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Hidden non-Abelian gauge symmetries in doped planar antiferromagnets

K. Farakos
Physics Department, National Technical University of Athens, Zografou Campus GR-157 73, Athens, Greece

N. E. Mavromatos
University of Oxford, Theoretical Physics, 1 Keble Road OX1 3NP, United Kingdom
(Received 11 November 1996; revised manuscript received 7 July) 1997

We investigate the possibility of hidden non-Abelian local phase symmetries in Uardeped planar
Hubbard antiferromagnets, believed to simulate the physics of two-dimengimagheti¢ superconductors.
We present a spin-charge separation ansatz, appropriate to incorporate holon spin flip, which allows for such
a hidden local gauge symmetry to emerge in the effective action. The group is of the fa@hc®Id(1)
®Uen(1), where SW2) is a local non-Abelian group associated with the spin degrees of freedgyfil Uis
that of ordinary electromagnetism, associated with the electric charge of the holess(dndd.h “statistical”
Abelian gauge group pertaining to the fractional statistics of holes on the spatial plane. In certain regime of the
parameters of the model, namely, strong1) and weak S(®), there is the possibility aflynamical formation
of a holon condensate. This leads talynamicalbreaking of SW2)—U(1). The resulting Abelian effective
theory is closely related to an earlier model proposed as the continuum lintérge-spin planar doped
antiferromagnets, which lead to an unconventional scenario for two-dimensional parity-invariant superconduc-
tivity. [S0163-182€98)00105-2

I. INTRODUCTION dynamics is governed by a Chern-Simons term. As discussed
in Ref. 5, this term leads to observalparity violationin an

The discovery of the quasiplanar hidh- cuprate$  anyonic superconductor for which there is, as yet, no conclu-
prompted considerable theoretical interest in two-sive experimental evidence. In R& a proposal was made
dimensional superconductivity of magnetic origin. Thefor a simple gauge-theory model that exhibits two-
strong suppression of the isotope effect was one of the maidimensional superconductivity without parity violation. In its
reasons for looking for alternatives to phonon mechanismgnost general form, the model consists of two species of mas-
The main feature of the magnetic superconductivity was besive fermions coupled with opposite signs to an Abelian
lieved to be the fractional statistics of the excitations on thegauge field representing effective spin interactions among
planar geometry of the materials. In two spatial dimensionsthe holon excitations. The two species have equal and oppo-
particles are no longer limited to Bose and Fermi statisticssite masses and hence parity is conserved overall. This
but can acquire an arbitrary interchange phase; such particléseory may be shownto arise as an approximate long-
with fractional statistics are known as anyons. Laudting- ~ wavelength limit of an idealized model of the dynamics of
gested that a gas of anyons may exhibit superconductivity dhe charge carriers in dopeej or Hubbard models. Similar
low temperature. This idea was supported by the results ahodels, but only at a continuum theory level with no attempt
calculations in the random-phase approximafiowhich  to discuss the connection with semimicroscopic condensed-
demonstrated that a perfect gas of charged anyons with cematter systems, have been proposed simultaneously in Refs.
tain values of the statistics parameter is indeed a supercor-and 8.
ductor at zero temperatur@-or restrictions on the validity of The treatment in Ref. 6 employed large-spin approxima-
the random-phase approximation in the context of effectivaions for the antiferromagnetic model. This resulted in a
field theories of parity-violating anyonic superconductivity Strong suppression of intrasublattice hoppinghich lead to
see Ref. 4.This “anyonic superconductivity” is an entirely two species of hole excitations for the bipartite lattices
different phenomenon that has no analog in threeused”® One eventually would like to argue that the same
dimensional systems. Motivated by the role of anyonicqualitative features occur for the realistic value of the spin,
quasi-particles in the fractional quantum Hall effect, Laugh-3. It is the purpose of this article to attempt to formulate the
lin went on to suggest that the charge carriers in the coppeabove-mentioned effective theory and its physical conse-
oxide planes of materials such as,Ca0Q, and YBagCuQ;  quences in a way so as &voidthe large-spirs assumption.
might also have fractional statistics and that superconductiv- To this end, we first review the passage from the statisti-
ity in these materials may be well described by the anyonical large-spin models to the continuum theories and then
model. extend the analysis to spinmodels. The local phase sym-

From the experimental point of view, however, theremetries that these models possess play a crucialinothis
seems to be a serious drawback with the anyonic model asprogram, and below we study them in some detail. What we
candidate theory of highy superconductivity. A field- shall show here is that the doped latdeHubbard models
theoretic realization of anyonic matter consists of fermiongpossess a local S@)xXUg(1) phase symmetry related to
interacting with an Abelian “statistical” gauge field whose spin interactions. This symmetry will be discovered through
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aspin-charge separatioansatz, which allows intersublattice single-band, largé} Hubbard model. The two-dimensional
hopping for holons and hence spin flip. The spin-chargeHubbard Hamiltonian is written in terms of operatars,
separation may be physically interpreted as implying an efandciT’(r, which annihilate and create electrons in the_2
fective “substructure” of the electrons due to the many-bodyorbital at each copper site,

interaction in the medium. This sort of idea, originating from

Anderson’s resonating valence bon@RVB) theory of _ +

spinons and holon¥, seems to be pursued recently by H__t<%a Ci'”Cj'”JFUZ M il @3
Laughlin, although from dformally at leask different per- . . . .

spective than the one discussed Hére. wheret is the electror_l—hopplng mfltrIX _eIemertﬂ, is the

The effective long-wavelength model is remarkably simi-Strong Coulomb repulsion, ang,=c;,;,, is the occupation
lar to a three-dimensional gauge model of particle physic§umber at each site. In the limit— <, a single-occupancy
proposed in Ref. 12 as a toy example for chiral symmetryconstraint is rigidly |mpos<_ad. The gndoped case is described
breaking in QCD. In that work, it was argued thigtnamical by_ the Hubbard model with half-filled t.>and. and.hence the
generationof a fermion mass gap due to thel) group in  SPins are _the only degrees (_)f freedom in this I|m|t. To lead-
SU(2)xU(1) breaks the S(2) group down to ars U(1) ing order in Ia.rgeL—.J perturbayon theory, the half—f|llled H_ub—
group, wherer; is the 2<2 Pauli matrix. From the particle- bar_d model is .S|mply equivalent to the two-dimensional
theory viewpoint this is a Higgs mechanism withoutein ~ Heisenberg antiferromagrtét
ementaryHiggs excitation.

The analysis carries over to the present case as well, if H=JE S-S, (2.2
one associates the mass gap to the holon condensate. The ()
resulting effective theory of the light degrees of freedom iswhereJ=4t%/U andS is the electron spin at siie Thus we
then similar to the continuum limit of Ref. 6 describing un- see that in the infinité) —o limit J corresponds to a weak
conventional parity-conserving superconductivity. coupling.

From our point of view, the above symmetry-breaking The effective long-wavelength degrees of freedom of the
pattern summarizes the effects of doping on the laJge- antiferromagnet can be described by a ‘“relativistic” quan-
Hubbard model in a dynamical way. In our opinion, the ap-tum field theory in (2-1)-dimensional space-time. In par-
pearance of non-Abelian gauge symmetries, as symmetriaular, the largeS limit of the spinS Heisenberg antiferro-
of doped antiferromagnets that are broken dynamically bynagnet is equivalent, at large length scales, to the quantum
doping, and the analogy of the holon-condensate formatiorionlinearoc model*>® The relativistic covariance of the ef-
superconductivity with chiral symmetry breaking in Yang- fective action arises from the linear dispersion relation for
Mills theories, open up many possibilities for a nonperturbajong-wavelength magnons and the spin-wave velocity plays
tive (exac} treatment of such theories, including the role of the role of the velocity of light in this formulation.
nonperturbative  effects in  the  superconductivity Doping introduces mobile charges that hop from site to
mechanisnt® We also believe that our analysis offers quan-site against the antiferromagnetic background of the spins.
titative support to the ideas of Refs. 10 and 11 about effecThe coupled dynamics of holes and spins in the doped sys-
tive “splitting” of electrons into spinon and holons in the tem is highly nontrivial. The hopping of holes tends to dis-
medium in a more general context. order the spins reducing the antiferromagnetic correlation

The structure of the article is as follows. In Sec. Il we |ength and the spins also mediate interactions between the
discuss the doped Hubbafidttice) models from the point of holes. Roughly speaking, there is competition between the
view of the proposed spin-charge separation ansatz and thefluence of the spins that favor a Bleordered ground state
associated gauge symmetry structurg B Ug(1). InSec.  and that of the holes that tend to form a spin liquid. A gen-
Il we discuss the long-wavelength effective lattice action ineral conjecture is that a superconducting pairing of holes
the limit of strong (1), thedynamical mass generation for arises out of this competitioH:'® This has been verified in
the holes, and the connection witKosterlitz-Thoules su-  Ref. 6 in an effective large-spin analysis. In that analysis a
perconductivity. In Sec. IV we present an analytical derivadarge-spinS—« has been employed, which leads to two
tion of the dynamical breaking of the $2)—U(1) on the  kinds of holes, due to the suppression of intersublattice
lattice, in the limit of strong (1). Finally, in Sec. V we  hopping®® To be complete, below we review briefly the ap-
present our conclusions and the possible predictions of thgroach of Ref. 6, with which we shall make contact later on.

model. To this end, we first note that to describe the dynamics of
holes in the model of Ref. 6 one implements a spin-charge
Il. HUBBARD MODELS AND LOCAL separation, which is achieved by representing the electron
PHASE SYMMETRIES operatorsc; , using a “slave-fermion” ansat?2°
A. Large-spin treatments and their continuum limits CI(,: zpiz;r’g, (2.3

First let us briefly review the large-spin treatments ofwherey is a Grassmann field representing the absence of a
antiferromagnet®® In the absence of doping impurities, the spin at a given sit¢hole) that carries the electric charge and
quasiplanar materials are antiferromagnetic insulators. The , is the spin degree of freedom, which can be identfied
potential importance of antiferromagnetic correlations forwith the magnon field of th€ P! ¢ model. The ansat@2.3)
high-temperaturdcuprate superconductivity was noted by carries information about a local gauge invariance of the
Andersont’ who suggested that the correct model for themodel as one can perform simultaneous local phase rotations
dynamics of electrons in the copper oxide layers was then ; andz; , fields with opposite couplings without chang-
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ing ¢; . Itis this symmetry that is responsible for the gaugehopping of holons. As we shall show, under the proposed
nature of the interactions between holes. The physical reas@nsatz, the effective Hamiltonian of holon and spinon de-
for such a symmetry is the restriction of having at most onegrees of freedom is characterized by hidden non-Abelian lo-
electron per lattice site. This redundancy of degrees of freecal phase symmetries. However, the holon condensate breaks
dom is the characteristic feature of gauge models. the non-Abelian symmetry dynamically down to the Abelian
The full partition function of the model is given as a path subgroup discussed in Ref. 6 and hence one recovers the
integral over the Grassmann fielgs and 4/ as well as the ~above-discussed Abelian model as an effective theory of the
CP! variablesz, z, and a,. The corresponding long- light degrees of freedom. Nevertheless, there are remnants of
wavelength limit is derived by linearizing the energy spec-the non-Abelian symmetry structure, which manifests itself
trum about the chemical potenfiland is given by in the (mas$ spectrum of mesonlike excitations, as we shalll
discuss in Sec. Ill. The presence of such excitations consti-

([~ , 1 ) 2, = tutes physically testable predictions of the spin-charge sepa-
Ser= | A7 | A2 (9 tia,)2|*+ Wyl 14— 754 ration ansatz proposed in this work.
e i T R .
42 A)‘Ifa, 2.4 B. Half-filled spin-5 antiferromagnets: SW2) gauge
C symmetry structure

where ¥ are four-component Dirac fermions, representing The larget (Mott) limit of the half-filled Hubbard model

holes, y is a constant inversely proportional to thedeisen-  With j=4t%/U is the Heisenberg mod¢.2). In Ref. 23 it

berg interactiof' e is the electric charge is the velocity ~Was observed that in this limit there is a local @Usymme-

of light in units of the hole Fermi velocityz=1, andA isan Uy associated with the spihi-algebra of the electrons. In-

external electromagnetic field. The Dirac nature of the hole§le€d, using electron operata$at a sitei, corresponding to

is a result of the flux-phase assumption for each sublditice SPin components up or dowre,=1,2, one may represent the

The reducible four-component representation of the Diradlamiltonian(2.2) as

algebra in space-time is a result of doubling and follows

dirgctly from thg local sublattice structure_ d.efined by the H=JZ (CT,aa_gcﬂ)i(CT,aa.gcﬁ)j, 2.7

antiferromagnetic order. The opposite statistical charges of {7

the holes in different sublattices leads toracoupling for

the gauge field, Where3=(é ,Ol) is the 2x2 Paulioz ma-

trix representation for the generator of thg U(1) group® cheg =1 (2.8

(Here and in Ref. 6 we follow the terminology U(1) for '

the Abelian group in spin or sublattice space generated byl is invariant under the usual global 8) transformations

the 2x 2 o3 Pauli matrix so as to distinguish it from space- of the spinj algebrac,—czg%, with g# an SU2) matrix. In

time groups. Ref. 23 a second S1) was constructed out of the doublet of
Integrating out the electrically neutral magnon fields andcreation operatorscé,—cl). Combining these two doublets

keeping only the leading terms in a derivative expanéfd, in a 2x2 matrix

one obtains the low-energy effective action of the electrically

with the constraint of one electron per site

charged degrees of freedom Ci GCp
Xep=\| -t _ 1] (2.9
o e ) c
= — — Mmv 1H— - —
£ 49° Funf# o[ 10— S5t C A)\Pa' 29 one observes that in addition to thbal SU(2) transforma-

tions X .5— X«,9}. One caf® define alocal SU(2) by left

The dimensionful gauge couplirgf is proportional t6%*° multiplication

9?=(y) '~ (2.6)

where 7 is the doping concentration in the sample. In the
context of thet-j model, which was considered in Ref. 6,
this coupling may be taken strong enough so as to genera
dynamically a gap in the hole spectrum.

The above analysis essentially postulated the existence
two holon species by suppressing intrasublattice hopping5
This was the result of a large-spin analysis. It is the purposg

Ofathellse;lrt;ﬂ?ef ﬁsTq%nSg:tgbig{ir;[e%u%;tzté\'ﬁéy estljmellrirftla?[]g- course that this isiot an exact symmetry of the Hubbard
wav g u y ! idep ' model. As shown in Ref. 23, the very constraiatd) of one

romagnets. An importan_t tool in such an ana.lysis is the StUd¥:Iectron per site, which in terms gfvariables is expressed
of local phase symmetries of the model, which we now turn '

to. We shall start with a review dhon-Abelian gauge sym-

metries that characterize the half-fillddndopedd models Tr xTo3y =0, 2.11)

and then proceed to a study of the doped case upon con-

structing an appropriate spin-charge separation ansatz, esesults in a time-dependent local gauge symmetry, when
tending Eq.(2.3) appropriately so as to allow intersublattice combined with the kinetic term in the Lagrangian

Xaﬁ_)hZXyﬁ" (21@

This local symmetry commutes with the global @Jmen-
ioned above. Writing the global SP) spin operators ap-
Eeearing in Eq.(2.2) in terms of y as Setr xTyo ', with T
denoting matrix transposition, one can easily see that the
eisenberg interactiorf2.7) is invariant under this local
U(2), which is thus the symmetry of the large-Mott limit

f the half-filled Hubbard model. It should be stressed of
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model and also the one associated with (Berry phasg
xi—H, (212 term describing static holes in the model of Ref. 6. In this

article we shall present a dynamical scenario by which the
where Ay; acts as a Lagrange multiplier implementing the above symmetry breaking is achieved. The scenario will be
constraint and it may be thought of as the thitdmpora]  remarkably similar to a three-dimensional particle-physics
component of the local S@) gauge field®> Such gauge toy model for chiral symmetry breaking in QCB.
symmetries appear as a general property of the Gatzwyler The key point is to try to uncover the local &) sym-
projection of one electron per site, due to the fact that sucimetry in the doped case by generalizing the spin-charge
projections are associated with a sort of particle-number corseparation ansat2.3). We seek a representation of the spin-
servation. This local gauge symmetry connects variousharge separation that will allow spin flip, but would still
mean-field limits of the half-filled Hubbard mod#l. treat the holons as “blind” to the electronic sublattice struc-

To understand the formal meaning of the above symmeture. To this end, we propose to represent the holon degrees

try, we return to theCP! o model, which is supposed to of freedom as two-component spinors in a two-dimensional
describe the low-energy physics of the half-filled Hubbard“color” space, representing Dirac spin components
model in a bosonized framework for the spin excitations. We( 1 ,4,), while the spin excitations are represented by the
recall that upon resolving the constraigz=1, with z  CP! doublets ¢,,z,) living in the same color space. How-
=(z;,2,) a complex S2) doublet with boson statistics, the ever, we amend our construction withspin-flip operation

d
I —+Ay;

1
=_ t
L 22 tr x; at

z field can be written as a>22 unitary matrix which, for thez-magnon degrees of freedom, is represented
by the conjugate doublet{z,,z;). Thus the electron anni-
z, -z ilati
Z:<21 Z__2> — expli£,0), 2.13 hilation operators can be expressed as
2 1
whereo,, a=1,2,3 are the Pauli generators of @Jand 01:((//1'//2)(21)1 Co= (1) E) (2.16
thereal fields &; are dynamical. The gaugettmodel action 22 21

in this representation reads while the corresponding creation operators can be obtained

by —C;,CI, with the dagger denoting Hermitian conjuga-
Sz:j d3 yp* trl(d,—igB,)7|?, (214  tion. We believe that this ansatz captures the qualitative fea-
tures behind the RVB idea of Anders8ron spinon and
where y, is a bare coupling constant. In this representatiorholons. Essentially Eq(2.16) implies that to annihilate an
one is free to gauge the full $2) local gauge group in the electron with, say, spin up one has to remove all the compo-
o-model action, in which casB,=B%0,, a=1,2,3, orits  nents of the spin. The spin-charge separation ansatz implies
Abelian U1) subgroupB,=B3o;. The action(2.14 reads  that to some extent the holes should be blind to the spin of
the electron(sublattice structure of the antiferromagnet
2, 42R2 a;_ This is correctly captured in Eq(2.16 since the hole
; (0u€2)°+ 9 BM+§ BM( 299,83 | “spinors” in color space are the same for both electron com-
(2.195 ponents, while thémagnon z doublets differ by a spin-flip

. : peration defined above.
Technically, the above representation separates the Gold Technically, it is convenient to combine the creation and

stone modes from the rest of the fields relevant at low, . . .. ;
momenta> The resolution of the constraint implicit in Eq. annihilation operators, following the treatment of the half-

. filled case(2.9). To this end, we propose that for the larde-
.(2'13 results in a St.andard .”ESZS term for the gauge feld limit of the doped Hubbard model the following spin-charge
instead of the quartic couplingB“z.

The possibility of gauging the full S@2) group in theos separation ansatz occurs at each Eite
model is equivalent to the local $2) symmetry of the

S=J d3x yo!

Heisenberg actiori2.2) found in Ref. 23, given that at half Xeapi=VariZygi= C% CZT)

filling only spin excitationgmagnons exist® Of course, the bl TaniTyBl ey —cq),

equivalence is understood in terms of bosonization, which in _

2+1 dimensions, unlike £1 dimensions, cannot be ex- :( ‘ﬂl,r ¢$) (Zl __22) (2.17
pressed in a closed form, but only as an effective derivative —¥ )\ Z )} '
expansion.

where the fieldsz, ; obey canonicabosoniccommutation

relations and are associated with the spin degrees of freedom,

while the fieldsy, ; , a= 1,2 havefermionicstatistics and are

o assumed to create holes at the siteith spin indexa. They
Doping is expected to break the &)Y symmetry between obey the anticommutation relations

creation and annihilation pairs of electron opl)]%rators. Naively

speaking, a spatial hopping term of the foap,c,; does : Fi—g. : R G V% B A g ey o

not seem to be invariant under the Iocal(SU(Z.lO).]Away Wia Vipr= 0 0ape e 68 = Wi Vi) g

from half filling one would expect that only a local(J can

survive, which in view of our spin-charge separation ansatZThe ansatz2.17) has spin-electric-charge separation since

(2.3) seems to be the Abelian subgroup of (8lJassociated only the fields¢ carry electric charge. From now on, we

with 75. This local subgroup is the one gauged in@e! ¢  shall refer toy, as the “holons” and taz,, as (bosonized

C. Doped spin-% antiferromagnet and non-Abelian gauge
symmetry structure
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“spinons.” The ansat£2.17) is an obvious generalization of

Eq. (2.3 if one allows intersublattice hopping.

3021

To recapitulate, the above analysis, based on the spin-
charge separation ansaf 17 that allows spin flip, leads to

It is worth noticing that the anticommutation relations for the following local-phasggauge group structure for the
the electron fields,, ,cg do not quite follow from the ansatz doped larged Hubbard model:

(2.17. Indeed, assuming the canoni¢ahticommutation re-
lations forz (i) fields, one obtains from Ed2.17)

1C1j,Coj}~ 24112 6

{cl; .chit~2yd 0l 8, (2.19

{cy; 1CJ2r,j}~{C2,i 'CI,j}“Oa
{Ca,icl,j}~ 5ijﬁ§l , (2 pZi gt Vg, lﬂ}g,i]l

a=1,2 (no sum overi).

To ensure canonical commutation relations for thepera-
tors therefore we must impose at each lattice site(shave-
fermion) constraints

b= '/fz,i 1;=0, (2.20

G=SU@2)XUg(1) X Ugr(1), (2.20)

where the second JJ(1) factor refers to electromagnetic
symmetry due to the electric charge of the holes. This sym-
metry appears as a hidden symmetry of the effective holon
and spinon degrees of freedom obeying the angatz).

The presence of thed(1) statistics changing group fac-
tor will be crucial in our analysis. As we shall discuss in Sec.
IV, in its strong coupling limit it can generate a mass
gap’~?%for the fermionic holon fields), which for each hole
component breaks parity, thereby producing a statistics
changing dynamical Chern-Simons term. However, due to
the even number of fermionic species there is no overall
parity violation in the modef.Note that, since this statistical
gauge field couples also to tkdields, their statistics will be
affected as well.

D. Effective Hamiltonian of the doped
Hubbard antiferromagnet

Next we focus our attention on showing that the various
terms in the action are expressible in terms of the vari-

Such relations are understood to be satisfied when the holc@Ples, which would imply that the symmetries of the latge-
and spinon operators act on physical states. Both of thes#PPed Hubbard model action are the symmetries of the an-
relations are valid in the large-limit of the Hubbard model ~ Satz(2.3). To this end, we first study the hopping term of the
and encode the nontrivial physics of constraints behind thdopped Hamiltonian, which broke explicitly th‘?r local G
spin-charge separation ans#ez17). They express the con- Symmetry (2.10 of the electron operators, ,C5. Let us
straint at most one electron or hole per site, which charactefewrite this term in terms of, 4 variables:
izes the largdd Hubbard models we are considering here.
From the above analysis, therefore, it becomes clear that the
ansatz(2.17) does not characterize a generic Hubbard sys-
tem, but only the appropriate largé-imit, where the con- (2.22
straint of one electron per site is valid. As we shall discuss in '
Sec. IV, both of the above constrain®.20 are consistent where o3 is a 2x2 Pauli matrix and summation over the
with the mass spectrum of the effective long-wavelengthspin indices is implied. In terms of the spin and charge ex-
theory obtained from dynamical generation of a fermion con<itations, appearing in Eq2.17), then, the hopping term
densate. may be written as

Now let us look at the symmetry structure of the spin
separation ansatz2.17), which in view of the previous
analysis coincides with the symmetry structure of the effec-
tive largeU Hubbard action. First, it appears to have a trivial
local SU2) symmetry if one defines the transformation prop-
erties of thez fields to be given by left multiplication with 5,4 is trivially local SU2) symmetric.

. T .
the SU2) matrices and those of thg, ; matrices by the left To complete the analysis we should also look at the inter-

multiplication (2.10. In this representation, the gauge group action terms. The Heseinberg teth7) can be written in the
SU(2) is generated by the22 Pauli matrices. convenient forr®

The ansat£2.17) possesses an additional loca() sta-
tistical phase symmetry, which allows fractional statistics of
the spin and charge excitations. This is an exclusive feature
of the three-dimensional geometry. This is similar in spirit,
a|th0ugh imp'emented in an adm|tted|y less rigorous way, t(yVh|Ch can be linearized in terms of the fermion bilinear func-
the bosonization technique of the spin-charge separation aions if one introduces in the path integral a Hubbard-
satz of Ref. 26, and allows the alternative possibility of rep-Stratonovich field;; in a standard fashion. The result of the
resenting the holes as slave bosons and the spin excitatioh8earization is
as fermions. In addition, as a consequence of the fact that the
fermions ¢ carry electric charge, one has an extrg,{1) H=> tr[(8/J)AiT,-Aji +(Xi*Ainj+H.c.)]. (2.29
symmetry for the problem. {7

N ot 1=
ﬁ;lyz[zl,ﬁzhﬂ—i_l//ﬁ,ll//ﬁﬂ 1.

Hpop= —<Z> tijChiCaj= —<Z> tij[XiT,a)'Xj,ya
ij ij

+
+Xi,a'y(0-3)yﬁxj”3a]l

Hpop= — <E> t; [Z_i,BKdliT,Ka'vzlj,a'ij,yﬁ
ij

(2.23

e T
+ Zi,ﬁkwi,xa(o-li)a)\lpj,)\yzj,yﬁ]

H=— %J<_Z,> txix! xixi 1, (2.24
1]
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We then employ the ansat2.17) and perform a Hartree- limit, one observes from E¢2.29 that the Gaussian fluc-
Fock (mean-field approximation for the bilinear functions: tuations of the variablé;; are ofO(J/|t;;|) and hence sup-
pressed compared to the hopping tefm This means that
(2.2  One may approximatg; (1+ o3) + Ajj=t;;(1+ 03). Consid-
T _ ering the usual case witfy =t for everyi,j, one may absorb
(W[ -t (1+ 03)+Aij]¢J>=|A2|Vii Ui, such terms into an appropriate rescaling of the fermion fields
where, according to the previous discussion, we have used This will be understood in what follows. However, we
the fact that the link variables are 8JxUg(1) group ele- Stress once again that in the case of fititedubbard mod-
ments, due to the specific transformation properties of th@ls, one should consider the effects of the Gaussian variable
variablesz and ¢. In the above notatioW is the SU2) part ~ Aij in the Lagrangian(2.29. This will be left for future
and U denotes the Abelian 1) group element. The am- Work. _ _ _
plitudes|A;|, i=1,2, of the link variables are assumed fro- ~ The conventional lattice gauge theory form of the action
zen, as usual. By an appropriate normalization ofzaedy, 1S derived upon integrating out the magnon fiefn the
fields, this amplitude is common for both link variables, ~ Path integral. As discussed in Refs. 22 and 21 the result of
such a path integration of the magnon fluctuations around the
|AL]=]As =K. (2.27  mean field yields appropriate Maxwell kinetic terms for the
link variableV;;U;; , which are the dominant terms in a low-

According to the discussion of Ref. 6 the amplitudeis i . )

. X . . energy derivative expansion. The constraint of at most one
proportional to the Heisenberg exchange interactibn | |atti ite in EQ2.20 i ial i h
=4t2/U, with t the hopping parameter, and also to the dop—e ectron per lattice site in q N Q s crucial in such a
in coné:entration in the samplé.We éhall return to this derivation since its implementation through a Lagrange mul-
is:gue later on ' tiplier field o results in a “mass” term for the magnon fields

The result of the Hartree-Fock approximation, then, for> N the way explained in Ref. 21. The effective Maxwell

the combined hopping and interaction terms in the HamiI—terms in the continuum are of the generic form

(zizj)=|A1lV;;Us; ,

tonian is
3 1 2 2
Sim® | d°X == (F,,+G..), (2.3)
Hue= > tr{(8/)AL Ay +[—tij(1+ 05) + A Jor
HF & tr{(81) ij2ji [ tlj( 03) Ij]
I
J — whereF ,,,G,, denote the (1) and SUY2) field strengths,
X(pi(z;z)¢i)} respectively, andr, is a vacuum expectation value of the
Lagrange multiplier field 0. An elementary one-loop
+2 tr {z;( ‘ﬁiT[_tij(1+0'3)+Aij]¢j>zj}+H-C- renormalization-group analysis yiefds
(i)
(2.29 Joo=M—47Kg, (2.32
and using Eqs(2.26 and(2.27) one obtains whereM is a transmutation mass at is the “renormal-
ized” K coefficient of theCP! part of the action(2.29.
Hue= E tr{(g/J)AiW“jAji +K[—tjj(1+ a3) From the_ analysis_of Ref. 19 we may infe_r thatoc I 7, Wit_h
(i) J the Heisenberg interaction angthe doping concentration,

which for lightly doped cuprates ig<<1. This implies that
+ A4 143V Uji N+ trKzV;;U;;z;]+H.c. the order of magnitude of the coefficient of the Maxwell
(i term (2.31), resulting from thez integration in a derivative
(2.29 expansion, is set by the Heisenberg exchange interaction

. _— . . field strengthd. The conventional three-dimensional gauge
This is the effective field theory lattice action we propose tocouplinggz, of dimensions(mass, is related toK by the

describe the dynamics of the largeHubbard model. Itis . .
understood the constraint®.20 should be taken into ac- simple relation(2.6)
count to complement the description. It is important to note
that the fermion fieldsyy are 2<2 matrices in the above

representation. Notice also that the tet(1+03)+Aj;  Thus, from Eq(2.30 one obtains for theimensionlessou-

transforms covariantly under a globally symmetry gener-  pjing g2a, with a the lattice spacing of the antiferromagnetic
ated by the Pauli matrixs. This global Ul) symmetry acts  Hybbard model,

on the electron operatong as y;—Uy;, with U=¢'’, 6 a

1g?ocKgtoed 7y 1, (2.33

global phase. The-dependentmagnon terms yield, in the 1 1
continuum, theCP! o-model Lagrangiari2.14.1° B1= %" piuL (2.34
In the larget Hubbard limit we are considering here, one 7max=a
has the order of magnitude estimates The magnitude of this coupling depends on the way the limit

U—o is taken. Taking the limit ofU—« such that
Uannzmax>1, one obtains amall B, i.e., strong coupling for
where 7. IS the maximum doping concentration of the the Ug(1) group. The limit of smallg is crucial for the
sample, above which superconductivity is destroyed. For unsymmetry-breaking patterns of the non-Abelian(3\group,

derdoped cuprates one may consider the egsg<1l. Inthis  as we shall discuss in Sec. Ill.

J=4t2U, t~UPmaw  Tma<l, (2.30
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We now remark that on the lattice the kinefMaxwell) 0 1 0 1
terms(2.31) are given by appropriate plaquette terms of the 1= ygz( 1 o)’ o= 755i< 1 0>,
form
A (1 0 ) (.38
T3=A=iysys= , 2.3
% [Bsuz)(1=Tr Vp)+ By (1-TrUy)], (2.39 3 Y3¥5=| o _q

where the substructures arx2 matrices. This is the SQ)
where p denotes sum over plaquettes of the lattice andepresentation used in Ref. 12 in the context of three-
Bugny=B1 and Bsyp=pB,=4pB; are the inverse square dimensional toy models for chiral symmetry breaking. Re-

couplings of the W(1) and SW2) groups, respectively. The markably, the same type of symmetry arises in our context
specific relation between the 2 and Uy(1) couplings is between creation and annihilation operators of holon pairs in

. = e spin-charge separation ansez.7).
glrJ:uE)osthe appropriate normalization of the generators of tndf In the analysis of Ref. 12, to be discussed in the context of

At this point it is worth remarking that for certain the present model in Sec. lll, the statistical groug(1)

Schwinger-Dyson treatments of dynamical Syrnmetrygroup is responsible for the dynamical generation of a parity

breaking? a largeN treatment is desirable, in which case ¢°N>¢vINg masgP¥). In terms of the dynamical variables

. : describing creation and annihilation of holog#isy', respec-
one assumes that the spin @Jgroup is replaced by SU) : . . )
with N large enough. In that case the non-Abelian couplin fively, theparity conservingnass depends on the holon con

i< related o the Abell b h Y%ensate. To see this, it is convenient to split the four-
Is related to the Abelian one throug component spinor.37) into two-component ones

,BSU(N):ZNBUS(l):ZN,Bl- (2.39 \AI'fI:(z,bl —¢;), {172:((&2 l/ID. (2.39

This implies that, even in the case of strong(L)) coupling,  In this representation the two-component spindtg2.39
B1—0, the largeN (large spif limit may be implemented in  Will act as Dirac spinors and thg-matrix (space-timgstruc-
such a way so thaBsyg, is finite. This is the limit of the ture will be spanned by the irreduciblex2 representation.

analysis of Ref. 12. We shall discuss this case in Sec. lliThe Dirac conjugate field? may be identified directly with
where we shall make contact with the results of Ref. 6,the Hermitian Conjugate f|e|dw-r in terms of holon opera_
where such a larght treatment had been assumed. tors. This is due to the fact that in a path integral over the

Above we did not write explicitly the chemical potential holon fields, the conjugate fie|d$T can be considered as
term u3; ¢l ci,, which determines the doping concentra- independentiegrees of freedoh®® In this representation,
tion in the sample. This term is also expressed in terms of théhe local SW2) gauge group is generated by the familiar
x variables, and essentially has the form of Ef22 but for ~ 2X2 Pauli matricesr,, a=1,2,3. The parity transformation
i=j, which again may be expressed in a gauge-invarianis defined asVy— o1¥,, ¥,— o1V, which in terms of the
way upon using the ansat£2.17). In deriving long- (microscopi¢ holon operatorsy;, i=1,2, readsy;— ap;,
wavelength continuum limits, one linearizes the energy specyg,— — lﬂ- With these in mind, it is straightforward to ob-
trum about the chemical potentiaf.For most of our discus- = =
sion below we shall not write explicitly such terms, as they
do not affect the symmetry structure of the theory.

serve that the parity-conserving mass teﬁ@@l—@zqu
can be related to the holon condensation

E. Spinor structure for holons and symmetry-breaking patterns (U0, =W, Wo) = = 2(yl i — Yh), (2.40

Before closing this section we would like to remark that,

as a result of the 2 matrix structure of the fermion fields where we took proper account of the anticommutation rela-

¢ in Eq. (2.29, one may actually change representation oftions (2.18 among the Grassma#; ,, a=1,2. The terms

the SU2) group and instead of working with>22 matrices <lﬂ£lﬂa>, a=1,2, are holon condensates. Notice, in the same
one may use a representation in which the ferm|9n|c matnceé’ontext, that the parity-violating mass tern(ﬁfﬁfl

Wqp are represented as four-component vecfans color —

(spin) space +W¥,W¥,) equals an irrelevant constant, which may be sub-
tracted. This result is consistent with tgenericenergetics
arguments that disfavor dynamical generation of a parity-

%B_APTE(% _% Wy lﬂ)_ (2.3 violating mass in vector such as theories wihenflavor
number®
The formation of holon condensate due to a statistics

It is easy to see that in this representation th€2droup is  changing W(1) group is similar in spirit to the approach of

generated by the matrices Ref. 3 in the context of the anyonic superconductivity. How-
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ever, as mentioned above, in our case, due to the fouf~ermi surfaces for holes. The relativistic nature may be ac-
component structure of the fermions, there is an even numeurate in superconducting models with nodes on their Fermi
ber of fermionic species and hence no overall paritysurface, when linearization about a node is performed. How-
violation. Moreover, this mass gap is not a singlet underver, for our purposes in this work, which are a study of the
SU(2), as we shall discuss in Sec. Il A, but transforms as ageneric symmetry-breaking patterns of the local group
triplet,!? thereby breaking S(2) down to its 73 U(1) sub-  (2.21), their physical implications for superconductivity, and
group. This is ther; U(1) symmetry of the ansat2.3), the connection with the results of Ref. 6, such relativistic
leading to the effective actio(®.5). This provides a sort of models will be sufficien]. Due to the assumed flux-phase-
dynamical breaking of the local spin &) group as the backgroundfor the gauge field (1) one gets for the hop-
result of introducing holes into the system. ping (kinetic) terms of the two spinor§2.39 (ignoring in-
The breaking of the S(2) symmetry down to its Abelian teractions for brevity®
73 subgroup admits th@hysica) interpretation of restricting
the holon hopping effectively to a single sublattice. In a low- _ ATt AT AT A
energy effective theory of the massless degrees of freedom Lkin % (=1 #We()We(r + p)+H.C,
this reproduces the results of Refs. 6 and 9. This scenario can (3.2
be readily seen by using the four-component spinor represen- . ) ,
tation (2.37). Clearly, the two off-diagonal generators of the Wnerec=1,2 is the color index, not to be confused with the
SU(2) group (2.38 y; and ys, corresponding to the gauge space—ti|7rTne(D|rac) mde-_x. The factors -61)'0+-“ y,em a
bosons acquiring masses dynamically due to the holon corh@see'”=—1 per lattice plaquette and this result is pro-
densatemixthe two sublattices in the notation of Refs, 9 andduced in our case by theg(ll) flux-phase backgrourftAs
6. Indeed, from Eq(2.39 it follows immediately that if a diScussed in Ref. 32, the for(3.1) corresponds to a Dirac
holon of spin, say, 1 is created at a sitethese generators form for the kinetic terms of the fermionk upon making an
would connect it to the destruction of a hole with spin 2 in (inverse Kawamoto-Smit transformatidh
the neighboring sublattice. On the other hand, the generator _ _ -
A of the unbrokenr; U(1) is block diagonal, thereby not W (r)=y - y2W.(r), W (r)=W(r)(y3)2--(y)',
mixing the sublattices. The intrasublattice hopping in this (3.2

approach is then suppressed by the mass of the gauge i , )
bosons. We are considering here the limiirdfnitely strong ~ Where¥ are two-component Dirac spinors, carrying color.
Us(1).22 In such a limit the intrasublattice hopping is com- We stress once again that the color structure is up and above

pletely suppressed since the massich is proportional to any space-timégDirac) structure. Notice that in such a pic-
the infinite condensalés infinite? This situation therefore ture fermion bilinear functions of the forn; (W; ./ (i is a
describestaticholes. Hole hopping is allowed for strong but lattice indey, for instance, the condensat2.40, are just

finite couplings, in which case the holon condensates anﬁ}i C(f,i o due to the Clifford algebrdy, ,y,}=—24,, and
masses are finite. . _ . (anti)Hermiticity properties of the 2 y matrices on the
We shall devote more discussion on the phase diagram ¢ clidean lattice. This is useful to have in mind when we
the theory, and its comparison to that of Ref. 6, in the nexiydy the spectrum of meson states in Sec. IV.
section. We would like to close this section by noting that, in |, \what follows we shall make use of the above-
the context of microscopic models of the for2.29, dy-  mentionedirreducible 2x 2 representation in both the color
namical formation of holon condensates, and hence destrugnq space-time indices the lattice According to the above
tion of antiferromagnetic order, would occur above a criticalgjscyssion, then, upon ignoring for the moment the electro-
doping concentratiof. To quantify the above results on magnetic interactions of holes, one obtains the following ef-

symmetry breaking, therefore, one needs proper lattice simyective low-energy lattice action for the holon fields, origi-
lations of these models. This is left for the future. nating from Egs(2.29, (2.39, and(3.1);

lll. LONG-WAVELENGTH LIMIT OF THE SPIN- 3

_1 W (— VAR '
DOPED ANTIFERROMAGNET S ZK% [Fi(=7)Ui Vi ¥

A. Derivation of the long-wavelength Hamiltonian _

. T vl . —
We now proceed in the long-wavelength limit of Egs. +qf'*#(7#)u'vﬂv"#qf']+'81§p: (1=trUp)

(2.29 and(2.39), in the spinor representation for the holon
fields, discussed in Sec. Il E. To this end, we assume, fol-
lowing the analysis of Ref. 6, a nontriviflux phasefor the
gauge field 4(1). This is crucial in yielding aDirac form

for the hole effective actiof?>>6The long-wavelength con- Where £©=0,1,2, U; ,=exp(é; ,) represents the statistical
tinuum limit is then obtained in a similar way as in the Abe- Us(1) gauge field,V; ,=exp(o®B,) is the SU2) gauge

lian case of Refs. 6 and 19, at low energies, by linearizindield, and the plaguette terms are obtained, at low energies,
about a specific point on the Fermi surfafile.what follows ~ as a result of the-magnon integratiof>** [We would like

we shall ignore, for simplicity, the shape of the Fermito mention that, technically, in order to study dynamical for-
surfacé and therefore deal with conventional relativistic lat- mation of fermion condensates on the lattice using Monte
tice models. Of course, this will not be the case in a realisticCarlo studies as in Ref. 12, one should add to the a¢8d)
condensed-matter system, where there are known to be largebare mass terrmy>, W03V, and take the limitmy—0

+,32§p: (1-tr V), (3.3
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evant for our purposes het&he fermions¥ are taken to be
two-component spinors, in both Dirac and color spaces. The
guantity K is proportional to the holon hopping matrix ele- .
ment, which in turn depend&® on the doping concentration, 1_ ('Ul 0 ) (3.5
as stated earlier in Eq2.33. According to the discussion Y 0 —iogy)’ ’
following Eq. (2.36), in a large-spif SU(N— )] treatment,
as in Ref. 6, the coupling constaBt—c, and hence the , (iaz 0 )

Y= )

only at the very end of the computations. This will be irrel- (03 0 )
Yo= '

0 g3

non-Abelian gauge group sector of the modelwsakly

coupled in this limit. On the other hand, the coupling of the

statistical W(1) is considered to bstronglycoupled in the  whereo are 2<2 Pauli matrices and th@ontinuun space-

limit U—. It is known, from either lattice resufSor a  time is taken to have a Minkowskian signature. As is well

semianalytic Schwinger-Dyson type of analySi€’that dy-  known? there exist two &4 matrices that anticommute

namical mass generation in g1y theory in three space-time with y,, ©=0,1,2:

dimensions occurs only for strong coupling, i.e., for values

of the gauge coupling that are larger than a given critical 0 1 (0 1

value. This mass will break the $2) gauge group dynami- 7’3:<1 o YN _1 o 3.9

cally. This will be discussed in detail in Sec. IV.
The above limit has been studied in Ref. 12, where thevhere the substructures arex2 matrices. These are the

model(3.3) has been used as a toy model for studying chiragenerators of the chiral symmetry for the massless-fermion

symmetry-breaking patterns of QCD. Remarkably, as weheory

have described above, this model can also be used to de-

scribe the physics of the spin-charge separation of strongly V—expifys)V, Voexpioys) V. 3.7

correlated electrons in a doped Hubbard model in its lafge-

limit. In this analogy the holon fieldg,; behave like the

“quarks” of QCD, which are thus viewed as substructures of

the physical electrory,;. It seems to us that this point of

view is similar in spirit to that pursued in the context of

anyonic models by Laughlit. However, we should stress bal SU2)xU(1) symmetry. The identity matrid generates

that from our point of view this “splitting” is viewed as a .

many-body effect for the holon dynamics in such systemsthe U1) subgroup, while the other threg form the @Wpart
. ) S of the group. The currents corresponding to the above trans-

and hence we do not ascribe to it any further significance.

formations ar&

0 _i0'2

Note that these transformations do not exist in the fundamen-
tal two-component representation of the three-dimensional
Dirac algebra and therefore the above symmetry is valid for
theories with even fermion flavors only.

The set of generatorsl, y3, ¥s.i y3ys=A} form*? a glo-

B. Symmetry structure in the continuum JZ:\IT”LF\P, I'=1v3,v5,iv3Y5 (3.9

It will be instructive to study first the symmetry structure
of the model(3.3) in the continuum, following the analysis
of Ref. 12. This will help the reader understand better th
interplay between the irreducible ¥2) and the reducible

(4% 4) representations of the Dirac and colgauged chiral [Q3,Q5]1=2iQ,, [Q5,Q,]1=2iQs, [Q,,Qs]=2iQs
symmetry groups. To this end, we first note that the con-

and are conserved in the absence of a fermionic mass term. It
can be readily verified that the corresponding char@es
€< [d2 TV lead to an SR) algebrad?

tinuum limit of the model (3.3) is described by the (3.9
Lagrangiah? If a mass term is present then there is an anomaly
£==3(Fu)?= §(G,,)*+ WDy, ¥ ~me¥V¥, (34 03, =2mVTy, 3.19
; g i aS_io _a _while the current corresponding to the generdtds always
with D, =0, ~1913,~1920"Ba, andF,,,,, the corre conserved, even in the presence of a fermion rifass.

sponding field strengths for the Abeligstatistica] gauge
field ai and the spin S(2) gauge fieIdBZ. The parity-
conserving bare masg, term has been added by hand, as e . T
mentioneéJJ above, to facilitate Monte Carlo stut)j/ies of dy- A=Wyl =Tyl A= (3.12)
namically generated fermion masses as a result of the forma-
tion of fermion condensatdsl'¥) by the strong Y(1) cou-
pling. Themy=0 limit should be taken at the end.

To understand better the nature of this(3llgauge sym- #=01.2
metry, it is instructive to look first at the global $) group,  transform adriplets under SW2). The SU2) singlets are
whose gauging produces the acti@®4). To this end we
observe that the/,,, ©=0,1,2, matrices, which span the re- A4E\I7A\If B, E\ITy ¥ (3.12
ducible 4x4 representation of the Dirac algebra in three ' * re
dimensions in a fermionic theory with an even number ofi.e., the singlets are the parity-violating mass term and the
fermion flavors, assume the foffn four-component fermion number.

The bilinear functions

Bl,uE‘P')’,u'YZ%‘P: BZME‘I”)/M’}@‘I’, Bs E‘I,y“A\I,'

1%
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In two-component notation for the spino¥s, the above
bilinear functions read e

A= =il Wo= VoW, A=Wy o+ VoW,

FIG. 1. Anomalous one-loop Feynman matrix element, leading
to a Kosterlitz-Thouless-like breaking of the electromagnetic
Uen(1) symmetry, and thus superconductivity, once a fermion mass

A=W, 0, — W, W,

Blﬂzq’l(fﬂq’2+‘l’20'#‘l’1, gap opens up. The wavy line represents théZdauge bosoi>,
o o which remains massless, while the filled circle denotes an insertion
By, =i[Vy0,V,—V,0,V,], of the fermion-number current, =¥y, ¥. Continuous lines rep-
o o resent fermions.
B3 E\I,l(f \Ifl_q,zﬂ' \Pz, (313)
# . . local symmetry of the ansat2.17), corresponds to thelec-
=T I = I tromagnetic symmetrin the statistical model. This symme-
A=V, +¥V,¥,, B,;,=V,0c,V,+V,0,V,, ] :
4 TTLT T2t A TIEp T T2 T 2 try can be gauged by coupling the acti@h3) to an external
©=0,1,2 electromagnetic field on the spatial plane as in Ref. 6.

As discussed there, thesuperconductivityis obtained
with ¥, denoting two-component Dirac spinors. For laterupon the opening of the gap in the fermi@iole) spectrum
convenience we have passed onto a three-dimensional Edue to the one-loop anomalous effect corresponding to the
clidean lattice formalism, in which¥ is identified withw'  following Feynman matrix element, depicted in Fig. 1:

[cf. Eg. (2.39]. In this convention the bilinear functions a —
(3.13 are Hermitian quantities. It is this Euclidean formal- §=(B;|J,/0), a=1,23, J,=¥y,V, (314

ism that we §ha|| use for ourAIJattlceJr treatment in section 4, . four-component spinors, which correspond to the
(On the continuum, of courseV="¥"y,, with yo @ 2X2  continyum limit of Eq.(2.37). It should be stressed that as a

Dirac matrix, and the Hermiticity properties of the bilinear (o1t of the color group structure only the masslﬁ;
functions depend on the representation of the Clifford al'gauge boson of the SB) group, corresponding to the

gerba choserr) , generator in two-component notation, contributes to the
One may gauge the above group(@Uand arrive at the graph. The result 7

continuum action(3.4), which as we discussed above de-
scribes the low-energy continuum field theory limit of the
largelU Hubbard mode(2.29 and(2.35. In this way, as we 5=<Bi|JV|0>=(SgnM)GMP &,
shall discuss below, one can generate the fermion condensate \/p—o

Az dynamically. In this context, energetics prohibits the gen- . . . .
er;tign of a garity-violating gauge ?nvariapnt & term°’°g whereM is the parity-conserving fermion ma&s the holon

and so a parity-conserving mass term necessarily b]r%aksgz_ondensate in the context of the doped antiferromagnet
the SU2) group down to ar U(1) sector® generated by the his observation is consistent with the symmetry-breaking

; 3
o5 Pauli matrix in two-component notation. patterns of the k}(1) group since thd,, color component

remains massless and therefore plays the role of the Gold-
stone bosofi.As discussed in Refs. 7 and 6, this unconven-
tional symmetry breaking, however, does not have a local
We now compare the model presented in this article an@rder parameter and thereby resembles, but is not identical
that of Ref. 6, which is known to exhibit unconventional to, the Kosterlitz-Thouless mode of symmetry breakihg.
parity-invariant superconductivity, upon coupling the systemThe massless gauge bosBrj of the unbroken () sub-
to external electromagnetic potentidlg . First we note that group of SU2) is responsible for the appearance of a mass-
there is an important physical difference between the twdess pole in the electric current-current correl&terhich is
models, concerning the mechanism for mass generation. lime characteristic feature of any superconducting theory. In
our model in this article the gauge group that generates dythis sense, in Ref. 6 the fieBﬁ, or rather itsdual ¢ defined
namically the fermion mass term is the strongly coupled stapy (;M(;szewpgvai, was identified with the Goldstone boson
tistical Ug(1), while the 73 U(1) remnant of the weakly of the broken W.{(1) (electromagnetic symmetry. In the
coupled SW2) group is weakly coupled and as such inca-non-Abelian context there are also Goldstone bosons associ-

pable of inducing mass generation. On the other hand, iated with the breaking of the $2) symmetry*? These will
Ref. 6 the fermion gap that led to superconductivity was dugye discussed in the next subsection.

to the 3 U(1) gauge boson. This may lead to important
dr:fferences ze:wegn tﬂe flnét.e—tempelre]lc:ufre pfhase (j_lagra(ns of v DYNAMICAL GAUGE SYMMETRY BREAKING
:ioe;];wo models. Such studies are left for future investiga- ON THE LATTICE

Nevertheless, as far as the mechanism of superconductiv- In this section we derive the symmetry-breaking patterns
ity is concerned, the two models appear to be qualitativelyand discuss in detail the excitation spectrum of the theory
similar and it is in this sense that the large-spin treatment obbtained from the effective long-wavelengldittice action
Ref. 6 is justified by the results of the present work. Indeed(3.3). We are interested in the effective action of the holon
the global U,(1) symmetry, which is a subgroup of the degrees of freedom, after integrating out the fractional-

(3.1

C. Connection with superconductivity
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statistics (1) field. From the above discussion it becomesshowr?® that the states generated by the bilinear functidps

obvious that this field plays an auxiliary role in the spin and.A, [cf. Eq.(3.11)] are massless and therefore correspond

separation ansatz and as such it should be integrated out ia Goldstone bosons, while the state generated by the bilin-

the effective action of the physical degrees of freedom.  ear functionA; is massive. In the context of our statistical
We shall concentrate on th&, =0 strong-coupling limit model[cf. Eq. (2.39] these meson states may be expressed

for the Ug(1), which from the point of view of the doped in terms of the holon operators as

Hubbard model corresponds to an infinidetimit. In this _ _

limit the Us(1) gauge field may be easily integrated out in Ag= =i (W W, = W,oW )= = 2i (Y= i)

the path integral with the restdt 4.7)

A= (W W+ WoW )= — 2( ot )

f dV d¥ d¥ exp(— Ser), (4.2) and the bilinear functiomd; is given by[see Eq.(2.40]
where Agj= (VW =W, W)= = 2(4lg— ). (4.9)
B — The fact that members of the triplet 8) representation
Seft= BZEP (1-w Vp)+% N To(VYin), acquire different masses is already evidence for symmetry
o o (4.2 breaking. We shall confirm this explicitly later on. For the
Vi =KW (= y VWi W (Y VEW, moment we note that lattice analy$e¥® show that in the

_ _ _ strong-coupling limit3,; =0 the condensate=(.4;) and the
andly is the zeroth-order Bessel function. The quaniity  mass ofA; are infinite. Of course the masses and the con-

may be written in terms of the bilinear functions densate are finite for finit@,, which is the case of finite
) — Hubbard model$cf. Eq.(2.34)]. In addition, in this approxi-
Mab,ag="¥ibs¥iaa: (4.3 mation this is the only meson state that develops a nonzero

VEV. This therefore constitutes a prediction for the infinite-
U Hubbard model and the spin-separation angatk7). The
fact that the VEV of the Goldstone boson statés, vanish

yi=—K2 IF[M(”(—V,L)Vi,LM(”")(V,L)Vr,L]- (4.4) imEr)Iies the a}rbsence of a_spir_1 flifmn averqg)e at a site

_ _ _ (Withaj)=(W;¥1;)=0, which is also consistent with the

In the analogous language of particle physfcthe quanti-  sjave-fermion constraint§2.20. This is also comforting
tiesM® would represent physicahesonstates. In the con-  from the point of view of the equivalence of the above
text of our spin-charge separation ansatz the mesons would_, . Hubbard model with that of Ref. 6, whose symmetry-
be composite states of holons. We have already seen that thgeaking dynamical patterns are characterized by the absence
physical electrons are composites of magnon and holons. Igf 3 |ocal order parametefThe absence of VEV's for the
the theory(3.3 the magnon degrees of freedom have beergo|dstone bosonsd; , eliminates a potentially dangerous
integrated out. In this context, the low-enerdjong-  source of a possible appearance of a local order parameter in
wavelength effective action is written as a path integral in the model. Notice that the dynamical breaking of the electro-

where a,b denote the color groupsy,8 denote the Dirac
group, and is the lattice site. The result is

terms of gauge field and meson states magneticU ., symmetry as a result of the holon condensate
occurs without a local order parameter.
Z:f [dV dM]exp( _Seﬁ+2 trinM®|, (4.5 One has the following expansion for the meson states in
i terms of the SU(2) bilinear function8.13:2

where the meson-dependent term comes from the Jacobian iq,)_ 4 (i ; ; ; ; u
passing from fermion integrals to meson ofies. MU= Ag(i)oat Au(i)ost Ap(i) oot Ag(D)1+i[Bayy
In Ref. 12 a method was presented for identifying the +By,(1)y*o1+By, v o+ Bs v 03], 4.9
symmetry-breaking patterns of the gauge the@y3) by
studying the dynamically generated mass spectrum. Th

method consists of first expandig ,, In lo(Vy; ) in pow- . . i

. ' ’ - Pauli matrices. Note that the VEV of the matr{m®
ers ofyi,, and concentrating on the Ipwegt orders, which Wll.l =Uoj3 is proportional to the chiral condensate Up(on SL>Jbsti-
yield the gauge boson masses, while higher orders descnk%stmg3 Eq. (4.9 into Eq. (4.6, taking into accoimt that the
interactions. Keeping only the linear term in the expansionsu(z) Iink vairiables maiy t;e ’expressed as

yields?
Vi,u:COs|Bi,u|)+i0-'Bi/L Sin(|Bm|)/|Bm|, (41@

N 16(VY1,)=7Yi,=—TKZ tTM (= y,)V; M4
+ and performing a naive perturbative expansion over the
X(Yp)Viul- (4.9 fieldsB, one finds

It is evident that symmetry-breaking patterns for(3)Jwill . .
emerge out of a r?/onzeroyvacuum gefpectation VAWIEV) In |0(\/E)OCKZUZ[(B%M)Z'F(B?M)Z]'FInteraCtlon terms.
for the meson matrices! (). (419

Lattice simulations of the mod¢B.3), with only a global  From this it follows that two of the S(2) gauge bosons,
SU(2) symmetry, in the strong &1) coupling limit3;=0  namely, theB!,B?, become massive, with masses propor-
and in the quenched approximation for fermions havetional to the chiral condensate

gith n=0,1,2,y, (anti-Hermitian Dirac (space-timg2x2
matrices, andr;, i =1,2,3, the(Hermitian 2Xx2 SU2) color.
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B2 boson massesK2u?, (4.12 conducting effective theories of doped antiferromagnets in
large-spinS—c treatments:® although the mechanisms for
while the gauge bosoB® remains massless. mass generation are different. Nevertheless, the supercon-

This mass term breaks $2) to a U(1) subgroup, and in  ductivity scenarios appear qualitatively similar. In this way
view of the above analysis one recovers the effective actiowe have explained two things in a dynamical waly:the
for the massless modes occurring in the large-spin treatmemfeaking as a result ofloping of the local SW2) spin sym-
of Ref. 6 and reviewed in Sec. II. It is understood that a fullmetry that characterizes half-filled largge-Hubbard models
analysis for finite values oB; is necessary before definite and (i) the qualitative justification of large-spin treatments
conclusions are reached in connection with the exact propend in particular the suppression of intrasublattice hopping
ties and physical implications of the ans&z17) for finite-  of holes. Indeed, the latter is associated with massivesU
U doped Hubbard, arj, models. We hope to return to these gauge boson states, which acquire their masses through ho-
issues in the future. lon condensation. There are many features of the models that

We would like now to draw the reader’s attention to thestill have to be worked out. Finite- treatments and exten-
similarity of the above mechanism for symmetry breakingsjon of these ideas toj models are worth pursuing. Given
with the situation in the adjoint gauge-Higgs modleThere  the dependence of the coupling constants of such models on
the SU2) symmetry is also broken down to g1) whenever  the doping concentration in the sample, then a
the constant multiplying the Higgs-gauge interaction is largefenormalization-group study of the respective phase dia-
than a critical value. In our case the role of this constant iyrams could provide useful quantitative information on the
played byK?, as can be seen by the formal analogy betweemyrder of magnitude of the maximum doping concentration
the adjoint-Higgs-gauge interaction terms and Eg6). Of  for superconductivity and, in general, shed more light on the
course, in our approach symmetry breaking was achieveghysics of the spin-charge separation in the models. We hope
due to the infinitely strong §(1) coupling. In view of the to arrive at a more systematic study of such issues in the
above analogy with the adjoint-Higgs modéhowever, one  future.
may speculate that interesting phase diagrams for the sym- Further consistency checks of our approach may also
metry breaking of S(2) could also emerge due to th¢®  come from a study of the renormalization-group structure of
coupling, in a way independent of thes(d) coupling. In  the normal phaseof the model in the infrared. By normal
this respect, we would like to stress once again that in thhase we mean the phase where there is no dynamical open-
context of our statistical modéfsthe amplitudeK is propor-  ing of a gap. In this respect we mention that in three space-
tional to the doping concentration in the sampkexJ. time dimensions the natural coupling constant appearing in
Since the adjoint-Higgs-like symmetry breaking requiresthe Lagrangian of a (1) gauge theory with fermions is a
strong enough coupling, then the above analysis, if true iharameter with dimensions gimass. In analytic Schwinger-
this context, may be seen to suggest a natural and simp[Byson treatments one can define a dimensionless coupling,
explanation, in the context of a gauge theory of the fact thafvhich is essentially the ratio of the coupling constant over a
in planar antiferromagnetic models of finite-Hubbard or  characteristic mass scale of the theory, playing the role of the
t-j type, antiferromagnetic order is destroyed, in favor ofyltraviolet cutoff?’ In a recent series of papetsjt was ar-
superconductivityabovea critical doping concentration. As gued that this dimensionless coupling decreases slowly with
mentioned at the end of Sec. Il, this point of view seems tahe momentum scale. Its growth towards the infrared regime,
be supported by preliminary results of lattice simulatidhs. however, is cut off by the appearance afantrivial infrared
More detailed investigations along this line of thought arefixed point The latter phenomenon is responsible for devia-

left for future work. tions from Fermi-liquid behavidP=® and, if the infrared
fixed-point value of the coupling is strong enoudtalso for
V. CONCLUSIONS AND OUTLOOK mass generation. These features are expected to persist in the

present model. However, in the present case, the full non-

In this article we have discussed lattice modelspflamar  Abelian SU2)xXUg(1) symmetry will be present in the nor-
spin5 Heisenberg antiferromagnets away from half filling mal phase. A full analysis along the lines of Ref. 38 remains
(doped. We have worked in the infinite) — oo limit of the  to be done.
Hubbard model, which is characterized by the Gatzwyler Above we have dealt with relativistic low-energy limits,
projection, namely, a constraint nb more than one electron obtained by linearizing about specific points on the Fermi
per lattice site Upon implementing a spin-charge separationsurface for the holons. As argued in Ref. 38, this may still
ansatz(2.17) in a way consistent with holon spin flip, we capture certain qualitative features of realistic nonrelativistic
have argued that theopedmodel is still characterized by a holon models. Eventually, one would like to be able to ex-
local SU2)xXUg(1)XUe(1) symmetry upon coupling to tend quantitatively the above results to nonrelativistic case as
external electromagnetic fields. Of these, thg(1) is an  well. We mention, however, that our relativistic limits may
auxiliary “statistical” gauge symmetry, associated with the be related to condensed-matter systems with Fermi surfaces
fractional statistics of the spin and charge excitations in thehat have nodes. Such systems are known to exist in nature
ansatz(2.17). This possibility arises because of the planarand in particular they are antiferromagnetic planar systems
spatial structure of the lattice model. with a strong spin-chain anisotropy as far as Heisenberg in-

We have argued that for strong enougf(l) couplings, teractions are concerned. Upon doping and linearization
dynamical generation of a holon condensate can occur, withround holon Fermi-surface nodes, one might then obtain the
the result of breaking the SB) group tor; U(1). This is the  effective relativistic models discussed in this work and in
same local phase symmetry as the one characterizing supdref. 6.
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An important issue we would like to raise as a result ofalgebras among the three possible states on a lattice site of
the present work is the fact that non-Abelian local gaugehe t-j model®* |a)={|0),|1),|2)}, corresponding to the
symmetries, arising in the strong-Hubbard antiferromag- empty, spin-up, and spin-down states, respectively. The
nets, imply the possibility of existence of nonperturbativemodel is supersymmetric up to a shift in the chemical poten-
effects (monopole instantons in the form of hedgehog con-tial, in the sense that there exist two supercharge operators
figurations, etd. Their precise role in the superconductivity Q! , o=1,2[SU(2) spin index, connecting Fermi and Bose
mechanism associated with these models needs to be invesectors and leaving the action invariant. So far this super-
tigated in detaif*® This becomes particularly important in symmetry structure was not given any dynamical signifi-
view of the claimed association of this scenario for supercance. This is because this supersymmetry refers to electron
conductivity  with Kosterlitz-Thouless—like phase operators. Our ansai2.17), however, which implies elec-
transitionsX There are important similarities between the twotron substructure, when and if extended to this case, might
scenarios: since both are characterized by the absence of ligaply hidden supersymmetries among holon and spinons.
cal order parameters for the Goldstone bosons associatqthese might have nontrivial consequences on the dynamics,
with the symmetry breaking. It is known that in Kosterlitz- following the spirit of Ref. 40, provided one could extend it
Thouless transitions the symmetry breaking occurs wheno this case. In such a context, the superconductivity model
nonperturbative degrees of freedom are liberated. A prelimiof Ref. 6 could be viewed as affectivetheory of the light
nary analysi&'® in the effective theory model of Ref. 6, degrees of freedom, arising in the gauge symmetry-broken
which, as a result of the present work, may be viewed as aphase of a supersymmetric 8YXU(1) X Uq(1) field-theory
effective theory of the massless degrees of freedom of thenodel of a doped antiferromagnet witk: .
non-Abelian case, has shown that nonperturbative effects ap- At present, we lack any microscopic dynamics underlying
pear to be bound in pairs in the superconducting phase. Thigg. (2.17) that would allow us to check on its generalization
issue, however, deserves further investigations that requing the t=j case and on the existence of the above-
going beyond perturbation theory. conjectured supersymmetric structure. At any rate, we be-

In this latter respect, we mention that the treatment ofieve that our work of associating holon condensation with a
nonperturbative effects requirexactresults. Of course the dynamical breaking of a Yang-Mills gauge theory in doped
superconductivity mechanism advocated in Ref. 6 occurantiferromagnetic planar systems is an interesting observa-
through an anomaly, which is an exact one-loop result. Howtion, which deserves further serious investigations. We hope

ever, this is not sufficient for an exact quantitative treatmento return to a study of some of the above-mentioned issues in
of the low-energy effective action. However, it is known that due course.

exact results in effective action treatments in higher than one
spatial dimension can be derived in certgairpersymmetric
non-Abeliangauge theories, as a result of special nonrenor-
malization theorems and strong-coupling—weak-coupling du- The authors are grateful to lan Aitchison for many en-
ality symmetrie$? In such theories, one invokes a duality lightening discussions and a critical reading of the manu-
symmetry to map a strongly coupled problem to a weaklyscript. They would also like to thank I. Kogan, G. Kout-
coupled dual model that can be solved exactly. soumbas, F. Lizzi, and A. Tsvelik for useful comments and

We now remark that-j models are known, under certain the Theory Division of CERN for hospitality during the ini-
restrictions among their parameters, nametyj, to exhibit  tial stages of this work. The work of N.E.M. is supported
hidden supersymmetrida space-timé! There are graded through P.P.A.R.C(UK).
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