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Magnetic properties of thet-J model in two- and three-dimensional lattices
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Magnetic properties of theJ model in two- and three-dimensional lattices are investigated by a systematic
method. The quasiparticle picture, and in particular, dispersion relations of holons and renormalized spinons
are presented explicitly. Results are compared with that of numerical simulations and they are in qualitative
agreement. The expression of low-temperature magnetization gives a reasonable explanation for the strange
phenomena of doping enhancement of the half-filled antiferromagnetic ground state at low temperatures, which
was discovered years ago in neutron-scattering experiments. Features at the phase transition region predict
antiferromagnetic-metallic transition and give an expression for the doping-dependsrieMperature.
[S0163-18298)06105-0

I. INTRODUCTION features of the electronic behavior of the new materials.
While band-structure calculations succeed in predicting
More than ten years after the discovery of high-some features of this unusual electronic stliejs clear that
temperature superconductivitihe nature of the normal state electron correlations play an important role in determining
of cuprate materials remains an intriguing and controversiathe physical properties of these compounds. As a manifesta-
issue. The dc resistivity,, of the hole-doped cuprates is tion of these correlations, magnetic fluctuations have now
linear with temperature when the dopant density is optfmal.been detected in neutron-scattering experintérds high-
The Hall coefficienRy at constant temperature changes signtemperature superconductors. The magnetism in the undoped
as the hole density is increased away from the insulator paparent compounds of both families is now quite well under-
ent compound.Several theories have been proposed to destood. The system of interacting localized*Cispins is well
scribe them. Unfortunately, most of the available experimendescribed by the two-dimensional Heisenberg Hamiltoffan,
tal data are not accurate enough to convincingly confirm oand a small coupling between the Cufayers leads to the
rule out many of the theories. It is possible that theories thaformation of a three-dimensional ‘Kleordered state. It is
combine the pairing ideas with the presence of strong antitherefore clearly of great interest to investigate in detail the
ferromagnetic correlations may properly describe the higherossover from the rather conventional local moment system
temperature superconductdrS. The interchange of mag- at zero doping to the electronic state that forms the basis for
nons may produce the attractive force needed to pair thhigh-temperature superconductivity.
charge carrieré® Some other theorists strongly believe that  In this paper, we discuss magnetic properties of the high-
the BCS theorycannot work in the high-temperature super-temperature superconductors as the dopant density is in-
conductors. Due to the nature of the phonon-mediatedreased away from the insulator parent compound in a whole
electron-electron interaction in BCS theory, there are uppetemperature range by making use of the quantum field
bounds on the critical temperatures much lower than thostheory. The quasiparticle picture, and in particular, disper-
achieved with the cuprate compounds. The lack of a signifision relations for holons and renormalized spinons are pre-
cant isotope effect with substitution of the oxygen sitessented and discussed in detail. Results are compared with
seems to rule out the possibility that the phonon Debye frethat of numerical simulations and they are in qualitative
guency is the characteristic energy scale entering in the furagreement. The expression of low-temperature magnetiza-
damental equations of the high-temperature superconductition gives a reasonable explanation for the strange phenom-
ity. Instead, scenarios in which the elementary excitations irena of doping enhancement of the half-filled antiferromag-
the cuprates are spinoitgero charge, spin-1)2and holons netic ground state of the high-temperature superconductors at
(chargee, spin O have been proposéf Andersont! argued low temperatures, which was discovered years ago in
that the appropriate model for the high-temperature supemeutron-scattering experimerits.Features at the phase-
conductivity is the single-band Hubbard mddein the transition region predict an antiferromagnetic-metallic tran-
strong on-site Coulomb repulsion limit. Standard strong-sition and an expression for the doping-dependeral kam-
coupling perturbation treatment of the single-band Hubbargerature is given.
Hamiltonian produces the effectiveJ model*®!* The t-J The paper is organized as follows. In Sec. Il, we set up a
Hamiltonian is an interesting model on its own. This modelGreen’s-function formalism of the-J model within the
can be obtained in the strong-coupling limit from a moreframework of supergroup theory in two- and three-
realistic model that takes into account the more detailed ordimensional lattices. The quasiparticle picture of the high-
bital structure of the Cu@cell even when the holes created temperature superconductors, and in particular, dispersion
by doping sit primarily on the oxygen sité3The Hubbard relations for holons and renormalized spinons are discussed
model and theé-J model are believed to represent the grossin Sec. lll. Section IV is devoted to investigating magnetiza-
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tion at zero temperature and finite dopant density. At lowhole excitations, respectively. This is given by the general
temperatures, the expression of sublattice magnetizatioHolstein-Primakoff transformatiof?.

gives a possible explanation for the doping enhancement of To connect the Green’s functions of supergroup genera-
the antiferromagnetic ground state of the high-temperaturéors with sublattice magnetization, we notice the Casimir op-
superconductors at low temperatures, which was discoveregtator of the supergroug (2/1). This is the only supersym-

in neutron-scattering experiments years ago. The magnetigetric invariant quantity of the formalism. The Casimir

properties of the cuprate materials at low temperatures arperatorC of the supergroup) (2/1) is as follows:
discussed in Sec. V. In Sec. VI, features of thé model

near phase-transition region are investigated and compared

with the phase diagram of the realistic high-temperature su-

perconductors. Some concluding remarks are presented 'm:xjﬁx]ﬁuijlx]_HJrxjiijTi+lelxjqu(xJQijTO_ijOx?T

Sec. VII.

+ X0 X0 x [0 0Ly — x00x 00 (4)

Il. FORMALISM o b
There is a great deal of similarity between the quantum, . . . .

field theory and the theories based on statistical mechanics t's's too complicated to dlscus_s the aboye Casimir operator

far as the many-body aspect is concerned. Because of t rectly. In fact, here we only interested in th_e fundamental

lack of a systematic method there was little advancement diePresentation of the supergrotf(2/1). In this case, we

the many-body theory until the 1950’s. The situation hashave identities

changed greatly since then, the quantum field theory pro-

vides a very powerful and unified way of attacking the

many-body problem. It is well known that the Green'’s func- X004 1T 4 xll=1

tions play the most important part in the field-theoretic treat- J ) ! '

ment of the many-body problem. The Green’s functions en-

joy popularity because they yield, in a direct way, the most

Jimypf))rtt'zmt phxg/sical properti):ag of a system, havir>1/g a simple XjToxjerijomeEl_X?O_ ®)

physical interpretation, and can be calculated in a systematic

way. In the 1960’s, a successful Green’s-function approach o . ) )

for the ferromagnetis® and antiferromagnetisthwas de- Thus, a simplified form of the Casimir operatdis obtained,

veloped. Here we would like to set up the Green’s-function

formalism of thet-J model within the framework of the

supergroup theory. To this end, first of all, we rewrite the

Hamiltonian into an explicit supersymmetric form. The fa-

miliar form of thet-J model is

C=2X/ X+ X0+ (X T =X/, (6)

And then the magnetizatio8® can be written in terms of
1 local Hubbard operators
H=—t> > (cfack0+cﬁacj(,)+.]2 (S]S(— 7 5n-nk)’
(k) "o (k) !
()

where the notation is standard. 53:9_ E
The Hilbert space of the-J model is spanned bya;) 2 2

{1 (=¢/10)), [1)(=cf|0)), [0;(=[0)))}. With the

local statega;), one can define the local Hubbard operators o . ]

X3b=|a,)(b;|. The operator?® are generators of the super- Therefore, after obtaining the correlation functiony ' X/*),

that the correlation function can be calculated effectively by

using the analytical properties of the double times Green’s
ac ybdy _ yadebc bc cad

[XE6XPG = XL XP6%E. 2) function ((X/*(7):X{(7"))). Thus, to calculate the magne-
Thet-J Hamiltonian in terms of the local Hubbard operatorstization it is transformed as to get the Green’s function

XPO—X}Tx]* ™

X2 is of the form (X[ H(7): Xt (7))). In this paper, we calculate the Green's
function by solving equations of motion of the Green’s func-
tion.

H=-t> >, (xj‘70x80+ xgoxjog)+ i > xJ.W’x‘kf"T We consider a simple lattice. To make the problem trac-
(k) o 2.0 0.0 table, we divide the lattice into A” and “ B” sublattices.
J For the bipartite latticej; andj,+ é are on different sublat-
-3 > XX (3)  tice and consequently have two different Green’s functions.
(k) Using the “Tyablikov” decoupling procedur, from the

It is convenient to present the generatmfé’ in terms of a  Heisenberg equations, one gets the equations of motion in
boson and a fermion operator, which denotes magnon anithe Green’s functions
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d
g (O X (7)) = 87— ) 2(%) 81, = 12 OGN o 1)K () +HOGH DX L) X (7))

TS 2 L A X (NG (7)) ®)
and
P <<X11+ in(T )>>__t2 [<<X onll+5+51( 7); in(T )>>+<<le+5(T)XT +5+61(T) X 7',)>>]
—J<s°’>2 X L g, (DX (PO (XL A XE (7)) )

To make the set of coupled equations of motion in the Green'’s function self-contained, we have to add the following ones:

d (X 2DXPL o)X (7)) = =t (05X (7)) = (O X (7N (10

|—<<x HDX[2 (DX (7)) ==t UK (X (7)) = (XL o7 (7)))] (1D

and

d
L (G2 AR s (X)) = - t<><°lxl°>2 XL A (T = (X L (DXL (O], (12

1171

d
L (OCL A DX, 55 (DX ()) = =t XIOLUXT L DX (TN = (X e (DX (FON]. (13

Translational invariance dictates consideration of the spatial Fourier transforms

2 o
ThoyelTyy—= — k-(j1—kq)
<<X]1 ’Xk1>>_ N ; gk(E)el S )

(X! Y Xi >>:§§k: f(E)elk Uit ok, (14)

where ((X,-Tll;XﬁD) and <(XjTli+5;XH>) are the Fourer transforms of the Green’s functic(ms(jTli(T);xﬂ(T')» and
(X} A7 Xil (7)), respectively.
Equations(8)—(13) then imply

(E2—3z<s3>E—tzz<x?17x{1°+ x?lixjif»gk(E)—(J<s3>E—t2<xf’lTx;f+ xf’llxjif>)z«y(k)fk(E):2(33)E, (15)
(E2+Jz<s3>E—t2z<x$1ijTlo+xﬁllxjil%)fk(E) —(—J<s3>E+t2<xj°1ijT1°+ xf’lixjil"))z«y(k)gk(E):o (16)
or

2(S}E(E2+JZ(S*)E—2t%%(17f))

9(B) = T [ty + X ) 2221 — y2(K) [E2+ At 22— 2 (k) (F )2 17
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where we have used the notatigk) =1/z3 £'%%, z is the

number of nearest neighbors. Now, we can say that a sys-

tematic Green’s-function formalism of thteJ model is al-

ready set up. Magnetic properties of the high-temperature E,
6

superconductors can be discussed straightforwardly using the 0
method. However, before investigating of the magnetic prop- ’
erties, we first try to gain some insights of the quasiparticle 0.4
picture of thet-J model in the following section. 0.2
O &
I1l. QUASIPARTICLE PICTURE

It is believed that the physics of the half-filled limit is 2 R
mostly understood. The situation, where carriers are added,
is more challenging and interesting. The study for a few

holes in an antiferromagnetic background is an important r|G. 1. Spinon dispersion surface plotted in the Brillouin zone,

topic in the study of the high-temperature superconductivityfor a 2D square lattice with lattice parametes 1, for the half-
One of the most controversial issues in the context idiling case, fort=1, J=0.3.

whether a hole injected in the undoped ground state behaves

like a quasiparticle. Based on results obtained in the one- As the dopant density is increased away from the insula-
dimensional Hubbard model, Andergorproposed a sce- tor parent compound, the magnetic properties of the high-
nario where the spinons heavily address the holes, increasingmperature superconductors are less understood, though
substantially the mass; this renormalization is so strong thathey are more interesting than the half-filling limit. Several
the wave-function renormalization at the Fermi surface vantheoretical works have studied the degree of suppression of
ishes. However, this is a very particular situation caused byntiferromagnetism by addition of holes to thd model or

370

the dimensionality of the problem. Hubbard model at half-filing. Dagottet al?® calculated the
To discuss the quasiparticle picture, we rewgigE) in dynamical spin structure functio8(Q,w) [Q=(m,m)] for
the following form: the t-J model on a 4«4 cluster atJ/t=0.4, and several
dopings. Their results show a sharp peak at low frequencies
2(S*)E(E?+J(S’)ZE—2t%7(ff)) and doping corresponding to the spin-wave excitation which,

9B = ETE)E-E)E+E)E-E) ' 1®

at half-filling and in the bulk limit, becomes massless. The

. . ) ] finite size of the cluster, plus the effect of doping, opens a

where theEy dispersion relation of holongenormalized  gap in the spectrum corresponding to this momentum. For

spinons, is of the form 5=0.25, a considerable amount of spectral weight is trans-

L ferred to large energies. For the quarter-filled system, the

spin-wave peak has virtually disappeared. Here, by making

En(k)=— ‘7 \/Sz(k)_\/84(k)_16t422(<m>)2(1_72(k)) use of the Green's-function method, we got a reasonable

2 general expression for the dispersion relation of the renor-

malized spinons. From the dispersion relation, we can obtain

1 \/ 5 n TR YIPTIR: > the same conclusion with these numerical simulations. It

Es(k)= F s2(K)+ et (k) — 16*z ((FHEN A= »(k)). should be noticed that the dispersion relation for the renor-
2 malized spinons, in the case of low doping, is of the form

(19
Heres(k)E \/J2<53>222(1_ ,y2(k))+4t22<fo> E= \/J2<§’>222(l_ ’yz)+4t22<fo>. (21)
And then, we can writg,(E) as At the exact half-filling case, the correct dispersion relation
) 5 2o et (masslessfor the spinons is reduced. And it is the finite
a1 B X(SHzE - 2t°(f ) doping, which generates a nonzero effective mass for the
9(E)=(S") Eﬁ—Ei E—E;, spinons.
Evolution of the renormalized spinon’s dispersion relation
E2— J(S%)zE,— 2t%z(f'f) with rising doping concentratior{ {'f)) can be viewed from

+ E+E, Figs. 1-3. Figure 1 shows a linear dispersion relation for
massless spinons at low frequencies, this corresponding to

s 1 E2+ J(S%)zE,— 2t22(f1f) the half-filling case. From Fig. 2, we can see that an effective
+HS) EZ-E2 E-E mass of the renormalized spinons is generated by finite dop-

ing. And Fig. 3 presents a more general picture of the dis-
persion relation in the two-dimensional lattice.
: (20) The study for motions of a few holes in an antiferromag-
netic background were carried out mainly using numerical
It is within our expectation that there are four poles of themethods, with the help of some analytical techniques. To
ok(E). The first two,E*=E,,, correspond to the quasihole gain some intuition on the behavior of holes doped into an
excitations, and the other two poleE*=E., denote the antiferromagnet, one always starts with the study of just one
renormalized spinons. hole. The physics of a hole arises from a competition be-

E2— J(S%)zE,— 2t%2(f 1)
* E+E,
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— FIG. 4. Bandwidthw of thet-J model as a function od/t, for
370 t=1, for dopant densityf'f)=1/1600.

FIG. 2. Spinon dispersion surface plotted in the Brillouin zone,the normal state is assumed to be formed by a gas with
for a 2D square lattice with lattice parameger 1, for doping con-  noninteracting'spin-wave renormalizecholes, then a lot of
centration (f'f)=)0.0001, fort=1, J=0.3. observables can be calculated. In addition, the spdcitle-

pendence of the energy provides information about anisotro-

tween the superexchange energy lost near the hole and #¥€S in the system. In Fig. 4, the bandwidi, which is
kinetic energy. It is reasonable to expect that the antiferrodefined as the difference between the energy of the state with

magnetic order parameter will reduce its magnitude near thE'e minimum energy and of the state with highest energy, is
hole, increasing the mobility of the carrier inside such a spirPlotted as a function af/t. We see that the bandwidth seems
bag. The effects of a so-called string linear potential stronglyproportional toJ/t. This result is in good agreement with
influence the physics of holes in antiferromagr’fétgor the other Calculatior?é_szand numerical Simulati0ﬁ§f0r a hole
particular case of one hole in antiferromagnet, analytical apin antiferromagnets. In Fig. 5, we present a hole dispersion
proaches have been developed that give results in godelrve plotted along the directioRMXTI' in the Brillouin
agreement with exact diagonalization predictions. Assumingone. This result is also in agreement with numerical ones
that the weight beyond the first pole was incoherent andsing a Green’s function Monte Carlo method and the Born
using the slave-boson or general Holstein-Primakoff trans@pproximatiori* (see Fig. 13 in Ref. 34 An interesting fea-
formation and the B expansion, at the dominant pole ap- ture of Fig. 5 is the degeneracy between momentim
proximation, the single-particle Green'’s function of one hole= (7/2,m/2) andk=(0,7),(7,0). Analyzed from the point
was studied®2°The self-consistent Born approximation to Of view of the Hubbard model, this is not surprising, since in
this reformulated problem was also studiedhis is equiva-  the noninteracting limit both momenta belong to the Fermi
lent to the rainbow approximation for the holon propagator,surface, thus at least at weak coupling, only a tiny splitting in
where the spinon lines are noncrossing. A remarkable agre@nergy is expected. However, the Born approximation and
ment with exact diagonalization results was found for smalinumerical simulation using a Green's-function Monte Carlo
J/t. Unfortunately, an extension of this approach to a finitemethod show a small difference in energy between
density of holes is difficult. =(m/2,m/2) and k=(0,m),(w,0). According to Dagotto

By making use of the quantum field theory, we now ob-€t al, it is the small fraction of difference forming the basis
tain a general expression for the dispersion relation of théor a possible explanation of the behavior of the Hall coeffi-
holons. Its total bandwidtkV provides information about the cient with temperature in the high-temperature superconduct-
renormalization effects caused by the spin waves that ar@fS:

created and absorbed while the hole propagates. Moreover, if TO gain more information, in Figs. 6 and 7, we present a
three-dimensional surface plot and a contour plot of the

E,
0
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-0.005
-0.0075
-0.01
~0.0125
-0.015 \\ .
-0.0175 \. /N

-0.02 - — -

r M X r

- k
3 0

FIG. 5. Hole dispersion curve plotted along the direction
FIG. 3. Spinon dispersion surface plotted in the Brillouin zone,I'(0,0)M (7r,0)X( 7, 7)I'(0,0) in the Brillouin zone, for a 2D
for a 2D square lattice with lattice parameter 1, for doping con-  square lattice with lattice paramei@r 1, for doping concentration
centration (f'f)=)0.003, fort=1, J=0.3. ((f')=)0.001, fort=1, J=0.3.
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30

FIG. 6. Hole dispersion surface plotted in the Brillouin zone, for 30
a 2D square lattice with lattice parameget 1, for doping concen-

. T FIG. 8. Hole dispersion surface plotted in the Brillouin zone, for
tration ((f'f)=)0.001, fort=1, J=0.3.

a 2D square lattice with lattice parameger: 1, for doping concen-

ratlon f7£)=)0.01, fort=1, J=0.3.
hole’s dispersion relation. Comparison of Figs. 8 and 9 w (=)

Figs. 6 and 7 gives insight into the evolution process of the

hole’s dispersion relation with rising doping concentration.concentration ok=0.015, and the material becomes super-
These results show that the rapid reduction of antiferromageonducting at about=0.05. The disappearance of &ler-
netism with doping can be mimicked by the quasiparticleder coincides with a dramatic change in the two-dimensional

picture. transport properties. The charge carriers in samples that ex-
hibit Neel order are strongly localized, and the electronic
IV. MAGNETIZATION AT ZERO TEMPERATURE conduction is closely similar to that of conventional lightly

doped semiconductors. Localization effects are still apparent

It is believed that undoped cuprate materials are describefdr samples with intermediate doping levels at low tempera-
by the two-dimensional Heisenberg lattice. It is well estab-ture. However, folT=100 K the samples in this concentra-
lished from numerical workquantum Monte Carlo, Green’s- tion regime exhibit electronic properties closely akin to the
function Monte Carlo, series analysiand different varia- normal-state properties of the high-temperature supercon-
tional methods that the ground state of the two-dimensionadiuctors. Thus, up to the transition regime is an ideal testing
S=1/2 Heisenberg antiferromagnet does indeed have longyround for the role of magnetic fluctuations in the normal
range Nel order. All of its ground-state properties as well asstate of the cuprate material. So that investigation of the
long-wavelength excitations are well described by straightevolving process of magnetic properties with increasing dop-
forward spin-wave theory. It is reasonable to expect that théng is clearly of great interest. We start our study of the
antiferromagnet order parameter will reduce its magnitudenagnetic properties of thieJ model with finite dopant den-
near a hole. In fact, experiments show ttet an examplen  sity from the sublattice magnetization at zero temperature.
La,_,Sr,CuQ, magnetic long-range order disappears at a Sr From Eq.(20), we have

k, ky
3 3 \ \ i \w\\\\‘egc\\(\\‘“«&semtyo‘y\‘\\\s\{\\\\\
\ \m&w&\& \ \ \ \\\ QN \\\W\\\\\\\\\\\\\\ RN
\\ \\\\\\\ \ \ \ \\\\ N
\\\ \\&\\x\mA — \ \\\\\\\\\ \\\\ NI
. \ \ NN \
2.5 : 2.5 \ \

\\\\\\\ \ \
\ \\

S\

NN \\

\\\\\\\\\\\\\
\ \\ 3

ARy NN
NN N \\\ N \\\ \ \
0.5 b e 0.5 \\\\\ \§\§\\\\‘\\‘\\\\\ A —
A \i\\ AN \\
m\u}\m\\\\\ \\\\\\\\ \\\\\ \\\\\v Vi
0 A \\\\ ol W RN \\\\\\\\\\\\ \n\ m H\\ \\ }
k., k.
0 0.5 1 1.5 2 2.5 3 0 0.5 1 2 . 3

FIG. 7. Hole dispersion contours plotted in the Brillouin zone, FIG. 9. Hole dispersion contours plotted in the Brillouin zone,
for a 2D square lattice with lattice parameter 1, for doping con-  for a 2D square lattice with lattice parameter 1, for doping con-
centration (f'f)=)0.001, fort=1, J=0.3. centration (f'f)=)0.01, fort=1, J=0.3.
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1

2t22(f11)— J(S*)zE,— EZ  2t%z(fTf)+ J(S®)zE,—E2
E2-EZ -
S h

E—E, E+E,

2(S%) o
ThoylTyy= 227 7 ik-(j,—kq)
<<X11 ’Xk1>> N ; elk-(1—ky

—2t22(fT)+ ISP zEc+ B2 —2t%2(fTf)— J(S®)zEs+ EZ
+ +

E—Eq E+E, ' (22

From the analytical properties of the Green'’s functions, it follows that the correlation fur{@t@%}f) can be obtained from
the equation

s%) 1 = do
Lyt 5 e
XX =1 TN % EZ-E2 [j » €P9+1

+(2t%z(fTt)

(2t2z<f*f>—J<53>th—Eﬁ)<

+J°C dow
. ePe—1

+(—2t2%(fTf)— I(S®)zEs+ E2)

O)_Eh+i0+_ (1)_Eh_i0Jr

(—2t%2(f1f)+ I(S®)zEs+ E?)

+J(s® E2 !
(S)2B— B o+Ep+i0" w+E,—i0"

|

1
w+E+i0" w+ES—iO+)

1
X(w—ES+iO+_ w—E—i0"

2(S?) 1 [2t%z(fTf)— (S zE,—EZ  2t%z(fTf)+I(S®)zE,—E}
=N ¥ g PEnt 1 " e PEn 1
—2t%7(f1f)+ J(S®VZE,+ B2 —2t%2(fTf)— (S®)zE+ E2
+ efEn—1 + e BEs—1 52<53>QD, (23)
where
1 s 1 [22(fT)—)(SPzE,—EZ  2t%z(fTH)+ J(S®)zE,—EZ  —2t%z(fTf)+ I(S®)zEs+ E2
=N 4 ' Fr1 - e PEn 1 - FE1
—2t%2(f1f)— J(S®)zE,+ E2
+ < ZBE< )26 2. (24)
e Pes—1
|
From Eq.(7), we obtain 1 1 4t22(f*f> 1
dy=— 1+ .
1 TR 1-92(k) ~ IXSHZ1-y%(K)
(8%)=35 A=(FTH)—(XIXTH). (25 (29
And then, At exact half-filling, the function®, reduces as
1
() =5 A=(f'f)-2(S’)®. (26) 1 1
2 Po=y =l (30)
k —
Therefore, we can writéS®) formally as 4
< 1 (£11) , For the cubic latticé®
{ >_2(1+2c1>)' @7
, 2 1
In principle, all of the interested physical results can be ob- C"=3 > 1——2(k):1'516'
tained by solving the above equation. This is one of the most K Y
advantageous features of the Green’s-function approach as in
the case of magnetisf1? At zero temperature, we get
At zero temperature, the functich is of the form
1 EqtE, E2+EZ  at?z(f'f) ®,=0.078+0.505 ! (t)z(fo) (31)
_ 3y =S s 0=0. PUT 2 | 5 .
=— - + S J
Po=g ; RASRL = = = = S S (s
(28)

From Egs.(27) and (31), we obtain the average magnetiza-
In the case of low doping concentration, tion (for low dopant densityper lattice as
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M tization is reduced rapidly with increasing dopant density. It
is in good agreement with neutron-scattering experiments in
high-temperature cuprate materials.

e g p p

~ V. MAGNETIZATION AT LOW TEMPERATURES

0.35 S It is within our expectations that the temperature depen-
[N dence of the sublattice magnetization for undoped high-
N X temperature cuprate materials is in quantitative agreement
0.0010.0020.0030.00\4\ with a spin-wave analysis of a Heisenberg Hamiltonian.

Years ago, in neutron-scattering experiments foyQLed,, s
9

and YBaCu;O¢ ., Keimeret al.* found that the tempera-
ture dependence of the sublattice magnetization for the hole-
FIG. 10. Sublattice magnetizatiovi (=(S%)) as a function of ~doped samples evolves continuously with dopant concentra-
doping concentration(=(f'f)), for t=1,J=0.3. tion, the sublattice magnetization curve first flattens and
ultimately becomes reentrant at low temperatures. A possible
explanation for this feature may be that the localized holes

<33>0:0_21%1_<f1‘f> frustrate the superexchange interaction between the Cu spins
and hence lead to a rapid suppression of thelXempera-
Y ture Ty. However, by contrast, such behavior is observed
(T2 - t neither in the data for the diluted samples nor in equivalent
* \/(1 (F1) 18'68<J (f f>J' (32 data for the Pr_,Ce CuQ, system. Thus, frustration is pre-

. . L sumably not a major factor in the destruction of long-range
Expanding the expression of magnetization in terms of the,iterromagnetism in the compounds doped with excess
doping concentration(¢'f)), we find that the first term re-  gjectrons, It is clearly important to find other explanations
covers the result for the antiferromagneti$and the sec-  for this strange behavior of high-temperature superconduct-
ond part comes from the linear effect of the doping on theyrs at low temperatures. In the follows, we calculate the sub-
antiferromagnetic long-range order. It is the third term that iSattice magnetization at low temperatures using thé
remarkable, which is very sensitive to the doping. Althoughmaodel.
in the low doping case, this term cannot be ignored at all. In For low temperatures, the summation over the momentum
Fig. 10, we give a plot of the doping-dependent magnetizawave space involved in the calculation & in the above
tion at zero temperature. It shows that the sublattice magnesection can be replaced by the integration

1
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—2t%2(fTf) + ISP ZE+ EZ  —2t%2(f1f)— J(S®)zE,+ E2
h e FE—1 * e FE—1

(—2t%z(fTf)+ J(S®)zE,+ E?)

©
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1
+ — 3 —BnE )
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2 J(S%zE,
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In the case of small doping, we have

O=0qy+ % nzl zk‘, ﬁ e~ AnXS*zZVIT=¥(k) _ % ; = ;(k) i;jég;z eﬁ(2t22<f1f>1”<s3>z)+ . (34
Therefore, we have
D=0+ ﬂg—(i) (I(—Ta)z—o.505i2 (E)me) — ! 3 , (35)
2472 | J(S®) (s%2 13 BTS04
and, so that
2 2 T
(8)=(0- W%i‘)*f_» (kTT) 2 2(%) <1<—f<ff*>f>> eﬂ<4t2<f}f>w>+1' 39
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M? /M VI. ANTIFERROMAGNETIC-METALLIC PHASE
1 TRANSITION AND NE EL TEMPERATURES

0.9999 Undoped cuprate materials are described by the two-
dimensional Heisenberg Hamiltonian, and a small coupling

0.9998 between the Cuflayers leads to the formation of a three-
dimensional Nel-ordered state. The only phase transition for

0.9997 . i .
the undoped parent compounds is the antiferromagnetic-

0.9996¢ paramagnetic one, which occurred ateNeemperaturd .
Several analytical approachégeneralized Schwinger-boson

0.9995 mean-field theory® spin-wave theor}?) were developed to

T/J

0.002 0.004 0.006 0.008 0.01 discuss this phase transition and the dependenceeiftbia-
perature on the anisotropy parameter. However, the phase
FIG. 11. Square of the sublattice magnetizati/Mg as a  diagram of the high-temperature superconductors shows the
functl_on of the temper:::ttur'é/.], for different doping concentrations presence of an antiferromagnetic-metallic phase transition at
gsgggng from below("f)=0.0001, 0.0002, 0.0005, 0.001, 0.002, Nge| temperatureT,, which is seriously dependent on the
R dopant density. The influence of dopant on theNempera-

The doping effect of the temperature-dependent terms in thitire was investigated extensively by neutron-scattering and
above equation is really surprising to compare with theMUOn-spin resonance experiments. TheeNemperature is
theory of the magnon-hole interactidhwhich is a natural heavily suppressed by doping in any sample. The disappear-
generalization of the Dyson-Oguchi theory for the @nce of Nel order coincides with a dramatic change in the
antiferromagnetism’ Sometimes the dopings do not destroy two-dimensional transport properties. The charge carriers in
but enhance the half-filled ground state at low temperaturesamples that exhibit Ng order are strongly localized, and

It is a nonperturbative behavior of thel model, which can- the electronic conduction is closely similar to that of conven-
not be detected by any perturbative method. Indeed, the rdional lightly doped semiconductors. Localization effects are
sult is in good agreement with the neutron-scatteringapparent at low temperature. However, for high temperatures
experiments? the order-parameter curves of the sublatticethe samples exhibit electronic properties closely akin to the
magnetization with increasing doping first flattens and ulti-normal-state properties. Thus, to gain insight into the
mately exhibits reentrant behavior at low temperatures. Figantiferromagnetic-metallic phase transition and the doping
ure 11 shows the magnetization at low temperatures for difeffect of Neel temperature is clearly interested.

ferent doping concentrations from 0.0001 to 0.003. Of To evaluate the Nal temperature, in the low doping case,
course, in the case of zero doping, we recover all of thave expand in Laurant series the functi@nfor very small
results for the antiferromagnetism. (S%. And then

1 1 1 BE, 1 BE
cbzﬁg Eg_Eﬁ[(thz(fo)—J<S3>th—Eﬁ)(z—T +(2t22(t 1) + (S} 2B, — E?) >+ B4h)+(—2tzz<fo>
1 BEs 1 BE,
+J(S*)zE+ED) BE 2T 12 +(—2t2z(fF) - J(S3>ZES+E)( BE 3 ) (37)
2 1 E2+E?2 B
=N§k: ﬁ{J<SS>ZESB ( 2t22<fo>+ +J<§’>Z(3Eh+E2) } (38
A straightforward calculation allows us to write as
B 1 KT [1 2t2z(f'f)
=2 T Wz |27 7% 2 2 17 | S g (39
Equations(27) and (39) imply
1-(fTf)y  1—(fTf) [ C"kT 2C"t%z(f'f) JI(S®)z|~
3\ —
(&)= 21 20)" 4 [J(Sg>z+ A2 T 1kT (40
or
Jz —(fTf) C"kT 2C"t%2(f7f)
Tt (S0)°-3 (T 3Jz)< Nt —gz 0 “D

Then, we obtain an expression for the sublattice magnetization near tiaexeperature
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24C"t?(ff) 24C"%(f7f) |2 [1-(fTfy _ 4cC” |
(8= Eﬂé[ g KT (“TF?T__kT)_4( Jz kT_JﬁzkhQ) e
1 [ 24act?z(f'f) 24C"t2(fTf) \Z  [1—(fTf) aCc’ 3

In the case of zero doping {'f)=0), the above equation that, at abou{f'f)=0.01, the Nel temperature is already
reduces to the familiar form of the sublattice magnetizatiorreduced to zero. This is in agreement with experiments on

for the antiferromagnetism, high-temperature superconductors.
3 T T
<93>— = 1-=—], (43 VIl. CONCLUDING REMARKS
C Tno
wherek Tyo=JZ/4C" is the I\feel temperature at half-filling. The magnetism in undoped high-temperature supercon-

ductors is now quite well understood. The system of inter-
acting localized Cti" spins is well described by the two-

dimensional Heisenberg Hamiltonian, and a small coupling
24C"t%2(£1f) 2 1—(f'f) ac’ 3 bptweep the CuDlayers leads to thp formation of a three-
R ) - ( 17 kT— 772 kT ) <0. dlmen§|onal Nel—_ordergd st:_;tte. It is therefore clearly of

(44) great interest to investigate in detail the crossover from the

) rather conventional local moment system at zero doping to

The following equation is satisfied by the &ldemperature the electronic state that forms the basis for high-temperature

The physical constraint of quantityS®) being a real
value, i.e.(S%)* =(S®), implies

Tn: superconductivity. Many theorists strongly argued that the
37 - 120 22 £H) 23 appropriate model for high-temperature supe_rconductivity is
(KTy) 43— 21— >) N)1/3+( Z(f'f)) —0. the single-band Hubbard model or its equivalence at the

4c” 4cC” strong-coupling limit, thet-J model. The Hubbard model
(45  and thet-J model are believed to represent the gross features

Then, we get an expression of théélieemperature, of the electronic behavior of the new materials.

In this paper, we discussed magnetic properties of the
Jz(1-(f7f)) [(3t°(f"f))?]* high-temperature superconductors from zero to intermediate

(46)  doping levels in a whole temperature range by making use of
the t-J model and quantum field theory. The quasiparticle
Above the transit temperature regiofi*Ty), (S has no  picture, and in particular, dispersion relations for holons and
definite value. Unlike the antiferromagnetism case, it is notrenormalized spinons were presented. Results show massless
permissible to arrive at the paramagnetic phase, wi@te  spin-wave excitations at half-filling. The effect of doping
=0. This fact is in agreement with the phase diagram of thepens a gap in the spectrum. The study for motions of a few
realistic high-temperature superconductors, where above tH®les in an antiferromagnetic background has been an impor-
antiferromagnetic phase is the metallic, but not the paramagdant topic in the study of the high-temperature superconduc-
netic phase. tivity for long time. To gain some intuition on the behavior
It is clear that the Nel temperature is heavily dependent of holes doped into an antiferromagnet, one always starts
on the doping concentratioff 'f). From Fig. 12, we know with the study of just one hole. The physics of a hole arises
from a competition between the superexchange energy lost

NTTTT4C Jz

Ty near the hole and its kinetic energy. The effects of a so-called
1 ' 1 string linear potential strongly influence the physics of holes
in antiferromagnets. For the particular case of one hole in an
0.8 antiferromagnet, an analytical approach have been developed
that gives results in good agreement with the exact diagonal-
0.6 ization predictions. Unfortunately, an extension of this ap-
\ proach to a finite density of holes is difficult. We have ob-
0.4 S tained a general expression for the dispersion relation of
holons. Its total bandwidtkV provides information about the
0.2 renormalization effects caused by the spin waves that are
created and absorbed while the hole propagates. The band-
0 ~ width seems proportional ti/t. This result is in good agree-

ment with other calculations and numerical simulations for a
hole in antiferromagnets. The hole dispersion curve is in
FIG. 12. Nel temperature as a function of doping concentra-agreement with numerical ones using a Green'’s-function
tions, for a 3D cubic lattice with lattice parameter1, for J=1, = Monte Carlo method and the Born approximation. An inter-
J/t=0.3. esting feature is the degeneracy between momenkum

T
0 0.0020.0040.0060.008 0.01 0.012
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=(m/2,7w/2) andk=(0,7), (,0). Analyzed from the point ture dependence of the sublattice magnetization for the hole-
of view of the Hubbard model, this is not surprising, since indoped samples evolves continuously with dopant
the noninteracting limit both momenta belong to the Fermiconcentration, the sublattice magnetization curve first flattens
surface, thus at least at weak coupling, only a tiny splitting inand ultimately becomes reentrant at low temperatures. Some-
energy is expected. However, the Born approximation andimes the dopings do not destroy but enhance the half-filled
numerical simulation using a Green’s-function Monte Carloground state at low temperatures. It is a nonperturbative be-
method show a small difference in energy betwden havior of thet-J model, which cannot be detected by any
=(m/2,m12) and k=(0,7), (m0). According to Dagotto, Pperturbative method.
Nazarenko, and Boninsedtfi,it is a small fraction of the The only phase transition for the undoped parent com-
difference forming the basis for a possible explanation of thePounds is an antiferromagnetic-paramagnetic one, which oc-
behavior of the Hall coefficient with temperature in the high-curred at Nel temperaturdy,. However, a phase diagram
temperature superconductors. of the high-temperature superconductors shows the presence
Experiments show that the disappearance oéINeder of a antiferromagnetic-metallic phase transition aeNem-
coincides with a dramatic change in the two-dimensionaperatureTy, which is dependent on the dopant density. The
transport properties. Localization effects are still apparent foinfluence of the dopant on the Bletemperature was inves-
samples with intermediate doping at low temperature. Howligated extensively by neutron-scattering and muon-spin
ever, for high temperature the samples in this concentratiofesonance. The N temperature is heavily suppressed by
regime exhibit electronic properties closely akin to thedoping in any sample. An expression for the sublattice mag-
normal-state properties of the high-temperature supercorpetization near the M# temperature was obtained. The
ductors. Therefore, it is of clearly great interest to investigatephysical constraint of quantityS®) being a real value, de-
the evolving process of the magnetic properties with increasduces an equation satisfied by theeNemperaturd'y . The
ing dopant density. At zero temperature and in the low dopsolution of this equation gives an expression of theelNe
ing case, we got an expression of the sublattice magnetizéemperature, which is a function of dopant density,
tion, which is seriously dependent on the dopant density 1 2 ete\r211/3
explicitly. This shows that the sublattice magnetization is kTN:‘]Z(l (1) | B={fT)) } _
reduced rapidly with increasing doping concentration. It is in 4c” Jz

agreement with neutron-s-cattering eXpeI’imentS in h|ghAbove the transit temperature regiom:éTN), <83> has no
temperature cuprate materials. definite value. Unlike the antiferromagnetic case, it is not

For low temperatures, we arrived at permissible to arrive at the paramagnetic phase, w®te
V3i(2) KT\ 2 =0. T_his fact is in agreement with the phase diagram of the
(S3)=(S%)y— e (_) realistic high-temperature superconductors, where above the
6 (1—(f'f)) | J antiferromagnetic phase is the metallic, but not the paramag-
t\2  (ff) 1 netic phase.
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