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Numerical evidence of an electronic localization transition in a disordered layer of metal atoms

Roger Haydock and Ronald L. Te
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1274
(Received 8 July 1997; revised manuscript received 18 August)1997

Recent observations of transitions in the nonlinear polarizability of submonolayers of metal atoms on
silicon, and between insulating and metallic behavior for electrons in silicon inversion layers, indicate the need
for further study of the electronic states in such systems. In this work, the projected density of states and
normalizations for individual states are used to characterize the localization of independent electrons in a
model for a layer of metal atoms randomly deposited at low density on a crystalline surface of silicon. We find
a localization transition, whose sharpness in energy is limited only by the sample size of over 80 000 sites for
a model of the Si(001)& 1 surface. This is consistent with previous analytic and numerical calculations, by
similar methods, of the localization properties of other models for electronic states in weakly disordered layers
and with the observed transition in the nonlinear polarizability of submonolayers of metal atoms on silicon.
[S0163-182698)02201-2

I. ELECTRONIC STATES AT DISORDERED INTERFACES field at the(001) interface betweep-type silicon and a layer
of silicon oxide. Urenet al!! found two distinct kinds of

The nature of electronic states at disordered interfaces islacalization, and Davies and Peppfeextended this work to
long-standing problem. In the 1970s it was thought that theshow evidence for a transition between exponential and
independent electronic spectrum of a disordered layer hapgower-law localization. Kravchenket al? saw evidence
mobility edges which separated energies where the statesmilar to that of Ref. 11 of two kinds of localization in
were exponentially localized from energies where the statelw-mobility devices and found a much more dramatic tran-
were plane-wave-like. Many theoretical and numerical atsition in high-mobility devices. While electron-electron in-
tempts were made to determine the location of these edgegractions clearly play an important role in the Kravchenko
for the Andersohand related models, but the mobility edges devices, as long as the electronic excitations close to the
were elusive. During the 1980s, many opinions changed tgermi level can be expanded in localized excitations, no mat-
the view that all states were exponentially localized and thaja; how complicated, the electronic Hamiltonian expanded in
the localization length varied smoothly with energy, becom-hese excitations is of the same form as the one used below.
ing very large at energies where the states were previously |, 5 different experimental approach Arakat, Kevan, and

thought to have been delocalized. Recent observations by 1,43 (AKR) deposited alkali-metal atoms on a2

_Kra\_/_chen_koet a_I. of an apparen_t metal-insulator trar_13|t|_on reconstructed $901) surface and measured the second har-
in silicon inversion layers has raised doubts about this VIBW, - Chic produced by an optical. in-olane electric field. The
A variety of theoretical and numerical approaches have P y P » NP ;

been applied to the behavior of electrons at disordered intelgdvantages O_f this approach are that the d_istribution of metal
faces. The scaling theory of Abrahanesal® persuaded atoms, t_he c_hsorde_r, can be observed directly and that an
many that the electronic states in such systems must all Hectric field is applied directly to the electrons rather than a
exponentially localized, and this has been supported by fiel@otential difference being applied between contacts to a
theoretic approachés (for a review see Lee and tenuous electron gas. The disadvantage of this approach is
Ramakrishn®d as well as the extensive numerical work of that the measurements are at optical frequencies rather than
McKinnon and Kramer; see Ref. 6 for a review. On the otherdc. The second harmonic showed a sharp threshold at about
hand, Haydock presented analytical arguments, and Godinl/6th of a monolayer for each of three different alkali metals.
and Haydock (GH) produced numerical evidence that there Although AKR suggested that this threshold is due to a
is a sharp transition between exponential and power-law lometal-insulator transition induced by electron-electron inter-
calized states in disordered two-dimensional systems. Star&ctions, we were intrigued to see if a localization transition
ing from high magnetic fields where individual Landau lev- could be excluded.
els are known to carry currents, AzBargued that there is a In the first of the following four sections, we present an
metal-insulator transition at zero field. In addition to theindependent particle model for the electrons of metal atoms
work on independent electrons, there have been efforts tdeposited on the 2 1 reconstructed surface @301) silicon.
take electron-electron interactions into account, and it ha$ection Ill contains a description of the calculations for dif-
been suggestéithat interactions can delocalize electrons inferent coverages, of normalizations for states at the Fermi
circumstances where independent electrons would be localevel, and of the projected densities of states at various at-
ized. oms. In the subsequent section the results of these calcula-
Most of the experimental information about electron lo-tion are compared with those obtained by GH using the
calization at interfaces has come from silicon inversion lay-Anderson model to simulate an inversion layer complete
ers, devices in which electrons are trapped by an electriwith contacts. In the last section we discuss the relation be-

0163-1829/98/5(1)/296(6)/$15.00 57 296 © 1998 The American Physical Society



57 NUMERICAL EVIDENCE OF AN ELECTRONC . .. 297

tween the results of these calculations and the metallizatioas matrices of dimension over 80 000 by 80 000, and matrix
of overlayers. elements of the Hamiltonian of less than £&, were ne-
glected.
Il. MODEL FOR METAL ATOMS ON Si (001) 2x1 IIl. LOCALIZATION OF THE STATES
Our model for the metallic electrons is similar to that of
Debney* with a basis of a singls orbital centered on each

metal atom. We assume that at low coverages only the mo
binding site in each &1 surface cell is occupied. We take

Normalizations and projected densities of states were cal-
culated for the model using the recursion methtdhe elec-
%onic Hamiltonian was made tridiagonal by constructing a

X ) . new basis starting with a single orbital, usually near the cen-
the energies of these orbitals to be independent of Wheth%r of the model lattice. From a tridiagonal matrix it is easy

Eearl]?y surface cellsl are occupied ;;ind a_llrcl)w the_ elelctrons ® generate eigenvectors and calculate normalization inte-
op from one metal atom to another with matrix elements, s o 1o construct the electronic Green function whose
decreasing exponentially with the distance between cells. | aginary part is the projected density of states

our calculations, metal atoms occupy each surface cell ran- Starting with an atomic orbital, say,, the trioiiagonal-

domly, independent of the occupation of any other cells. .__= : -
The bulk-terminated $901) surface has two dangling ![ﬁitlfencupr:’(()e(r:]iids by constructing Uz, U, .. Un.. USing

silicon bonds for each surface atom. For each surface silicon
atom, one of the dangling bonds dimerizes w_ith that_ of a Hu,=a,u,+b,sqUns+botuy_g, n=01,..., (2
neighboring atom to produce ax2l reconstruction which ) )
has two dangling bonds per surface cell. The remaining dan¥here an=(UnH|up), b, ;=[Huy—asu,—byu,-qf* and
gling bonds further hybridize and transfer electrons to prol-1=0. The new basis elements,u;,us,...,Uy,... consist
duce one band of doubly occupied surface states and orf linear combinations of the metal orbitals. The second el-
band of unoccupied surface states separated in energy Wnent of the new basis,l, is a linear combination of orbit-
about 1 eV. See Ref. 13 for further discussion of th@@l)  als with nonzero coupling tay, u, is a linear combination
surface. of orbitals coupled tai;, and so forth. In exact arithmetic,
The valences orbital of the metal adatom hybridizes most the new basis would be orthonormal, but in finite precision it
Strong|y with bands of surface states to produce a SingNG not. However, this loss of orthonormality during the com-
occupied orbital whose energy must consequently lie in th@utation does not affect the accuracy restfits.
gap between the occupied and unoccupied surface bands of An unnormalized eigenstate of the Hamiltonian with en-
the silicon. The energy of the orbital is determined by theergy E can then be expressed as a linear combination of the
chemical bond formed between the metal and silicon, andridiagonal basigu,}, i.e., #(E)~=NP,(E)|u,), where the
this in turn fixes the exponent with which the orbital decayscoefficients{P,(E)} form a set of polynomials irE, or-
with distance outside the cell in which it is centered. It is thisthogonal with respect to the projected density of statesifor
hybridized orbital of the isolated metal adatom which formsand satisfying the same recurrence relation as the basis:
our basis for the electronic states of the metal overlayer, and,,, 1P,. 1(E)=(E—a,)P,(E) —b,P,_1(E).
because the spatial decay of the orbital outside its central cell Since the metal atoms have one electron per orbital, the
is determined by the chemistry of the metal-silicon bond, we~ermi level of the adlayer must lie in the band of states
expect the different alkalis to behave similarly. derived from these orbitals. For a calculation which begins
In the electronic Hamiltonian for this model, the energieswith the orbitaluy, we approximate the Fermi level by re-
of each orbital are the same for the reasons described in thguiring that this orbital contain a single electron. Although
previous paragraph. Outside the central cell, each orbital dehis approximate Fermi level varies a little with the choice of
cays exponentially, and we take this to be independent afiy,*’ this ensures that the state at the Fermi level has a large
direction so that the matrix element of the Hamiltonian be-amplitude onuy and so is centered close tg.
tween metal orbitals in cellsand]j takes the Hakel form: From the expansion of the eigenstates in the tridiagonal
basis, we can relate the normalization of the eigenstate at the
Fermi level,s(E¢), to the sum of the squares of the orthogo-

’R? . .
Hij=(¢i|H|$,)<Eq| 1+ aR+ 3 )eaR, (1)  nal polynomialsP,(Ey),">*®i.e.,
N
2 2
whereEj, is the on-site energy of the equivalent orbitdfs, W(Ef)lNNzn: |Pn(E)[* )

=|ri—rj| is the separation between thia andjth orbitals,

and « describes the spatial extent of the orbital wave func-The numerical loss of orthogonality of the tridiagonal basis
tion. has a negligible effect on the normalizatithh.

For the calculations which follow, we took a two-  Since strongly localized states have a normalization that is
dimensional grid of sites with a 2:1 ratio of its primitive independent of the size of the system, while weakly localized
vectors corresponding to thex2lL reconstruction of the States have normalizations which scale with the size of the
Si(001) surface. The samples consisted of square regions @stem, we expect Eq3) to give (i) [¢(E)[5 ~N°, for
over 200 of the large primitive vectors by over 400 of thestrongly or exponentially localized states, i.e., where the
small primitive vectors, containing over 80 000 adsorptionslope of the normalization as a function of recursion level,
sites which were populated randomly for the different cov-N, goes to zero, andi) | #(E)|, ~ NP, for weakly localized
erages studied. The resulting Hamiltonians were representetiiates, wher@>0, a positive slope for the normalization as
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100 — ———————— work of Kramer and MacKinndhavoid the problem that
Adlayer Demsity: 1/8 —— averages of many properties of disordered systems do not
90T 1/10 - 1 converge with the number of realizations sampled; see fur-

ther Draeger and Bundé.

The critical coverage., at which the states at the Fermi
level become weakly localized, depends mainly gnthe
exponent with which the adatom orbitals decrease at large
60 |- . distances, although there could be weak dependence on the

: relationships between lattice parameters. Since the coverage
scales as an inverse area for a two-dimensional systerr and
scales as an inverse distance, we expect

80 -

70 1

pe~a?. 4

Square of the Normalization lw(Ef)[;

This is consistent with data compiled from our numerical
samples and plotted in Fig. 3. Note that the line correspond-
ing to a constant of proportionality of 0.12 in E@l) sepa-
rates the strongly localized and weakly localized states for all
10 20 30 40 50 60 70 80 90 100 values ofa.

Recursion Level/ N The functional relationship between the critical density
and the atomic parametgEq. (4)] can be used to extract a
value of @ from experiment. Using a value @f=1 in our
calculations gives a critical density of 1/9 for the metalliza-
. . o ... ftion transition (Fig. 1. From the second-harmonic
a function ofN. This serves as a criterion for distinguishing experimentd? the onset for the metallization, as indicated by

staltej_ W('jth <|j||f_|fere_r|1t d_egrees ]f.)f |oca_1||zat|on. dqf the dramatic increase in the in-plane second harmonic signal,
ndividual Hamiltonian conligurations were generated 105 51 nd 1/6 monolayefML ). Since there are two silicon

each of the different coveragés=1, 1/4, 1/5, 1/6, 1/7, 1/8 ; . -

= 1 2% 29, 0, L L0 atoms per unit cell (7.68 X 3.84 A), 1/6 ML is equivalent
179, 1/310’ 1/20, an? ﬁ/l()IOTgkmg a Iocahzeq atomic orgnal to a value ofp,=1/3 in our model. This gives a value of
hear the center of the lattice as our starting stag, the  _ 3 - 5 451 AL, The corresponding orbital radius of an

normalization of the eigenstate at the Fermi leM&d). (3)] adatom with this value of is 2.217 A, which compares well
was calculated. Results are shown in Fig(For clarity, only with the metallic radii of the al,kali atomge.g., Na
the cases wherp=1/8, 1/9, 1/10, and 1/20 are given here. _1 a3 R k=226 A and Cs 2.62 A) =

See Ref. 18 for more daja. Observe that for low adatom
densities p<1/10), the normalization of the wave function
|¢(Ef)|ﬁ is consistent with strong electron localization—its
value remains constant as a function of recursion level. For The most surprising aspect of this calculation is how
high adatom coverage ¢ 1/9), the states show qualitatively clearly the transition from weak to strong localization can be
weaker localization withp(E¢)|3 having a positive slope for seen in the normalizations. In contrast to this, the localization
all N. The transition occurs at a density of 1/9 and is resolv-edge is a relatively subtle feature in the results of the calcu-
able to as small a change as 1 part in 90 of the adsorbatations by GH. The main differences between the two calcu-
density. We have examined between five and ten differenfations are the models for disorder and in the method used to
realizations for each adsorbate coverage, and all are considistinguish strongly and weakly localized states.
tent with a sharp transition for the infinite system, to within ~ As a check on the method, Arndftkindly calculated the
the fluctuations expected for these finite samples. normalizations of states for the Anderson model on square
The changes in the projected density of states corresponiditices. The interesting result of these calculations is that it
to the above changes in the normalizations of states. Froris impossible to see any transition in the Anderson model by
Fig. 2, it is clear that fop<1/10 the projected densities of this method, even for samples of ovex 1 sites. In con-
states are composed of discrete bound states, wheregas fottrast to the results presented here, the normalizations for the
>1/9 projected densities of states become smooth near thenderson model fluctuate enormously both with energy and
Fermi energy, while states at the band edges remain discretigom one realization to another.
This smoothing of the projected densities of states indicates This qualitative difference in the numerical behavior of
the formation of a metallic subband corresponding to thehe two models can perhaps be understood in terms of the
onset of the adlayer's metallization. The transition fromrange of the disordered part of the Hamiltonians. In the
strong to weak localization of states Bf with increasing Anderson model the disorder is in the diagonal matrix ele-
adatom density suggests that the Fermi level crossed a locahients of the Hamiltonian, a disorder in the energies of the
ization edge. individual electronic orbitals, while in this work the disorder
Note that the normalizations in Fig. 1 and projected denis in the off-diagonal matrix elements of the Hamiltonian and
sities of states in Fig. 2 are typical values rather than avers topological in the sense that it is in the coupling between
ages in the sense that they were calculated for single realizarbitals which can be several lattice spacings apart. The
tions of the random system rather than averaged over mamange of the topological disorder is distinct from the range
realizations. The typical values used in this work and in thewvhich might be introduced into the Anderson model by cor-

FIG. 1. Normalization of the wave functions Bt for different
adlayer densities.

IV. COMPARISON WITH OTHER CALCULATIONS



57 NUMERICAL EVIDENCE OF AN ELECTRONC . .. 299

(a) ()

8 T T T T T T 8 T T T T T T

1/20 coverage —— 1/10 coverage ——
- Fermi level ----- - Fermi Level ----- N
6 -1 6 | .
S F - S I s
4 e 4 |- -
3 F -1 3 F -
2 b b 2 | —
o ) L L 1 A ) L o 1 1 P : /J PO
-6 -5 -4 -3 -2 -1 ¢} 1 -6 -5 -4 -3 -2 -1 o] 1

Energy Energy
(<) (d)

8 T T T T T T 8 T T T T T T

1/9 coverage ——— 1/8 coverage ——

Fermi level ----- Fermi level -----
7 - 7 -1
6 | - 6 I e
s - s |- E
a4 - a B
3 - 3 b
2 r -4 2k -1
fo) 1 A L AI L L} 0 1 L 1 A L Il L |
-6 -5 -4 -3 -2 -1 [¢] 1 -6 -5 -4 -3 -2 -1 [e] 1
Energy Energy

FIG. 2. Projected densities of states for various adatom coverages.
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relating the energies of nearby orbitals, leaving the way or-
bitals are connected to one another, the topology, unchangec
The off-diagonal matrix elements of the Hamiltonian deter-
mine the way the tridiagonal badis,} spreads out over the
layer, and the randomness in these seems to suppress flu
tuations relative to randomness in the diagonal matrix ele-
ments.

In GH the energies of localization edges were determined
from calculations of the energy dependence of the conduc-
tance between probes placed at opposite corners of thi
sample. The localization edges appear in these calculation
as a cusp where the conductivity goes from a fluctuating but
roughly constant value on the weakly localized side to an
exponential decrease with energy on the strongly localized
side. Calculating the conductance is much more difficult than
calculating normalizations, but we suppose that such calcu-
lations for the current model would produce results similar to
those of GH.

Another computational approach is that of Kramer and
MacKinnorf (KM) which when applied to the two- FIG. 3. Dependence of localization on coverage and the atomic
dimensional Anderson model shows exponential localizatiomparameter, compared with EG).

Adlayer Density

Atomic Parameter (&
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of the state at the center of the band for all disorders. In thisilicon surfacé? This decreases the Coulomb repulsion be-
method the increase in the localization length with width oftween electrons by allowing them to spread over several at-
long strips of sites is used to estimate the localization lengtl®oms, and it increases the effective disorder by increasing the
of a layer. Although the Anderson model is different from width of the distribution of distances between metal atoms
the model used in this paper, it is hard to see how this difover that resulting from truly independent deposition of each

ference could eliminate the transition. So the disagreemer#om. Since some atoms are closer due to the formation of
between KM and GH remains a puzzle. chains, others must be farther away to keep the same cover-

age. This increase in the effective disorder again reduces the
value of @ estimated from experiment, and the reduction in
repulsive energy between electrons reduces the estimate of
the coverage where the upper and lower Hubbard bands meet
and weakens any interaction effects on the localization.
] - . Another observation by AKR is that the metallization
In their paper, AKR suggest that the transition they saw inyransition seems to be associated with ordering of the metal
the optical second harmonic was due to electron-electron regtoms into a X 3 structure. It is difficult to think of forces
pu|Si0n rather than disorder. Their piCture is that at low COVWhiCh could produce such an Ordering’ other than those aris-
erage the extra Coulombic energy of doubly occupied orbiting from the electronic states of the metal electrons. For the
als Sp“tS the metal-derived band in two: the lower Hubbarq'neta| atoms to order over |arge regionsl the forces must be
band being fully occupied with one electron per adatom anqong ranged, which implies that the electronic states must be
an antiferromagnetic ordering of spins, and the upper Hubmore delocalized than at lower coverages. This is also con-
bard band whose states span the second spin orbital of eagfgtent with a localization transition of the kind we propose.
adatom being empty. As the coverage increases, so does tR@ecylation by AKR that the 23 structure is insulating
electron density and the kinetic energy of the electrons untibeems to be inconsistent with our estimate that the Hubbard
it becomes comparable with their Coulomb repulsion so thagands meet at much lower coverages.
the gap between the two bands goes to zero and the adlayer oyr interpretation of the results of AKR as a transition in
becomes metallic. the ground state of the metal electrons must be qualified by
Hubbard" showed that for ordered systems the upper anghe observation that the experiments were carried out at op-
lower bands meet when the ratio of the hopping bandwidthjca| frequencies and therefore could involve excitation of
to the energy of repulsion between two electrons in the samgjectrons out of the ground state, for example, into a band of
orbital increases to about 1.15. The bandwidth due to hopgelocalized states 1 eV or so higher in energy. This possibil-
ping is easily obtained from the calculations presentegty cannot be excluded without further experiments in which
above, and the energy of repulsion can be estimated for th\e frequency of the electric field is varied; however, the
metal orbitals using their simple exponential form and di-yariation of the phase shift in the second harmonic with cov-
electric constant for silicon. The result is that the Hubbarderage, reported by AKR, is inconsistent with resonant exci-
criterion is satisfied at a coverage of about 1/25 wheis  tation to a higher band. As the coverage increases, the phase
unity, a much lower coverage than 1/9 where the indepenpf the second harmonic advances, whereas it would be ex-
dent electron model shows a transition for the same value %ected to lag if the transition were due to excitation of elec-
a. trons to a band such as the upper Hubbard band whose en-
The observed transition occurs at a coverage of about 1/8rgy decreases with increasing coverage.
of the surface cells, and so we must scale the results of the The advancing phase of the second harmonic itself poses
calculation fora=1. As explained above, the experimental a Cha”enge to any theory of these experiments_ If we asso-
result corresponds ta=v3 if the effects of electron repul- cijate the increasing second-harmonic intensity with delocal-
sion are completely neglected, and taking repulsion to proized electronic states on the surface, then in the absence of
mote localizationy’3 serves as an upper bound on the valuescattering the second-harmonic currents should lag the ap-
of a. The Coulomb energy of repulsion scales witland so  plied field. It seems that the only way the phase could ad-
is V3 greater fore=v3. The hopping matrix elements scale vance with increasing coverage would be if the scattering
ase”*R according to Eq(1), and so the hopping bandwidth rate of the delocalized electrons were to also increase. This is
scales similarly and the averageis taken to be /p. Con- possible because the increase in the number of delocalized
sequently, fora=v3 the coverage at which the upper and electronic states both above and below the Fermi level would
lower Hubbard bands meet should be about 1/7, still muclincrease the phase space available to scattering and hence the
smaller than the coverage of 1/3 where the transition is seescattering rate, the matrix elements between delocalized and
There are, however, two effects present in the experilocalized states being suppressed by their relatively small
ments which, we argue, lower the effective valuendrom  overlap. It might even be possible to explain the advance in
v3. The first of these is the same electron repulsion as waghase beyond 180° as evidence that at high coverages the
discussed in the previous paragraph. Since electron repulsi@econd-harmonic currents in the surface saturate before the
is surely present in the experimental system and since it praelectric field reaches its peak in each cycle.
motes localization, it pushes the transition to a higher cover- In summary, we have compared the experiments of AKR
age than if the electrons were truly independent, hence deavith a model of independent electrons hopping between
creasing the value o& for which the model is consistent metal atoms deposited randomly on an insulating surface.
with the experiment. The model shows a localization transition at a coverage not
The second effect in the experimental system is the tendissimilar from the coverage at which a transition was seen
dency of alkali-metal atoms to form chain structures on theexperimentally, whereas an estimate of the coverage for a

V. COMPARISON WITH EXPERIMENT
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