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Calculation of giant magnetoresistance in laterally confined multilayers
in the current-in-plane geometry

Kingshuk Majumdar, Jian Chen, and Selman Hershfield
Department of Physics and National High Magnetic Field Laboratory, University of Florida, 215 Williamson Hall,

Gainesville, Florida 32611
~Received 8 July 1997!

We have studied the giant magnetoresistance~GMR! for laterally confined multilayers, e.g., layers of wires,
using the classical Boltzmann equation in the current-in-plane geometry. For spin-independent specularity
factors at the sides of the wires we find that the GMR due to bulk and surface scattering decreases with lateral
confinement. The length scale at which this occurs is of the order of the film thickness and the mean free paths.
The precise prefactor depends on the relative importance of surface and bulk scattering anisotropies. For
spin-dependent specularity factors at the sides of the wires the GMR can increase in some cases with decreas-
ing width. The origin of the change in the GMR in both cases can be understood in terms of lateral confinement
changing the effective mean free paths within the layers.@S0163-1829~98!06805-2#
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I. INTRODUCTION

Electrical transport properties of magnetic multilaye
which are thin alternating layers of ferromagnets~FM’s! and
paramagnets~PM’s!, has drawn considerable interest in r
cent years.1 A large decrease in the resistivity from antipa
allel to parallel alignment of the film magnetizations h
been observed experimentally.2,3 This phenomenon is known
as the giant magnetoresistance~GMR!. The decrease in the
resistivity from antiparallel to parallel alignment arises fro
spin-dependent scattering.2 The two sources of spin depen
dent scattering in these multilayers are bulk scattering
surface scattering. There have been numerous experim
and theoretical studies to understand the physics of the g
magnetoresistance and to use it in applications.1,4

There are several theoretical approaches to transpo
magnetic multilayers. One approach is to use the phen
enological Fuchs-Sondheimer theory of thin-fil
resistance.5,6 This approach is based on the classical Bo
mann equation. Other approaches are based on the lin
response theory7–9 and the quantum Boltzmann equation.10 It
has been shown that the conductivities obtained from
classical Fuchs-Sondheimer theory are in good agreem
with the quantum results obtained via the Kubo formula11

Thus it is useful to use the semiclassical approach to un
stand the physics of the giant magnetoresistance. Furt
more, this method with spin-dependent interface scatterin12

reproduces the qualitative features of the giant magnetore
tance seen in the experiments.2,3

With the development of nanotechnology, it is becomi
important to understand the effect of lateral confinement
the GMR.13 In this paper, we address the following que
tions: ~i! Does the GMR increase or decrease with the red
tion in width? ~ii ! If there is an increase or decrease in t
GMR what causes it?~iii ! What are the relevant length scal
in the problem? We use the classical Boltzmann equatio
answer the above questions. It is important to note that
calculations only apply to the current-in-plane~CIP!
geometry—not the current-perpendicular-to-plane geome
570163-1829/98/57~5!/2950~5!/$15.00
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The layout of the rest of our paper is as follows. In Sec
a detailed description of the model and our numerical pro
dure is given. In Sec. III we present the results of our cal
lation, and Sec. IV contains the conclusion.

II. THE MODEL

The geometry of our problem is shown in Fig. 1. W
compute the current-in-plane conductivity~CIP! for a three-
wire structure stacked along theŷ direction. Both the current
and the electric field are in theẑ direction. We have two
identical ferromagnetic materials~FM! and a paramagne
~PM!. For this three-wire geometry we compute the cond
tivity in the case when the ferromagnet’s magnetizations
parallelsF , and when they are antiparallelsAF . The mag-
netoresistance is defined as the ratio of the change in
conductivity from parallel to antiparallel alignments divide
by the parallel conductivity:

FIG. 1. Schematic diagram of the three-wire structure. Wire
and 3 are the ferromagnets of thicknesstFM , and wire 2 is a para-

magnet of thicknesstPM . Current is in plane~CIP! along the ẑ

direction, and the wires are stacked in theŷ direction.S represents
the spin-independent specularity factors at the sides of the fe
magnet, and the paramagnet. To determine the distribution func
for outgoing electrons at pointr j , g(cosu,f,r j ), one must consider
all possible incoming electrons from points on the edges and in
faces, e.g., pointsr i andr k . The precise relationship is described
the text@see Eq.~9!#.
2950 © 1998 The American Physical Society



n-
a

f
-

ca

on
st
E

th
th

re

tr
ith

t

on

-
-
fa
Eq
us
s

er
tte

ing

gle
ons

pts
ary
ed
ion.
ion

l-

le

s.
e-
at

for

%

are

d:
e

sity

57 2951CALCULATION OF GIANT MAGNETORESISTANCE IN . . .
GMR512
sAF

sF
. ~1!

To calculate the conductivities for different spin alig
ments we consider the classical steady-state Boltzm
transport equation:

v–¹r f ~v,r !2
e

m
E–¹vf ~v,r !5S ] f ~v,r !

]t D
scatt

, ~2!

where f (v,r ) is the distribution function for electrons o
massm at positionr with velocity v in presence of the elec
tric field E. Because of the scattering term, Eq.~2! is com-
plicated. For simplicity we consider the case where the s
tering term is

S ] f ~v,r !

]t D
scatt

52
f ~v,r !2^ f ~v,r !&

t
, ~3!

with ^ f (v,r )& being the spherical average of the distributi
function, andt is the relaxation time. This is the simple
scattering term to represent elastic scattering. To solve
~2! with the right-hand side of Eq.~3!, we defineg(v,r ) to be
the deviation of the distribution function from its equilibrium
value:

f ~v,r !5 f eq~ uvu!1g~v,r !. ~4!

We next make the ansatz that within linear response
spherical average of the distribution function is equal to
equilibrium distribution function,̂ f (v,r )&5 f eq(uvu), i.e., the
spherical average ofg(v,r ) is zero. This will be checked
explicitly later. The linearized Boltzmann equation for a wi
labeled by an indexn is then given by

v–¹rgns~v,r !2
e

m
E–¹vf ns

eq~ uvu!52
gns~v,r !

tns
, ~5!

wheres denotes the spin of the electrons. When the elec
field is zero, Eq.~5! becomes a homogeneous equation w
the expected solution beinggns(v,r )50. For nonzero elec-
tric field, gns(v,r ) is proportional to (eE/m)¹vf ns

eq(uvu)
5eE–v] f ns

eq(uvu)/]ev . Thus, gns(2v,r )52gns(v,r ), irre-
spective of the boundary conditions, and the ansatz that
spherical average ofgns(v,r ) is zero is justified.

The general solution of the above equation14 is

gns~v,r !5gns~v,rB!e2ur2rBu/tnsuvu

1etnsE–vS ] f ns
eq

]ev
D ~12e2ur2rBu/tnsuvu!, ~6!

where rB is a point on the boundary or interface. Equati
~6! implies that to find the distribution function at positionr
with velocity v, we proceed fromr backwards alongv until
we reach a pointrB at the boundary. The distribution func
tion at the boundary,gns(v,rB), is determined by the bound
ary conditions. We recover the usual bulk value if we go
away from the boundary points. Also we can see from
~6! that the electrons lose their momentum as they diff
into the medium and the characteristic length scale for thi
just the mean free path,tnsvF , wherevF is the Fermi veloc-
ity.

We now examine the boundary conditions. At each int
face the electrons undergo either specular or diffuse sca
ing. For thenth interface, which is between wiresn and n
nn

t-

q.

e
e

ic

he

r
.
e
is

-
r-

11, we define the probability of spins electrons being dif-
fusively scattered as (12Sns), where Sns is the spin-
dependent specularity factor. The probabilities for be
specularly reflected and transmitted areSnsRns andSnsTns ,
respectively. The sum ofRns and Tns is one. The angular
dependence of the surface scattering parameter,15 the reflec-
tion coefficients, and the transmission coefficients16,17 has
been studied, but in our calculation we treat those as an
independent. With these definitions, the boundary conditi
at thenth interface can be expressed as

gns
out~v,x,yn!5SnsTnsgn21s

in ~v,x,yn!1SnsRnsgns
in ~2v,x,yn!,

~7!

gn21s
out ~2v,x,yn!5SnsTnsgns

in ~2v,x,yn!

1SnsRnsgn21s
in ~v,x,yn!, ~8!

whereyn is the position of the interface, and the superscri
out, in correspond to electrons going out from the bound
or coming in to the boundary. Similar equations are satisfi
at the sides of the wires except that there is no transmiss

We use an iterative procedure to compute the distribut
functions,gns

out(v,rB), which are nonuniform along thex̂ and

ŷ directions of the interfaces and edges~see Fig. 1!. From
Eq. ~5!, we observe that thegns

out(v,r )’s with different veloci-

ties projected along theẑ direction are decoupled. This a
lows us to discretize thegns

out(v,r ) according to cosu5vz/uvu
and solve each separately. For each cosu, gns

out(v,r ) at the
edges and the interfaces carry two more indices: an angf
and a positionr i . The gns

out(v,r )’s for different f and r i are
related via Eq.~6! and the boundary conditions given in Eq
~7! and ~8!. To illustrate this we consider the relations b
tween the distribution functions of the outgoing electrons
the first interface in Fig. 1:

g1s
out~cosu,f,r j !5S1sR1sg1s

out~cosu,2p2f,r i !e
2d1 /t1svFsinu

1S1sT1sg2s
out~cosu,f,r k!e

2d2 /t2svFsinu,

~9!

where d1 ,d2 are the path lengths projected onto thex-y
plane from one boundary to another. Initial guesses
gns

out(cosu,f,r i) are taken from the nearbygns
out@cosu

2d(cosu),f,r i #. The calculations are converged to within 1
with the total number of divisions for cosu, r i , andf chosen
asNcosu5100,Nf5500, andNi5400, respectively.

Once the distribution functions at the boundaries
known, by using Eqs.~4! and~6! the distribution function of
the electrons with momentumv at any pointr can be deter-
mined. We explicitly check that our ansatz is vali
^gns(v,r )&50. The current density along the direction of th
electric field for wiren and spins is

Jns~r !52eS m

h D 3E vzgns~v,r !d3v. ~10!

The conductivity is obtained by averaging the current den
over a cross-sectional area,A:

s5
1

EA(
n51

3

(
s5↑,↓

E Jns~x,y!dxdy. ~11!
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Finally, the giant magnetoresistance is obtained from Eq.~1!
using parallel and antiparallel alignments of the magnet
tions in Eq.~11!.

III. NUMERICAL RESULTS

We begin this section with the different input paramet
of our problem. They are the spin-dependent mean free p
in the ferromagnetL↑,↓, the mean free path in the parama
net LPM, the spin-dependent transmission coefficientsT↑,↓,
the specularity factorsS, and the thicknesses of the laye
tFM and tPM. We choose the mean free paths to be th
determined in an experiment on a Co/Cu/Co structur18

L↑555 Å, L↓5 10 Å, andLPM5 226 Å. The transmission
coefficients are obtained from an average of the transmis
coefficients calculated by Stiles:17 T↑50.8 andT↓50.4. We
take the specularity factors at all interfaces and sides to
the same:S50.9. Finally, the thicknesses are chosen to
those of Cu when the Co layers are antiferromagnetic
coupled at zero field.19 For simplicity we take the ferromag
nets to have the same thicknesses as the paramagnetstFM
5tPM.

With the above parameters the giant magnetoresistan
due to both spin anisotropies in the bulk and surface sca
ing. It is useful to consider the limiting cases when the GM
is due to only bulk scattering anisotropies or only surfa
scattering anisotropies. To do this, we consider two spe
cases:~a! when the transmission coefficients are equal:T↑

5T↓50.6 and ~b! when the bulk mean free paths in th
ferromagnet are equal:L↑5L↓517 Å. In the following these
are referred to as the~a! bulk scattering case and~b! surface
scattering case.

In Fig. 2 we plot the giant magnetoresistance as a func
of width for the three cases:~a! GMR due to bulk scattering
anisotropies,~b! GMR due to surface scattering anisotropie
and ~c! GMR due to both bulk and surface scatteri
anisotropies. In all cases the giant magnetoresistance
creases as we reduce the width. To understand this dec
with lateral confinement we consider a slab, i.e., a wire w
infinite width. Diffusive scattering at the sides of the wi
reduces the conductivity and mean free paths of the w
compared to the slab. This reduction in the conductivity
going from a slab to a wire should be comparable to
reduction in going from a bulk system to a slab with a thic
ness equal tow. The conductivity of such a slab is given by6

sslab5S ne2L

mvF
D H 12

3L

2w
~12S!

3E
0

1

d~cosu!cosusin2u
12exp~2w/Lucosuu!

@12S exp~2w/Lucosuu!#J ,

~12!

and the bulk conductivity is

sbulk5S ne2L

mvF
D , ~13!

whereL is the mean free path of the electrons. We obtain
effective mean free path,Leff , by replacingL in Eq. ~13!
with Leff such thatsbulk5sslab. The effective mean free
-
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paths can be used in a multilayer calculation with infin
width wires. The results of such an effective mean-free-p
multilayer calculation are plotted as the solid lines in Fig.
This approximation is in good agreement with the exact
sults~symbols!, and hence we conclude that the reduction
the GMR is due to a decrease in the effective mean free p
within the layers.

Although the GMR is reduced in all the cases shown
Fig. 2, the actual GMR vs width curves are different.
particular, there are different length scales at which the GM
is reduced. The width at which the GMR is half its infini
width value, GMR~wire!/GMR~slab! 51/2, is defined as the
half-width. In Fig. 3 we have rescaled the GMR vs wid
curves shown in Fig. 2 by GMR~slab! and the half-width. All
the points fall close to a single curve. This means that
half-width and the GMR for infinite width wires
GMR~slab!, determine the GMR vs width curves. We ha
also tried the same rescaling with other values ofS, which is
still the same for all sides and interfaces, and found the sa
curve.

In Figs. 4~a!–4~c! we have plotted the half-width as
function of the mean free paths in the ferromagnet and
thicknesses. Cases~a!–~c! refer to the same parameters as
Fig. 2. The ratio between the mean free paths in the fe

FIG. 2. Giant magnetoresistance of a three-wire structure a
function of width for ~a! bulk scattering,~b! surface scattering and
~c! both bulk and surface scattering. The symbols refer to differ
film thicknesses,tPM5tFM5 8 Å ~circle!, 20 Å ~box!, and 30 Å~tri-
angle!. In all cases the GMR decreases as we laterally confine
multilayers. The origin of this decrease in the GMR can be und
stood in terms of changing the effective mean free paths in
wires. As the wire width is reduced the effective mean free p
within each wire decreases. To make this more quantitative
obtain an effective mean free path for each wire and use these m
free paths in a multilayer calculation~infinite width wire!. The re-
sults, which are shown as the solid lines, are in good agreem
with the exact calculation~symbols!. For cases~a! and~c! the mean
free paths are chosen for a Co/Cu/Co structure,~Ref. 18! which has
L↑555 Å, L↓510 Å, andLPM5226 Å. For case~b!, in which only
surface scattering contributes to the GMR, we useL↑5L↓517
Å and LPM5226 Å. For cases~b! and ~c! the transmission coeffi-
cients at the interfaces are taken to beT↑50.8, T↓50.4 ~Ref. 17!,
while for case~a!, where the GMR is due only to bulk scatterin
we takeT↑5T↓50.6. The thicknesses for wire 2 are chosen to
that of Cu when the Co slabs are antiferromagnetically coup
~Ref. 19! and for simplicity we choose the Co layers to have t
same thickness as the Cu. In all cases the sides and the inter
have a specularity factorS50.9.
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magnet is fixed toL↑/L↓55.5 in Figs. 4~a! and 4~c!, which is
the same ratio used in Figs. 2~a! and 2~c!. As for Fig. 4~b!,
the mean free paths are equal in the surface scattering ca
Fig. 2~b!: L↑5L↓. For bulk scattering anisotropies@Fig. 4~a!#
the half-width increases almost linearly with both the thic
ness and the mean free path. On the other hand, for su
scattering anisotropies@Fig. 4~b!# the half-width depends pri
marily on the thickness of the film and only weakly on t
mean free paths in the ferromagnet. When both surface
bulk scattering anisotropies are present@Fig. 4~c!#, the de-
pendence of the half-width on the mean free path and th
ness can be complicated. In the region where the half-w
has a peak in Fig. 4~c!, the GMR has a local minimum as
function of the mean free path. The origin of this local min
mum comes from the near cancellation of the GMR from
bulk and surface contributions. The location of this minimu
depends primarily on the transmission coefficients.

Although we believe the generic behavior is that t
GMR will decrease when the multilayers are laterally co
fined, one can find parameters where the GMR actually
creases with lateral confinement. The two ways we h
found to do this are~i! have the sides of the wires introduc
additional spin dependence in the scattering and~ii ! have the
sides of the wires selectively decrease the resistivity in
ferromagnet relative to the paramagnet. The idea behind
of these is again that laterally confining the multilayers
duces the effective mean free paths within each layer.
changing the mean free paths by different amounts, one
tune the GMR. As an example, in Fig. 5 we have plotted
GMR vs width for two cases which differ only by the spec
larity factor at the sides of the FM. For the solid curve t
specularity factors are 0.9 for both spin-up and spin-do
electrons, while for the dashed curve the specularity facto
the sides for spin-up electrons is 0.9 and for spin-down e
trons is 0.5. The GMR actually increases as one decre
the width of the sample because the mean free path for s
down electrons decreases more rapidly than the mean
path for spin-up electrons. Such spin-dependent specul
factors may occur naturally or be attainable by coating
sides of the multilayer. Allowing spin-dependent specular
factors at nontransmitting interfaces opens up the possib

FIG. 3. Rescaled giant magnetoresistance as a function of w
For large width the GMR for a wire approaches that for an ordin
unconfined multilayer, GMR~slab!. We define the width at which
the GMR is reduced to half of GMR~slab! as the half-width. Res-
caling the giant magnetoresistance by GMR~slab! and the width by
the half-width, the GMR vs width curves of Fig. 2 fall onto a sing
curve. The symbols are the same ones used in Figs. 2~a!–2~c!.
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that one can create a GMR device without ferromagne
conductors, but only insulating ferromagnets which chan
the surface scattering.

IV. CONCLUSION

In this paper we have studied the effect of lateral confi
ment on the giant magnetoresistance in the CIP geome

h.
y

FIG. 4. Half-width as a function of the thickness and mean f
path in the ferromagnet (L↓) for ~a! bulk scattering,~b! surface
scattering, and~c! bulk and surface scattering. In~a! and ~c! the
ferromagnetic spin-up and spin-down mean free paths are kept
fixed ratio,L↑/L↓55.5, which is the same ratio used in Figs. 2~a!
and 2~c!. In the surface scattering case of~b! L↑ equalsL↓. The
half-width depends both on the thickness and the mean free pat
all three cases. In case~a!, bulk scattering, the half-width increase
roughly linearly with the thickness and the mean free path, while
case~b!, surface scattering, the half-width depends primarily on
thickness of the layers. The general case when both bulk and
face scattering are important@case~c!# can lead to complex depen
dence on the mean free path and film thickness. The feature at s
L↓ in ~c! is associated with the fact that the GMR has a lo
minimum in this region~see discussion in text!. Except fort andL↓,
which vary, the parameters used in~a!, ~b!, and~c! are the same as
in Fig. 2.
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For spin-independent specularity factors at the sides of
wires, the GMR decreases as one reduces the width of
wires. For this case we found that the GMR vs width curv
could be very nearly collapsed onto a single curve by res
ing the GMR by its infinite width value and the width by th
half-width. The half-width depends on both the mean fr
paths and the thickness of the films. In the case of the G

FIG. 5. Giant magnetoresistance as a function of width for~a!
spin-independent scattering at the sides and interfaces,~b! spin-
dependent scattering at the sides of the ferromagnet. For~a!, the
GMR decreases with decreasing width~solid line!, whereas for~b!,
the GMR increases with decreasing width~dashed line!. The in-
crease of the GMR with reduced width is due to the spin-do
mean free path decreasing faster than the spin-up one. For~a!, we
choose the same parameters as of Fig. 2, except the mean free
for the spin-up and down electrons in the ferromagnet are 200
100 Å, respectively. For~b!, we use the same parameters exc
that the specularity factors for the sides of the ferromagnet are
dependent:Sside

↑ 50.9 andSside
↓ 50.5. Note that the GMR eventuall

goes to zero for small enough widths because the effective m
free path in the paramagnet becomes much smaller than the t
ness of the paramagnetic layer.
.
la

Le

Re

n
h

.

e
he
s
l-

e
R

plays a dominant role in determining the half-width, while
the case of GMR due solely to bulk scattering, the half-wid
increases roughly linearly with both the mean free paths
the ferromagnetic wires and the thicknesses. The gen
case when both surface and bulk anisotropies are impor
can lead to more complex dependences.

The source of the decrease in the GMR in the CIP geo
etry is a reduction in the effective mean free path in t
layers due to scattering off the sides of the wires. We show
this quantitatively by determining an effective mean fr
path within each wire and substituting it into a multilay
calculation for films~infinite width wires!. The results of the
approximate solution and the exact solution agree quite w

For the case of spin-dependent mean free paths we
that there are parameter regimes where the GMR in the
geometry can increase as the sample is laterally confin
The origin of the increase is again the changing of the eff
tive mean free path within each layer as one decreases
width. With spin-dependent specularity factors one c
change the ratio of the mean free paths for spin-up and s
down electrons and hence change the GMR. Thus, with
propriately prepared sides of the wires, one may be abl
increase or at least stem the decrease in the GMR. In
case the length scale at which the reduction in the GM
takes place is typically quite small, of the order of the me
free paths and the thicknesses of the layers. The effects
cussed here will not be important until one goes to ve
small samples.
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