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Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study
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Elastic moduli and refractive index of diamond, in the temperature range 300–1600 K, are determined using
Brillouin scattering. The elastic moduli decrease by only'8% up to 1600 K, indicating that diamond retains
its reputed hardness even at high temperatures. We review the most commonly employed scattering geometries
in Brillouin scattering~viz. backscattering, 90° scattering, and platelet geometries!, and discuss in detail the
experimental errors which must be considered in each case.@S0163-1829~98!02205-X#
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I. INTRODUCTION

The strong, tetrahedrally coordinated, covalent bonds
tween nearest neighbors and the light mass of the constit
atoms lead to many striking and unique properties of d
mond, e.g., the largest elastic moduli (ci j ) known for any
material and correspondingly, the largest sound velocitie1,2

a very large Debye temperature, making it a ‘‘quantum
crystal even at room temperature.1,3,4 Its hardness and abra
sive qualities, highly valued in technology and gem indus
are controlled by the large elastic moduli.5 The diamond an-
vil cell, which has literally revolutionized high pressure r
search, exploits the extreme hardness of diamond.6 These
illustrative examples clearly underscore the importance
establishing precise values of elastic moduli and their va
tion with temperature.

It is in this context that we have measured the ela
moduli of diamond in the temperature range 300 to 1600
We note here that Zouboulis and Grimsditch7 ~see also Her-
chen and Capelli8! have reported the behavior of the Ram
active zone center optical phonon as a function of temp
ture up to 1900 K. Since the frequency (v0) of theF2g zone
center optical mode is determined by the bond stretch
(k1) and bond bending (k2) force constants which also de
termine the elastic constants, a combination of the Ram
and Brillouin results will allow the temperature dependen
of the microscopic force constants to be extracted.

The elastic moduli of a material can be measured w
great precision from the frequency shifts of monochroma
radiation inelastically scattered by the long wavelen
acoustic phonons, viz., from the Brillouin shifts.1 Determina-
tion of ultrasonic velocities from the round trip transit tim9

is the alternative technique which is equally precise. Ho
ever, Brillouin scattering offers special advantages: it is
‘‘contactless’’ technique; oriented specimens as small a
few millimeters in dimension are entirely satisfactory a
can be conveniently placed in a high-temperature envir
ment, the incident light being brought to the samples and
scattered light collected with appropriate optical windows.
contrast, the ultrasonic technique requires, for precis
large specimens and a suitable bond to the transducer.
note here that Grimsditch and Ramdas employed diam
570163-1829/98/57~5!/2889~8!/$15.00
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specimens as small as13 carat, in contrast to the 22 cara
sample used by McSkiminet al.9 Finally, the Brillouin scat-
tering geometries can be suitably devised which obviate
need for the knowledge of the refractive index in deduc
the elastic moduli from the Brillouin shifts.10

Various aspects of Brillouin scattering are consider
here. After a brief review of the fundamental and we
known aspects, we review the scattering geometries wh
were used in these experiments and present a detailed
cussion of the errors which affect Brillouin scattering expe
ments in each scattering geometry. The equations pertai
to the uncertainties are presented in the Appendix.

II. BACKGROUND

There are many excellent accounts of the theory of B
louin scattering.11,12 In the context of the present article it i
sufficient to recall that the phonons, satisfying wave vec
conservation in a given Brillouin scattering geometry in
cubic and hence optically isotropic material, have wave v
tors given by

q56~k i2ks! ; uqu562uk i u sin~u/2!, ~1!

whereq, k i , andks are the wave vectors of the phonon, a
incident and scattered light, respectively, andu is the angle
subtended byk i andks . Note that thek’s andu are defined
inside the material so that refraction effects at the surfa
are not yet included in Eq.~1!. Each phonon in a given
material is characterized by a combination ofci j ’s which we
call X5rv2 ~r density andv sound velocity!.

The frequency shifts of Brillouin components~typically
0.1– 5 cm21! make the multipassed13 tandem14 Fabry-Perot
interferometer15 the instrument of choice. In the context o
the present experiments both multipassing and tandem op
tion are crucial: multipassing provides the necessary cont
so that the Brillouin lines can be observed in the presenc
the, sometimes strong, background due to the unshifted
diation; tandem operation is necessary to reduce the bl
body radiation by eliminating the folding of successive inte
ference orders present in nontandem operation.

The furnace we used is described in detail in Refs. 16
17; it allows for both backscattering and 90° scattering
2889 © 1998 The American Physical Society
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2890 57ZOUBOULIS, GRIMSDITCH, RAMDAS, AND RODRIGUEZ
ometries to be implemented. The three diamond sam
used in our experiments were'230.530.5 mm3 in size and
had ~100!, ~010!, ~001!; ~110!, (11̄0), ~001!; and ~111!,
(11̄0), (112̄) orientations. To avoid rapid graphitization o
the samples, they were enclosed under vacuum in quartz
vettes. The highest temperature reached in these experim
was 1800 K. At these temperatures partial devitrification
the fused quartz rendered the cuvettes less transparent.
thermore, shrinking of the cuvette at temperatures hig
than 1600 K—because of the pressure difference inside
outside the cuvette—made optical focusing on the surfac
the sample extremely difficult so that data above 1600
were not reliable. Some evidence of graphitization w
barely noticeable after a few temperature cycles, particul
on the~110! faces.

The three scattering geometries we employed are sh
in Fig. 1; we shall refer to them as backscattering, 90° s
tering, and platelet geometries. The last diagram in Fig
defines the angles of incidence for more general scatte
geometries. In Fig. 1 we also show the magnitude and di
tion of the phonon wave vector derived from Eq.~1! assum-
ing no uncertainties in the geometrical setup.

In evaluating elastic moduli from the measured frequen
shifts, a number of sources of error must be considered.
rors in the measured frequency shift, error in the calcula
magnitude of the wave vector, and errors in the direction
q ~which determines the combination ofci j ’s to which the
velocity is assigned!. The only source of random error stem
from the frequency measurements; all other sources of e
being systematic, are not evident in the data themsel
Since we are not aware of any previous detailed discus
of these errors, they are presented in detail below and in
Appendix.

Sound velocities are obtained fromv5Dv/uqu so that
errors in bothDv anduqu must be considered. Random erro
in Dv arise due to statistical noise in the spectra and
resulting uncertainty in locating the position of the Brillou
peaks; it gives rise to scatter in the experimental data and

FIG. 1. Most common scattering geometries used in Brillo
scattering.~a! 90° scattering,~b! backscattering, and~c! platelet.
Diagram ~d! defines the incident and scattering angles for m
general scattering geometries. The magnitude of the wave vect
indicated for each geometry.
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be reduced by longer accumulation times and curve fitt
procedures. These errors can also be greatly reduced by
serving the Brillouin lines in higher-order interference;1,2 to
do so, however, requires the use of the interferometer w
out its tandem feature, not possible in the present exp
ments since tandem operation is needed to reduce the b
body radiation. Systematic errors inDv are possible if the
free spectral range has not been accurately calibrated; h
ever, very accurate calibration is possible using stand
spectral lamps1,2 so that this source of error can be ma
negligible and will not be considered here. Errors inuqu de-
pend on the accuracy with which the various angles in
experiment are known and therefore depend on the partic
geometry being used. The errors specific to each scatte
geometry are discussed in the Appendix. Uncertainties in
refractive index also lead to errors inuqu.

The final source of error is related to uncertainties in
direction of q relative to the crystalline axes. This depen
not only on uncertainties in the incident and scattered dir
tions, but also on the precision with which the crystal fac
are cut and polished relative to the crystal axes. The resul
error in theci j due to these ‘‘misalignments’’ also depend
on the particular phonon directions being probed. Close
propagation along high symmetry directions, the angular
pendencies of the phonon velocities possess extrema
hence do not depend strongly on small angular variatio
whereas along nonsymmetry directions the effects of m
alignment can be considerably more serious. All but one
the velocities to be reported in this work correspond to h
symmetry directions where the effects of misorientation
minimal. Even along these directions effects of misorien
tion can be clearly experimentally observed in the high re
lution experiments described in Refs. 1 and 2. However
the present case, where we have investigated only high s
metry directions, and the Brillouin lines were observed in t
same interference order as the laser line, the errors du
misalignment are negligible and will not concern us. T
single exception to this statement is the transverse mode
q along@111#. Although it is doubly degenerate along@111#,
away from @111# it splits into two modes, the splitting de
pending linearly on angle away from@111#. As discussed in
the Appendix we expect systematic errors of up to 1.5%
the combination ofci j ’s of this phonon.

Summarizing, the significant sources of error in this
vestigation are~i! random errors in the determination of Bri
louin peak positions,~ii ! systematic errors introduced by un
certainties in scattering angles, and~iii ! a possible
misalignment error for the shear mode along@111#.

III. RESULTS

In a crystal of cubic symmetry there exist only three i
dependent elastic moduli, namely,c11, c12, andc44. In our
experiments we have probed phonons along@100#, @110#,
@111# directions. The particular combinations of elas
moduli observed in a given experiment depends, through
scattering tensors, on the scattering geometry; they are s
marized in Table I. Figure 2 shows representative Brillou
spectra of diamond recorded in various scattering geome
and temperatures. The peaks are identified as longitud
(L) or transverse (T). As can be seen in the spectra, t
background due to blackbody radiation is still not a serio

e
is
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57 2891TEMPERATURE DEPENDENCE OF THE ELASTIC . . .
TABLE I. Phonon wave vector, phonons observed, and com
nation ofci j measured in various scattering geometries. Sample
B, and C refer to the~100!, ~010!, ~001!; ~110!, (11̄0), ~001!, and
~111!, (11̄0), (112̄) orientations, respectively.

Geometry and
sample

Phonon
wave vector

Observed
phonons Measuredci j

Backscattering
A

@100# L c11

Backscattering
B

@110# L (c111c1212c44)/2

Backscattering
C

@111# L (c1112c1214c44)/3

Backscattering
C

@111# T (c112c121c44)/3

90° scattering
B

@100# L c11

90° scattering
B

@100# T c44

90° scattering
A

@110# L (c111c1212c44)/2

90° scattering
A

@110# T c44

Platelet
B

@100# L c11

Platelet
B

@100# T c44

Platelet
B

@110# L (c111c1212c44)/2

Platelet
B

@110# T c44
problem at 1600 K. As mentioned in the previous section
were able to record spectra as high as 1800 K but sam
movement due to deformation of the quartz cuvettes in
duced such large errors that the results were not suitable
quantitative analysis.

The first step in the data analysis of the 90°- and ba
scattering geometries is to determine the refractive indexn.
This was done by taking the appropriate ratios of the f
quency shifts measured in the 90°- or back-scattering ge
etries to those measured in the platelet geometry. As ca
seen in Fig. 1, becauseq depends onn in the former but not
in the latter, the ratio of frequency shifts is proportional ton.
Two difficulties are immediately evident in such a schem
the spectra in different geometries are seldom recorde
exactly the same temperature and the errors inu result in
unacceptably large errors inn. The first problem is circum-
vented by fitting a quadratic to the measured frequencie
each geometry and then using the fit values to determine
ratios. The second is obviated by normalizing the value on
at room temperature to the value of 2.4293 known from
literature. The temperature dependence ofn thus determined
is shown in Fig. 3; the dotted lines were obtained from d
ferent combinations of scattering geometries and are
tended to provide the reader with a feel for the errors a
uncertainties associated with this approach. The full line
the average of all our determinations, the triangles are
perimental data,18 and the dashed line is an extrapolation
these data. Our determination ofn is in good agreement with
Ramachandran’s data.18 In fitting our Brillouin results we
have chosen to use the polynomial fit obtained in Ref. 18
its extrapolation to 1600 K, viz.,

i-
A,
-
perature are
FIG. 2. Brillouin spectra recorded at various temperatures and different scattering geometries.L andT denote longitudinal and trans
verse, respectively. No significance should be attached to relative intensities between spectra. Backgrounds observed at room tem
due to luminescence.
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2892 57ZOUBOULIS, GRIMSDITCH, RAMDAS, AND RODRIGUEZ
n~T!52.42912.231025~T2300!11.731028~T2300!2.
~2!

The increase of the index of refraction of diamond with te
perature has its origin in two distinct physical phenome
the thermal expansion and the temperature dependence o
electron band structure.19–21 The former usually produces
decrease in the refractive index but in diamond becausep11
12p12 is negative,1 it produces an increase~See footnote in
Ref. 2!: using thepi j from Ref. 1 this increase is only abou
one fifth of the measured change inn. The rest of the mea
sured change must originate in thermally induced change
the band structure. In general the change inn is expected to
be linear above half its Debye temperature. Since for d
mond QD 2246 K, over the range of our measureme
~300–1600 K!, a quadratic temperature dependence is app
priate.

With the above considerations for the refractive index a
taking the density asr53.51317.431026 T23.831028

T217.1310212T3 as deduced from the thermal expansi
data of Slack and Bartram,22 the measured frequency shif
lead to the elastic moduli shown in Figs. 4–6. The dots
our measured values; the full and dashed lines are fits t
described below.

Figures 4–6 contain all our experimental data obtained
different temperatures, different scattering geometries
for different samples. To fit the data we proceeded as
lows: each one of the three elastic moduli was assumed t
described by a quadratic of the form

ci j 5C01C1~T2300!1C2~T223002! ~3!

thereby introducing nine fitting parameters. Furthermore,
cause only the longitudinal backscattering data are free f
possible systematic errors, the data from other scattering
ometries were allowed an additional multiplicative facto
Since this factor must be the same for all phonons obse
in a given experiment, it introduces five extra fitting para
eters. All the data in Figs. 4–6 were ‘‘least squares fit’’
such a scheme and producedC0 values in agreement with
literature values. Based on this agreement the room temp
ture values in Eq.~3! were replaced with the more accura
literature2 ones, viz., c1151080.4, c125127.0, and c44

FIG. 3. Refractive index of diamond vs. temperature. The do
lines are from individual ratios of scattering geometries and
intended to provide an estimate of the experimental errors. The
line is the average of all our determinations. The triangles are
from Ref. 18 and the dashed line is the extrapolation of that da
-
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5576.6 GPa. The fitting procedure was then repeated.
this stage we found that some of the linear terms in Eq.~3!
were positive—since this appeared to be rather unphys
we attempted fits setting the linear terms to zero—the s
prising result was that the overall chi squared value of the
changed by less than 0.3% indicating essentially no dete

d
e
ll
ta
.

FIG. 4. Elastic moduli obtained in the backscattering geome
along different crystallographic directions. The lines are fits d
scribed in the text.
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57 2893TEMPERATURE DEPENDENCE OF THE ELASTIC . . .
ration of the fit quality. TheT2 coefficients for the three
constants are given in Table II. The full lines in the figur
are calculated using only the values given in Table II,
dashed lines include the additional fitting parameters wh
account for systematic errors. Note that the multiplicat
factors give us an estimate of the systematic error invol
in each particular geometry. From the values of these mu

FIG. 5. Elastic moduli obtained in the 90°-scattering geome
along different crystallographic directions. The lines are fits
scribed in the text.
e
h
e
d
i-

plicative factors the percentage systematic error for the
scattering geometry is between 0.6 and 0.9 %, while in
case of the platelet geometry it is between 1.5 and 4
These values are consistent, albeit slightly larger in one c
with the estimates made in the appendix. The systematic
ror of '1% in the shear mode along@111# is also consistent
with our estimates.

y
-

FIG. 6. Elastic moduli obtained in the platelet scattering geo
etry along different crystallographic directions. The lines are
described in the text.



tly
r

te
u
n

es
n

s
h
o
om
a

g
o
n
nl
d-
n
n

ic

re

es
s

sp

o
f

e
ce

be-
ir of
e of

the
; the

the

eri-
the
o at-
ra-
ious

’’

Ref.

of
ata
o
lso
of
ew
w

ness
e re-

ond
at

e

ar

r-

al-

2894 57ZOUBOULIS, GRIMSDITCH, RAMDAS, AND RODRIGUEZ
The volume compressibility of diamond, or equivalen
its inverse the bulk modulusB, is an important parameter fo
experimenters using diamond-anvil cells~DAC!, or other ap-
plications involving high hydrostatic pressures at eleva
temperatures. For a cubic crystal the bulk modulus is eq
to (c1112c12)/3. Using the values in Table II we obtain, i
the temperature range from 300 to 1600 K,

B~T!5444.820.000012~T223002!. ~4!

We conclude that the bulk modulus and the elastic stiffn
constants of diamond soften only by 7–9 %, when diamo
is heated from ambient temperature to 1600 K.

IV. MICROSCOPIC FORCE CONSTANTS

The temperature dependence of the elastic constant
ported here together with that of the zone center optical p
non previously reported7,8 enables an estimate to be made
the temperature changes in the force constants at the at
level. There are two well-known models that relate the R
man activeF2g frequency (v0) and elastic moduli to micro-
scopic interatomic force constants: formulated by Keatin23

and by Musgrave and Pople.24 The assumptions in the tw
models are similar but lead to slightly different expressio
for the various physical properties. Keating’s model has o
two parametersa andb related to bond stretching and ben
ing, respectively, the other model includes four force co
stants. In the following analysis we keep only the two co
stants which describe stretching and bending~k1 andk2!. We
list below expressions and values for our measured phys
properties in terms of these atomic force constants:

c1151080.4 GPa5~k116k2!/3a5~a13b!/a,

c125127.0 GPa5~k123k2!/3a5~a2b!/a,

c445576.0 GPa53k1k2 /@a~k114k2!#54ab/@a~a1b!#,

Mv0
2/8a5440 GPa5~k114k2!/3a5~a1b!/a, ~5!

wherea is the lattice constant~3.567 Å! andM the mass of
a carbon atom. Performing a least squares fit to the exp
sions and values in Eq.~5! we obtain k1 /a51090 GPa,
k2 /a5280 GPa, a/a5315 GPa, andb/a5240 GPa. In
Table III we recalculated the various constants using th
values. Considering that the models contain only two adju
able parameters and attempt to describe the complete di
sion curves, the overall agreement is reasonable.

To extract the temperature dependence of the force c
stants we assume that their temperature dependence is o

TABLE II. Temperature dependence of the three independ
elastic stiffness constants of diamond (300– 1600 K);ci j 5C0

1C2(T223002). The C0 values are taken from Ref. 2, the line
temperature coefficient is zero within experimental accuracy~see
text!, and theC2 terms are obtained from our fits.

C0(GPa) C2(1026 GPa/K2)

c11 1080.4 2296 8
c12 127.0 23618
c44 576.6 2226 7
d
al

s
d
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o-
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form k(12k8T2). The k’s were least squares fitted to th
experimental values~we ignored the temperature dependen
of c12 because of its large error, see Table II! to yield k18
54.8, k2850.8, a852.3, andb853.0 in units of 1028 K22.
The uncertainty in these temperature coefficients is large
cause there is a very strong correlation between each pa
values: equivalent fits can be obtained by decreasing on
the values and increasing the other. Nonetheless, using
above values we have recalculated the experimental ones
results are summarized in Table IV. We note that, for
experimental value of (Dv0

2/T2v0
2) given in Table IV, it can

be shown that the temperature dependence ofa can be ig-
nored. Given the substantial discrepancies between exp
ment and fit values in Table IV and the uncertainties in
parameters themselves, it does not seem reasonable t
tribute any quantitative physical significance to the tempe
ture dependence of the force constants other than the obv
decrease as temperature increases.

V. CONCLUSIONS

In the literature, the interesting subject of the ‘‘obvious
relation between the elastic moduli and the hardness (H) of
a material has received the most detailed discussion in
5. The author makes a universal plot of logH ~Moh’s hard-
ness! of different materials vs the corresponding value
log c11, and discovers that a straight line through the d
yields c11 a H7/4. The author cautions the reader ‘‘not t
attach any great significance to this relation’’ but he a
points out that ‘‘it may be useful in indicating the order
magnitude to be expected for an elastic constant in a n
substance.’’ If we consider diamond at 1600 K as ‘‘ne
substance,’’ we can estimate the decrease in its hard
compared with the hardness at ambient temperature. Th
sult is H(1600 K);0.96H(300 K). Although this is only a
rough estimate, it nevertheless tends to indicate that diam
‘‘conserves’’ a large portion of its reputed hardness even
temperatures as high as 1600 K.

nt TABLE III. Comparison of experimental and calculated prope
ties based on the Keating~Ref. 23! and Musgrave-Pople~Ref. 24!
models. The force constants used arek1 /a51090 GPa, k2 /a
5280 GPa,a/a5315 GPa, andb/a5240 GPa.

Model c11 c12 c44 Mv0
2/8a

Experimental 1080.4 127.0 576.6 440
Keating 1035 75 544 555
Musgrave-Pople 923 83 414 736

TABLE IV. Temperature dependence of elastic properties c
culated atT51600 K. We have usedk1854.8, k2850.8, a852.3,
andb853.0 in units of 1028 K2. Values in the table are given in
the same units.

Model Dc11/T2c11 Dc44/T2c44 Dv0
2/T2 v0

2

Experimental 2.560.6 3.561.2 2.160.1
Keating 2.8 2.7 2.6
Musgrave-Pople 2.4 2.8 2.8
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57 2895TEMPERATURE DEPENDENCE OF THE ELASTIC . . .
Finally, we cite two more references~Refs. 25 and 26! in
which the phenomenological hardness of a crystal is rela
to an ‘‘elastic coefficient.’’ In Ref. 25 the author relates t
‘‘shear modulus’’ of a crystal with its phenomenologic
hardness, while the authors of Ref. 26 correlate ‘‘Youn
modulus’’ of a crystal with its phenomenological hardne
Both of these elastic moduli can be expressed as comb
tions of theci j of the material. The relation is linear on
log-log scale in Ref. 25, and almost linear—with a positi
second derivative in the region of large Young
modulus—in Ref. 26. Irrespective of which approach
adopted our elastic moduli indicate only a small loss of ha
ness at high temperatures.
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APPENDIX

In discussing the directions of the wavevectors of the
cident and scattered light it is necessary to distinguish
tween directions inside and outside the sample. In the
lowing, superscriptse and i will be used to designate
parameters external and internal to the sample. Outside
sample it is trivial to determine the direction of the incide
beam relative to a sample surface since one usually d
with a well collimated laser beam. The direction of the sc
tered beam is less easy to establish: it is not always exa
along the line joining the center of the collection lens to t
entrance pinhole. Although methods can be devised to a
rately establish the ‘‘center’’ of the scattered beam direct
~usually involving auxiliary laser beams and/or retrorefle
tion from the interferometer mirrors!, this procedure be-
comes unwieldy when a furnace or a cryostat is utilized.
example, a 1 mmadjustment made to a 35 mm collectio
lens translates into an error of 1.5° in the direction ofks . In
many cases, especially with samples placed in cryostat
furnaces, errors of this magnitude may be unavoidable. S
the effect of this uncertainty is different for the differe
scattering geometries we discuss them individually below

~i! Backscattering. The diagram for backscattering show
in Fig. 1~b! is the strict definition whenki and ks are anti-
parallel and normal to the surface. In general the term ba
scattering is used whenever the incident and scattered
enter and leave the sample through the same surface. I
incident and scattered beams subtend anglesu i

e andus
e with

the surface normal@see Fig. 1~d!# it is trivial to calculateu i
i

andus
i using Snell’s law. As mentioned above the error inu i

e

can usually be made quite small by appropriate use of
roreflection of the incident laser beam. Let the error inus

e be
d ~typically '1.5° as mentioned above!. From Eq. ~1! it
follows that

Dq/q'~d/n!21~d/n!sin~u i
i2us

i ! ~A1!
d

s
.
a-

-

-
8
i-

-
e-
l-

he
t
ls

-
tly

u-
n
-

r

or
ce

k-
ht
he

t-

~where d is expressed in radians!. In our experiments, in
order to avoid the direct reflection of the laser beam into
spectrometer, we usedu i

e5us
e510°. This translates into an

error of around 0.3% inq which can be neglected compare
to the random errors inDv.

It is also easy to show that, in this geometry,q makes an
angle of (u i

i1us
i )/26d/2n with the surface normal, in ou

case'4°. As discussed in the main text, this misalignme
has a negligible effect ('0.4%) on the combination ofci j
near an extremum. For the transverse mode along@111#,
however, it leads, using the knownci j to calculate the angu
lar dependencies of the velocities, to a 1.5% uncertain
When evaluating the combination ofci j ’s which enters the
expression for the velocity it must also be recalled that,
less the surface is prepared by cleavage, the normal to
surface may not coincide exactly with the desired crysta
graphic direction. Samples oriented with Laue x-ray pho
graphs can often be off by a few degrees.

~ii ! 90° scattering. The ideal 90°-scattering geometry
shown in Fig. 1~a!. It assumes that the incident and scatter
light are exactly at 90° and that the entrance and exit fa
on the sample are also exactly at 90°. Let the error in th
two angles bed and «, respectively. It is easy to show tha
the ~internal! scattering angleu, defined in Eq.~1! is

u5902«1«/n1d/n, ~A2!

so that the error inq is

Dq/q5~2«1«/n1d/n!/2. ~A3!

Uncertainties of 1° in« and d lead to systematic errors o
around 1% inq and in the velocities; the resulting error i
the ci j is '2%. If the sample is accurately cut so that«
50 the errors in velocity andci j ’s are 0.5 and 1%, respec
tively. The uncertainty in the direction ofq will again de-
pend trivially on « and d and also on the accuracy wit
which the sample faces are known relative to the crysta
graphic axes. These two latter effects lead to negligible
rors in our case.

~iii ! Platelet. The ideal platelet geometry is shown in Fi
1~c!. Since it is relatively easy to fabricate samples w
accurately parallel faces, it is usually safe to ignore the e
resulting from nonparallelicity. The usually relevant unce
tainties are in the~external! scattering angled and the re-
quirement that the sample bisect the incident and scatt
directions. Let us assume that the incident beam make
angle of 451z with the surface normal. It is convenient i
this geometry to consider the components ofq parallel and
perpendicular to the sample faces. Simple geometrical c
siderations yield

qi5kL@sin~451z!1sin~452z1d!#. ~A4!

If z andd are small,

qi5&kL~11d/2! ~A5!

and
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Dqi /qi5d/2. ~A6!

Notice that the error inuqu does not depend onz and thatd
51° leads to a'1% error inq, 2% in ci j .

The component ofq perpendicular to the film is, to firs
order in the angles,

qperp5kL~d/22z!/n. ~A7!
This then has no effect, to first order, on the magnitude oq
but determines that the phonon propagation direction is a
angle (d/22z)/(&n) from the plane of the platelet. In an
unconstrained geometry one can usually achieve to keez
below 61°, in a constrained geometry~e.g., inside a fur-
nace! values ofz could be even as large as65°. Close to
directions of the extrema, even such large uncertaintiesz
lead to negligible errors in the combinations ofci j .
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Physics, Zografou 15780, Greece.

1M. H. Grimsditch and A. K. Ramdas, Phys. Rev. B11, 3139
~1975!.

2R. Vogelgesang, A. K. Ramdas, S. Rodriguez, M. Grimsditch
and T. R. Anthony, Phys. Rev. B54, 3989~1996!. In this Ref. it
was stated thatn(x)52.4293010.00017x, wherex is the con-
centration of13C. This equation incorrectly indicates an increase
in n as the volume decreases. The correct expression isn(x)
52.4293020.00017x; this change has no discernible effect on
the results presented there.

3D. L. Burk and S. A. Friedberg, Phys. Rev.111, 1275~1958!.
4J. E. Desnoyers and J. A. Morrison, Philos. Mag.3, 42 ~1958!.
5The Properties of Diamond, edited by J. E. Field~Academic, New

York, 1979!. For hardness in relation to elastic moduli, see, W
A. Wooster, Rep. Prog. Phys.16, 62 ~1953!, in particular Fig.
13.

6A. Jayaraman, Rev. Sci. Instrum.57, 1013~1986!.
7E. S. Zouboulis and M. Grimsditch, Phys. Rev. B43, 12 490

~1991!.
8H. Herchen and M. A. Cappelli, Phys. Rev. B43, 11 740~1991!.
9H. J. McSkimin and W. L. Bond, Phys. Rev.105, 116~1957!; H.

J. McSkimin and P. Andreatch, J. Appl. Phys.43, 2944~1972!;
H. J. McSkimin, P. Andreatch, and P. Glynn,ibid. 43, 985
~1972!.

10J. Sandercock,Festkörperprobleme, Vol. XV of Advances in
Solid State Physics~Pergamon, Braunschweig, 1975!, p. 183.

11M. Born and K. Huang,Dynamical Theory of Crystal Lattices
~Oxford University Press, London, 1968!.
of

,

.

12W. Hayes and R. Loudon,Scattering of Light by Crystals~Wiley,
New York, 1978!.

13J. Sandercock, inProceedings of the 2nd International Confer-
ence on Light Scattering in Solids, edited by M. Balkanski
~Flammarion Sciences, Paris, 1971!, p. 9.

14J. G. Dill, N. C. J. A. van Hijiniugen, F. van Dorst, and R. M.
Aarts, Appl. Opt.20, 1374~1981!.

15J. G. Sandercock, inLight Scattering in Solids III, Vol. 51 of
Topics in Applied Physics, edited by M. Cardona and G.
Guuntherodt~Springer, Berlin, 1982!, p. 173.

16E. S. Zouboulis and M. Grimsditch, J. Geophys. Res.96, 4167
~1991!.

17E. S. Zouboulis and M. Grimsditch, J. Appl. Phys.70, 772
~1991!.

18G. N. Ramachandran, Proc. Ind. Acad. Sci. A25, 266 ~1947!.
19P. Y. Yu and M. Cardona, Phys. Rev. B2, 3193~1970!.
20Y. Tsay, B. Bendow, and S. S. Mitra, Phys. Rev. B8, 2688

~1973!.
21S.-Y. Zhu, Y.-L. Chen, and J.-X. Fang, Phys. Rev. B35, 2980

~1987!.
22G. A. Slack and S. F. Bartram, J. Appl. Phys.46, 89 ~1975!.
23P. N. Keating, Phys. Rev.145, 637 ~1966!.
24M. J. P. Musgrave and J. A. Pople, Proc. R. Soc. London, Ser. A

268, 474 ~1962!.
25A. P. Gerk, J. Mater. Sci.12, 735 ~1977!.
26A. Szymanski and J. M. Szymanski,Hardness Estimation of Min-

erals, Rocks and Ceramic Materials, Materials Science Mono-
graphs No. 49~Elsevier, New York, 1989!, p. 269.


