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Numerical evidence of an electronic localization transition in a disordered layer of metal atoms

Roger Haydock and Ronald L. Te
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1274

~Received 8 July 1997; revised manuscript received 18 August 1997!

Recent observations of transitions in the nonlinear polarizability of submonolayers of metal atoms on
silicon, and between insulating and metallic behavior for electrons in silicon inversion layers, indicate the need
for further study of the electronic states in such systems. In this work, the projected density of states and
normalizations for individual states are used to characterize the localization of independent electrons in a
model for a layer of metal atoms randomly deposited at low density on a crystalline surface of silicon. We find
a localization transition, whose sharpness in energy is limited only by the sample size of over 80 000 sites for
a model of the Si(001)231 surface. This is consistent with previous analytic and numerical calculations, by
similar methods, of the localization properties of other models for electronic states in weakly disordered layers
and with the observed transition in the nonlinear polarizability of submonolayers of metal atoms on silicon.
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I. ELECTRONIC STATES AT DISORDERED INTERFACES

The nature of electronic states at disordered interfaces
long-standing problem. In the 1970s it was thought that
independent electronic spectrum of a disordered layer
mobility edges which separated energies where the st
were exponentially localized from energies where the sta
were plane-wave-like. Many theoretical and numerical
tempts were made to determine the location of these ed
for the Anderson1 and related models, but the mobility edg
were elusive. During the 1980s, many opinions changed
the view that all states were exponentially localized and t
the localization length varied smoothly with energy, beco
ing very large at energies where the states were previo
thought to have been delocalized. Recent observations
Kravchenkoet al.2 of an apparent metal-insulator transitio
in silicon inversion layers has raised doubts about this vi

A variety of theoretical and numerical approaches ha
been applied to the behavior of electrons at disordered in
faces. The scaling theory of Abrahamset al.3 persuaded
many that the electronic states in such systems must a
exponentially localized, and this has been supported by fi
theoretic approaches4 ~for a review see Lee and
Ramakrishna5! as well as the extensive numerical work
McKinnon and Kramer; see Ref. 6 for a review. On the oth
hand, Haydock7 presented analytical arguments, and Go
and Haydock8 ~GH! produced numerical evidence that the
is a sharp transition between exponential and power-law
calized states in disordered two-dimensional systems. S
ing from high magnetic fields where individual Landau le
els are known to carry currents, Azbel9 argued that there is a
metal-insulator transition at zero field. In addition to t
work on independent electrons, there have been effort
take electron-electron interactions into account, and it
been suggested10 that interactions can delocalize electrons
circumstances where independent electrons would be lo
ized.

Most of the experimental information about electron
calization at interfaces has come from silicon inversion l
ers, devices in which electrons are trapped by an elec
570163-1829/98/57~1!/296~6!/$15.00
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field at the~001! interface betweenp-type silicon and a layer
of silicon oxide. Urenet al.11 found two distinct kinds of
localization, and Davies and Pepper12 extended this work to
show evidence for a transition between exponential a
power-law localization. Kravchenkoet al.2 saw evidence
similar to that of Ref. 11 of two kinds of localization in
low-mobility devices and found a much more dramatic tra
sition in high-mobility devices. While electron-electron in
teractions clearly play an important role in the Kravchen
devices, as long as the electronic excitations close to
Fermi level can be expanded in localized excitations, no m
ter how complicated, the electronic Hamiltonian expanded
these excitations is of the same form as the one used be

In a different experimental approach Arakat, Kevan, a
Richmond13 ~AKR! deposited alkali-metal atoms on a 231
reconstructed Si~001! surface and measured the second h
monic produced by an optical, in-plane electric field. T
advantages of this approach are that the distribution of m
atoms, the disorder, can be observed directly and tha
electric field is applied directly to the electrons rather tha
potential difference being applied between contacts to
tenuous electron gas. The disadvantage of this approac
that the measurements are at optical frequencies rather
dc. The second harmonic showed a sharp threshold at a
1/6th of a monolayer for each of three different alkali meta
Although AKR suggested that this threshold is due to
metal-insulator transition induced by electron-electron int
actions, we were intrigued to see if a localization transiti
could be excluded.

In the first of the following four sections, we present a
independent particle model for the electrons of metal ato
deposited on the 231 reconstructed surface of~001! silicon.
Section III contains a description of the calculations for d
ferent coverages, of normalizations for states at the Fe
level, and of the projected densities of states at various
oms. In the subsequent section the results of these calc
tion are compared with those obtained by GH using
Anderson model to simulate an inversion layer compl
with contacts. In the last section we discuss the relation
296 © 1998 The American Physical Society
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57 297NUMERICAL EVIDENCE OF AN ELECTRONIC . . .
tween the results of these calculations and the metalliza
of overlayers.

II. MODEL FOR METAL ATOMS ON Si „001… 231

Our model for the metallic electrons is similar to that
Debney14 with a basis of a singles orbital centered on eac
metal atom. We assume that at low coverages only the m
binding site in each 231 surface cell is occupied. We tak
the energies of these orbitals to be independent of whe
nearby surface cells are occupied and allow the electron
hop from one metal atom to another with matrix eleme
decreasing exponentially with the distance between cells
our calculations, metal atoms occupy each surface cell
domly, independent of the occupation of any other cells.

The bulk-terminated Si~001! surface has two dangling
silicon bonds for each surface atom. For each surface sil
atom, one of the dangling bonds dimerizes with that o
neighboring atom to produce a 231 reconstruction which
has two dangling bonds per surface cell. The remaining d
gling bonds further hybridize and transfer electrons to p
duce one band of doubly occupied surface states and
band of unoccupied surface states separated in energ
about 1 eV. See Ref. 13 for further discussion of the Si~001!
surface.

The valences orbital of the metal adatom hybridizes mo
strongly with bands of surface states to produce a sin
occupied orbital whose energy must consequently lie in
gap between the occupied and unoccupied surface ban
the silicon. The energy of the orbital is determined by t
chemical bond formed between the metal and silicon,
this in turn fixes the exponent with which the orbital deca
with distance outside the cell in which it is centered. It is th
hybridized orbital of the isolated metal adatom which form
our basis for the electronic states of the metal overlayer,
because the spatial decay of the orbital outside its central
is determined by the chemistry of the metal-silicon bond,
expect the different alkalis to behave similarly.

In the electronic Hamiltonian for this model, the energ
of each orbital are the same for the reasons described in
previous paragraph. Outside the central cell, each orbital
cays exponentially, and we take this to be independen
direction so that the matrix element of the Hamiltonian b
tween metal orbitals in cellsi and j takes the Hu¨ckel form:

Hi j 5^f i uHuf j&}E0S 11aR1
a2R2

3 De2aR, ~1!

whereE0 is the on-site energy of the equivalent orbitals,R
5ur i2r j u is the separation between thei th and j th orbitals,
and a describes the spatial extent of the orbital wave fu
tion.

For the calculations which follow, we took a two
dimensional grid of sites with a 2:1 ratio of its primitiv
vectors corresponding to the 231 reconstruction of the
Si~001! surface. The samples consisted of square region
over 200 of the large primitive vectors by over 400 of t
small primitive vectors, containing over 80 000 adsorpti
sites which were populated randomly for the different co
erages studied. The resulting Hamiltonians were represe
n
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as matrices of dimension over 80 000 by 80 000, and ma
elements of the Hamiltonian of less than 1026E0 were ne-
glected.

III. LOCALIZATION OF THE STATES

Normalizations and projected densities of states were
culated for the model using the recursion method.15 The elec-
tronic Hamiltonian was made tridiagonal by constructing
new basis starting with a single orbital, usually near the c
ter of the model lattice. From a tridiagonal matrix it is ea
to generate eigenvectors and calculate normalization i
grals or to construct the electronic Green function who
imaginary part is the projected density of states.

Starting with an atomic orbital, say,u0 , the tridiagonal-
ization proceeds by constructingu1 ,u2 ,u3 ,...,un ,... using
the recurrence

Hun5anun1bn11un111bnun21 , n50,1, . . . , ~2!

where an5^unuHuun&, bn11
2 5uHun2anun2bnun21u2, and

u2150. The new basis elementsu1 ,u2 ,u3 ,...,un ,... consist
of linear combinations of the metal orbitals. The second
ement of the new basis,u1 , is a linear combination of orbit-
als with nonzero coupling tou0 , u2 is a linear combination
of orbitals coupled tou1 , and so forth. In exact arithmetic
the new basis would be orthonormal, but in finite precision
is not. However, this loss of orthonormality during the com
putation does not affect the accuracy results.16

An unnormalized eigenstate of the Hamiltonian with e
ergy E can then be expressed as a linear combination of
tridiagonal basis$un%, i.e., c(E);(n

NPn(E)uun&, where the
coefficients$Pn(E)% form a set of polynomials inE, or-
thogonal with respect to the projected density of states foru0
and satisfying the same recurrence relation as the ba
bn11Pn11(E)5(E2an)Pn(E)2bnPn21(E).

Since the metal atoms have one electron per orbital,
Fermi level of the adlayer must lie in the band of sta
derived from these orbitals. For a calculation which beg
with the orbitalu0 , we approximate the Fermi level by re
quiring that this orbital contain a single electron. Althoug
this approximate Fermi level varies a little with the choice
u0 ,17 this ensures that the state at the Fermi level has a la
amplitude onu0 and so is centered close tou0 .

From the expansion of the eigenstates in the tridiago
basis, we can relate the normalization of the eigenstate a
Fermi level,c(Ef), to the sum of the squares of the orthog
nal polynomialsPn(Ef),

15,18 i.e.,

uc~Ef !uN
2 ;(

n

N

uPn~Ef !u2. ~3!

The numerical loss of orthogonality of the tridiagonal ba
has a negligible effect on the normalization.16

Since strongly localized states have a normalization tha
independent of the size of the system, while weakly localiz
states have normalizations which scale with the size of
system, we expect Eq.~3! to give ~i! uc(E)uSL

2 ;N0, for
strongly or exponentially localized states, i.e., where
slope of the normalization as a function of recursion lev
N, goes to zero, and~ii ! uc(E)uWL

2 ;Np, for weakly localized
states, wherep.0, a positive slope for the normalization a
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298 57ROGER HAYDOCK AND RONALD L. TE
a function ofN. This serves as a criterion for distinguishin
states with different degrees of localization.

Individual Hamiltonian configurations were generated
each of the different coverages~r51, 1/4, 1/5, 1/6, 1/7, 1/8
1/9, 1/10, 1/20, and 1/100!. Taking a localized atomic orbita
near the center of the lattice as our starting state,u0 , the
normalization of the eigenstate at the Fermi level@Eq. ~3!#
was calculated. Results are shown in Fig. 1.~For clarity, only
the cases wherer51/8, 1/9, 1/10, and 1/20 are given her
See Ref. 18 for more data.! Observe that for low adatom
densities (r<1/10), the normalization of the wave functio
uc(Ef)uN

2 is consistent with strong electron localization—
value remains constant as a function of recursion level.
high adatom coverage (r.1/9), the states show qualitativel
weaker localization withur(Ef)uN

2 having a positive slope fo
all N. The transition occurs at a density of 1/9 and is reso
able to as small a change as 1 part in 90 of the adsor
density. We have examined between five and ten differ
realizations for each adsorbate coverage, and all are co
tent with a sharp transition for the infinite system, to with
the fluctuations expected for these finite samples.

The changes in the projected density of states corresp
to the above changes in the normalizations of states. F
Fig. 2, it is clear that forr<1/10 the projected densities o
states are composed of discrete bound states, whereasr
.1/9 projected densities of states become smooth nea
Fermi energy, while states at the band edges remain disc
This smoothing of the projected densities of states indica
the formation of a metallic subband corresponding to
onset of the adlayer’s metallization. The transition fro
strong to weak localization of states atEf with increasing
adatom density suggests that the Fermi level crossed a lo
ization edge.

Note that the normalizations in Fig. 1 and projected d
sities of states in Fig. 2 are typical values rather than av
ages in the sense that they were calculated for single rea
tions of the random system rather than averaged over m
realizations. The typical values used in this work and in

FIG. 1. Normalization of the wave functions atEf for different
adlayer densities.
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work of Kramer and MacKinnon6 avoid the problem that
averages of many properties of disordered systems do
converge with the number of realizations sampled; see
ther Draeger and Bunde.19

The critical coveragerc , at which the states at the Ferm
level become weakly localized, depends mainly ona, the
exponent with which the adatom orbitals decrease at la
distances, although there could be weak dependence on
relationships between lattice parameters. Since the cove
scales as an inverse area for a two-dimensional system aa
scales as an inverse distance, we expect

rc;a2. ~4!

This is consistent with data compiled from our numeric
samples and plotted in Fig. 3. Note that the line correspo
ing to a constant of proportionality of 0.12 in Eq.~4! sepa-
rates the strongly localized and weakly localized states for
values ofa.

The functional relationship between the critical dens
and the atomic parameter@Eq. ~4!# can be used to extract
value of a from experiment. Using a value ofa51 in our
calculations gives a critical density of 1/9 for the metalliz
tion transition ~Fig. 1!. From the second-harmoni
experiments,13 the onset for the metallization, as indicated
the dramatic increase in the in-plane second harmonic sig
is around 1/6 monolayer~ML !. Since there are two silicon
atoms per unit cell (7.68 Å33.84 Å), 1/6 ML is equivalent
to a value ofrc51/3 in our model. This gives a value ofa
5) or 0.451 Å21. The corresponding orbital radius of a
adatom with this value ofa is 2.217 Å, which compares wel
with the metallic radii of the alkali atoms~e.g., Na
51.83 Å, K52.26 Å, and Cs52.62 Å!.

IV. COMPARISON WITH OTHER CALCULATIONS

The most surprising aspect of this calculation is ho
clearly the transition from weak to strong localization can
seen in the normalizations. In contrast to this, the localizat
edge is a relatively subtle feature in the results of the ca
lations by GH. The main differences between the two cal
lations are the models for disorder and in the method use
distinguish strongly and weakly localized states.

As a check on the method, Arnold20 kindly calculated the
normalizations of states for the Anderson model on squ
lattices. The interesting result of these calculations is tha
is impossible to see any transition in the Anderson mode
this method, even for samples of over 13106 sites. In con-
trast to the results presented here, the normalizations for
Anderson model fluctuate enormously both with energy a
from one realization to another.

This qualitative difference in the numerical behavior
the two models can perhaps be understood in terms of
range of the disordered part of the Hamiltonians. In t
Anderson model the disorder is in the diagonal matrix e
ments of the Hamiltonian, a disorder in the energies of
individual electronic orbitals, while in this work the disorde
is in the off-diagonal matrix elements of the Hamiltonian a
is topological in the sense that it is in the coupling betwe
orbitals which can be several lattice spacings apart. T
range of the topological disorder is distinct from the ran
which might be introduced into the Anderson model by c
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FIG. 2. Projected densities of states for various adatom coverages.
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relating the energies of nearby orbitals, leaving the way
bitals are connected to one another, the topology, unchan
The off-diagonal matrix elements of the Hamiltonian det
mine the way the tridiagonal basis$un% spreads out over the
layer, and the randomness in these seems to suppress
tuations relative to randomness in the diagonal matrix e
ments.

In GH the energies of localization edges were determi
from calculations of the energy dependence of the cond
tance between probes placed at opposite corners of
sample. The localization edges appear in these calculat
as a cusp where the conductivity goes from a fluctuating
roughly constant value on the weakly localized side to
exponential decrease with energy on the strongly locali
side. Calculating the conductance is much more difficult th
calculating normalizations, but we suppose that such ca
lations for the current model would produce results similar
those of GH.

Another computational approach is that of Kramer a
MacKinnon6 ~KM ! which when applied to the two
dimensional Anderson model shows exponential localiza
r-
ed.
-

uc-
-

d
c-
he
ns
ut
n
d
n
u-
o

d

n
FIG. 3. Dependence of localization on coverage and the ato

parameter, compared with Eq.~4!.
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300 57ROGER HAYDOCK AND RONALD L. TE
of the state at the center of the band for all disorders. In
method the increase in the localization length with width
long strips of sites is used to estimate the localization len
of a layer. Although the Anderson model is different fro
the model used in this paper, it is hard to see how this
ference could eliminate the transition. So the disagreem
between KM and GH remains a puzzle.

V. COMPARISON WITH EXPERIMENT

In their paper, AKR suggest that the transition they saw
the optical second harmonic was due to electron-electron
pulsion rather than disorder. Their picture is that at low co
erage the extra Coulombic energy of doubly occupied or
als splits the metal-derived band in two: the lower Hubb
band being fully occupied with one electron per adatom a
an antiferromagnetic ordering of spins, and the upper H
bard band whose states span the second spin orbital of
adatom being empty. As the coverage increases, so doe
electron density and the kinetic energy of the electrons u
it becomes comparable with their Coulomb repulsion so t
the gap between the two bands goes to zero and the ad
becomes metallic.

Hubbard21 showed that for ordered systems the upper a
lower bands meet when the ratio of the hopping bandwi
to the energy of repulsion between two electrons in the sa
orbital increases to about 1.15. The bandwidth due to h
ping is easily obtained from the calculations presen
above, and the energy of repulsion can be estimated for
metal orbitals using their simple exponential form and
electric constant for silicon. The result is that the Hubba
criterion is satisfied at a coverage of about 1/25 whena is
unity, a much lower coverage than 1/9 where the indep
dent electron model shows a transition for the same valu
a.

The observed transition occurs at a coverage of about
of the surface cells, and so we must scale the results of
calculation fora51. As explained above, the experimen
result corresponds toa5) if the effects of electron repul
sion are completely neglected, and taking repulsion to p
mote localization,) serves as an upper bound on the va
of a. The Coulomb energy of repulsion scales witha and so
is) greater fora5). The hopping matrix elements sca
ase2aR according to Eq.~1!, and so the hopping bandwidt
scales similarly and the averageR is taken to be 1/Ar. Con-
sequently, fora5) the coverage at which the upper an
lower Hubbard bands meet should be about 1/7, still m
smaller than the coverage of 1/3 where the transition is s

There are, however, two effects present in the exp
ments which, we argue, lower the effective value ofa from
). The first of these is the same electron repulsion as
discussed in the previous paragraph. Since electron repu
is surely present in the experimental system and since it
motes localization, it pushes the transition to a higher cov
age than if the electrons were truly independent, hence
creasing the value ofa for which the model is consisten
with the experiment.

The second effect in the experimental system is the
dency of alkali-metal atoms to form chain structures on
is
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silicon surface.22 This decreases the Coulomb repulsion b
tween electrons by allowing them to spread over severa
oms, and it increases the effective disorder by increasing
width of the distribution of distances between metal ato
over that resulting from truly independent deposition of ea
atom. Since some atoms are closer due to the formatio
chains, others must be farther away to keep the same co
age. This increase in the effective disorder again reduces
value ofa estimated from experiment, and the reduction
repulsive energy between electrons reduces the estima
the coverage where the upper and lower Hubbard bands m
and weakens any interaction effects on the localization.

Another observation by AKR is that the metallizatio
transition seems to be associated with ordering of the m
atoms into a 233 structure. It is difficult to think of forces
which could produce such an ordering, other than those a
ing from the electronic states of the metal electrons. For
metal atoms to order over large regions, the forces mus
long ranged, which implies that the electronic states mus
more delocalized than at lower coverages. This is also c
sistent with a localization transition of the kind we propos
Speculation by AKR that the 233 structure is insulating
seems to be inconsistent with our estimate that the Hubb
bands meet at much lower coverages.

Our interpretation of the results of AKR as a transition
the ground state of the metal electrons must be qualified
the observation that the experiments were carried out at
tical frequencies and therefore could involve excitation
electrons out of the ground state, for example, into a ban
delocalized states 1 eV or so higher in energy. This poss
ity cannot be excluded without further experiments in whi
the frequency of the electric field is varied; however, t
variation of the phase shift in the second harmonic with c
erage, reported by AKR, is inconsistent with resonant ex
tation to a higher band. As the coverage increases, the p
of the second harmonic advances, whereas it would be
pected to lag if the transition were due to excitation of ele
trons to a band such as the upper Hubbard band whose
ergy decreases with increasing coverage.

The advancing phase of the second harmonic itself po
a challenge to any theory of these experiments. If we as
ciate the increasing second-harmonic intensity with deloc
ized electronic states on the surface, then in the absenc
scattering the second-harmonic currents should lag the
plied field. It seems that the only way the phase could
vance with increasing coverage would be if the scatter
rate of the delocalized electrons were to also increase. Th
possible because the increase in the number of deloca
electronic states both above and below the Fermi level wo
increase the phase space available to scattering and henc
scattering rate, the matrix elements between delocalized
localized states being suppressed by their relatively sm
overlap. It might even be possible to explain the advance
phase beyond 180° as evidence that at high coverages
second-harmonic currents in the surface saturate before
electric field reaches its peak in each cycle.

In summary, we have compared the experiments of A
with a model of independent electrons hopping betwe
metal atoms deposited randomly on an insulating surfa
The model shows a localization transition at a coverage
dissimilar from the coverage at which a transition was se
experimentally, whereas an estimate of the coverage fo
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57 301NUMERICAL EVIDENCE OF AN ELECTRONIC . . .
transition due to interactions is much lower. Making allo
ances for interactions and other effects present in the exp
ment suggests that disorder may dominate the observed
sition and that this is consistent with suggestions of order
at the transition and possibly even the advance of the sec
harmonic phase.
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