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Acoustic attenuation in a type-Il superconductor at high magnetic fields
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We have calculated the longitudinal acoustic attenuation in a type-Il superconductor in high magnetic fields
within a mean-field BCS theory. We predict two additional features in the corresponding attenuation signal as
compared to that of the Meissner state. Our analytical calculations predict the existence of oscillations in the
attenuation as the external magnetic field is varied—this effect is associated with the Landau-level structure of
the electron states and is analogous to the well-known de Haas—van Alphen oscillations in the mixed state. The
attenuation directly probes the quasiparticle energies; the presence of gapless points in the quasiparticle spec-
trum, which is characteristic of type-1l superconductors at high magnetic fields, shows up in the freguency
and temperatur& dependence of the attenuation in the limit of lamand and lowT, respectively. At lowT
there is no analog to the discontinuity in the attenuation observed in the Meissner statk avh@ad , where
A is the quasiparticle energy gap. This result opens up the possiblity of experimentally determining the
existence and nature of the gapless points in the quasiparticle spectrum of a type-1l superconductor in high
magnetic fields[S0163-18208)03305-0

I. INTRODUCTION mation leads to unphysical resuftsSince we consider the
superconductor at high magnetic fields, it is crucial to take
The problem of understanding type-Il superconductivityinto account the Landau-level quantization of the electronic
in high magnetic fields has been a lively topic for some yeardevels. It turns out that by including this effect, one avoids
now. WhenkgT<#A w., Wherew.=eH/mc is the cyclotron the difficulties encountered in the semiclassical approxima-
frequency, the Landau-level quantization of the electron leviion as predicted by ScharnbétgVe calculate analytically
els become important. This gives rise to a number of interthe attenuation in two limitkgT<#% w andkgT>% w where
esting effects. One such effect is the existence of magneticy, is the frequency of the sound wave afds the tempera-
oscillations in the free energy of the superconductor in theure. We predict that the attenuation will be an oscillatory
mixed state. These de Haas—van Alpli@HvA) oscillations  function of the external magnetic field due to the Landau-
were observed over 20 years agmd have since been ob- |eye| structure, in analogy with the usual dHVA oscillations.
served in a number of materials. One _|mp_orta_1nt theoret|ca|-he frequency and temperature dependence of the attenua-
consequence of the Landau-level quantization is the presengg, is getermined by the existence and the nature of the
.Of gaples; points in the\ﬁ%uasmamcle Sp.ec“%‘m- Theoretic apless points in the quasiparticle spectrum Kgil <% w
investigations have showfithat the quasiparticle spectrum andksT>% o, respectively. This, in principle, gives an ex-

of the mixed state in high magnetic fields is characterized b)f)erimental tool for probing the nature of the quasiparticle

a set of gapless points in the magnetic Brillouin zOW@Z2 ). o . . :
These gapless point leads to an algebraic temperature depeqp_ergles in the _rmxed state. Our_ analytical _theory 'S sup-
ported by essentially exact numerical calculations for the at-

dence of the thermodynamic functions and an algebraic volt i
age dependence in the tunneling conductdnitehas been  t€nuation. S _ _
suggestetithat the existence of the dHVA oscillations in the ~ AS the analysis in this article will show, the existence of
mixed state is a consequence of these gapless points. It turH¥ gapless points in the quasiparticle spectrum has signifi-
out however, that it is rather difficult to develop a simple, yetcant consequences on the longitudinal sound attenuation. We
consistent theory for the dHvA oscillations since both thewould therefore expect that this should also hold for systems
oscillatory behavior of the ground state energy and the gapAlith intrinsic gapless points even for no external field such
less nature of the quasiparticle energies need to be taken ings high-temperature superconductofisigh-T.’s), which
accounf The interpretation of the experimental results forseem to have al-wave gap symmetry. Hence a similar
the dHVA oscillations is consequently somewhat unclear andnalysis of the acoustic attenuation in these higts-as the
does not, in our opinion, give a completely unambiguousone presented in this paper for type-Il superconductors in
signature for the presence of gapless modes. high magnetic fields would be very interesting, and we will
In this paper we consider the attenuation of longitudinal-return to this in a future publication.
acoustic waves in the mixed state where the order parameter
is assumed to form a vortex lattice. Since the absorption of
the phonons is due to quasiparticle excitations, the experi-
ment directly probes the quasiparticle density of states. For
clean materials, theoretical results have proved rather diffi- We consider a weak-coupling superconductor in three di-
cult to obtain since an expansion in powers of the ordemensions(3D) described within mean-field theory by the
parameter does not convefgand the semiclassical approxi- following Hamiltonian:

Il. GENERAL THEORY
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N ; [p—(elc)A]? the following expression for the ultrasonic attenuation in the
A= fdrwg(r)( om — | (1) mixed state of a type-Il superconductor:
w !
+J dr[A(n gl yln +ecl, 1) wqe)x > Ek: dkA[f(E)—f(E")]
X=Ynn'
where the order parameter is defined aA(r) X[8(E'—E—w)(JU'AU[2=V'AV*U'* AU)
=g(¢(r) ¢ (r)), g is the coupling strength, and is the ) ) . ,
chemical potential. Our theory describes longitudinal ultra- —8(E=E'=w)([V*AV[Z=U"* AUV'AV*)]
sonic waves in clean samples for high magnetic fields. We TT1—f(EN—f(EVIS(E' +E—
have for simplicity confined our theory to the case wiygH [ (ED-HE)]& @)
whereq is the wave vector of the sound wave adds the X (JU'AV|2+ V' AUU'* AV*)}. (5)

magnetic field. This simplifies our calculations since the cou- )
pling between the collective modes associated with fluctuaHere U=Uy, (r), V=V (r), U'=Ug ,q(r), and V'
tions of the order parameter and the longitudinal phononsEVnr (r) are the Bogoliubov functions. The quasiparticle
can be neglected to a good approximafidiThe attenua- kk,+q 9 T quasip
tion of sound waves is given by the imaginary part of theenergies are given bg=Ey (k) and E'=Ey , 4(k); f(E)
retarded phonon self-energy. To lowest order irl11the electron= 1 exp(E/ksT)+1] and e oroduct eena integration
phonon coupling we get for the attenuatiafw): over thexy plane. The quasiparticle energies and associated
wave functions can be found by solving the corresponding
a(w)*—oIm{D(q,0)}, (2) Bogoliubov—de Genne®dG) equations* We have set up a
where DR(q, ) is the retarded density-density correlation Program that solves the BdG equations self-consistently in
function 3D such that we get the Bogoliubov functions as a function
of H. The method for solving these equations numerically in
iDR(x,X' t—t")=([A(x,1),A(x',t')])6(t—t") (3) 2D is described in detail elsewhet&The extension to 3D is
straightforward although it is computationally significantly
and n(x,t)=n(xt)—(n(x,t)) is the operator describing more demanding. We choose the normal-state dispersion law
density fluctuations. This function is evaluated as the analytialong the z direction to be either the plane-wave form
cal continuation of the thermal correlation function. We will e(k,)=k2/2m, or more suitable for layered structures, the

in this paper for simplicity ignore the electronic Zeeman ef-tight-binding forme(k,) =tcosk,a,) wherea, is the distance
fect. The effect of a finite spin splitting on the magnetic between the planes.

oscillations is well understood both in the normal stasnd In order to develop an analytical theory for the attenuation
in the mixed stat8. Hence ignoring the spin splitting we we need to make some approximations. Near the upper criti-
obtain cal field H., and for quasiparticle levels close to the Fermi
energy we can, as a first approximation, ignore the off-
DR B 2kgT 2 J' 3, ar’ diagonal pairingi.e., the so-called diagonal approximation
(qo)=r—2> | d? | d*e e . !
Veell @, Jeell The quasiparticle energies are then giveh’by
G B ne, e, EF (k)= (k) T+ A (K ©)
_FT(rJ”vwv)F(r’!riwv_wy)]liw —w+ids . . . .
Y and the corresponding Bogoliubov functions are given by
4 L
where G(r,r',w,) and F(r’,r,»,) are the one-particle Uk (1) 21 1+§n(kz) | 2 )
Green's functions for the superconductor. The symbol IVEkZ(r)I2 2 TEP (K) P (1)1

[ ce1d?r implies integration over one vortex lattice cell in the

x-y plane whereagd®r’ means integration over the whole Here £,(K,) =nhwe+ e(k,) — . It should be noted that this
crystal. By treating the electron-phonon matrix element as agpproximation is only valid for energy levels close to the
overall factor in our formalisnli.e., its frequency depen- Fermi energy. Further away from the Fermi level there are
dencew is included as a prefactor in E@)] we have made gegeneracies between electron and hole states belonging to
use of the fact that the screening for longitudinal modes igjifferent Landau levels, hence our approximation will even-
essentially the same as in the normal phdsince the order  tyally break down. However, for low frequencies and tem-
parameter is assumed to form a vortex lattice, we can use @eratures one can show that only levels for which Es.
set of single-particle stategh,y (r) characterized by a and(7) hold will contribute to the damping described by Eq.
Landau-level indexn, a wave vectork=(k,,k,) in the (5). A closer examination shows the requirement for the di-
MBZ, and a wave vectok, along thez direction. These agonal approximation to hold to be méx(,w)<#iw/4. This
basis states were introduced by Nornetral? In this basis follows because mixing with hole levels become important
there is no mixing between differerits since the sound for levels withE=7% w4 5% Dukanet al**° argued that the
wave travels along the direction. Expanding the Green’s off-diagonal pairing does not change the qualitative behavior
functions in this basis and using tkespace symmetry of the of the superconductor in a high magnetic field for fields not
problem due to the presence of the vortex latfiges obtain  too far belowH,,, and that the quasiparticle spectrum re-



57 ACOUSTIC ATTENUATION IN A TYPE-II ... 3053

0.20 ‘ - the off-diagonal pairing which become increasingly impor-
tant as the pairing interaction increases deeper into the mixed
state. The gapless points are now at a different value, of
We expect our theory to be valid reasonably close to the
transition line such that we can ignore the off-diagonal pair-
ing. As will be shown later, the major contribution actually
comes from the gapless points where the diagonal approxi-
mation is most valid. We will now calculate the attenuation
in two limits using this approximation.

0.15 -

Quasiparticle energy
iod
>

Ill. LOW FREQUENCY

We will first treat the case<<kgT. In this limit we can
focus on the first two delta functions in E() which de-
500 scribe the scattering of a quasiparticle. We will outline the
k space calculation for the dispersion lae(k,) = k§/2m. Making the
approximationé’/E’ = ¢/E which is valid fori w<kgT the
first two terms of Eq(5) become

FIG. 1. The lowest quasiparticle energy in unitsheb. for two
different values of the order parametg¢A(k))=0.3 . and
(A(k))=0.05w.]. The k vector is measured in units ofmZL, 02m
whereL, is the size of the sample in thxedirection. The solid lines a(g,w)=— 2 z dk,6(k,— k;‘ (n,k))
show the exact numerical result while the dashed lines correspond h'—x'-yq n ok
to the diagonal approximation.

[£a(ko)|
ER (k)

X dgf (E] (K)) ®

mains essentially the same when the off-diagonal terms are
included. From the diagonal approximation, it directly fol-

lows that there are gapless points in the MB2., A(k) Here k*(n,k) is the solution to the equatio&! . (k)
=0]. Even when the diagonal approximation breaks down, _ =~ *"" , Kt
there will still be points in the MBZ where the gap vanishes. ~ Ek,(K) = ®. From the Poisson formula we have the identity
It seems the role of the off-diagonal terms is to shift the
value of the Fermi momenturk,; where the gapless behav- n |€0(KS)]
ior occurs away from its diagonal approximation value > Ief (Bix (K))———

. : n="o 2z Ee(k)
e(k,1)=0.% Eventually, true gapped behavior sets in when k2
the superconducting order is strong enough to increase the

energies of the quasibound states in the vortices abaye® _ i dx@iTx g f (EX (k))|§x(k:)| ©)
In Fig. 1 we have plotted the lowest quasiparticle energy, e B EE*(k) '

calculated numerically, along tHé—M direction ink space

for two different values of the orijer parametefr) atalow \yhere E(K) =xtwc+ e(K) — w=(X—np o+ e(k?).
temperature. The two point§'=(m/4a,m/2a,) and M pere n.=u/fiw,~0.5 is the Landau-level index at the
=(3m/4a,,m/2a,) are two of the comers in an irreducible chemical potential. We have extended the Landau-level sum
triangle reflecting the symmetry of the BdG equationkin 4 go from — as the low levels do not contribute anyway.

space’ Herea,=|(y3/2)"* as we have chosen a triangular Making the variable substitutiod,(k})=z%w, we end up
symmetry for the vortex latticea,=1%/a, and|®=Ac/eHis i

the magnetic length. We have chosen the size of the system

such thatr/(2a,Ak,) =50 whereAk,=27/Lx andL, is the

extent of the system in thedirection. The dashed lines give a(q,w)=—
the diagonal approximation to the energies and the solid lines

the exact numerical result. The two highest-lying curves are w ) &,

calculated with(A(k))=0.3 w.; and the two lowest-lying xf dz&™12 9 (E4(K)) =, (10

curves are with A(k))=0.05w.. Here{A(k)) means the > E(k)

k-space average of the diagonal matrix element in the Bd%vhereE (k)=[§2+A(k)]1’2. We have approximatekl® as
equations. There are ten Landau levels within the pairing, . corrzespondi;g normal-state solutire., it is indépen-

width and the dispersion law along tlzedirection is e(k,) d . L c

o . v ent ofn). This approximation which is only necessary when
=tcoskza,). The value O.sz is chosen S.UCh .thaé(kz)_.o' we calculate the oscillations of the attenuatjoa., the terms
As can be_ seen, the diagonal approximation _predlpts twe, Eqg. (10) with j#0], should be good close to the gapless
gapless points along thisspace direction, both with a linear ﬁ‘oims and is equivalent to ignoring any phaseshift in the

oo

2
w™m . *
2mij[ng—e(k; )/ o]
—E E e z
Lyl g% 5=

d|sperS|ontI§wt. For athsmg." pa'”'?g pafa’T‘et‘iT theredfhgo;) scillations due to the superconducting order. The Oth har-
agreement between the diagonal approximation and the full, .- given by thg =0 term. We get

calculation. For a larger pairing parameter, i.€A(k))

=0.3hw., the approximation is less precise—indeed the
gapless points predicted by the diagonal approximation dis- a(q,w)o= )
appear in the full self-consistent calculation. This is due to hlwlLyg® et®ikeT 1

2w’m

(11)
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Using an ansatz of a formal similarity between a pure type-ligapless points. Solving the two-dimensiokaspace integral

superconductor in high magnetic fields and a currentin Eq.(11) using the assumed dispersion law, we obtain the
carrying superconductor MaKiarrived at the following ex- contributiona(q,w)g from the gapless part as

pression for the ratiaxg/ @y between longitudinal attenua-

tion in the mixed state and in the normal state: mw? (KeT\271—21-2 (2| (2
5 —
a(q,w = — | — —1I| = —],
apn ZkBT, (15)

WhereAZE(|A(r)|_2> is the real-space average of the gap. ASWhereQ | is the number of gapless points in the MBZ. Here
Maki used a semiclassical approximation he only calculate(z(x) is gll?iemann's zeta function anB(x) is the gamma
the Oth harmonic. To compare with this result we expand Edg,ction, For a linear dispersion around the gapless points
(17) to first order inA(k). We get we especially obtain

as (lAK) )k
an T 2KkgT 13 (0,0)g=Q .—meW(kBT)2
i) g g .

where (|A(K)|), is the k-space average dfA(k)|. We see 12h%w.qy*
that our theory for the Oth harmonic, which is exact within . . I
the diagonal approximation produces a term linea ifor The relative size of the contrlt_)utlons frc_>m the gapped and
the ratioas/ay as does Maki's conjecture. This linear term 9aPIess parts of the spectrum is determined &{k))/kgT,
is somewhat surprising as the Gorkov expansion of the/ @1dy. For(A)=3kgT the contribution from the gapped
Green’s functions would seem to imply that the first correc-Part can be ignored and the attenuation is given by(ES).
tion term is quadratic im. However, even in the zero-field ='M¢® 2the2 normal-state attenuation is given &g, w)on
BCS state one obtaiffs as/ay=2[expA/kgT)+1] which ~ — M @“/hqh we get
cannot be expanded if%. So our theory confirms Maki’s

(16)

ansatz of a linear correction term for the damping. Thus the a(d.w)og _  2h (kgT 2/771_21_2/771“ 2\ (2
nonperturbative linear term in the quasiparticle energy Eq. a(q,w)on Imw| vy 7 7>\ n)"
(6) coming essentially from the degeneracy of the Landau a7

levels shows up in the attenuation result, making a calcula-

tion based on the Gor’kov expansion questionable. This is iThis calculation is valid in the clean case where the momen-

contrast to the case of the expansion of the thermodynamiim is conserved during the scattering process. As a first

potential where contrary to earlier clairtfsit can be proven approximation to the dirty limit we can assume that there is

that these nonperturbative terms cancel, thus making theo momentum conservation in the scattering process and

Gor’kov expansion of the thermodynamic potential corféct. takek, and k, as free variables (i.e., k. #k,+q). As in the

Our result substitutes Maki's real-space averagde Meissner state, this relaxation does not alter the result stated

=[{]A(r)|?)]¥2 with the k-space average ¢A (k)]|. in Eq. (17). This is due to the fact we are looking at energies
For conventional superconductors in the Meissner statelose to the Fermi level such that we can assume that the

we know that the finite gap for all suppresses the attenua- normal-state density-of-states is constant. It has been

tion by a factor Jlexp@/ksT)+1]. We expect that the exis- showrf® that for small impurity concentrations and weak

tence of gapless points will now change this result signifi-scattering potentials the density of states behaves essentially

cantly. We therefore split the MBZ into two qualitatively in the same way as for the pure case. We therefore believe

different regions: the “gapped” region where we assumethat our results are somewhat insensitive to the presence of

A(k)=(A(k)) where (A(k)) is the k-space average of impurities.

A(k), a the "gapless” region where we assumgk) The Landau level structure of the normal-state electron

= yk”. We furthermore assume that this latter dispersion lawenergies implies that there will oscillations in the attenuation

holds for allA (k) skgT. This is a slight generalization of the as the external field varies. The oscillatory terms are given

model used by Dukan and Ta@soviC in their theory for the by thej+0 terms in Eq(10). We end up with the following

dHVA oscillations. We assume that the gapped region takesxpression for the first harmonie(q, ), of the attenua-

up a fraction¥ of the MBZ. The contributiony(q,w)o gapt0  tion from the gapless part of the spectrum:

the attenuation from the gapped region is then

2

2Mo
w?m? 2 a(q,0)g 1= Qg7 —-—cod2m[n;— e(k; )/ hwc])
a(9,0)0,ga5= 5 F 3T (14) hkgTqm ‘
h2qh efat/keT 4 1
@ * 212021 22 _
whereh=%21. As expected the attenuation from the gapped X fo kdkfo dx(e” V¥ twt YKkl 4 1)~
part of the spectrum is strongly suppressed due to the
2 exp({A(k))/kgT)+1] factor. This result for the Oth har- %20 202+ y2Kk2 kg T -1
) . X (e ¢ty B1+1)
monic of the attenuation from the gapped part of the spec-
trum in the mixed state is the same as for the total attenua- cog 2 X)X w,

tion in the Meissner state of a conventional superconductor.

. (18
The qualitative new feature comes from the presence of the VCh2wg+ y?k?7
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_ ] o FIG. 3. The order parameter as a functionmgf The dashed
FIG. 2. The attenuation as a functionmf. The solid line isthe |ine is for the couplingg/% w |3=7.85, while the dash-dot line is
normal-state attenuation. The dashed line is for the couplingor g/ o 13=8.7.

g/t w|3=7.85. The dash-dot line is faj/A w 3=8.7.
holding the number of particles constant is negligible in 3D

This integral can be solved in the case of a linear specfor the normal staté Even in 2D it can be shown that the
trum around the gapless poirise., =1). In this case we Superconducting order tends to suppress the difference be-
obtain for the first harmonic of the attenuation tween the two cases in the mixed stafEhe attenuation is

calculated via Eq(5). We have chosen parameters such that
KoT) 2 wplw:=5, kgT/fhw.=0.05, andw/w,=0.01 whenn;=12,
i) cog2m[n;—e(k¥)/hwe]) wherewp is the usual cutoff of the pairing interaction around
the Fermi surface. The solid curve is the normal-state attenu-
5 5 ation which is continued into the mixed-state to facilitate
mecos2m kg T/ o) 1 comparison with the mixed-state attenuation; 3Fhe dashed

; 2 2| curve corresponds to the coupling strengith v l°=7.85
sinff(2n°kgT/hwe)  (2mksT/hoc) while the dash-dot curve correspondsgtidi w |3=8.7. The

(190 dispersion law along the direction is e(k,) =tcosk,a,)
For low temperatures this goes & In the case of a general yvheret/ﬁwc—OA. In Fig. 3 we have plotted the correspond-
dispersion law around the gapless point given hgk) "9 order parameter which in the lowest-Landau-level ap-
— k7 the leading term for the first harmonic qoes asprOX|mat|on for the pairingwhich is valid close toH,)

Y 3y Thi 9 ; 9 can be characterized by the dimensionless numbgr
(T/y) ._Th|_s should be contrasted to the Meissner state, Ok A(k). The connection between, and A(k) or A(r) is
the contribution from the gapped part of the spectrum, whergien"hy an obvious generalization to 3D of the results by
the oscillatory terms will again be damped by a factorngrmanet al® The phase transition between the normal and
2/ exp((A(k))/kgT)+1]. In the case of the normal state, the the mixed state occurs far;=7.6 with g/ wJ3=8.7 and

M2

a(q, w)gl,l: leqhz—

We

first harmonic is for n;=9.5 withg/% w./*=7.85. As can be seen from Fig. 2,
the oscillations of the attenuation due to the Landau-level
2 2 2 . . . . .
m“w AkgTm quantization persist into the mixed state, although they are
a(q.@)n1 damped as compared to the normal-state oscillations. Even-

3 P 2

hah“we sinh2m kg Tl wo) tually the oscillations die out when the off-diagonal pairing

X cog2m[ni—e(k} )/ hwe]), (20 becomes dominant and the diagonal approximation breaks
o down. This happens far;=11 with g/% w.|3=8.7. Compar-
which is independent of for low temperatures. In the case jng the attenuation for the two coupling strengths in the re-
of a dispersion law along thg direction given pye(kz) gion 10sn;<11 we get ay(7.85)/ap(8.7)=1.9 and
=tcoska,) we have to substituten/q by 2ta,|sink;a) 4, (7.85)/xy(8.7)=2.4 wherea(g); is theith harmonic of
—sin((k; +9)a,)| in Eq. (15 and mcog2n[ni—e(k;)/  the attenuation for the coupling strengthSince(A (k)) can
hwc])q by i1 cod2n[ni—e(k};)/hw])ta sin(Ga,)  be calculatedidirectly from Ag, and the coefficient in the
—sin((k; +qg)a,)| in Egs.(19) and (20) wherek,; are the dispersion law around the gapless points is proportional to
two solutions of the equatiomcod(k,+q)a,)—tcoska,) 9gAgy, we can compare the numerical results with the analyti-
=hw. cal predictions outlined above. If the quasiparticle spectrum

In Fig. 2 we show an example of the acoustic attenuations essentially gapped, Eq14) predicts that aq(7.85)/

calculated numerically for two different coupling strengths a(8.7)=f((A;g9)/f({Ag7))=8.8. If the attenuation is
as a function ofn;. We have solved the BdG equations primarily originating from gapless points in the quasiparticle
self-consistently in 3D as a function of the external magnetispectrum, Eqg. (15 predicts that «g(7.85)/xq(8.7)
field at constant chemical potential. In this paper we have=[8.7A,(8.7)/7.83\(7.85)]?”. This gives 2.5 forp=1
chosen to work with a constant chemical potential. The dif-and 1.6 for »=2. Hence the numerical calculation
ference between holding the chemical potential constant andy(7.85)/a((8.7)=1.9] imply (i) that the gapless points
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dominate the attenuation in agreement with our analytical Mo w—AK)

results andii) that the dispersion law is somewhere between a(q,w)o= 3 f dE

n=1 and =2, since the gapless predictions agree reason- Qh"wcl, Ly K Jado

ably well with the numerical results while the gapped pre- X[1—f(E)—f(0—E)]

dictions are qualitatively wrong. We cannot however make a

guantitative numerical determination of the dispersion law E(w—E)+A?

around the gapless points. This is due to the fact that in order X \/(EZ—AZ)[(w— E)2—A2] ) (21)

to reduce the computation load, which is high in this 3D o o )
case, we have to chooséanesh with a rather large spacing I the limit w/kgT—z this integral can be written as a com-
between the pointgthe mesh consists of 16650 pointy.  Plete elliptic integra and we obtain

This means that the gapless regions in the quasiparticle spec- M2
trum are only probed by a few vectors, thereby prohibiting a(q,w)oz—wf Ak V1-4A(K)TR202]. (22
a quantitative determination of the dispersion law. Likewise, 47°h%wQq

the analysis above predicts thaf(7.85)/a,(8.7) equals 2.5  ereg(k) is the complete elliptic integral of the second kind.
and 1.6 forp=1 andy=2, respectively. They=1 predic- The existence of the gapless points again gives rise to a
tion of 2.5 agrees well with the numerical result gyalitatively different result for the ultrasonic attenuation in
@1(7.85)/a1(8.7)=2.4. Again, any quantitative comparison the mixed state as compared to the Meissner state. This is
would require a much finde mesh. A further complication is  most easily understood by the observation that there will
that due to the number of Landau levels participating in thealways be attenuation for any frequency in the mixed state
pairing (approximately 10 the oscillations in the attenuation since there are always quasiparticle states witkk)
are quickly damped and the diagonal approximation is only<% /2. Hence the phonon will always have enough energy
valid over relatively few oscillations. This problem could be to create two quasiparticles. This is in contrast to the Meiss-
avoided if we were to perform the calculations for experi-ner state, where there is no attenuationffar<2A.?! Thus
mentally realistic parameters, where there are many mora direct experimental signature of these gapless points would
Landau levels in the pairing region; however we have note the absence of the discontinuity in the attenuation which
been able to run the programs for such parameters due to tfig present in the Meissner statewhenzw=2A, and the
intense computation load. The above example does showmresence of acoustic attenuation in the mixed staie-a®.
however that the numerical calculations support our analytit®Ve again assume that the dispersion law around the gapless
theory. In short, the normal-state oscillations in the attenuapoints to leading order is given b (k)= vk” (k=|k]|) in
tion continue into the mixed state and the damping is domithe region that contributes to the attenuatjom., for A(k)
nated by gapless points not too far into the mixed state. <#%w/2]. Using this we obtain

Hence we have calculated the Oth and the first harmonic

. N . 2m+2 1
Mo
of the acousn_c attenuation in the mlxe_d state. The presence a(q,0)0=Qy . = J' XdXE( /1_X2n)
of gapless points enhances the acoustic attenuation above the 2mh wq(2y)“"Jo
conventional value for the Meissner state. Wheén)
=3kgT such that we can ignore the contribution from the B mao?7*2 | 23
gapped part of the spectrum, the temperature dependence of _n2wh2wcq(27)z”’ 7 (23

the attenuation is a power law given lyxT2”. Further- ) ) _
more, we predict that one should observe oscillations in th§|ncze 2the attenuation for the normal state d¢q,w)on
signal as the external field is varied. The magnitude of thes& M w“/27h°q we have

oscillations should have the same temperature dependence as @(q, ) w \27 4]
the average value of the signal. Hence, by looking at the 70 g,(— 7. (24)
temperature dependence of the attenuation one should be a(d,@)on 2y)  Mac

able to detect the presence of the gapless points and to eRor the same reasons as for the<kgT case, we expect

tract the dispersion law around these points. From the diageq. (24) to also be valid in the dirty limit. The remaining

onal approximation it follows thag=(A) where(A) isthek integral in Eq.(23) can be solved for various. We obtain,

space(or real-spaceaverage of the gap. Hence close to thefor instance,| ;=2/3, | ,= 72/16, | ;,,= 32/45, etc. Again the

upper critical fieldH., we expectyx\1—H/H. This attenuation has an oscillatory behavior as a function of the

would mean thai(q,w)=(1—H/Hg,) Y7 close toH.,. magnetic fieldH ~1. From the Poisson identity we get for the
first harmonic

IV. LOW TEMPERATURE (0, 0)1=Qq 3m‘” S g2miilne— ek o]
We will now consider the limit wheré&zT<#A w. In this 4h wcq2mi=~11
limit only the third & function in Eq.(5), which describes the
creation of two quasiparticles will contribute to the damping. X f kd kf déd§'s(E+E'—w)
We first calculate the Oth harmonic of the attenuation. Using

the Poisson identity, making a substitution of variables and

using the fact that = w/q<<v¢ (v; is the Fermi velocitywe X
obtain the Oth harmonic of the attenuation, whefk,)

=k2/2m, as (25)

A(K)?|
1—EIE)(1+¢'IE )+ ——|ellé/hoc,
(1-¢/E)(1+¢&'IE)+ EE e
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We have not been able to solve this integral exactly. Howusing both numerical and analytical methods. We have
ever, in the region where the diagonal approximation holdshown that away from the semiclassical regime where
(i.e., for o<fiw/4) one can expand the factel'"“c to a  the Landau-level structure of the electronic states is im-
good approximation. This immediately yields that, to leadingportant, the attenuation will in general be an oscillatory
order inw/ ¢, the amplitude of the first harmonic varies as function of the external magnetic field. Furthermore,
»?72. The next correction term will go as”**. since the attenuation probes the quasiparticle density of
So we see that the existence of the gapless points in thates, the presence of gapless points in the quasiparticle
MBZ implies that there is a finite attenuation for any fre- gpectrum makes the attenuation qualitatively different as
guency of the sound wave. There will be no discontinuity i”compared to the Meissner state attenuation. Kafl
the attenuation as a func_tion of the sound-wave freque_ncy<ﬁwc the attenuation is an algebraic function of the
As the external field is varied one should observe OSC'"at'On?requency and there is no discontinuity as opposed to the

in the atFenuatlon._The dependence of the attenuation on f“?\/lelssner state attenuation. FRgT>%h w. the attenuation
guency is algebraic and the power law is determined by the . .

) . . - is an algebraic function of the temperature. The exponent
dispersion law around the gapless pointsA (k) = vk”7 we

obtain e ©27*2. The absence of the discontinuity and the of the power law is determined by the dispersion law around

frequency dependence of the attenuation should, in principlé,he gapless points. This behavior should, in principle, be ex-

provide the possibility of experimentally determining the ex- perlmentglly detectable;. such an experiment would provide
istence and dispersion law for the gapless points. Again wgonfirmation of the existence and nature of the gapless
expecta(q,w)(1—H/H,) Y7 close toH,. By making PoInts.

the same substitutions as in thex<<kgT limit, one can ob-

tain the results for the case(k,)=tcoska,) relevant for
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