mesh with a rather large spacin
between the points~the mesh consists of 100350 points!.
This means that the gapless regions in the quasiparticle s
trum are only probed by a fewk vectors, thereby prohibiting
a quantitative determination of the dispersion law. Likewi
the analysis above predicts thata1(7.85)/a1(8.7) equals 2.5
and 1.6 forh51 andh52, respectively. Theh51 predic-
tion of 2.5 agrees well with the numerical resu
a1(7.85)/a1(8.7).2.4. Again, any quantitative compariso
would require a much finerk mesh. A further complication is
that due to the number of Landau levels participating in
pairing~approximately 10!, the oscillations in the attenuatio
are quickly damped and the diagonal approximation is o
valid over relatively few oscillations. This problem could b
avoided if we were to perform the calculations for expe
mentally realistic parameters, where there are many m
Landau levels in the pairing region; however we have
been able to run the programs for such parameters due t
intense computation load. The above example does s
however that the numerical calculations support our anal
theory. In short, the normal-state oscillations in the atten
tion continue into the mixed state and the damping is do
nated by gapless points not too far into the mixed state.

Hence we have calculated the 0th and the first harmo
of the acoustic attenuation in the mixed state. The prese
of gapless points enhances the acoustic attenuation abov
conventional value for the Meissner state. When^D&
*3kBT such that we can ignore the contribution from t
gapped part of the spectrum, the temperature dependen
the attenuation is a power law given bya}T2/h. Further-
more, we predict that one should observe oscillations in
signal as the external field is varied. The magnitude of th
oscillations should have the same temperature dependen
the average value of the signal. Hence, by looking at
temperature dependence of the attenuation one shoul
able to detect the presence of the gapless points and to
tract the dispersion law around these points. From the d
onal approximation it follows thatg}^D& where^D& is thek
space~or real-space! average of the gap. Hence close to t
upper critical field Hc2 we expect g}A12H/Hc2. This
would mean thata(q,v)}(12H/Hc2)21/h close toHc2.

IV. LOW TEMPERATURE

We will now consider the limit wherekBT!\v. In this
limit only the thirdd function in Eq.~5!, which describes the
creation of two quasiparticles will contribute to the dampin
We first calculate the 0th harmonic of the attenuation. Us
the Poisson identity, making a substitution of variables a
using the fact thatvs[v/q!v f (v f is the Fermi velocity! we
obtain the 0th harmonic of the attenuation, whene(kz)
5kz

2/2m, as
l
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a~q,v!05
mv

q\3vcLxLy
(

k
E

D~k!

v2D~k!

dE

3@12 f ~E!2 f ~v2E!#

3
E~v2E!1D2

A~E22D2!@~v2E!22D2#
. ~21!

In the limit v/kBT→` this integral can be written as a com
plete elliptic integral21 and we obtain

a~q,v!05
mv2

4p2\2vcq
E d2kE@A124D~k!2/\2v2#. ~22!

HereE(k) is the complete elliptic integral of the second kin
The existence of the gapless points again gives rise t
qualitatively different result for the ultrasonic attenuation
the mixed state as compared to the Meissner state. Th
most easily understood by the observation that there
always be attenuation for any frequency in the mixed st
since there are always quasiparticle states withD(k)
<\v/2. Hence the phonon will always have enough ene
to create two quasiparticles. This is in contrast to the Me
ner state, where there is no attenuation for\v,2D.21 Thus
a direct experimental signature of these gapless points w
be the absence of the discontinuity in the attenuation wh
is present in the Meissner state21, when \v52D, and the
presence of acoustic attenuation in the mixed state asv→0.
We again assume that the dispersion law around the gap
points to leading order is given byD(k)5gkh (k5uku) in
the region that contributes to the attenuation@i.e., for D(k)
<\v/2#. Using this we obtain

a~q,v!05Qgl

mv2/h12

2p\2vcq~2g!2/hE0

1

xdxE~A12x2h!

5n
mv2/h12

2p\2vcq~2g!2/h
I h . ~23!

Since the attenuation for the normal state isa(q,v)0,N
5m2v2/2p\3q we have

a~q,v!0

a~q,v!0,N
5QglS v

2g D 2/h \I h

mvc
. ~24!

For the same reasons as for the\v!kBT case, we expec
Eq. ~24! to also be valid in the dirty limit. The remaining
integral in Eq.~23! can be solved for varioush. We obtain,
for instance,I 152/3, I 25p2/16, I 1/2532/45, etc. Again the
attenuation has an oscillatory behavior as a function of
magnetic fieldH21. From the Poisson identity we get for th
first harmonic

a~q,v!15Qgl

mv

4\3vcq2p
(

j 521,1
e2p i j @nf2e~kz* !/\vc#

3E kdkE djdj8d~E1E82v!

3F ~12j/E!~11j8/E8!1
D~k!2

EE8
Gei j j/\vc.

~25!
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We have not been able to solve this integral exactly. Ho
ever, in the region where the diagonal approximation ho
~i.e., for v&\vc/4) one can expand the factoreil j/\vc to a
good approximation. This immediately yields that, to lead
order inv/vc , the amplitude of the first harmonic varies
v2/h12. The next correction term will go asv2/h14.

So we see that the existence of the gapless points in
MBZ implies that there is a finite attenuation for any fr
quency of the sound wave. There will be no discontinuity
the attenuation as a function of the sound-wave frequen
As the external field is varied one should observe oscillati
in the attenuation. The dependence of the attenuation on
quency is algebraic and the power law is determined by
dispersion law around the gapless points. IfD(k)5gkh we
obtain a}v2/h12. The absence of the discontinuity and t
frequency dependence of the attenuation should, in princ
provide the possibility of experimentally determining the e
istence and dispersion law for the gapless points. Again
expecta(q,v)}(12H/Hc2)21/h close toHc2. By making
the same substitutions as in the\v!kBT limit, one can ob-
tain the results for the casee(kz)5tcos(kzaz) relevant for
layered structures.

V. CONCLUSION

In this paper we have considered the acoustic attenua
in a type-II BCS superconductor at high magnetic fie
ev

. B
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-
s

he

y.
s
e-
e

le,
-
e

on
s

using both numerical and analytical methods. We ha
shown that away from the semiclassical regime wh
the Landau-level structure of the electronic states is
portant, the attenuation will in general be an oscillato
function of the external magnetic field. Furthermor
since the attenuation probes the quasiparticle density
states, the presence of gapless points in the quasipar
spectrum makes the attenuation qualitatively different
compared to the Meissner state attenuation. ForkBT
!\vc the attenuation is an algebraic function of th
frequency and there is no discontinuity as opposed to
Meissner state attenuation. ForkBT@\vc the attenuation
is an algebraic function of the temperature. The expon
of the power law is determined by the dispersion law arou
the gapless points. This behavior should, in principle, be
perimentally detectable; such an experiment would prov
confirmation of the existence and nature of the gapl
points.
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