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Hidden non-Abelian gauge symmetries in doped planar antiferromagnets
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We investigate the possibility of hidden non-Abelian local phase symmetries in large-U doped planar
Hubbard antiferromagnets, believed to simulate the physics of two-dimensional~magnetic! superconductors.
We present a spin-charge separation ansatz, appropriate to incorporate holon spin flip, which allows for such
a hidden local gauge symmetry to emerge in the effective action. The group is of the form SU~2!^US(1)
^ Uem(1), where SU~2! is a local non-Abelian group associated with the spin degrees of freedom, Uem(1) is
that of ordinary electromagnetism, associated with the electric charge of the holes, and US(1) is a ‘‘statistical’’
Abelian gauge group pertaining to the fractional statistics of holes on the spatial plane. In certain regime of the
parameters of the model, namely, strong US(1) and weak SU~2!, there is the possibility ofdynamical formation
of a holon condensate. This leads to adynamicalbreaking of SU~2!→U~1!. The resulting Abelian effective
theory is closely related to an earlier model proposed as the continuum limit oflarge-spin planar doped
antiferromagnets, which lead to an unconventional scenario for two-dimensional parity-invariant superconduc-
tivity. @S0163-1829~98!00105-2#
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I. INTRODUCTION

The discovery of the quasiplanar high-Tc cuprates1

prompted considerable theoretical interest in tw
dimensional superconductivity of magnetic origin. T
strong suppression of the isotope effect was one of the m
reasons for looking for alternatives to phonon mechanis
The main feature of the magnetic superconductivity was
lieved to be the fractional statistics of the excitations on
planar geometry of the materials. In two spatial dimensio
particles are no longer limited to Bose and Fermi statis
but can acquire an arbitrary interchange phase; such part
with fractional statistics are known as anyons. Laughlin2 sug-
gested that a gas of anyons may exhibit superconductivit
low temperature. This idea was supported by the result
calculations in the random-phase approximation,3 which
demonstrated that a perfect gas of charged anyons with
tain values of the statistics parameter is indeed a super
ductor at zero temperature.~For restrictions on the validity o
the random-phase approximation in the context of effec
field theories of parity-violating anyonic superconductiv
see Ref. 4.! This ‘‘anyonic superconductivity’’ is an entirely
different phenomenon that has no analog in thr
dimensional systems. Motivated by the role of anyo
quasi-particles in the fractional quantum Hall effect, Laug
lin went on to suggest that the charge carriers in the cop
oxide planes of materials such as La2CuO4 and YBa2CuO6
might also have fractional statistics and that superconduc
ity in these materials may be well described by the anyo
model.

From the experimental point of view, however, the
seems to be a serious drawback with the anyonic model
candidate theory of high-Tc superconductivity. A field-
theoretic realization of anyonic matter consists of fermio
interacting with an Abelian ‘‘statistical’’ gauge field whos
570163-1829/98/57~5!/3017~14!/$15.00
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dynamics is governed by a Chern-Simons term. As discus
in Ref. 5, this term leads to observableparity violation in an
anyonic superconductor for which there is, as yet, no con
sive experimental evidence. In Ref. 6 a proposal was mad
for a simple gauge-theory model that exhibits tw
dimensional superconductivity without parity violation. In i
most general form, the model consists of two species of m
sive fermions coupled with opposite signs to an Abeli
gauge field representing effective spin interactions am
the holon excitations. The two species have equal and op
site masses and hence parity is conserved overall. T
theory may be shown6 to arise as an approximate long
wavelength limit of an idealized model of the dynamics
the charge carriers in dopedt- j or Hubbard models. Similar
models, but only at a continuum theory level with no attem
to discuss the connection with semimicroscopic condens
matter systems, have been proposed simultaneously in R
7 and 8.

The treatment in Ref. 6 employed large-spin approxim
tions for the antiferromagnetic model. This resulted in
strong suppression of intrasublattice hopping,9 which lead to
two species of hole excitations for the bipartite lattic
used.9,6 One eventually would like to argue that the sam
qualitative features occur for the realistic value of the sp
1
2 . It is the purpose of this article to attempt to formulate t
above-mentioned effective theory and its physical con
quences in a way so as toavoid the large-spinS assumption.

To this end, we first review the passage from the stati
cal large-spin models to the continuum theories and t
extend the analysis to spin-1

2 models. The local phase sym
metries that these models possess play a crucial roˆle in this
program, and below we study them in some detail. What
shall show here is that the doped large-U Hubbard models
possess a local SU~2!3US(1) phase symmetry related t
spin interactions. This symmetry will be discovered throu
3017 © 1998 The American Physical Society
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3018 57K. FARAKOS AND N. E. MAVROMATOS
a spin-charge separationansatz, which allows intersublattic
hopping for holons and hence spin flip. The spin-cha
separation may be physically interpreted as implying an
fective ‘‘substructure’’ of the electrons due to the many-bo
interaction in the medium. This sort of idea, originating fro
Anderson’s resonating valence bond~RVB! theory of
spinons and holons,10 seems to be pursued recently b
Laughlin, although from a~formally at least! different per-
spective than the one discussed here.11

The effective long-wavelength model is remarkably sim
lar to a three-dimensional gauge model of particle phys
proposed in Ref. 12 as a toy example for chiral symme
breaking in QCD. In that work, it was argued thatdynamical
generationof a fermion mass gap due to the U~1! group in
SU~2!3U~1! breaks the SU~2! group down to at3 U~1!
group, wheret3 is the 232 Pauli matrix. From the particle
theory viewpoint this is a Higgs mechanism without anel-
ementaryHiggs excitation.

The analysis carries over to the present case as we
one associates the mass gap to the holon condensate
resulting effective theory of the light degrees of freedom
then similar to the continuum limit of Ref. 6 describing u
conventional parity-conserving superconductivity.

From our point of view, the above symmetry-breaki
pattern summarizes the effects of doping on the largeU
Hubbard model in a dynamical way. In our opinion, the a
pearance of non-Abelian gauge symmetries, as symme
of doped antiferromagnets that are broken dynamically
doping, and the analogy of the holon-condensate format
superconductivity with chiral symmetry breaking in Yan
Mills theories, open up many possibilities for a nonperturb
tive ~exact! treatment of such theories, including the role
nonperturbative effects in the superconductiv
mechanism.13 We also believe that our analysis offers qua
titative support to the ideas of Refs. 10 and 11 about eff
tive ‘‘splitting’’ of electrons into spinon and holons in th
medium in a more general context.

The structure of the article is as follows. In Sec. II w
discuss the doped Hubbard~lattice! models from the point of
view of the proposed spin-charge separation ansatz and
associated gauge symmetry structure SU~2!3US(1). In Sec.
III we discuss the long-wavelength effective lattice action
the limit of strong US(1), thedynamical mass generation fo
the holes, and the connection with~Kosterlitz-Thoules! su-
perconductivity. In Sec. IV we present an analytical deriv
tion of the dynamical breaking of the SU~2!→U~1! on the
lattice, in the limit of strong US(1). Finally, in Sec. V we
present our conclusions and the possible predictions of
model.

II. HUBBARD MODELS AND LOCAL
PHASE SYMMETRIES

A. Large-spin treatments and their continuum limits

First let us briefly review the large-spin treatments
antiferromagnets.9,6 In the absence of doping impurities, th
quasiplanar materials are antiferromagnetic insulators.
potential importance of antiferromagnetic correlations
high-temperature~cuprate! superconductivity was noted b
Anderson,10 who suggested that the correct model for t
dynamics of electrons in the copper oxide layers was
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single-band, large-U Hubbard model. The two-dimensiona
Hubbard Hamiltonian is written in terms of operatorsci ,s

andci ,s
† , which annihilate and create electrons in thedx22y2

orbital at each copper site,

H52t (
^ i j &,s

ci ,s
† cj ,s1U(

i
ni ,↑ni ,↓ , ~2.1!

where t is the electron-hopping matrix element,U is the
strong Coulomb repulsion, andnis5cis

† cis is the occupation
number at each site. In the limitU→`, a single-occupancy
constraint is rigidly imposed. The undoped case is descri
by the Hubbard model with half-filled band and hence t
spins are the only degrees of freedom in this limit. To lea
ing order in large-U perturbation theory, the half-filled Hub
bard model is simply equivalent to the two-dimension
Heisenberg antiferromagnet14

H5J(̂
i j &

Si•Sj , ~2.2!

whereJ54t2/U andSi is the electron spin at sitei . Thus we
see that in the infiniteU→` limit J corresponds to a wea
coupling.

The effective long-wavelength degrees of freedom of
antiferromagnet can be described by a ‘‘relativistic’’ qua
tum field theory in (211)-dimensional space-time. In pa
ticular, the large-S limit of the spin-S Heisenberg antiferro-
magnet is equivalent, at large length scales, to the quan
nonlinears model.15,16 The relativistic covariance of the ef
fective action arises from the linear dispersion relation
long-wavelength magnons and the spin-wave velocity pl
the role of the velocity of light in this formulation.

Doping introduces mobile charges that hop from site
site against the antiferromagnetic background of the sp
The coupled dynamics of holes and spins in the doped
tem is highly nontrivial. The hopping of holes tends to d
order the spins reducing the antiferromagnetic correlat
length and the spins also mediate interactions between
holes. Roughly speaking, there is competition between
influence of the spins that favor a Ne´el-ordered ground state
and that of the holes that tend to form a spin liquid. A ge
eral conjecture is that a superconducting pairing of ho
arises out of this competition.17,18 This has been verified in
Ref. 6 in an effective large-spin analysis. In that analysi
large-spinS→` has been employed, which leads to tw
kinds of holes, due to the suppression of intersublatt
hopping.9,6 To be complete, below we review briefly the a
proach of Ref. 6, with which we shall make contact later o

To this end, we first note that to describe the dynamics
holes in the model of Ref. 6 one implements a spin-cha
separation, which is achieved by representing the elec
operatorsci ,s using a ‘‘slave-fermion’’ ansatz19,20

ci ,s
† 5c izi ,s

† , ~2.3!

wherec is a Grassmann field representing the absence
spin at a given site~hole! that carries the electric charge an
zi ,s is the spin degree of freedom, which can be identifie19

with the magnon field of theCP1 s model. The ansatz~2.3!
carries information about a local gauge invariance of
model as one can perform simultaneous local phase rotat
on c i andzi ,s fields with opposite couplings without chang
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57 3019HIDDEN NON-ABELIAN GAUGE SYMMETRIES IN . . .
ing ci ,s . It is this symmetry that is responsible for the gau
nature of the interactions between holes. The physical rea
for such a symmetry is the restriction of having at most o
electron per lattice site. This redundancy of degrees of fr
dom is the characteristic feature of gauge models.

The full partition function of the model is given as a pa
integral over the Grassmann fieldsc i andc i

† as well as the
CP1 variables z, z̄, and am . The corresponding long
wavelength limit is derived by linearizing the energy spe
trum about the chemical potential9,6 and is given by

Seff5E
0

b

dtE d2x
1

g
u~]m1 iam!zu21C̄aS i ]”2t3a”

1
e

c
A” DCa , ~2.4!

where C are four-component Dirac fermions, representi
holes,g is a constant inversely proportional to theJ Heisen-
berg interaction,6,19 e is the electric charge,c is the velocity
of light in units of the hole Fermi velocityvF51, andA is an
external electromagnetic field. The Dirac nature of the ho
is a result of the flux-phase assumption for each sublatti6

The reducible four-component representation of the Di
algebra in space-time is a result of doubling and follo
directly from the local sublattice structure defined by t
antiferromagnetic order. The opposite statistical charge
the holes in different sublattices leads to at3 coupling for
the gauge field, wheret35(0

1
21

0 ) is the 232 Paulis3 ma-
trix representation for the generator of thet3 U~1! group.6

~Here and in Ref. 6 we follow the terminologyt3 U~1! for
the Abelian group in spin or sublattice space generated
the 232 s3 Pauli matrix so as to distinguish it from spac
time groups.!

Integrating out the electrically neutral magnon fields a
keeping only the leading terms in a derivative expansion,21,22

one obtains the low-energy effective action of the electrica
charged degrees of freedom

L52
1

4g2 f mn f mn1C̄aS i ]”2St3a” 2
e

c
A” DCa . ~2.5!

The dimensionful gauge couplingg2 is proportional to22,19

g25~g!21;Jh, ~2.6!

where h is the doping concentration in the sample. In t
context of thet- j model, which was considered in Ref.
this coupling may be taken strong enough so as to gene
dynamically a gap in the hole spectrum.

The above analysis essentially postulated the existenc
two holon species by suppressing intrasublattice hopp
This was the result of a large-spin analysis. It is the purp
of this article to demonstrate that qualitatively similar lon
wavelength results may be obtained for spin-1

2 doped antifer-
romagnets. An important tool in such an analysis is the st
of local phase symmetries of the model, which we now tu
to. We shall start with a review of~non-Abelian! gauge sym-
metries that characterize the half-filled~undoped! models
and then proceed to a study of the doped case upon
structing an appropriate spin-charge separation ansatz
tending Eq.~2.3! appropriately so as to allow intersublattic
on
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hopping of holons. As we shall show, under the propos
ansatz, the effective Hamiltonian of holon and spinon d
grees of freedom is characterized by hidden non-Abelian
cal phase symmetries. However, the holon condensate br
the non-Abelian symmetry dynamically down to the Abeli
subgroup discussed in Ref. 6 and hence one recovers
above-discussed Abelian model as an effective theory of
light degrees of freedom. Nevertheless, there are remnan
the non-Abelian symmetry structure, which manifests its
in the ~mass! spectrum of mesonlike excitations, as we sh
discuss in Sec. III. The presence of such excitations con
tutes physically testable predictions of the spin-charge se
ration ansatz proposed in this work.

B. Half-filled spin- 1
2 antiferromagnets: SU„2… gauge

symmetry structure

The large-U ~Mott! limit of the half-filled Hubbard model
with j 54t2/U is the Heisenberg model~2.2!. In Ref. 23 it
was observed that in this limit there is a local SU~2! symme-
try associated with the spin-1

2 algebra of the electrons. In
deed, using electron operatorsci

a at a sitei , corresponding to
spin components up or down,a51,2, one may represent th
Hamiltonian~2.2! as

H5J(̂
i j &

~c†,asa
bcb! i~c†,asa

bcb! j , ~2.7!

with the constraint of one electron per site

ci
†,aci ,a51. ~2.8!

H is invariant under the usual global SU~2! transformations
of the spin-12 algebraca→cbga

b , with ga
b an SU~2! matrix. In

Ref. 23 a second SU~2! was constructed out of the doublet o
creation operators (c2

† ,2c1
†). Combining these two doublet

in a 232 matrix

xab5S c1 c2

c2
† 2c1

†D , ~2.9!

one observes that in addition to theglobal SU~2! transforma-
tions xab→xaggb

g , one can23 define alocal SU~2! by left
multiplication

xab→ha
gxgb . ~2.10!

This local symmetry commutes with the global SU~2! men-
tioned above. Writing the global SU~2! spin operatorsS ap-
pearing in Eq.~2.2! in terms ofx as S̀ tr x†xsT, with T
denoting matrix transposition, one can easily see that
Heisenberg interaction~2.7! is invariant under this loca
SU~2!, which is thus the symmetry of the large-U Mott limit
of the half-filled Hubbard model. It should be stressed
course that this isnot an exact symmetry of the Hubbar
model. As shown in Ref. 23, the very constraint~2.8! of one
electron per site, which in terms ofx variables is expresse
as

Tr x†s3x50, ~2.11!

results in a time-dependent local gauge symmetry, w
combined with the kinetic term in the Lagrangian
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L5
1

2 (
i

tr x i
†S i

d

dt
1A0,i Dx i2H, ~2.12!

where A0,i acts as a Lagrange multiplier implementing t
constraint and it may be thought of as the third~temporal!
component of the local SU~2! gauge field.23 Such gauge
symmetries appear as a general property of the Gatzw
projection of one electron per site, due to the fact that s
projections are associated with a sort of particle-number c
servation. This local gauge symmetry connects vari
mean-field limits of the half-filled Hubbard model.24

To understand the formal meaning of the above symm
try, we return to theCP1 s model, which is supposed t
describe the low-energy physics of the half-filled Hubba
model in a bosonized framework for the spin excitations. W
recall that upon resolving the constraintz̄z51, with z
5(z1 ,z2) a complex SU~2! doublet with boson statistics, th
z field can be written as a 232 unitary matrix

z5S z1

z2

2 z̄2

z̄1
D5exp~ i jasa!, ~2.13!

wheresa , a51,2,3 are the Pauli generators of SU~2! and
the real fields j i are dynamical. The gaugeds-model action
in this representation reads

Sz5E d3x g0
21 tru~]m2 igBm!zu2, ~2.14!

whereg0 is a bare coupling constant. In this representat
one is free to gauge the full SU~2! local gauge group in the
s-model action, in which caseBm5Bm

a sa , a51,2,3, or its
Abelian U~1! subgroupBm5B3s3 . The action~2.14! reads

S5E d3x g0
21F(

a
~]mja!21g2Bm

2 1(
a

Bm
a ~22g]mja!G .

~2.15!

Technically, the above representation separates the G
stone modes from the rest of the fields relevant at l
momenta.25 The resolution of the constraint implicit in Eq
~2.13! results in a standard mass term for the gauge fielB
instead of the quartic couplingz̄B2z.

The possibility of gauging the full SU~2! group in thes
model is equivalent to the local SU~2! symmetry of the
Heisenberg action~2.2! found in Ref. 23, given that at hal
filling only spin excitations~magnons! exist.10 Of course, the
equivalence is understood in terms of bosonization, which
211 dimensions, unlike 111 dimensions, cannot be ex
pressed in a closed form, but only as an effective deriva
expansion.

C. Doped spin-12 antiferromagnet and non-Abelian gauge
symmetry structure

Doping is expected to break the SU~2! symmetry between
creation and annihilation pairs of electron operators. Naiv
speaking, a spatial hopping term of the formca,i

† ca, j does
not seem to be invariant under the local SU~2! ~2.10!. Away
from half filling one would expect that only a local U~1! can
survive, which in view of our spin-charge separation ans
~2.3! seems to be the Abelian subgroup of SU~2! associated
with t3 . This local subgroup is the one gauged in theCP1 s
er
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e
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e

ly

tz

model and also the one associated with the~Berry phase!
term describing static holes in the model of Ref. 6. In th
article we shall present a dynamical scenario by which
above symmetry breaking is achieved. The scenario will
remarkably similar to a three-dimensional particle-phys
toy model for chiral symmetry breaking in QCD.12

The key point is to try to uncover the local SU~2! sym-
metry in the doped case by generalizing the spin-cha
separation ansatz~2.3!. We seek a representation of the spi
charge separation that will allow spin flip, but would st
treat the holons as ‘‘blind’’ to the electronic sublattice stru
ture. To this end, we propose to represent the holon deg
of freedom as two-component spinors in a two-dimensio
‘‘color’’ space, representing Dirac spin componen
(c1 ,c2), while the spin excitations are represented by
CP1 doublets (z1 ,z2) living in the same color space. How
ever, we amend our construction with aspin-flip operation,
which, for thez-magnon degrees of freedom, is represen
by the conjugate doublet (2 z̄2 ,z̄1). Thus the electron anni
hilation operators can be expressed as

c15~c1c2!S z1

z2
D , c25~c1c2!S 2 z̄2

z̄1
D , ~2.16!

while the corresponding creation operators can be obta
by 2c2

† ,c1
† , with the dagger denoting Hermitian conjug

tion. We believe that this ansatz captures the qualitative
tures behind the RVB idea of Anderson10 on spinon and
holons. Essentially Eq.~2.16! implies that to annihilate an
electron with, say, spin up one has to remove all the com
nents of the spin. The spin-charge separation ansatz imp
that to some extent the holes should be blind to the spin
the electron~sublattice structure of the antiferromagne!.
This is correctly captured in Eq.~2.16! since the hole
‘‘spinors’’ in color space are the same for both electron co
ponents, while the~magnon! z doublets differ by a spin-flip
operation defined above.

Technically, it is convenient to combine the creation a
annihilation operators, following the treatment of the ha
filled case~2.9!. To this end, we propose that for the large-U
limit of the doped Hubbard model the following spin-char
separation ansatz occurs at each sitei :

xab,i5cag,izgb,i[S c1

c2
†

c2

2c1
†D

i

5S c1

2c2
†

c2

c1
†D

i
S z1

z2

2 z̄2

z̄1
D

i

, ~2.17!

where the fieldsza,i obey canonicalbosoniccommutation
relations and are associated with the spin degrees of freed
while the fieldsca,i , a51,2 havefermionicstatistics and are
assumed to create holes at the sitei with spin indexa. They
obey the anticommutation relations

$c i ,a ,c j ,b
† %5d i j dab , $c i ,a ,c j ,b%5$c i ,a

† ,c j ,b
† %50.

~2.18!

The ansatz~2.17! has spin-electric-charge separation sin
only the fieldsc carry electric charge. From now on, w
shall refer toca as the ‘‘holons’’ and toz̄a as ~bosonized!
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‘‘spinons.’’ The ansatz~2.17! is an obvious generalization o
Eq. ~2.3! if one allows intersublattice hopping.

It is worth noticing that the anticommutation relations f
the electron fieldsca ,cb

† do not quite follow from the ansat
~2.17!. Indeed, assuming the canonical~anti!commutation re-
lations forz (c) fields, one obtains from Eq.~2.17!

$c1,i ,c2,j%;2c1,ic2,id i j ,

$c1,i
† ,c2,j

† %;2c2,i
† c1,i

† d i j ,
~2.19!

$c1,i ,c2,j
† %;$c2,i ,c1,j

† %;0,

$ca,ica, j
† %;d i j (

b51,2
@zi ,bz̄i ,b1cb,icb,i

† #,

a51,2 ~no sum over i !.

To ensure canonical commutation relations for thec opera-
tors therefore we must impose at each lattice site the~slave-
fermion! constraints

c1,ic2,i5c2,i
† c1,i

† 50,
~2.20!

(
b51,2

@zi ,bz̄i ,b1cb,icb,i
† #51.

Such relations are understood to be satisfied when the h
and spinon operators act on physical states. Both of th
relations are valid in the large-U limit of the Hubbard model
and encode the nontrivial physics of constraints behind
spin-charge separation ansatz~2.17!. They express the con
straint at most one electron or hole per site, which charac
izes the large-U Hubbard models we are considering he
From the above analysis, therefore, it becomes clear tha
ansatz~2.17! does not characterize a generic Hubbard s
tem, but only the appropriate large-U limit, where the con-
straint of one electron per site is valid. As we shall discus
Sec. IV, both of the above constraints~2.20! are consistent
with the mass spectrum of the effective long-wavelen
theory obtained from dynamical generation of a fermion c
densate.

Now let us look at the symmetry structure of the sp
separation ansatz~2.17!, which in view of the previous
analysis coincides with the symmetry structure of the eff
tive large-U Hubbard action. First, it appears to have a triv
local SU~2! symmetry if one defines the transformation pro
erties of thez fields to be given by left multiplication with
the SU~2! matrices and those of thecab

† matrices by the left
multiplication ~2.10!. In this representation, the gauge gro
SU~2! is generated by the 232 Pauli matrices.

The ansatz~2.17! possesses an additional local US(1) sta-
tistical phase symmetry, which allows fractional statistics
the spin and charge excitations. This is an exclusive fea
of the three-dimensional geometry. This is similar in spi
although implemented in an admittedly less rigorous way
the bosonization technique of the spin-charge separation
satz of Ref. 26, and allows the alternative possibility of re
resenting the holes as slave bosons and the spin excita
as fermions. In addition, as a consequence of the fact tha
fermions c carry electric charge, one has an extra Uem(1)
symmetry for the problem.
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To recapitulate, the above analysis, based on the s
charge separation ansatz~2.17! that allows spin flip, leads to
the following local-phase~gauge! group structure for the
doped large-U Hubbard model:

G5SU~2!3US~1!3Uem~1!, ~2.21!

where the second Uem(1) factor refers to electromagneti
symmetry due to the electric charge of the holes. This sy
metry appears as a hidden symmetry of the effective ho
and spinon degrees of freedom obeying the ansatz~2.17!.

The presence of the US(1) statistics changing group fac
tor will be crucial in our analysis. As we shall discuss in Se
IV, in its strong coupling limit it can generate a ma
gap27–29for the fermionic holon fieldsc, which for each hole
component breaks parity, thereby producing a statis
changing dynamical Chern-Simons term. However, due
the even number of fermionic species there is no ove
parity violation in the model.6 Note that, since this statistica
gauge field couples also to thez fields, their statistics will be
affected as well.

D. Effective Hamiltonian of the doped
Hubbard antiferromagnet

Next we focus our attention on showing that the vario
terms in the action are expressible in terms of thexab vari-
ables, which would imply that the symmetries of the largeU
doped Hubbard model action are the symmetries of the
satz~2.3!. To this end, we first study the hopping term of th
dopped Hamiltonian, which broke explicitly the local SU~2!
symmetry ~2.10! of the electron operatorsca ,cb

† . Let us
rewrite this term in terms ofxab variables:

Hhop52(̂
i j &

t i j ca,i
† ca, j52(̂

i j &
t i j @x i ,ag

† x j ,ga

1x i ,ag
† ~s3!gbx j ,ba#, ~2.22!

where s3 is a 232 Pauli matrix and summation over th
spin indices is implied. In terms of the spin and charge
citations, appearing in Eq.~2.17!, then, the hopping term
may be written as

Hhop52(̂
i j &

t i j @ z̄i ,bkc i ,ka
† c j ,agzj ,gb

1 z̄i ,bkc i ,ka
† ~s3!alc j ,lgzj ,gb# ~2.23!

and is trivially local SU~2! symmetric.
To complete the analysis we should also look at the in

action terms. The Heseinberg term~2.7! can be written in the
convenient form23

H52 1
8 J(̂

i j &
tr@x ix j

†x jx i
†#, ~2.24!

which can be linearized in terms of the fermion bilinear fun
tions if one introduces in the path integral a Hubba
Stratonovich fieldD i j in a standard fashion. The result of th
linearization is

H5(̂
i j &

tr@~8/J!D i j
† D j i 1~x i

†D i j x j1H.c.!#. ~2.25!
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We then employ the ansatz~2.17! and perform a Hartree
Fock ~mean-field! approximation for the bilinear functions:

^z̄izj&[uA1uVi j Ui j ,
~2.26!

^c i
†@2t i j ~11s3!1D i j #c j&[uA2uVi j Ui j ,

where, according to the previous discussion, we have u
the fact that the link variables are SU~2!3US(1) group ele-
ments, due to the specific transformation properties of
variablesz andc. In the above notationV is the SU~2! part
and U denotes the Abelian US(1) group element. The am
plitudes uAi u, i 51,2, of the link variables are assumed fr
zen, as usual. By an appropriate normalization of thez andc
fields, this amplitude is common for both link variables,

uA1u5uA2u5K. ~2.27!

According to the discussion of Ref. 6 the amplitudeK is
proportional to the Heisenberg exchange interactionJ
54t2/U, with t the hopping parameter, and also to the do
ing concentration in the sample.19 We shall return to this
issue later on.

The result of the Hartree-Fock approximation, then,
the combined hopping and interaction terms in the Ham
tonian is

HHF5(̂
i j &

tr$~8/J!D i j
† D j i 1@2t i j ~11s3!1D i j #

3~c j^zj z̄i&c i
†!%

1(̂
i j &

tr $z̄i^c i
†@2t i j ~11s3!1D i j #c j&zj%1H.c.

~2.28!

and using Eqs.~2.26! and ~2.27! one obtains

HHF5(̂
i j &

tr$(8/J!D i j
† D j i 1K@2t i j ~11s3!

1D i j #c jVji U ji c i
†} 1(̂

i j &
tr@Kz̄iVi j Ui j zj #1H.c.

~2.29!

This is the effective field theory lattice action we propose
describe the dynamics of the large-U Hubbard model. It is
understood the constraints~2.20! should be taken into ac
count to complement the description. It is important to n
that the fermion fieldsc are 232 matrices in the above
representation. Notice also that the termt i j (11s3)1D i j
transforms covariantly under a global U~1! symmetry gener-
ated by the Pauli matrixs3 . This global U~1! symmetry acts
on the electron operatorsx i as x i→Ux i , with U5eiu, u a
global phase. Thez-dependent~magnon! terms yield, in the
continuum, theCP1 s-model Lagrangian~2.14!.19

In the large-U Hubbard limit we are considering here, on
has the order of magnitude estimates

J54t2/U, t;Uhmax, hmax!1, ~2.30!

where hmax is the maximum doping concentration of th
sample, above which superconductivity is destroyed. For
derdoped cuprates one may consider the casehmax!1. In this
ed

e

-

r
l-

e

n-

limit, one observes from Eq.~2.29! that the Gaussian fluc
tuations of the variableD i j are ofO(J/ut i j u) and hence sup-
pressed compared to the hopping termt i j . This means that
one may approximatet i j (11s3)1D i j .t i j (11s3). Consid-
ering the usual case witht i j 5t for everyi , j , one may absorb
such terms into an appropriate rescaling of the fermion fie
c. This will be understood in what follows. However, w
stress once again that in the case of finite-U Hubbard mod-
els, one should consider the effects of the Gaussian vari
D i j in the Lagrangian~2.29!. This will be left for future
work.

The conventional lattice gauge theory form of the acti
is derived upon integrating out the magnon fieldsz in the
path integral. As discussed in Refs. 22 and 21 the resul
such a path integration of the magnon fluctuations around
mean field yields appropriate Maxwell kinetic terms for t
link variableVi j Ui j , which are the dominant terms in a low
energy derivative expansion. The constraint of at most
electron per lattice site in Eq.~2.20! is crucial in such a
derivation since its implementation through a Lagrange m
tiplier field s results in a ‘‘mass’’ term for the magnon field
z, in the way explained in Ref. 21. The effective Maxwe
terms in the continuum are of the generic form

Skim}E d3x
1

As0

~Fmn
2 1Gmn

2 !, ~2.31!

whereFmn ,Gmn denote the US(1) and SU~2! field strengths,
respectively, ands0 is a vacuum expectation value of th
Lagrange multiplier field s. An elementary one-loop
renormalization-group analysis yields21

As05M24pKR , ~2.32!

whereM is a transmutation mass andKR is the ‘‘renormal-
ized’’ K coefficient of theCP1 part of the action~2.29!.
From the analysis of Ref. 19 we may infer thatKR}Jh, with
J the Heisenberg interaction andh the doping concentration
which for lightly doped cuprates ish!1. This implies that
the order of magnitude of the coefficient of the Maxwe
term ~2.31!, resulting from thez integration in a derivative
expansion, is set by the Heisenberg exchange interac
field strengthJ. The conventional three-dimensional gau
coupling g2, of dimensions~mass!, is related toKR by the
simple relation~2.6!

1/g2}KR
21}J21h21. ~2.33!

Thus, from Eq.~2.30! one obtains for thedimensionlesscou-
pling g2a, with a the lattice spacing of the antiferromagnet
Hubbard model,

b1[
1

g2a
}

1

hhmax
2 Ua

. ~2.34!

The magnitude of this coupling depends on the way the li
U→` is taken. Taking the limit ofU→` such that
Uahhmax

2 @1, one obtains asmallb, i.e., strong coupling for
the US(1) group. The limit of smallb is crucial for the
symmetry-breaking patterns of the non-Abelian SU~2! group,
as we shall discuss in Sec. III.
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We now remark that on the lattice the kinetic~Maxwell!
terms~2.31! are given by appropriate plaquette terms of t
form

(
p

@bSU~2!~12Tr Vp!1bUS~1!~12Tr Up!#, ~2.35!

where p denotes sum over plaquettes of the lattice a
bUS(1)[b1 and bSU(2)[b254b1 are the inverse squar

couplings of the US(1) and SU~2! groups, respectively. The
specific relation between the SU~2! and US(1) couplings is
due to the appropriate normalization of the generators of
groups.

At this point it is worth remarking that for certai
Schwinger-Dyson treatments of dynamical symme
breaking6,24 a large-N treatment is desirable, in which cas
one assumes that the spin SU~2! group is replaced by SU(N)
with N large enough. In that case the non-Abelian coupl
is related to the Abelian one through

bSU~N!52NbUS~1!52Nb1 . ~2.36!

This implies that, even in the case of strong US(1) coupling,
b1→0, the large-N ~large spin! limit may be implemented in
such a way so thatbSU(N) is finite. This is the limit of the
analysis of Ref. 12. We shall discuss this case in Sec.
where we shall make contact with the results of Ref.
where such a large-N treatment had been assumed.

Above we did not write explicitly the chemical potenti
term m( i ,acia

† cia , which determines the doping concentr
tion in the sample. This term is also expressed in terms of
x variables, and essentially has the form of Eq.~2.22! but for
i 5 j , which again may be expressed in a gauge-invar
way upon using the ansatz~2.17!. In deriving long-
wavelength continuum limits, one linearizes the energy sp
trum about the chemical potential.9,6 For most of our discus-
sion below we shall not write explicitly such terms, as th
do not affect the symmetry structure of the theory.

E. Spinor structure for holons and symmetry-breaking patterns

Before closing this section we would like to remark th
as a result of the 232 matrix structure of the fermion field
c in Eq. ~2.29!, one may actually change representation
the SU~2! group and instead of working with 232 matrices
one may use a representation in which the fermionic matr
cab are represented as four-component vectors@in color
~spin! space#

cab→C†[~c1 2c2
† c2 c1

†!. ~2.37!

It is easy to see that in this representation the SU~2! group is
generated by the matrices
d

e

y

g

I,
,

e

nt

c-

,

f

s

t15g3[S 0 1

1 0D , t25g5[ i S 0 1

21 0D ,

t35D[ ig3g55S 1 0

0 21D , ~2.38!

where the substructures are 232 matrices. This is the SU~2!
representation used in Ref. 12 in the context of thr
dimensional toy models for chiral symmetry breaking. R
markably, the same type of symmetry arises in our cont
between creation and annihilation operators of holon pair
the spin-charge separation ansatz~2.17!.

In the analysis of Ref. 12, to be discussed in the contex
the present model in Sec. III, the statistical group US(1)
group is responsible for the dynamical generation of a pa
conserving masŝC̄C&. In terms of the dynamical variable
describing creation and annihilation of holonsc,c†, respec-
tively, theparity conservingmass depends on the holon co
densate. To see this, it is convenient to split the fo
component spinors~2.37! into two-component ones

C̃1
†5~c1 2c2

†!, C̃2
†5~c2 c1

†!. ~2.39!

In this representation the two-component spinorsC̃ ~2.39!
will act as Dirac spinors and theg-matrix ~space-time! struc-
ture will be spanned by the irreducible 232 representation.

The Dirac conjugate fieldC̃̄ may be identified directly with
the Hermitian conjugate fieldsC̃† in terms of holon opera-
tors. This is due to the fact that in a path integral over
holon fields, the conjugate fieldsc† can be considered a
independentdegrees of freedom.9,6,19 In this representation
the local SU~2! gauge group is generated by the famili
232 Pauli matricessa , a51,2,3. The parity transformation
is defined asC̃1→s1C̃2 , C̃2→s1C̃1 , which in terms of the
~microscopic! holon operatorsc i , i 51,2, readsc1→c2

† ,
c2→2c1

† . With these in mind, it is straightforward to ob

serve that the parity-conserving mass termC̃̄1C̃12C̃̄2C̃2
can be related to the holon condensation

^C̃̄1C̃12C̃̄2C̃2&522~c1
†c12c2

†c2!, ~2.40!

where we took proper account of the anticommutation re
tions ~2.18! among the Grassmanc i ,a , a51,2. The terms
^ca

†ca&, a51,2, are holon condensates. Notice, in the sa

context, that the parity-violating mass term̂C̃̄1C̃1

1C̃̄2C̃2& equals an irrelevant constant, which may be su
tracted. This result is consistent with thegenericenergetics
arguments that disfavor dynamical generation of a par
violating mass in vector such as theories withevenflavor
number.30

The formation of holon condensate due to a statis
changing US(1) group is similar in spirit to the approach o
Ref. 3 in the context of the anyonic superconductivity. Ho
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ever, as mentioned above, in our case, due to the f
component structure of the fermions, there is an even n
ber of fermionic species and hence no overall pa
violation. Moreover, this mass gap is not a singlet un
SU~2!, as we shall discuss in Sec. III A, but transforms a
triplet,12 thereby breaking SU~2! down to its t3 U~1! sub-
group. This is thet3 U~1! symmetry of the ansatz~2.3!,
leading to the effective action~2.5!. This provides a sort of
dynamical breaking of the local spin SU~2! group as the
result of introducing holes into the system.

The breaking of the SU~2! symmetry down to its Abelian
t3 subgroup admits the~physical! interpretation of restricting
the holon hopping effectively to a single sublattice. In a lo
energy effective theory of the massless degrees of free
this reproduces the results of Refs. 6 and 9. This scenario
be readily seen by using the four-component spinor repre
tation ~2.37!. Clearly, the two off-diagonal generators of th
SU~2! group ~2.38! g3 and g5 , corresponding to the gaug
bosons acquiring masses dynamically due to the holon c
densate,mix the two sublattices in the notation of Refs. 9 a
6. Indeed, from Eq.~2.39! it follows immediately that if a
holon of spin, say, 1 is created at a sitei , these generator
would connect it to the destruction of a hole with spin 2
the neighboring sublattice. On the other hand, the gener
D of the unbrokent3 U~1! is block diagonal, thereby no
mixing the sublattices. The intrasublattice hopping in t
approach is then suppressed by the mass of the g
bosons. We are considering here the limit ofinfinitely strong
US(1).12 In such a limit the intrasublattice hopping is com
pletely suppressed since the mass~which is proportional to
the infinite condensate! is infinite.12 This situation therefore
describesstaticholes. Hole hopping is allowed for strong b
finite couplings, in which case the holon condensates
masses are finite.

We shall devote more discussion on the phase diagram
the theory, and its comparison to that of Ref. 6, in the n
section. We would like to close this section by noting that,
the context of microscopic models of the form~2.29!, dy-
namical formation of holon condensates, and hence des
tion of antiferromagnetic order, would occur above a critic
doping concentration.31 To quantify the above results o
symmetry breaking, therefore, one needs proper lattice si
lations of these models. This is left for the future.

III. LONG-WAVELENGTH LIMIT OF THE SPIN- 1
2

DOPED ANTIFERROMAGNET

A. Derivation of the long-wavelength Hamiltonian

We now proceed in the long-wavelength limit of Eq
~2.29! and ~2.35!, in the spinor representation for the holo
fields, discussed in Sec. II E. To this end, we assume,
lowing the analysis of Ref. 6, a nontrivialflux phasefor the
gauge field US(1). This is crucial in yielding aDirac form
for the hole effective action.32,23,6The long-wavelength con
tinuum limit is then obtained in a similar way as in the Ab
lian case of Refs. 6 and 19, at low energies, by lineariz
about a specific point on the Fermi surface.@In what follows
we shall ignore, for simplicity, the shape of the Fer
surface6 and therefore deal with conventional relativistic la
tice models. Of course, this will not be the case in a reali
condensed-matter system, where there are known to be
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Fermi surfaces for holes. The relativistic nature may be
curate in superconducting models with nodes on their Fe
surface, when linearization about a node is performed. H
ever, for our purposes in this work, which are a study of
generic symmetry-breaking patterns of the local gro
~2.21!, their physical implications for superconductivity, an
the connection with the results of Ref. 6, such relativis
models will be sufficient.# Due to the assumed flux-phase-p
backgroundfor the gauge field US(1) one gets for the hop
ping ~kinetic! terms of the two spinors~2.39! ~ignoring in-
teractions for brevity!:6

Lkin;(
r ,m

~21!r 01•••1r m21C̄̃c~r !C̃c~r 1m̂ !1H.c.,

~3.1!

wherec51,2 is the color index, not to be confused with th
space-time~Dirac! index. The factors (21)r 01••• yield a
phaseeip521 per lattice plaquette and this result is pr
duced in our case by the US(1) flux-phase background.6 As
discussed in Ref. 32, the form~3.1! corresponds to a Dirac
form for the kinetic terms of the fermionsC̃ upon making an
~inverse! Kawamoto-Smit transformation33

Cc~r !5g0
r 0•••g2

r 2C̃c~r !, C̄c~r !5C̃̄c~r !~g2
†!r 2•••~g0

†!r 0,
~3.2!

whereC are two-component Dirac spinors, carrying colo
We stress once again that the color structure is up and ab
any space-time~Dirac! structure. Notice that in such a pic
ture fermion bilinear functions of the formC̄i ,cC i ,c8 ~i is a
lattice index!, for instance, the condensate~2.40!, are just

C̃̄i ,cC̃i ,c8 due to the Clifford algebra$gm ,gn%522dmn and
~anti-!Hermiticity properties of the 232 g matrices on the
Euclidean lattice. This is useful to have in mind when w
study the spectrum of meson states in Sec. IV.

In what follows we shall make use of the abov
mentioned~irreducible! 232 representation in both the colo
and space-time indiceson the lattice. According to the above
discussion, then, upon ignoring for the moment the elec
magnetic interactions of holes, one obtains the following
fective low-energy lattice action for the holon fields, orig
nating from Eqs.~2.29!, ~2.35!, and~3.1!:

S5 1
2 K(

i ,m
@C̄i~2gm!Ui ,mVi ,mC i 1m

1C̄i 1m~gm!Ui ,m
† Vi ,m

† C i #1b1(
p

~12tr Up!

1b2(
p

~12tr Vp!, ~3.3!

where m50,1,2, Ui ,m5exp(iui,m) represents the statistica
US(1) gauge field,Vi ,m5exp(isaBa) is the SU~2! gauge
field, and the plaquette terms are obtained, at low energ
as a result of thez-magnon integration.22,21 @We would like
to mention that, technically, in order to study dynamical fo
mation of fermion condensates on the lattice using Mo
Carlo studies as in Ref. 12, one should add to the action~3.3!
a bare mass termm0( iC̄is3C i and take the limitm0→0
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only at the very end of the computations. This will be irre
evant for our purposes here.# The fermionsC are taken to be
two-component spinors, in both Dirac and color spaces.
quantity K is proportional to the holon hopping matrix ele
ment, which in turn depends10,6 on the doping concentration
as stated earlier in Eq.~2.33!. According to the discussion
following Eq. ~2.36!, in a large-spin@SU(N→`)] treatment,
as in Ref. 6, the coupling constantb2→`, and hence the
non-Abelian gauge group sector of the model isweakly
coupled in this limit. On the other hand, the coupling of t
statistical US(1) is considered to bestronglycoupled in the
limit U→`. It is known, from either lattice results28 or a
semianalytic Schwinger-Dyson type of analysis,27,29 that dy-
namical mass generation in a U~1! theory in three space-tim
dimensions occurs only for strong coupling, i.e., for valu
of the gauge coupling that are larger than a given criti
value. This mass will break the SU~2! gauge group dynami
cally. This will be discussed in detail in Sec. IV.

The above limit has been studied in Ref. 12, where
model~3.3! has been used as a toy model for studying ch
symmetry-breaking patterns of QCD. Remarkably, as
have described above, this model can also be used to
scribe the physics of the spin-charge separation of stron
correlated electrons in a doped Hubbard model in its largU
limit. In this analogy the holon fieldscab behave like the
‘‘quarks’’ of QCD, which are thus viewed as substructures
the physical electronxab . It seems to us that this point o
view is similar in spirit to that pursued in the context
anyonic models by Laughlin.11 However, we should stres
that from our point of view this ‘‘splitting’’ is viewed as a
many-body effect for the holon dynamics in such syste
and hence we do not ascribe to it any further significanc

B. Symmetry structure in the continuum

It will be instructive to study first the symmetry structu
of the model~3.3! in the continuum, following the analysi
of Ref. 12. This will help the reader understand better
interplay between the irreducible (232) and the reducible
(434) representations of the Dirac and color~gauged chiral
symmetry! groups. To this end, we first note that the co
tinuum limit of the model ~3.3! is described by the
Lagrangian12

L52 1
4 ~Fmn!22 1

4 ~Gmn!21C̄DmgmC2m0C̄C, ~3.4!

with Dm5]m2 ig1am
S2 ig2saBa,m and Fmn ,Gmn the corre-

sponding field strengths for the Abelian~statistical! gauge
field am

S and the spin SU~2! gauge fieldBm
a . The parity-

conserving bare massm0 term has been added by hand,
mentioned above, to facilitate Monte Carlo studies of d
namically generated fermion masses as a result of the for
tion of fermion condensates^C̄C& by the strong US(1) cou-
pling. Them050 limit should be taken at the end.

To understand better the nature of this SU~2! gauge sym-
metry, it is instructive to look first at the global SU~2! group,
whose gauging produces the action~3.4!. To this end we
observe that thegm , m50,1,2, matrices, which span the r
ducible 434 representation of the Dirac algebra in thr
dimensions in a fermionic theory with an even number
fermion flavors, assume the form27
e

s
l

e
l
e
e-
ly

f

s

e

-

-
a-

f

g05S s3 0

0 s3
D ,

g15S is1 0

0 2 is1
D , ~3.5!

g25S is2 0

0 2 is2
D ,

wheres are 232 Pauli matrices and the~continuum! space-
time is taken to have a Minkowskian signature. As is w
known,27 there exist two 434 matrices that anticommut
with gm , m50,1,2:

g35S 0 1
1 0D , g55 i S 0 1

21 0D , ~3.6!

where the substructures are 232 matrices. These are th
generators of the chiral symmetry for the massless-ferm
theory

C→exp~ iug3!C, C→exp~ ivg5!C. ~3.7!

Note that these transformations do not exist in the fundam
tal two-component representation of the three-dimensio
Dirac algebra and therefore the above symmetry is valid
theories with even fermion flavors only.

The set of generators$1,g3 ,g5 ,ig3g5[D% form12 a glo-
bal SU~2!3U~1! symmetry. The identity matrix1 generates
the U~1! subgroup, while the other three form the SU~2! part
of the group. The currents corresponding to the above tra
formations are12

Jm
G5C̄gmGC, G5g3 ,g5 ,ig3g5 ~3.8!

and are conserved in the absence of a fermionic mass ter
can be readily verified that the corresponding chargesQG

[*d2x C†GC lead to an SU~2! algebra12

@Q3 ,Q5#52iQD , @Q5 ,QD#52iQ3 , @QD ,Q3#52iQ5

~3.9!
If a mass term is present then there is an anomaly

]mJm
G52mC̄Gc, ~3.10!

while the current corresponding to the generator1 is always
conserved, even in the presence of a fermion mass.12

The bilinear functions

A1[C̄g3C, A2[C̄g5C, A3[C̄C
~3.11!

B1m[C̄gmg3C, B2m[C̄gmg5C, B3m[C̄gmDC,

m50,1,2

transform astriplets under SU~2!. The SU~2! singlets are

A4[C̄DC, B4,m[C̄gmC, ~3.12!

i.e., the singlets are the parity-violating mass term and
four-component fermion number.
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In two-component notation for the spinorsC, the above
bilinear functions read12

A1[2 i @C̄1C22C̄2C1#, A2[C̄1C21C̄2C1 ,

A3[C̄1C12C̄2C2 ,

B1m[C̄1smC21C̄2smC1 ,

B2m[ i @C̄1smC22C̄2smC1#,

B3m[C̄1smC12C̄2smC2 , ~3.13!

A4[C̄1C11C̄2C2 , B4,m[C̄1smC11C̄2smC2 ,

m50,1,2,

with C i denoting two-component Dirac spinors. For lat
convenience we have passed onto a three-dimensional
clidean lattice formalism, in whichC̃ is identified withC†

@cf. Eq. ~2.39!#. In this convention the bilinear function
~3.13! are Hermitian quantities. It is this Euclidean forma
ism that we shall use for our lattice treatment in section
~On the continuum, of course,C̃5C†g0 , with g0 a 232
Dirac matrix, and the Hermiticity properties of the biline
functions depend on the representation of the Clifford
gerba chosen.12!

One may gauge the above group SU~2! and arrive at the
continuum action~3.4!, which as we discussed above d
scribes the low-energy continuum field theory limit of th
large-U Hubbard model~2.29! and~2.35!. In this way, as we
shall discuss below, one can generate the fermion conden
A3 dynamically. In this context, energetics prohibits the ge
eration of a parity-violating gauge invariant SU~2! term30

and so a parity-conserving mass term necessarily brea12

the SU~2! group down to at3 U~1! sector,6 generated by the
s3 Pauli matrix in two-component notation.

C. Connection with superconductivity

We now compare the model presented in this article
that of Ref. 6, which is known to exhibit unconvention
parity-invariant superconductivity, upon coupling the syst
to external electromagnetic potentialsAm . First we note that
there is an important physical difference between the
models, concerning the mechanism for mass generation
our model in this article the gauge group that generates
namically the fermion mass term is the strongly coupled s
tistical US(1), while the t3 U~1! remnant of the weakly
coupled SU~2! group is weakly coupled and as such inc
pable of inducing mass generation. On the other hand
Ref. 6 the fermion gap that led to superconductivity was d
to the t3 U~1! gauge boson. This may lead to importa
differences between the finite-temperature phase diagram
the two models. Such studies are left for future investi
tions.

Nevertheless, as far as the mechanism of supercondu
ity is concerned, the two models appear to be qualitativ
similar and it is in this sense that the large-spin treatmen
Ref. 6 is justified by the results of the present work. Inde
the global Uem(1) symmetry, which is a subgroup of th
r
u-
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local symmetry of the ansatz~2.17!, corresponds to theelec-
tromagnetic symmetryin the statistical model. This symme
try can be gauged by coupling the action~3.3! to an external
electromagnetic field on the spatial plane as in Ref. 6.

As discussed there, then,superconductivityis obtained
upon the opening of the gap in the fermion~hole! spectrum
due to the one-loop anomalous effect corresponding to
following Feynman matrix element, depicted in Fig. 1:

Sa5^Bm
a uJnu0&, a51,2,3, Jm5C̄gmC, ~3.14!

with C four-component spinors, which correspond to t
continuum limit of Eq.~2.37!. It should be stressed that as
result of the color group structure only the masslessBm

3

gauge boson of the SU~2! group, corresponding to thes3
generator in two-component notation, contributes to
graph. The result is7,6

S5^Bm
3 uJnu0&5~sgnM !emnr

pr

Ap0

, ~3.15!

whereM is the parity-conserving fermion mass~or the holon
condensate in the context of the doped antiferromagn!.
This observation is consistent with the symmetry-break
patterns of the Uem(1) group since theBm

3 color component
remains massless and therefore plays the role of the G
stone boson.6 As discussed in Refs. 7 and 6, this unconve
tional symmetry breaking, however, does not have a lo
order parameter and thereby resembles, but is not iden
to, the Kosterlitz-Thouless mode of symmetry breaking34

The massless gauge bosonBm
3 of the unbroken U~1! sub-

group of SU~2! is responsible for the appearance of a ma
less pole in the electric current-current correlator,6 which is
the characteristic feature of any superconducting theory
this sense, in Ref. 6 the fieldBm

3 , or rather itsdual f defined
by ]mf[emnr]nBr

3, was identified with the Goldstone boso
of the broken Uem(1) ~electromagnetic! symmetry. In the
non-Abelian context there are also Goldstone bosons ass
ated with the breaking of the SU~2! symmetry.12 These will
be discussed in the next subsection.

IV. DYNAMICAL GAUGE SYMMETRY BREAKING
ON THE LATTICE

In this section we derive the symmetry-breaking patte
and discuss in detail the excitation spectrum of the the
obtained from the effective long-wavelengthlattice action
~3.3!. We are interested in the effective action of the hol
degrees of freedom, after integrating out the fraction

FIG. 1. Anomalous one-loop Feynman matrix element, lead
to a Kosterlitz-Thouless-like breaking of the electromagne
Uem(1) symmetry, and thus superconductivity, once a fermion m
gap opens up. The wavy line represents the SU~2! gauge bosonBm

3 ,
which remains massless, while the filled circle denotes an inser
of the fermion-number currentJm5C̄gmC. Continuous lines rep-
resent fermions.
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statistics US(1) field. From the above discussion it becom
obvious that this field plays an auxiliary role in the sp
separation ansatz and as such it should be integrated o
the effective action of the physical degrees of freedom.

We shall concentrate on theb150 strong-coupling limit
for the US(1), which from the point of view of the doped
Hubbard model corresponds to an infinite-U limit. In this
limit the US(1) gauge field may be easily integrated out
the path integral with the result12

E dV dC̄ dC exp~2Seff!, ~4.1!

where

Seff5b2(
p

~12tr Vp!1(
i ,m

ln I 0~Ayim!,

~4.2!

yim[K2C̄i~2gm!VimC i 1mC̄i 1m~gm!Vim
† C i ,

and I 0 is the zeroth-order Bessel function. The quantityyim
may be written in terms of the bilinear functions

Mab,ab
~ i ! [C i ,b,bC̄i ,a,a , ~4.3!

where a,b denote the color groups,a,b denote the Dirac
group, andi is the lattice site. The result is

yim52K2 tr@M ~ i !~2gm!VimM ~ i 1m!~gm!Vim
† #. ~4.4!

In the analogous language of particle physics,12 the quanti-
ties M ( i ) would represent physicalmesonstates. In the con-
text of our spin-charge separation ansatz the mesons w
be composite states of holons. We have already seen tha
physical electrons are composites of magnon and holons
the theory~3.3! the magnon degrees of freedom have be
integrated out. In this context, the low-energy~long-
wavelength! effective action is written as a path integral
terms of gauge field and meson states12

Z5E @dV dM#expS 2Seff1(
i

tr ln M ~ i !D , ~4.5!

where the meson-dependent term comes from the Jacobi
passing from fermion integrals to meson ones.33

In Ref. 12 a method was presented for identifying t
symmetry-breaking patterns of the gauge theory~3.3! by
studying the dynamically generated mass spectrum.
method consists of first expandingS i ,m ln I0(Ayi ,m) in pow-
ers ofyim and concentrating on the lowest orders, which w
yield the gauge boson masses, while higher orders desc
interactions. Keeping only the linear term in the expans
yields12

ln I 0~Ayim!. 1
4 yim52 1

4 K2 tr@M ~ i !~2gm!VimM ~ i 1m!

3~gm!Vim
† #. ~4.6!

It is evident that symmetry-breaking patterns for SU~2! will
emerge out of a nonzero vacuum expectation value~VEV!
for the meson matricesM ( i ).

Lattice simulations of the model~3.3!, with only a global
SU~2! symmetry, in the strong US(1) coupling limit b150
and in the quenched approximation for fermions ha
s

in
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shown35 that the states generated by the bilinear functionsA1
andA2 @cf. Eq.~3.11!# are massless and therefore correspo
to Goldstone bosons, while the state generated by the b
ear functionA3 is massive. In the context of our statistic
model @cf. Eq. ~2.39!# these meson states may be expres
in terms of the holon operators as

A1,i52 i ~C̄1C22C̄2C1! i522i ~c1
†c22c2

†c1! i ,

~4.7!
A2,i5~C̄1C21C̄2C1! i522~c1

†c21c2
†c1! i

and the bilinear functionA3 is given by@see Eq.~2.40!#

A3,i5~C̄1C12C̄2C2! i522~c1
†c12c2

†c2! i . ~4.8!

The fact that members of the triplet SU~2! representation
acquire different masses is already evidence for symm
breaking. We shall confirm this explicitly later on. For th
moment we note that lattice analyses35,36 show that in the
strong-coupling limitb150 the condensateu[^A3& and the
mass ofA3 are infinite. Of course the masses and the c
densate are finite for finiteb1 , which is the case of finite-U
Hubbard models@cf. Eq. ~2.34!#. In addition, in this approxi-
mation this is the only meson state that develops a nonz
VEV. This therefore constitutes a prediction for the infinit
U Hubbard model and the spin-separation ansatz~2.17!. The
fact that the VEV of the Goldstone boson statesA1,2 vanish
implies the absence of a spin flip~on average! at a site
^c1,i

† c2,i&5^c2,i
† c1,i&50, which is also consistent with th

slave-fermion constraints~2.20!. This is also comforting
from the point of view of the equivalence of the abo
U→` Hubbard model with that of Ref. 6, whose symmetr
breaking dynamical patterns are characterized by the abs
of a local order parameter.~The absence of VEV’s for the
Goldstone bosonsA1,2 eliminates a potentially dangerou
source of a possible appearance of a local order paramet
the model. Notice that the dynamical breaking of the elect
magneticUem symmetry as a result of the holon condens
occurs without a local order parameter.6!

One has the following expansion for the meson states
terms of the SU(2) bilinear functions~3.13!:12

M ~ i !5A3~ i !s31A1~ i !s11A2~ i !s21A4~ i !11 i @B4,mgm

1B1,m~ i !gms11B2,mgms21B3,mgms3#, ~4.9!

with m50,1,2,gm ~anti-Hermitian! Dirac ~space-time! 232
matrices, ands i , i 51,2,3, the~Hermitian! 232 SU~2! color.
Pauli matrices. Note that the VEV of the matrix^M ( i )&
5us3 is proportional to the chiral condensate. Upon sub
tuting Eq. ~4.9! into Eq. ~4.6!, taking into account that the
SU~2! link variables may be expressed as

Vim5cos~ uBimu!1 i s–Bim sin~ uBimu!/uBimu, ~4.10!

and performing a naive perturbative expansion over
fields B, one finds

ln I 0~Ayim!}K2u2@~Bim
1 !21~Bim

2 !2#1 interaction terms.
~4.11!

From this it follows that two of the SU~2! gauge bosons
namely, theB1,B2, become massive, with masses prop
tional to the chiral condensateu:
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B1,2 boson masses}K2u2, ~4.12!

while the gauge bosonB3 remains massless.
This mass term breaks SU~2! to a U~1! subgroup, and in

view of the above analysis one recovers the effective ac
for the massless modes occurring in the large-spin treatm
of Ref. 6 and reviewed in Sec. II. It is understood that a f
analysis for finite values ofb1 is necessary before definit
conclusions are reached in connection with the exact pro
ties and physical implications of the ansatz~2.17! for finite-
U doped Hubbard, ort- j , models. We hope to return to thes
issues in the future.

We would like now to draw the reader’s attention to t
similarity of the above mechanism for symmetry breaki
with the situation in the adjoint gauge-Higgs model.37 There
the SU~2! symmetry is also broken down to a U~1! whenever
the constant multiplying the Higgs-gauge interaction is lar
than a critical value. In our case the role of this constan
played byK2, as can be seen by the formal analogy betwe
the adjoint-Higgs-gauge interaction terms and Eq.~4.6!. Of
course, in our approach symmetry breaking was achie
due to the infinitely strong US(1) coupling. In view of the
above analogy with the adjoint-Higgs model,37 however, one
may speculate that interesting phase diagrams for the s
metry breaking of SU~2! could also emerge due to theK2

coupling, in a way independent of the US(1) coupling. In
this respect, we would like to stress once again that in
context of our statistical models19 the amplitudeK is propor-
tional to the doping concentration in the sample,K}Jh .
Since the adjoint-Higgs-like symmetry breaking requir
strong enough coupling, then the above analysis, if true
this context, may be seen to suggest a natural and sim
explanation, in the context of a gauge theory of the fact t
in planar antiferromagnetic models of finite-U Hubbard or
t- j type, antiferromagnetic order is destroyed, in favor
superconductivity,abovea critical doping concentration. A
mentioned at the end of Sec. II, this point of view seems
be supported by preliminary results of lattice simulations31

More detailed investigations along this line of thought a
left for future work.

V. CONCLUSIONS AND OUTLOOK

In this article we have discussed lattice models forplanar
spin-12 Heisenberg antiferromagnets away from half fillin
~doped!. We have worked in the infiniteU→` limit of the
Hubbard model, which is characterized by the Gatzwy
projection, namely, a constraint ofno more than one electron
per lattice site. Upon implementing a spin-charge separati
ansatz~2.17! in a way consistent with holon spin flip, w
have argued that thedopedmodel is still characterized by
local SU~2!3US(1)3Uem(1) symmetry upon coupling to
external electromagnetic fields. Of these, the US(1) is an
auxiliary ‘‘statistical’’ gauge symmetry, associated with th
fractional statistics of the spin and charge excitations in
ansatz~2.17!. This possibility arises because of the plan
spatial structure of the lattice model.

We have argued that for strong enough US(1) couplings,
dynamical generation of a holon condensate can occur,
the result of breaking the SU~2! group tot3 U~1!. This is the
same local phase symmetry as the one characterizing su
n
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conducting effective theories of doped antiferromagnets
large-spinS→` treatments,9,6 although the mechanisms fo
mass generation are different. Nevertheless, the super
ductivity scenarios appear qualitatively similar. In this w
we have explained two things in a dynamical way:~i! the
breaking, as a result ofdoping, of the local SU~2! spin sym-
metry that characterizes half-filled large-U Hubbard models
and ~ii ! the qualitative justification of large-spin treatmen
and in particular the suppression of intrasublattice hopp
of holes. Indeed, the latter is associated with massive SU~2!
gauge boson states, which acquire their masses through
lon condensation. There are many features of the models
still have to be worked out. Finite-U treatments and exten
sion of these ideas tot- j models are worth pursuing. Give
the dependence of the coupling constants of such model
the doping concentration in the sample, then
renormalization-group study of the respective phase d
grams could provide useful quantitative information on t
order of magnitude of the maximum doping concentrat
for superconductivity and, in general, shed more light on
physics of the spin-charge separation in the models. We h
to arrive at a more systematic study of such issues in
future.

Further consistency checks of our approach may a
come from a study of the renormalization-group structure
the normal phaseof the model in the infrared. By norma
phase we mean the phase where there is no dynamical o
ing of a gap. In this respect we mention that in three spa
time dimensions the natural coupling constant appearing
the Lagrangian of a U~1! gauge theory with fermions is a
parameter with dimensions ofAmass. In analytic Schwinger
Dyson treatments one can define a dimensionless coup
which is essentially the ratio of the coupling constant ove
characteristic mass scale of the theory, playing the role of
ultraviolet cutoff.27 In a recent series of papers,38 it was ar-
gued that this dimensionless coupling decreases slowly w
the momentum scale. Its growth towards the infrared regi
however, is cut off by the appearance of anontrivial infrared
fixed point. The latter phenomenon is responsible for dev
tions from Fermi-liquid behavior39,38 and, if the infrared
fixed-point value of the coupling is strong enough,27 also for
mass generation. These features are expected to persist
present model. However, in the present case, the full n
Abelian SU~2!3US(1) symmetry will be present in the nor
mal phase. A full analysis along the lines of Ref. 38 rema
to be done.

Above we have dealt with relativistic low-energy limits
obtained by linearizing about specific points on the Fer
surface for the holons. As argued in Ref. 38, this may s
capture certain qualitative features of realistic nonrelativis
holon models. Eventually, one would like to be able to e
tend quantitatively the above results to nonrelativistic case
well. We mention, however, that our relativistic limits ma
be related to condensed-matter systems with Fermi surf
that have nodes. Such systems are known to exist in na
and in particular they are antiferromagnetic planar syste
with a strong spin-chain anisotropy as far as Heisenberg
teractions are concerned. Upon doping and lineariza
around holon Fermi-surface nodes, one might then obtain
effective relativistic models discussed in this work and
Ref. 6.



o
g

ve
n

ty
v

n
er
e
o
f

ia
z-
he
m
,
a
th
a

Th
u

o

u
w

en
a
on

o
du
ty
kl

in

te of

he
en-
tors

e
er-
ifi-
tron

-
ight
ns.
ics,
it
del

ken

ng
n
e-
be-

a
ed
rva-
ope
s in

n-
nu-
t-
nd
i-
d

57 3029HIDDEN NON-ABELIAN GAUGE SYMMETRIES IN . . .
An important issue we would like to raise as a result
the present work is the fact that non-Abelian local gau
symmetries, arising in the strong-U Hubbard antiferromag-
nets, imply the possibility of existence of nonperturbati
effects ~monopole instantons in the form of hedgehog co
figurations, etc.!. Their precise role in the superconductivi
mechanism associated with these models needs to be in
tigated in detail.6,13 This becomes particularly important i
view of the claimed association of this scenario for sup
conductivity with Kosterlitz-Thouless–like phas
transitions.6 There are important similarities between the tw
scenarios: since both are characterized by the absence o
cal order parameters for the Goldstone bosons assoc
with the symmetry breaking. It is known that in Kosterlit
Thouless transitions the symmetry breaking occurs w
nonperturbative degrees of freedom are liberated. A preli
nary analysis6,13 in the effective theory model of Ref. 6
which, as a result of the present work, may be viewed as
effective theory of the massless degrees of freedom of
non-Abelian case, has shown that nonperturbative effects
pear to be bound in pairs in the superconducting phase.
issue, however, deserves further investigations that req
going beyond perturbation theory.

In this latter respect, we mention that the treatment
nonperturbative effects requiresexactresults. Of course the
superconductivity mechanism advocated in Ref. 6 occ
through an anomaly, which is an exact one-loop result. Ho
ever, this is not sufficient for an exact quantitative treatm
of the low-energy effective action. However, it is known th
exact results in effective action treatments in higher than
spatial dimension can be derived in certainsupersymmetric
non-Abeliangauge theories, as a result of special nonren
malization theorems and strong-coupling–weak-coupling
ality symmetries.40 In such theories, one invokes a duali
symmetry to map a strongly coupled problem to a wea
coupled dual model that can be solved exactly.

We now remark thatt- j models are known, under certa
restrictions among their parameters, namely,t5 j , to exhibit
hidden supersymmetriesin space-time.41 There are graded
.
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algebras among the three possible states on a lattice si
the t- j model:41 ua&5$u0&,u1&,u2&%, corresponding to the
empty, spin-up, and spin-down states, respectively. T
model is supersymmetric up to a shift in the chemical pot
tial, in the sense that there exist two supercharge opera
Qs

1 , s51,2 @SU~2! spin index#, connecting Fermi and Bos
sectors and leaving the action invariant. So far this sup
symmetry structure was not given any dynamical sign
cance. This is because this supersymmetry refers to elec
operators. Our ansatz~2.17!, however, which implies elec
tron substructure, when and if extended to this case, m
imply hidden supersymmetries among holon and spino
These might have nontrivial consequences on the dynam
following the spirit of Ref. 40, provided one could extend
to this case. In such a context, the superconductivity mo
of Ref. 6 could be viewed as aneffectivetheory of the light
degrees of freedom, arising in the gauge symmetry-bro
phase of a supersymmetric SU~2!3U~1!3Uem~1! field-theory
model of a doped antiferromagnet witht5 j .

At present, we lack any microscopic dynamics underlyi
Eq. ~2.17! that would allow us to check on its generalizatio
to the t5 j case and on the existence of the abov
conjectured supersymmetric structure. At any rate, we
lieve that our work of associating holon condensation with
dynamical breaking of a Yang-Mills gauge theory in dop
antiferromagnetic planar systems is an interesting obse
tion, which deserves further serious investigations. We h
to return to a study of some of the above-mentioned issue
due course.
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