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Calculation of giant magnetoresistance in laterally confined multilayers
in the current-in-plane geometry
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We have studied the giant magnetoresista/@@R) for laterally confined multilayers, e.g., layers of wires,

using the classical Boltzmann equation in the current-in-plane geometry. For spin-independent specularity
factors at the sides of the wires we find that the GMR due to bulk and surface scattering decreases with lateral
confinement. The length scale at which this occurs is of the order of the film thickness and the mean free paths.
The precise prefactor depends on the relative importance of surface and bulk scattering anisotropies. For
spin-dependent specularity factors at the sides of the wires the GMR can increase in some cases with decreas-
ing width. The origin of the change in the GMR in both cases can be understood in terms of lateral confinement
changing the effective mean free paths within the lay$6163-182@08)06805-2

[. INTRODUCTION The layout of the rest of our paper is as follows. In Sec. Il
a detailed description of the model and our numerical proce-
Electrical transport properties of magnetic multilayers,dure is given. In Sec. Ill we present the results of our calcu-
which are thin alternating layers of ferromagn@1’s) and  lation, and Sec. IV contains the conclusion.
paramagnet$PM’s), has drawn considerable interest in re-
cent years. A large decrease in the resistivity from antipar- Il. THE MODEL
allel to parallel alignment of the film magnetizations has
been observed experimentafty This phenomenon is known
as the giant magnetoresistan@MVR). The decrease in the . A
resistivigtay from a?niparallel to parallel alignment arises from wire structure ?ta‘?ked alon.g tlytédlrt?:‘ctlo'n. Both the current
spin-dependent scatteriRgThe two sources of spin depen- gnd 'ghe electric fleld_are in the direction. We have two
dent scattering in these multilayers are bulk scattering anifléntical ferromagnetic materialé"M) and a paramagnet
surface scattering. There have been numerous experimenl(g].M)' For this three-wire geometry we compute the conduc-

and theoretical studies to understand the physics of the giaHf’ |ty”|n| the casc(ie Wl?en ttr:]e ferromatgnet S” magn_lc_artllzatlons are
magnetoresistance and to use it in applicatichs. parafi€lo, and when théy are antipara &hy. The mag-
netoresistance is defined as the ratio of the change in the

There are several theoretical approaches to transport in o . . g

. . . conductivity from parallel to antiparallel alignments divided
magnetic multilayers. One approach is to use the phenom: L

) . o y the parallel conductivity:

enological  Fuchs-Sondheimer theory of thin-film
resistancé&?® This approach is based on the classical Boltz-
mann equation. Other approaches are based on the linear- g(cos8,2n-¢.r) /1
response theofy® and the quantum Boltzmann equatidrit AN
has been shown that the conductivities obtained from the S%rj)
classical Fuchs-Sondheimer theory are in good agreement T
with the quantum results obtained via the Kubo formidia.
Thus it is useful to use the semiclassical approach to under-
stand the physics of the giant magnetoresistance. Further-
more, this method with spin-dependent interface scatt&ring
reproduces the qualitative features of the giant magnetoresis-
tance seen in the experimeAts.

With the development of nanotechnology, it is becoming FIG. 1. Schematic diagram of the three-wire structure. Wires 1
important to understand the effect of lateral confinement orand 3 are the ferromagnets of thicknésg, and wire 2 is a para-
the GMR-B In this paper, we address the following ques-magnet of thicknesspy. Current is in plang(CIP) along thez
tions: (i) Does the GMR increase or decrease with the reducgjrection, and the wires are stacked in heirection. S represents
tion in width? (i) If there is an increase or decrease in theihe spin-independent specularity factors at the sides of the ferro-
GMR what causes itii) What are the relevant length scales magnet, and the paramagnet. To determine the distribution function
in the problem? We use the classical Boltzmann equation ter outgoing electrons at poimg , g(cc)g9’¢,rj)l one must consider
answer the above questions. It is important to note that ousll possible incoming electrons from points on the edges and inter-
calculations only apply to the current-in-plan€CIP)  faces, e.g., points andr, . The precise relationship is described in
geometry—not the current-perpendicular-to-plane geometnthe text[see Eq.(9)].

The geometry of our problem is shown in Fig. 1. We
compute the current-in-plane conductivii@IP) for a three-

Width
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OAF +1, we define the probability of spis electrons being dif-
GMR=1-—"—. (1) fusively scattered as (&S,o), where S, is the spin-
dependent specularity factor. The probabilities for being

To calculate the conductivities for different spin align- specularly reflected and transmitted &gR,,s and S,sT s,
ments we consider the classical steady-state Boltzmanrespectively. The sum dR,¢ and T, is one. The angular
transport equation: dependence of the surface scattering parant2tée reflec-
of tion coefficients, and the transmission coefficiéhté has

(v,r) ) . :

) , (2)  been studied, but in our calculation we treat those as angle

Mt an independent. With these definitions, the boundary conditions

where f(v,r) is the distribution function for electrons of @t thenth interface can be expressed as
massm at positionr with velocity v in presence of the elec- i i
tric field E. Because of the scattering term, Eg) is com- Gns(ViX,Yn) = SusTnsGr15(V:X,Yn) F SnsRns — VXY

V-V, f(v,r)— %E-V\,f(v,r)=(

plicated. For simplicity we consider the case where the scat- @)
tering term is i
? ggu—tls(_vix’YH):SnsTnsglr?s —V,X,Yn)
af(v,r) fv,r)—=(f(v,r)) .
( ot - T ! (3) +SnsRnsglr?— 1s(VvXayn)r (8)

seatt wherey, is the position of the interface, and the superscripts

out, in correspond to electrons going out from the boundary
or coming in to the boundary. Similar equations are satisfied

%t the sides of the wires except that there is no transmission
(2) with the right-hand side of Eq3), we defineg(v,r) to be . : o
the deviation of the distribution function from its equilibrium We use an iterative procedure to compute the distribution

value: functions,g®(v,rg), which are nonuniform along the and
y directions of the interfaces and edgege Fig. 1 From
F(v,1) = (V) + g(v,1). @ Y gese Fig. 1

o Eq. (5), we observe that thg2=(v,r)’s with different veloci-
We next make the ansatz that within linear response thgeg projected along the direction are decoupled. This al-
spherical average of the distribution function is equal to th out

equilibrium distribution function{f(v,r))=f{|v|), i.e., the %Vés usl to d|scr:et|ze th?”ls(v’;) accoLdlng tu? Coezvtzlt';:'
spherical average of(v,r) is zero. This will be checked 2&N¢ SOIVE €ach separately. -or eac ﬂcq_;ﬁs(v,r). at the
explicitly later. The linearized Boltzmann equation for a wire €d9€s and the interfaces carry two more indices: an apgle

labeled by an index is then given by and a positiorr; . The g°%{(v,r)’s for different ¢ andr; are

related via Eq(6) and the boundary conditions given in Egs.
Ons(V,T) 5 (7) and (8). To illustrate this we consider the relations be-
Tns tween the distribution functions of the outgoing electrons at

wheres denotes the spin of the electrons. When the eIectri(Ehe first interface in Fig. 1.
field is zero, Eq(5) becomes a homogeneous equation with _ou COH. b1 ) =S R..a cOSh. 27— .1 )e~ 91/ T1svEsing
the expected solution being},(v,r)=0. For nonzero elec- 035100, 6.1}) = S15R1.0751 2Tt

with (f(v,r)) being the spherical average of the distribution
function, andr is the relaxation time. This is the simplest
scattering term to represent elastic scattering. To solve E

e
V'Vrgns(v’r)_ EE'vaﬁg(WD: -

tric field, g,s(v,r) is proportional to €E/m)V,fii(|v|) +S1:T15052( cosh, b, I ) @~ 92/ s FSine

=eE-vafi(|v|)/de,. Thus, gns—V,r)=—0gns(V,r), irre-

spective of the boundary conditions, and the ansatz that the ©

spherical average df,4(Vv,r) is zero is justified. where d;,d, are the path lengths projected onto tkey
The general solution of the above equatibis plane from one boundary to another. Initial guesses for

9%(coss,¢,r;) are taken from the nearbyyls|cosd

—&(cosd),d,ri]. The calculations are converged to within 1%
ir—rglirdvi with the total number of divisions for cégsr;, and¢ chosen

(1-e Blfnst),  (6)  asNge=100, N,=500, andN; =400, respectively.

) ) ) i Once the distribution functions at the boundaries are

whererg is a point on the boundary or interface. Equationnown, by using Eqsi4) and(6) the distribution function of

(6) implies that to find the distribution function at position  ihe electrons with momentum at any pointr can be deter-

with velocity v, we proceed fromr backwards along until mined. We explicitly check that our ansatz is valid:

we reach a pointg at the boundary. The distribution func- (g (v,r))=0. The current density along the direction of the
tion at the boundaryg,y(Vv,rg), is determined by the bound- gjectric field for wiren and spins is

ary conditions. We recover the usual bulk value if we go far
away from the boundary points. Also we can see from Eq.
(6) that the electrons lose their momentum as they diffuse Tns1)=—€{ 1
into the medium and the characteristic length scale for this is o ] ] .
just the mean free path,wr, Wherevg is the Fermi veloc-  The conductivity is obtained by averaging the current density
ity. over a cross-sectional ared;

We now examine the boundary conditions. At each inter- 13
face the electrons undergo e!ther specular or @ffuse scatter- - 2 J' Tod(x,y)dxdy. (12)
ing. For thenth interface, which is between wiresand n EAM=L 57,

Ons(V,1) =gng(V,rg)e I el/msV

eq
ns

e

+ eTnSE~v(

v

3
f U, Ons(V, 1) d3V. (10)
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Finally, the giant magnetoresistance is obtained from(Eg. 0.06
using parallel and antiparallel alignments of the magnetiza- 0.04
tions in Eq.(11). 0.02
0.00
IIl. NUMERICAL RESULTS - 0.02
We begin this section with the different input parameters © 001 - Surface
of our problem. They are the spin-dependent mean free paths 0.00 L———
in the ferromagnet. !, the mean free path in the paramag- 0.02 1(C) _ punsen

net LPM, the spin-dependent transmission coefficiefts,
the specularity factors, and the thicknesses of the layers . ;
Y evweewwwearers
tem @and tpy. We choose the mean free paths to be those 0.00 7 0 20 30
determined in an experiment on a Co/Cu/Co structfire: Width (A)
L'=55 A, L'= 10 A, andLPM= 226 A. The transmission
coefficients are obtained from an average of the transmissio
ici 44T = =

f:lgﬂtﬂgnsts ggilc:rlsteg?t%g'ﬁin int%r?aacr(]ai-ran do,;s‘il(.:i(\a/geto b ¢) both bulk and surface scattering. The symbols refer to different
" Sp_og FY o the thick o o b m thicknessestpy=tey= 8 A (circle), 20 A (box), and 30 A(tri-

€ same.s>=0.9. Finally, thé thicknesses _are chosen _0 eangle. In all cases the GMR decreases as we laterally confine the
those of Cu when the Co layers are antiferromagnetically,ijayers. The origin of this decrease in the GMR can be under-
coupled at zero field? For §|mpI|C|ty we take the ferromag- siood in terms of changing the effective mean free paths in the
nets to have the same thicknesses as the paramaga@ts: wires. As the wire width is reduced the effective mean free path
:tpM- . . within each wire decreases. To make this more quantitative we

With the above parameters the giant magnetoresistance itain an effective mean free path for each wire and use these mean
due to both spin anisotropies in the bulk and surface scattefree paths in a multilayer calculatiginfinite width wire). The re-
ing. It is useful to consider the limiting cases when the GMRsults, which are shown as the solid lines, are in good agreement
is due to only bulk scattering anisotropies or only surfacewith the exact calculatiofsymbolg. For casesa) and(c) the mean
scattering anisotropies. To do this, we consider two specidfee paths are chosen for a Co/Cu/Co struct(Ref. 18 which has
cases:(a) when the transmission coefficients are eqidl; L'=55A,L'=10 A, andL"M=226 A. For caséb), in which only
=T!=0.6 and(b) when the bulk mean free paths in the surface scattering contributes to the GMR, we wse=L'=17
ferromagnet are equdl! =L'=17 A. In the following these and LPM:2.26 A. For casesb) and (CT) the traf]smiSSion coeffi-
are referred to as th@) bulk scattering case ar®) surface ~ Cients at the interfaces are taken to'e=0.8, T'=0.4 (Ref. 17,
scattering case while for casel(a), where the GMR is due only to bulk scattering,

. : . . . T=Tl= i i

In Fig. 2 we plot the giant magnetoresistance as a functiof{’® 12keT =T"=0.6. The thicknesses for wire 2 are chosen to be
of width for the three case$a) GMR due to bulk scattering that of Cu when t.he Co slabs are antiferromagnetically coupled
anisotropies(b) GMR due to surface scattering anisotropies,(Ref' 12. ?(nd for S'mhpl'c'ty we c”hoose thﬁ Co layers tohha_ve t?e

d (0 GMR due to both bulk and surface scattering same thickness as the Cu. In all cases the sides and the interfaces
ant . ) . have a specularity fact@=0.9.
anisotropies. In all cases the giant magnetoresistance de-

creases as we reduce the width. To understand this decregsghs can be used in a multilayer calculation with infinite
with lateral confinement we consider a slab, i.e., a wire withyigih wires. The results of such an effective mean-free-path
infinite width. Diffusive scattering at the sides of the wire iy ilayer calculation are plotted as the solid lines in Fig. 2.
reduces the conductivity and mean free paths of the wirghis approximation is in good agreement with the exact re-
compared to the slab. This reduction in the conductivity INsults (symbols, and hence we conclude that the reduction in

going from a slab to a wire should be comparable to thgne GMR is due to a decrease in the effective mean free path
reduction in going from a bulk system to a slab with a thick-\yithin the layers.

ness equal tw. The conductivity of such a slab is given%y Although the GMR s reduced in all the cases shown in
Fig. 2, the actual GMR vs width curves are different. In

0.01 _.-" Bulk+Surface

FIG. 2. Giant magnetoresistance of a three-wire structure as a
unction of width for(a) bulk scattering(b) surface scattering and

O at= (ﬂ) [ 1— 3_"(1_ S) particular, there are different length scales at which the GMR
Mo 2w is reduced. The width at which the GMR is half its infinite
L 1— —wiL |coss)) width yalue, GMF{wire)/GMR(slab =1/2, is defined as the
% f d(cosd)coshsir?o exp(—w/L|co half-width. In Fig. 3 we have rescaled the GMR vs width
0 [1-Sexp —w/L|cog|)]|’ curves shown in Fig. 2 by GMRIab and the half-width. All
12) the points fall close to a single curve. This means that the
half-width and the GMR for infinite width wires,
and the bulk conductivity is GMR(slab, determine the GMR vs width curves. We have
also tried the same rescaling with other value§ofvhich is
ne’l still the same for all sides and interfaces, and found the same
Tpulk= m_vF) (13 curve.

In Figs. 4a)—4(c) we have plotted the half-width as a
wherelL is the mean free path of the electrons. We obtain arfunction of the mean free paths in the ferromagnet and the
effective mean free path, ., by replacinglL in Eq. (13)  thicknesses. Caséa)—(c) refer to the same parameters as in
with L such thato,, =g The effective mean free Fig. 2. The ratio between the mean free paths in the ferro-
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FIG. 3. Rescaled giant magnetoresistance as a function of width.

For large width the GMR for a wire approaches that for an ordinary
T LTI IIT77

unconfined multilayer, GMRlah. We define the width at which / n""n'n'.'.:,',n...,..
the GMR is reduced to half of GMRIah as the half-width. Res- Cevad iriais -ﬁ?i;}:,;?;gig
caling the giant magnetoresistance by G(gIRb and the width by . , e 8

the half-width, the GMR vs width curves of Fig. 2 fall onto a single
curve. The symbols are the same ones used in Figs-2c).

Half-Width (

magnet is fixed td.'/L'=5.5 in Figs. 4a) and 4c), which is

the same ratio used in Figs(a and Zc). As for Fig. 4b),

the mean free paths are equal in the surface scattering case of
Fig. 2(b): L'=L". For bulk scattering anisotropi¢gig. 4(a)]

the half-width increases almost linearly with both the thick-
ness and the mean free path. On the other hand, for surface
scattering anisotropig$ig. 4(b)] the half-width depends pri-
marily on the thickness of the film and only weakly on the
mean free paths in the ferromagnet. When both surface and
bulk scattering anisotropies are presghig. 4(c)], the de-
pendence of the half-width on the mean free path and thick-
ness can be complicated. In the region where the half-width
has a peak in Fig.(4), the GMR has a local minimum as a
function of the mean free path. The origin of this local mini-
mum comes from the near cancellation of the GMR from the
bulk and surface contributions. The location of this minimum -, 4 Haif-width as a function of the thickness and mean free

depends primarily on the transm|SS|_0n coeﬁl_czlen_ts. path in the ferromagnetL() for (a) bulk scattering,(b) surface
Although we Dbelieve the generic behavior is that thegcarering, andc) bulk and surface scattering. k) and (c) the

GMR will decrease when the multilayers are laterally con-ferromagnetic spin-up and spin-down mean free paths are kept at a

fined, one can find parameters where the GMR actually infixeq ratio, L!/L!=5.5, which is the same ratio used in Fig§a)2

creases with lateral confinement. The two ways we havend Zc). In the surface scattering case @ L' equalsL'. The
found to do this argi) have the sides of the wires introduce half-width depends both on the thickness and the mean free path for
additional spin dependence in the scattering @ndave the  all three cases. In case), bulk scattering, the half-width increases
sides of the wires selectively decrease the resistivity in th@oughly linearly with the thickness and the mean free path, while in
ferromagnet relative to the paramagnet. The idea behind bottase(b), surface scattering, the half-width depends primarily on the
of these is again that laterally confining the multilayers re-thickness of the layers. The general case when both bulk and sur-
duces the effective mean free paths within each layer. Byace scattering are importaftase(c)] can lead to complex depen-
changing the mean free paths by different amounts, one cagence on the mean free path and film thickness. The feature at small
tune the GMR. As an example, in Fig. 5 we have plotted the.! in (o) is associated with the fact that the GMR has a local
GMR vs width for two cases which differ only by the specu- minimum in this regior(see discussion in textExcept fort andL ',

larity factor at the sides of the FM. For the solid curve theWhich vary, the parameters used(®, (b), and(c) are the same as
specularity factors are 0.9 for both spin-up and spin-dowr" Fig. 2.

electrons, while for the dashed curve the specularity factor at

the sides for spin-up electrons is 0.9 and for spin-down electhat one can create a GMR device without ferromagnetic
trons is 0.5. The GMR actually increases as one decreaségnductors, but only insulating ferromagnets which change
the width of the sample because the mean free path for spifihe surface scattering.

down electrons decreases more rapidly than the mean free

path for spin-up electrons. Such spin-_dependent spe_cularity IV. CONCLUSION

factors may occur naturally or be attainable by coating the

sides of the multilayer. Allowing spin-dependent specularity In this paper we have studied the effect of lateral confine-
factors at nontransmitting interfaces opens up the possibilitynent on the giant magnetoresistance in the CIP geometry.
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0.03 — T plays a dominant role in determining the half-width, while in
\ - ] the case of GMR due solely to bulk scattering, the half-width
| S gige=0.9 increases roughly linearly with both the mean free paths in
0.02 b S’ j4e=0.5 ] the ferromagnetic wires and the thicknesses. The general
< L\ |s=09 case when both surface and bulk anisotropies are important
© \\\ / ®) can lead to more complex dependences.
001 T T . The source of the decrease in the GMR in the CIP geom-
@ s | etry is a reduction in the effective mean free path in the
layers due to scattering off the sides of the wires. We showed
000 — o0 200 300 this quantitatively by determining an effective mean free
Width (A) path within each wire and substituting it into a multilayer

calculation for films(infinite width wireg. The results of the

approximate solution and the exact solution agree quite well.
For the case of spin-dependent mean free paths we find

dependent scattering at the sides of the ferromagnet(&pthe that there are parameter regimes where the GMR in the CIP

GMR decreases with decreasing widtfolid line), whereas fofb), ~ 9€0Metry can increase as the sample is laterally confined.
the GMR increases with decreasing widttashed ling The in-  1h€ origin of the increase is again the changing of the effec-
crease of the GMR with reduced width is due to the spin-downtiveé mean free path within each layer as one decreases the
mean free path decreasing faster than the spin-up oneafare ~ Width. With spin-dependent specularity factors one can
choose the same parameters as of Fig. 2, except the mean free pa@iange the ratio of the mean free paths for spin-up and spin-
for the spin-up and down electrons in the ferromagnet are 200 andown electrons and hence change the GMR. Thus, with ap-
100 A, respectively. Fotb), we use the same parameters exceptpropriately prepared sides of the wires, one may be able to
that the specularity factors for the sides of the ferromagnet are spiicrease or at least stem the decrease in the GMR. In any
dependentS;,=0.9 andS,,.=0.5. Note that the GMR eventually case the length scale at which the reduction in the GMR
goes to zero for small enough widths because the effective meaakes place is typically quite small, of the order of the mean
free path in the paramagnet becomes much smaller than the thickree paths and the thicknesses of the layers. The effects dis-
ness of the paramagnetic layer. cussed here will not be important until one goes to very
small samples.

For spin-independent specularity factors at the sides of the

wires, the GMR decreases as one reduces the width of the

wires. For this case we found that the GMR vs width curves ACKNOWLEDGMENTS
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FIG. 5. Giant magnetoresistance as a function of width(&r
spin-independent scattering at the sides and interfatgsspin-
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