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Magnetic properties of the t-J model in two- and three-dimensional lattices

Zhe Chang*

CCAST (World Laboratory), P.O. Box 8730, 100080 Beijing, China
and Institute of High Energy Physics, Academia Sinica, P.O. Box 918(4), 100039 Beijing, China
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Magnetic properties of thet-J model in two- and three-dimensional lattices are investigated by a systematic
method. The quasiparticle picture, and in particular, dispersion relations of holons and renormalized spinons
are presented explicitly. Results are compared with that of numerical simulations and they are in qualitative
agreement. The expression of low-temperature magnetization gives a reasonable explanation for the strange
phenomena of doping enhancement of the half-filled antiferromagnetic ground state at low temperatures, which
was discovered years ago in neutron-scattering experiments. Features at the phase transition region predict
antiferromagnetic-metallic transition and give an expression for the doping-dependent Ne´el temperature.
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I. INTRODUCTION

More than ten years after the discovery of hig
temperature superconductivity1 the nature of the normal stat
of cuprate materials remains an intriguing and controver
issue. The dc resistivityrab of the hole-doped cuprates
linear with temperature when the dopant density is optim2

The Hall coefficientRH at constant temperature changes s
as the hole density is increased away from the insulator
ent compound.3 Several theories have been proposed to
scribe them. Unfortunately, most of the available experim
tal data are not accurate enough to convincingly confirm
rule out many of the theories. It is possible that theories t
combine the pairing ideas with the presence of strong a
ferromagnetic correlations may properly describe the hi
temperature superconductors.4–6 The interchange of mag
nons may produce the attractive force needed to pair
charge carriers.7,8 Some other theorists strongly believe th
the BCS theory9 cannot work in the high-temperature supe
conductors. Due to the nature of the phonon-media
electron-electron interaction in BCS theory, there are up
bounds on the critical temperatures much lower than th
achieved with the cuprate compounds. The lack of a sign
cant isotope effect with substitution of the oxygen si
seems to rule out the possibility that the phonon Debye
quency is the characteristic energy scale entering in the
damental equations of the high-temperature supercondu
ity. Instead, scenarios in which the elementary excitation
the cuprates are spinons~zero charge, spin-1/2! and holons
~chargee, spin 0! have been proposed.10 Anderson11 argued
that the appropriate model for the high-temperature su
conductivity is the single-band Hubbard model12 in the
strong on-site Coulomb repulsion limit. Standard stron
coupling perturbation treatment of the single-band Hubb
Hamiltonian produces the effectivet-J model.13,14 The t-J
Hamiltonian is an interesting model on its own. This mod
can be obtained in the strong-coupling limit from a mo
realistic model that takes into account the more detailed
bital structure of the CuO2 cell even when the holes create
by doping sit primarily on the oxygen sites.15 The Hubbard
model and thet-J model are believed to represent the gro
570163-1829/98/57~5!/2979~12!/$15.00
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features of the electronic behavior of the new materia
While band-structure calculations succeed in predict
some features of this unusual electronic state,16 it is clear that
electron correlations play an important role in determini
the physical properties of these compounds. As a manife
tion of these correlations, magnetic fluctuations have n
been detected in neutron-scattering experiments17 on high-
temperature superconductors. The magnetism in the undo
parent compounds of both families is now quite well und
stood. The system of interacting localized Cu21 spins is well
described by the two-dimensional Heisenberg Hamiltonia18

and a small coupling between the CuO2 layers leads to the
formation of a three-dimensional Ne´el-ordered state. It is
therefore clearly of great interest to investigate in detail
crossover from the rather conventional local moment sys
at zero doping to the electronic state that forms the basis
high-temperature superconductivity.

In this paper, we discuss magnetic properties of the hi
temperature superconductors as the dopant density is
creased away from the insulator parent compound in a wh
temperature range by making use of the quantum fi
theory. The quasiparticle picture, and in particular, disp
sion relations for holons and renormalized spinons are p
sented and discussed in detail. Results are compared
that of numerical simulations and they are in qualitati
agreement. The expression of low-temperature magne
tion gives a reasonable explanation for the strange phen
ena of doping enhancement of the half-filled antiferroma
netic ground state of the high-temperature superconducto
low temperatures, which was discovered years ago
neutron-scattering experiments.19 Features at the phase
transition region predict an antiferromagnetic-metallic tra
sition and an expression for the doping-dependent Ne´el tem-
perature is given.

The paper is organized as follows. In Sec. II, we set u
Green’s-function formalism of thet-J model within the
framework of supergroup theory in two- and thre
dimensional lattices. The quasiparticle picture of the hig
temperature superconductors, and in particular, disper
relations for holons and renormalized spinons are discus
in Sec. III. Section IV is devoted to investigating magnetiz
2979 © 1998 The American Physical Society
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2980 57ZHE CHANG
tion at zero temperature and finite dopant density. At l
temperatures, the expression of sublattice magnetiza
gives a possible explanation for the doping enhancemen
the antiferromagnetic ground state of the high-tempera
superconductors at low temperatures, which was discov
in neutron-scattering experiments years ago. The magn
properties of the cuprate materials at low temperatures
discussed in Sec. V. In Sec. VI, features of thet-J model
near phase-transition region are investigated and comp
with the phase diagram of the realistic high-temperature
perconductors. Some concluding remarks are presente
Sec. VII.

II. FORMALISM

There is a great deal of similarity between the quant
field theory and the theories based on statistical mechanic
far as the many-body aspect is concerned. Because o
lack of a systematic method there was little advancemen
the many-body theory until the 1950’s. The situation h
changed greatly since then, the quantum field theory p
vides a very powerful and unified way of attacking t
many-body problem. It is well known that the Green’s fun
tions play the most important part in the field-theoretic tre
ment of the many-body problem. The Green’s functions
joy popularity because they yield, in a direct way, the m
important physical properties of a system, having a sim
physical interpretation, and can be calculated in a system
way. In the 1960’s, a successful Green’s-function appro
for the ferromagnetism20 and antiferromagnetism21 was de-
veloped. Here we would like to set up the Green’s-funct
formalism of the t-J model within the framework of the
supergroup theory. To this end, first of all, we rewrite thet-J
Hamiltonian into an explicit supersymmetric form. The f
miliar form of the t-J model is

H52t(
~ jk !

(
s

~cjs
† cks1cks

† cjs!1J(
~ jk !

S Sj•Sk2
1

4
dnjnkD ,

~1!

where the notation is standard.
The Hilbert space of thet-J model is spanned byuaj&

P$u↑ j&(5cj↑
† u0& j), u↓ j&(5cj↓

† u0& j), u0j&(5u0& j)%. With the
local statesuaj&, one can define the local Hubbard operato
Xj

ab[uaj&^bju. The operatorsXj
ab are generators of the supe

groupU(2/1) and satisfy the related superalgebra relatio22

@Xac,Xbd%5Xaddbc6Xbcdad. ~2!

The t-J Hamiltonian in terms of the local Hubbard operato
Xj

ab is of the form

H52t(̂
jk &

(
s

~Xj
s0Xk

0s1Xk
s0Xj

0s!1
J

2 (̂
jk &

(
s,s8

Xj
ss8Xk

s8s

2
J

2 (̂
jk &

Xj
00Xk

00. ~3!

It is convenient to present the generatorsXj
ab in terms of a

boson and a fermion operator, which denotes magnon
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hole excitations, respectively. This is given by the gene
Holstein-Primakoff transformation.23

To connect the Green’s functions of supergroup gene
tors with sublattice magnetization, we notice the Casimir o
erator of the supergroupU(2/1). This is the only supersym
metric invariant quantity of the formalism. The Casim
operatorC of the supergroupU(2/1) is as follows:

C5Xj
↑↑Xj

↑↑1Xj
↑↓Xj

↓↑1Xj
↓↑Xj

↑↓1Xj
↓↓Xj

↓↓1~Xj
0↑Xj

↑02Xj
↑0Xj

0↑

1Xj
0↓Xj

↓02Xj
↓0Xj

0↓!2Xj
00Xj

00. ~4!

It is too complicated to discuss the above Casimir opera
directly. In fact, here we only interested in the fundamen
representation of the supergroupU(2/1). In this case, we
have identities

Xj
001Xj

↑↑1Xj
↓↓[1,

Xj
↑0Xj

0↑1Xj
↓0Xj

0↓[12Xj
00. ~5!

Thus, a simplified form of the Casimir operatorC is obtained,

C52Xj
↑↓Xj

↑↓1Xj
001~Xj

↑↑2Xj
↓↓!. ~6!

And then the magnetizationS3 can be written in terms of
local Hubbard operators

S35
C
2

2
1

2
Xj

002Xj
↓↑Xj

↑↓ . ~7!

Therefore, after obtaining the correlation function^Xj
↓↑Xj

↑↓&,
we got directly the sublattice magnetization. It is well know
that the correlation function can be calculated effectively
using the analytical properties of the double times Gree
function ^^Xj

↑↓(t);Xj
↓↑(t8)&&. Thus, to calculate the magne

tization it is transformed as to get the Green’s functi
^^Xj

↑↓(t);Xj
↓↑(t8)&&. In this paper, we calculate the Green

function by solving equations of motion of the Green’s fun
tion.

We consider a simple lattice. To make the problem tr
table, we divide the lattice into ‘‘A’’ and ‘‘ B’’ sublattices.
For the bipartite lattice,j 1 and j 11d are on different sublat-
tice and consequently have two different Green’s functio
Using the ‘‘Tyablikov’’ decoupling procedure,24 from the
Heisenberg equations, one gets the equations of motio
the Green’s functions
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i
d

dt
^^Xj1

↑↓~t!;Xk1

↓↑~t8!&&5d~t2t8!2^S3&d j1k1
2t(

d
@^^Xj1

↑0~t!Xj11d
0↓ ~t!;Xk1

↓↑~t8!&&1^^Xj1
0↓~t!Xj11d

↑0 ~t!;Xk1

↓↑~t8!&&#

1J^S3&(
d

@^^Xj11d
↑↓ ~t!;Xk1

↓↑~t8!&&1^^Xj1
↑↓~t!;Xk1

↓↑~t8!&&# ~8!

and

i
d

dt
^^Xj11d

↑↓ ~t!;Xk1

↓↑~t8!&&52t(
d1

@^^Xj11d
↑0 ~t!Xj11d1d1

0↓ ~t!;Xk1

↓↑~t8!&&1^^Xj11d
0↓ ~t!Xj11d1d1

↑0 ~t!;Xk1

↓↑~t8!&&#

2J^S3&(
d1

@^^Xj11d1d1

↑↓ ~t!;Xk1

↓↑~t8!&&1^^Xj11d
↑↓ ~t!;Xk1

↓↑~t8!&&#. ~9!

To make the set of coupled equations of motion in the Green’s function self-contained, we have to add the followin

i
d

dt
^^Xj1

↑0~t!Xj11d
0↓ ~t!;Xk1

↓↑~t8!&&52t^Xj1
0↑Xj1

↑0&@^^Xj1
↑↓~t!;Xk1

↓↑~t8!&&2^^Xj11d
↑↓ ~t!;Xk1

↓↑~t8!&&# , ~10!

i
d

dt
^^Xj1

0↓~t!Xj11d

↑0 ~t!;Xk1

↓↑~t8!&&52t^Xj1
0↓Xj1

↓0&@^^Xj1
↑↓~t!;Xk1

↓↑~t8!&&2^^Xj11d
↑↓ ~t!;Xk1

↓↑~t8!&&# ~11!

and

i
d

dt
^^Xj11d

↑0 ~t!Xj11d1d8
0↓

~t!;Xk1

↓↑~ t8!&&52t^Xj1
0↓Xj1

↓0&(
d2

@^^Xj11d
↑↓ ~t!;Xk1

↓↑~t8!&&2^^Xj11d1d8
↑↓

~t!;Xk1

↓↑~t8!&&#, ~12!

i
d

dt
^^Xj11d

0↓ ~t!Xj11d1d8
↑0

~t!;Xk1

↓↑~ t8!&&52t^Xj1
0↑Xj1

↑0&@^^Xj11d
↑↓ ~t!;Xk1

↓↑~t8!&&2^^Xj11d1d8
↑↓

~t!;Xk1

↓↑~t8!&&#. ~13!

Translational invariance dictates consideration of the spatial Fourier transforms

^^Xj1
↑↓ ;Xk1

↓↑&&5
2

N (
k

gk~E!eik•~ j12k1!,

^^Xj11d
↑↓ ;Xk1

↓↑&&5
2

N (
k

f k~E!eik•~ j11d2k1!, ~14!

where ^^Xj1
↑↓ ;Xk1

↓↑&& and ^^Xj11d
↑↓ ;Xk1

↓↑&& are the Fourer transforms of the Green’s functions^^Xj1
↑↓(t);Xk1

↓↑(t8)&& and

^^Xj1d
↑↓ (t);Xk1

↓↑(t8)&&, respectively.

Equations~8!–~13! then imply

~E22Jẑ S3&E2t2z^Xj1
0↑Xj1

↑01Xj1
0↓Xj1

↓0&!gk~E!2~J^S3&E2t2^Xj1
0↑Xj1

↑01Xj1
0↓Xj1

↓0&!zg~k! f k~E!52~S3!E, ~15!

~E21Jẑ S3&E2t2z^Xj1
0↑Xj1

↑01Xj1
0↓Xj1

↓0&! f k~E!2~2J^S3&E1t2^Xj1
0↑Xj1

↑01Xj1
0↓Xj1

↓0&!zg~k!gk~E!50 ~16!

or

gk~E!5
2^S3&E~E21Jẑ S3&E22t2z^ f †f &!

E41@4t2z^ f †f &1J2^S3&2z2
„12g2~k!…#E214t4z2

„12g2~k!…^ f †f &2 , ~17!
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where we have used the notationg(k)51/z(de
ik•d, z is the

number of nearest neighbors. Now, we can say that a
tematic Green’s-function formalism of thet-J model is al-
ready set up. Magnetic properties of the high-tempera
superconductors can be discussed straightforwardly using
method. However, before investigating of the magnetic pr
erties, we first try to gain some insights of the quasiparti
picture of thet-J model in the following section.

III. QUASIPARTICLE PICTURE

It is believed that the physics of the half-filled limit i
mostly understood. The situation, where carriers are ad
is more challenging and interesting. The study for a f
holes in an antiferromagnetic background is an import
topic in the study of the high-temperature superconductiv
One of the most controversial issues in the context
whether a hole injected in the undoped ground state beh
like a quasiparticle. Based on results obtained in the o
dimensional Hubbard model, Anderson25 proposed a sce
nario where the spinons heavily address the holes, increa
substantially the mass; this renormalization is so strong
the wave-function renormalization at the Fermi surface v
ishes. However, this is a very particular situation caused
the dimensionality of the problem.

To discuss the quasiparticle picture, we rewritegk(E) in
the following form:

gk~E!5
2^S3&E~E21J^S3&zE22t2z^ f †f &!

~E1Eh!~E2Eh!~E1Es!~E2Es!
, ~18!

where theEh(s) dispersion relation of holons~renormalized
spinons!, is of the form

Eh~k!52
1

&
A«2~k!2A«4~k!216t4z2~^ f †f &!2

„12g2~k!…

Es~k!5
1

&
A«2~k!1A«4~k!216t4z2~^ f †f &!2

„12g2~k!….

~19!

Here«(k)[AJ2^S3&2z2
„12g2(k)…14t2z^ f †f &.

And then, we can writegk(E) as

gk~E!5^S3&
1

Eh
22Es

2 FEh
21J^S3&zEh22t2z^ f †f &

E2Eh

1
Eh

22J^S3&zEh22t2z^ f †f &
E1Eh

G
1^S3&

1

Es
22Eh

2 FEs
21J^S3&zEs22t2z^ f †f &

E2Es

1
Es

22J^S3&zEs22t2z^ f †f &
E1Es

G . ~20!

It is within our expectation that there are four poles of t
gk(E). The first two,E6Eh , correspond to the quasihol
excitations, and the other two poles,E6Es , denote the
renormalized spinons.
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As the dopant density is increased away from the insu
tor parent compound, the magnetic properties of the hi
temperature superconductors are less understood, th
they are more interesting than the half-filling limit. Sever
theoretical works have studied the degree of suppressio
antiferromagnetism by addition of holes to thet-J model or
Hubbard model at half-filling. Dagottoet al.26 calculated the
dynamical spin structure functionS(Q,v) @Q5(p,p)# for
the t-J model on a 434 cluster atJ/t50.4, and severa
dopings. Their results show a sharp peak at low frequen
and doping corresponding to the spin-wave excitation whi
at half-filling and in the bulk limit, becomes massless. T
finite size of the cluster, plus the effect of doping, open
gap in the spectrum corresponding to this momentum.
d50.25, a considerable amount of spectral weight is tra
ferred to large energies. For the quarter-filled system,
spin-wave peak has virtually disappeared. Here, by mak
use of the Green’s-function method, we got a reasona
general expression for the dispersion relation of the ren
malized spinons. From the dispersion relation, we can ob
the same conclusion with these numerical simulations
should be noticed that the dispersion relation for the ren
malized spinons, in the case of low doping, is of the form

E5AJ2^S3&2z2~12g2!14t2z^ f †f &. ~21!

At the exact half-filling case, the correct dispersion relati
~massless! for the spinons is reduced. And it is the finit
doping, which generates a nonzero effective mass for
spinons.

Evolution of the renormalized spinon’s dispersion relati
with rising doping concentration (^ f †f &) can be viewed from
Figs. 1–3. Figure 1 shows a linear dispersion relation
massless spinons at low frequencies, this correspondin
the half-filling case. From Fig. 2, we can see that an effect
mass of the renormalized spinons is generated by finite d
ing. And Fig. 3 presents a more general picture of the d
persion relation in the two-dimensional lattice.

The study for motions of a few holes in an antiferroma
netic background were carried out mainly using numeri
methods, with the help of some analytical techniques.
gain some intuition on the behavior of holes doped into
antiferromagnet, one always starts with the study of just o
hole. The physics of a hole arises from a competition

FIG. 1. Spinon dispersion surface plotted in the Brillouin zon
for a 2D square lattice with lattice parametera51, for the half-
filling case, fort51, J50.3.
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tween the superexchange energy lost near the hole an
kinetic energy. It is reasonable to expect that the antife
magnetic order parameter will reduce its magnitude near
hole, increasing the mobility of the carrier inside such a s
bag. The effects of a so-called string linear potential stron
influence the physics of holes in antiferromagnets.27 For the
particular case of one hole in antiferromagnet, analytical
proaches have been developed that give results in g
agreement with exact diagonalization predictions. Assum
that the weight beyond the first pole was incoherent a
using the slave-boson or general Holstein-Primakoff tra
formation and the 1/S expansion, at the dominant pole a
proximation, the single-particle Green’s function of one ho
was studied.28–30 The self-consistent Born approximation
this reformulated problem was also studied.31 This is equiva-
lent to the rainbow approximation for the holon propagat
where the spinon lines are noncrossing. A remarkable ag
ment with exact diagonalization results was found for sm
J/t. Unfortunately, an extension of this approach to a fin
density of holes is difficult.

By making use of the quantum field theory, we now o
tain a general expression for the dispersion relation of
holons. Its total bandwidthW provides information about the
renormalization effects caused by the spin waves that
created and absorbed while the hole propagates. Moreov

FIG. 2. Spinon dispersion surface plotted in the Brillouin zon
for a 2D square lattice with lattice parametera51, for doping con-
centration (̂ f †f &5)0.0001, fort51, J50.3.

FIG. 3. Spinon dispersion surface plotted in the Brillouin zon
for a 2D square lattice with lattice parametera51, for doping con-
centration (̂ f †f &5)0.003, fort51, J50.3.
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the normal state is assumed to be formed by a gas w
noninteracting~spin-wave renormalized! holes, then a lot of
observables can be calculated. In addition, the specifick de-
pendence of the energy provides information about aniso
pies in the system. In Fig. 4, the bandwidthW, which is
defined as the difference between the energy of the state
the minimum energy and of the state with highest energy
plotted as a function ofJ/t. We see that the bandwidth seem
proportional toJ/t. This result is in good agreement wit
other calculations28–32and numerical simulations33 for a hole
in antiferromagnets. In Fig. 5, we present a hole dispers
curve plotted along the directionGMXG in the Brillouin
zone. This result is also in agreement with numerical o
using a Green’s function Monte Carlo method and the B
approximation34 ~see Fig. 13 in Ref. 34!. An interesting fea-
ture of Fig. 5 is the degeneracy between momentumk
5(p/2,p/2) andk5(0,p),(p,0). Analyzed from the point
of view of the Hubbard model, this is not surprising, since
the noninteracting limit both momenta belong to the Fer
surface, thus at least at weak coupling, only a tiny splitting
energy is expected. However, the Born approximation a
numerical simulation using a Green’s-function Monte Ca
method show a small difference in energy betweenk
5(p/2,p/2) and k5(0,p),(p,0). According to Dagotto
et al., it is the small fraction of difference forming the bas
for a possible explanation of the behavior of the Hall coe
cient with temperature in the high-temperature supercond
ors.

To gain more information, in Figs. 6 and 7, we presen
three-dimensional surface plot and a contour plot of

,

,

FIG. 4. BandwidthW of the t-J model as a function ofJ/t, for
t51, for dopant densitŷ f †f &51/1600.

FIG. 5. Hole dispersion curve plotted along the directi
G(0,0)M (p,0)X(p,p)G(0,0) in the Brillouin zone, for a 2D
square lattice with lattice parametera51, for doping concentration
(^ f †f &5)0.001, fort51, J50.3.
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2984 57ZHE CHANG
hole’s dispersion relation. Comparison of Figs. 8 and 9 w
Figs. 6 and 7 gives insight into the evolution process of
hole’s dispersion relation with rising doping concentratio
These results show that the rapid reduction of antiferrom
netism with doping can be mimicked by the quasiparti
picture.

IV. MAGNETIZATION AT ZERO TEMPERATURE

It is believed that undoped cuprate materials are descr
by the two-dimensional Heisenberg lattice. It is well esta
lished from numerical work~quantum Monte Carlo, Green’s
function Monte Carlo, series analysis! and different varia-
tional methods that the ground state of the two-dimensio
S51/2 Heisenberg antiferromagnet does indeed have lo
range Ne´el order. All of its ground-state properties as well
long-wavelength excitations are well described by straig
forward spin-wave theory. It is reasonable to expect that
antiferromagnet order parameter will reduce its magnitu
near a hole. In fact, experiments show that~as an example! in
La22xSrxCuO4 magnetic long-range order disappears at a

FIG. 7. Hole dispersion contours plotted in the Brillouin zon
for a 2D square lattice with lattice parametera51, for doping con-
centration (̂ f †f &5)0.001, fort51, J50.3.

FIG. 6. Hole dispersion surface plotted in the Brillouin zone,
a 2D square lattice with lattice parametera51, for doping concen-
tration (̂ f †f &5)0.001, fort51, J50.3.
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concentration ofx50.015, and the material becomes sup
conducting at aboutx50.05. The disappearance of Ne´el or-
der coincides with a dramatic change in the two-dimensio
transport properties. The charge carriers in samples that
hibit Néel order are strongly localized, and the electron
conduction is closely similar to that of conventional light
doped semiconductors. Localization effects are still appa
for samples with intermediate doping levels at low tempe
ture. However, forT>100 K the samples in this concentra
tion regime exhibit electronic properties closely akin to t
normal-state properties of the high-temperature superc
ductors. Thus, up to the transition regime is an ideal tes
ground for the role of magnetic fluctuations in the norm
state of the cuprate material. So that investigation of
evolving process of magnetic properties with increasing d
ing is clearly of great interest. We start our study of t
magnetic properties of thet-J model with finite dopant den-
sity from the sublattice magnetization at zero temperatur

From Eq.~20!, we have

,

FIG. 8. Hole dispersion surface plotted in the Brillouin zone, f
a 2D square lattice with lattice parametera51, for doping concen-
tration (̂ f †f &5)0.01, for t51, J50.3.

FIG. 9. Hole dispersion contours plotted in the Brillouin zon
for a 2D square lattice with lattice parametera51, for doping con-
centration (̂ f †f &5)0.01, for t51, J50.3.
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^^Xj1
↑↓ ;Xk1

↓↑&&5
2^S3&

N (
k

eik•~ j12k1!
1

Es
22Eh

2 F2t2z^ f †f &2J^S3&zEh2Eh
2

E2Eh
1

2t2z^ f †f &1J^S3&zEh2Eh
2

E1Eh

1
22t2z^ f †f &1J^S3&zEs1Es

2

E2Es
1

22t2z^ f †f &2J^S3&zEs1Es
2

E1Es
G . ~22!

From the analytical properties of the Green’s functions, it follows that the correlation function^Xj1
↓↑Xj1

↑↓& can be obtained from
the equation

^Xj1
↓↑Xj1

↑↓&5 i
^S3&
pN (

k

1

Es
22Eh

2 H E
2`

` dv

ebv11 F ~2t2z^ f †f &2J^S3&zEh2Eh
2!S 1

v2Eh1 i012
1

v2Eh2 i01D1~2t2z^ f †f &

1J^S3&zEh2Eh
2!S 1

v1Eh1 i012
1

v1Eh2 i01D G1E
2`

` dv

ebv21 F ~22t2z^ f †f &1J^S3&zEs1Es
2!

3S 1

v2Es1 i012
1

v2Es2 i01D1~22t2z^ f †f &2J^S3&zEs1Es
2!S 1

v1Es1 i012
1

v1Es2 i01D G J
5

2^S3&
N (

k

1

Es
22Eh

2 F2t2z^ f †f &2J^S3&zEh2Eh
2

ebEh11
1

2t2z^ f †f &1J^S3&zEh2Eh
2

e2bEh11

1
22t2z^ f †f &1J^S3&zEs1Es

2

ebEh21
1

22t2z^ f †f &2J^S3&zEs1Es
2

e2bEs21 G[2^S3&F, ~23!

where

F[
1

N (
k

1

Es
22Eh

2 F2t2z^ f †f &2J^S3&zEh2Eh
2

ebEh11
1

2t2z^ f †f &1J^S3&zEh2Eh
2

e2bEh11
1

22t2z^ f †f &1J^S3&zEs1Es
2

ebEs21

1
22t2z^ f †f &2J^S3&zEs1Es

2

e2bEs21 G . ~24!
ob
o
as

a-
From Eq.~7!, we obtain

^S3&5
1

2
~12^ f †f &!2^X↓↑X↑↓&. ~25!

And then,

^S3&5
1

2
~12^ f †f &!22^S3&F. ~26!

Therefore, we can writêS3& formally as

^S3&5
12^ f †f &

2~112F!
. ~27!

In principle, all of the interested physical results can be
tained by solving the above equation. This is one of the m
advantageous features of the Green’s-function approach
the case of magnetism.20,21

At zero temperature, the functionF is of the form

F05
1

N (
k

FJ^S3&z
Es1Eh

Es
22Eh

22
Es

21Eh
2

Es
22Eh

2 1
4t2z^ f †f &
Es

22Eh
2 G .

~28!

In the case of low doping concentration,
-
st
in

F05
1

N (
k

F 1

A12g2~k!
211

4t2z^ f †f &
J2^S3&2z2

1

12g2~k!G .

~29!

At exact half-filling, the functionF0 reduces as

F05
1

N (
k

S 1

A12g2~k!
21D . ~30!

For the cubic lattice,35

C95
2

N (
k

1

12g2~k!
51.516.

At zero temperature, we get

F050.07810.505
1

~^S3&!2 S t

JD 2

^ f †f &. ~31!

From Eqs.~27! and ~31!, we obtain the average magnetiz
tion ~for low dopant density! per lattice as
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^S3&050.216F12^ f †f &

1A~12^ f †f &!2218.681S t

JD 2

^ f †f &G . ~32!

Expanding the expression of magnetization in terms of
doping concentration (^ f †f &), we find that the first term re
covers the result for the antiferromagnetism.21 And the sec-
ond part comes from the linear effect of the doping on
antiferromagnetic long-range order. It is the third term tha
remarkable, which is very sensitive to the doping. Althou
in the low doping case, this term cannot be ignored at all
Fig. 10, we give a plot of the doping-dependent magnet
tion at zero temperature. It shows that the sublattice mag

FIG. 10. Sublattice magnetizationM ([^S3&) as a function of
doping concentrationx([^ f †f &), for t51, J50.3.
e

e
s
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tization is reduced rapidly with increasing dopant density
is in good agreement with neutron-scattering experiment
high-temperature cuprate materials.

V. MAGNETIZATION AT LOW TEMPERATURES

It is within our expectations that the temperature dep
dence of the sublattice magnetization for undoped hi
temperature cuprate materials is in quantitative agreem
with a spin-wave analysis of a Heisenberg Hamiltonia
Years ago, in neutron-scattering experiments for La2CuO41d
and YBa2Cu3O61x , Keimer et al.19 found that the tempera
ture dependence of the sublattice magnetization for the h
doped samples evolves continuously with dopant concen
tion, the sublattice magnetization curve first flattens a
ultimately becomes reentrant at low temperatures. A poss
explanation for this feature may be that the localized ho
frustrate the superexchange interaction between the Cu s
and hence lead to a rapid suppression of the Ne´el tempera-
ture TN . However, by contrast, such behavior is observ
neither in the data for the diluted samples nor in equival
data for the Pr22xCexCuO4 system. Thus, frustration is pre
sumably not a major factor in the destruction of long-ran
antiferromagnetism in the compounds doped with exc
electrons. It is clearly important to find other explanatio
for this strange behavior of high-temperature supercond
ors at low temperatures. In the follows, we calculate the s
lattice magnetization at low temperatures using thet-J
model.

For low temperatures, the summation over the momen
wave space involved in the calculation ofF in the above
section can be replaced by the integration
F5
1

N (
k

1

Es
22Eh

2 F2
2t2z^ f †f &2J^S3&zEh2Eh

2

e2bEh11
1

2t2z^ f †f &1J^S3&zEh2Eh
2

e2bEh11
1~2t2z^ f †f &2J^S3&zEh2Eh

2!

2
22t2z^ f †f &1J^S3&zEs1Es

2

e2bEs21
1

22t2z^ f †f &2J^S3&zEs1Es
2

e2bEs21
2~22t2z^ f †f &1J^S3&zEs1Es

2!G
5F02

2

N (
k

J^S3&zEh

Es
22Eh

2 S 12
1

e2bEh11D1
2

N (
n51

`

(
k

1

Es
22Eh

2 J^S3&zEse
2bnEs. ~33!

In the case of small doping, we have

F5F01
2

N (
n51

`

(
k

1

A12g2~k!
e2bnJ^S3&zA12g~k!2

2

N (
k

1

12g2~k!

2t2z^ f †f &
J2^S3&2z2

1

eb~2t2z^ f †f &/J^S3&z!11
. ~34!

Therefore, we have

F5F01
)z~2!

24p2 S kT

J^S3& D
2

20.505
1

^S3&2 S t

JD 2

^ f †f &
1

eb~2t2z^ f †f &/J^S3&x!11
, ~35!

and, so that

^S3&5^S3&02
)z~2!

6p2~12^ f †f &! S kT

J D 2

12.02S t

JD 2 ^ f †f &
~12^ f †f &!

1

eb~4t2^ f †f &/J!11
. ~36!
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The doping effect of the temperature-dependent terms in
above equation is really surprising to compare with
theory of the magnon-hole interaction,36 which is a natural
generalization of the Dyson-Oguchi theory for th
antiferromagnetism.37 Sometimes the dopings do not destr
but enhance the half-filled ground state at low temperatu
It is a nonperturbative behavior of thet-J model, which can-
not be detected by any perturbative method. Indeed, the
sult is in good agreement with the neutron-scatter
experiments:19 the order-parameter curves of the sublatt
magnetization with increasing doping first flattens and u
mately exhibits reentrant behavior at low temperatures. F
ure 11 shows the magnetization at low temperatures for
ferent doping concentrations from 0.0001 to 0.003.
course, in the case of zero doping, we recover all of
results for the antiferromagnetism.

FIG. 11. Square of the sublattice magnetizationM2/M0
2 as a

function of the temperatureT/J, for different doping concentration
~starting from beloŵ f †f &50.0001, 0.0002, 0.0005, 0.001, 0.00
0.003!.
e
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-
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VI. ANTIFERROMAGNETIC-METALLIC PHASE
TRANSITION AND NÉ EL TEMPERATURES

Undoped cuprate materials are described by the t
dimensional Heisenberg Hamiltonian, and a small coupl
between the CuO2 layers leads to the formation of a thre
dimensional Ne´el-ordered state. The only phase transition
the undoped parent compounds is the antiferromagne
paramagnetic one, which occurred at Ne´el temperatureTN0 .
Several analytical approaches~generalized Schwinger-boso
mean-field theory,38 spin-wave theory39! were developed to
discuss this phase transition and the dependence of Ne´el tem-
perature on the anisotropy parameter. However, the ph
diagram of the high-temperature superconductors shows
presence of an antiferromagnetic-metallic phase transitio
Néel temperatureTN , which is seriously dependent on th
dopant density. The influence of dopant on the Ne´el tempera-
ture was investigated extensively by neutron-scattering
muon-spin resonance experiments. The Ne´el temperature is
heavily suppressed by doping in any sample. The disapp
ance of Ne´el order coincides with a dramatic change in t
two-dimensional transport properties. The charge carrier
samples that exhibit Ne´el order are strongly localized, an
the electronic conduction is closely similar to that of conve
tional lightly doped semiconductors. Localization effects a
apparent at low temperature. However, for high temperatu
the samples exhibit electronic properties closely akin to
normal-state properties. Thus, to gain insight into t
antiferromagnetic-metallic phase transition and the dop
effect of Néel temperature is clearly interested.

To evaluate the Ne´el temperature, in the low doping cas
we expand in Laurant series the functionF for very small
^S3&. And then
F5
1

N (
k

1

Es
22Eh

2 F ~2t2z^ f †f &2J^S3&zEh2Eh
2!S 1

2
2

bEh

4 D1~2t2z^ f †f &1J^S3&zEh2Eh
2!S 1

2
1

bEh

4 D1~22t2z^ f †f &

1J^S3&zEs1Es
2!S 1

bEs
2

1

2
1

bEs

12 D1~22t2z^ f †f &2J^S3&zEs1Es
2!S 2

1

bEs
2

1

2
2

bEs

12 D G ~37!

5
2

N (
k

1

Es
22Eh

2 FJ^S3&zEs

1

bEs
2S 22t2z^ f †f &1

Eh
21Es

2

2 D 1J^S3&z~3Eh
21Es

2!
b

12G . ~38!

A straightforward calculation allows us to writeF as

F5(
k

1

12g2~k!

kT

J^S3&z
2F1

2
2

2t2z^ f †f &
J2^S3&2z2 (

k

1

12g2~k!G1J^S3&z
1

12kT
. ~39!

Equations~27! and ~39! imply

^S3&5
12^ f †f &

2~112F!
5

12^ f †f &
4 F C9kT

J^S3&z
1

2C9t2z^ f †f &
J2^S3&2z2 1

J^S3&z

12kT G21

~40!

or

Jz

12kT
~^S3&!323S 12^ f †f &

12
2

C9kT

3Jz D ^S3&1
2C9t2z^ f †f &

J2z2 50. ~41!

Then, we obtain an expression for the sublattice magnetization near the Ne´el temperature
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^S3&5
1

21/3 F2
24C9t2z^ f †f &

J3z3 kT1AS 24C9t2z^ f †f &
J3z3 kTD 2

24S 12^ f †f &
Jz

kT2
4C9

J2z2 k2T2D 3G1/3

e2p i /3

1
1

21/3 F2
24C9t2z^ f †f &

J3z3 kT2AS 24C9t2z^ f †f &
J3z3 kTD 2

24S 12^ f †f &
Jz

kT2
4C9

J2z2 k2T2D 3G1/3

e4p i /3. ~42!
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In the case of zero doping (^ f †f &50), the above equation
reduces to the familiar form of the sublattice magnetizat
for the antiferromagnetism,

^S3&5
1

2
A 3

C9

T

TN0
S 12

T

TN0
D , ~43!

wherekTN0[Jz/4C9 is the Néel temperature at half-filling.
The physical constraint of quantitŷS3& being a real

value, i.e.,̂ S3&* 5^S3&, implies

S 24C9t2z^ f †f &
J3z3 kTD 2

24S 12^ f †f &
Jz

kT2
4C9

J2z2 k2T2D 3

<0.

~44!

The following equation is satisfied by the Ne´el temperature
TN :

~kTN!4/32
Jz~12^ f †f &!

4C9
~kTN!1/31

~12C9t2z^ f †f &!2/3

4C9
50.

~45!

Then, we get an expression of the Ne´el temperature,

kTN5
Jz~12^ f †f &!

4C9
2F ~3t2z^ f †f &!2

Jz G1/3

. ~46!

Above the transit temperature region (T.TN), ^S3& has no
definite value. Unlike the antiferromagnetism case, it is
permissible to arrive at the paramagnetic phase, where^S3&
50. This fact is in agreement with the phase diagram of
realistic high-temperature superconductors, where above
antiferromagnetic phase is the metallic, but not the param
netic phase.

It is clear that the Ne´el temperature is heavily depende
on the doping concentration̂f †f &. From Fig. 12, we know

FIG. 12. Néel temperature as a function of doping concent
tions, for a 3D cubic lattice with lattice parametera51, for J51,
J/t50.3.
n

t

e
he
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that, at about̂ f †f &50.01, the Ne´el temperature is alread
reduced to zero. This is in agreement with experiments
high-temperature superconductors.

VII. CONCLUDING REMARKS

The magnetism in undoped high-temperature superc
ductors is now quite well understood. The system of int
acting localized Cu21 spins is well described by the two
dimensional Heisenberg Hamiltonian, and a small coupl
between the CuO2 layers leads to the formation of a thre
dimensional Ne´el-ordered state. It is therefore clearly o
great interest to investigate in detail the crossover from
rather conventional local moment system at zero doping
the electronic state that forms the basis for high-tempera
superconductivity. Many theorists strongly argued that
appropriate model for high-temperature superconductivity
the single-band Hubbard model or its equivalence at
strong-coupling limit, thet-J model. The Hubbard mode
and thet-J model are believed to represent the gross featu
of the electronic behavior of the new materials.

In this paper, we discussed magnetic properties of
high-temperature superconductors from zero to intermed
doping levels in a whole temperature range by making us
the t-J model and quantum field theory. The quasipartic
picture, and in particular, dispersion relations for holons a
renormalized spinons were presented. Results show mas
spin-wave excitations at half-filling. The effect of dopin
opens a gap in the spectrum. The study for motions of a
holes in an antiferromagnetic background has been an im
tant topic in the study of the high-temperature supercond
tivity for long time. To gain some intuition on the behavio
of holes doped into an antiferromagnet, one always st
with the study of just one hole. The physics of a hole aris
from a competition between the superexchange energy
near the hole and its kinetic energy. The effects of a so-ca
string linear potential strongly influence the physics of ho
in antiferromagnets. For the particular case of one hole in
antiferromagnet, an analytical approach have been develo
that gives results in good agreement with the exact diago
ization predictions. Unfortunately, an extension of this a
proach to a finite density of holes is difficult. We have o
tained a general expression for the dispersion relation
holons. Its total bandwidthW provides information about the
renormalization effects caused by the spin waves that
created and absorbed while the hole propagates. The b
width seems proportional toJ/t. This result is in good agree
ment with other calculations and numerical simulations fo
hole in antiferromagnets. The hole dispersion curve is
agreement with numerical ones using a Green’s-funct
Monte Carlo method and the Born approximation. An inte
esting feature is the degeneracy between momentumk

-
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5(p/2,p/2) andk5(0,p), ~p,0!. Analyzed from the point
of view of the Hubbard model, this is not surprising, since
the noninteracting limit both momenta belong to the Fe
surface, thus at least at weak coupling, only a tiny splitting
energy is expected. However, the Born approximation
numerical simulation using a Green’s-function Monte Ca
method show a small difference in energy betweenk
5(p/2,p/2) and k5(0,p), ~p,0!. According to Dagotto,
Nazarenko, and Boninsegni,40 it is a small fraction of the
difference forming the basis for a possible explanation of
behavior of the Hall coefficient with temperature in the hig
temperature superconductors.

Experiments show that the disappearance of Ne´el order
coincides with a dramatic change in the two-dimensio
transport properties. Localization effects are still apparen
samples with intermediate doping at low temperature. H
ever, for high temperature the samples in this concentra
regime exhibit electronic properties closely akin to t
normal-state properties of the high-temperature super
ductors. Therefore, it is of clearly great interest to investig
the evolving process of the magnetic properties with incre
ing dopant density. At zero temperature and in the low d
ing case, we got an expression of the sublattice magne
tion, which is seriously dependent on the dopant den
explicitly. This shows that the sublattice magnetization
reduced rapidly with increasing doping concentration. It is
agreement with neutron-scattering experiments in h
temperature cuprate materials.

For low temperatures, we arrived at

^S3&5^S3&02
)z~2!

6p2~12^ f †f &! S kT

J D 2

12.02S t

JD 2 ^ f †f &
~12^ f †f &!

1

eb~4t2^ f †f &/J!11
. ~47!

The result gives a reasonable explanation for a strange
ture of the high-temperature superconductors: the temp
i
n
d
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e
-

l
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n-
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s-
-
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ty
s
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a-
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ture dependence of the sublattice magnetization for the h
doped samples evolves continuously with dopa
concentration, the sublattice magnetization curve first flatt
and ultimately becomes reentrant at low temperatures. So
times the dopings do not destroy but enhance the half-fil
ground state at low temperatures. It is a nonperturbative
havior of thet-J model, which cannot be detected by an
perturbative method.

The only phase transition for the undoped parent co
pounds is an antiferromagnetic-paramagnetic one, which
curred at Ne´el temperatureTN0 . However, a phase diagram
of the high-temperature superconductors shows the pres
of a antiferromagnetic-metallic phase transition at Ne´el tem-
peratureTN , which is dependent on the dopant density. T
influence of the dopant on the Ne´el temperature was inves
tigated extensively by neutron-scattering and muon-s
resonance. The Ne´el temperature is heavily suppressed
doping in any sample. An expression for the sublattice m
netization near the Ne´el temperature was obtained. Th
physical constraint of quantitŷS3& being a real value, de-
duces an equation satisfied by the Ne´el temperatureTN . The
solution of this equation gives an expression of the N´el
temperature, which is a function of dopant density,

kTN5
Jz~12^ f †f &!

4C9
2F ~3t2z^ f †f &!2

Jz G1/3

.

Above the transit temperature region (T.TN), ^S3& has no
definite value. Unlike the antiferromagnetic case, it is n
permissible to arrive at the paramagnetic phase, where^S3&
50. This fact is in agreement with the phase diagram of
realistic high-temperature superconductors, where above
antiferromagnetic phase is the metallic, but not the param
netic phase.
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