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Density of neutral solitons in weakly disordered Peierls chains
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We study the effects of weak off-diagonal disorder on Peierls systems with a doubly degenerate ground
state. We show that for these systems disorder in the electron hopping amplitudes induces a finite density of
solitons in the minimal-energy lattice configuration of a single chain. These disorder-induced dimerization
kinks are neutral and have spi Using a continuum model for the Peierls chain and treating the lattice
classically, we analytically calculate the average free energy and density of kinks. We compare these results to
numerical calculations for a discrete model and discuss the implications of the kinks for the optical and
magnetic properties of the conjugated polyrtrans-polyacetylene[S0163-1828)05405-§

[. INTRODUCTION that theZ, symmetry in one-dimensional systems can be
spontaneously broken only @t=0. At any nonzero tempera-
Recently we considered the effects of weak disorder irture the symmetry is restored by thermally induced kinks. In
the electron hopping amplitudes on the lattice configuratiorthis case the kink creation energy is compensated by its large
of Peierls systems with a doubly degenerate ground statentropy, as kinks can be located at any place in the chain.
using the conjugated polymerrans-polyacetylene as an The topological nature of kinks is responsible for the de-
example! In the absence of disorder the ground state of astruction of the long-range order in isolated Peierls chains,
trans-polyacetylene chain is uniformly dimerized due to theboth at arbitrarily small temperature and at arbitrarily weak
interaction of the lattice with the half-filled band af elec-  disorder.
trons propagating along the chdiThe ground-state energy In this paper we put a firm basis under the results which
is independent of the sign of the dimerization, i.e., it is equalwe obtained through simple scaling arguments in Ref. 1, by
for the two carbon-carbon bond alternations . -long-  giving a detailed calculation of the free energy and the den-
short-long-short. .. and .. -short-long-short-long. ...  sity of kinks for half-filled Peierls chains with off-diagonal
Disorder in the electron hopping amplitudes, originating,disorder. The continuum model describing such chains is in-
e.g., from random twists of bonds, removes this degeneracyroduced in Sec. Il. In Sec. lll we briefly repeat the argu-
This can be understood from the fact that such conformaments of Ref. 1, showing that the energy of a disordered
tional disorder reduces the overlap between the electron ochain can be decreased by creating a kink-antikink pair. This
bitals of neighboring carbon atoms and thus increases thienplies a special role of kinks. In Sec. IV we consider the
chain energy. The energy increase is less for the long bondsartition function of a disordered chain, treating the lattice
(with relatively small hopping amplitudgthan for the stron-  classically. Integrating out small lattice fluctuations, we ob-
ger short bonds. tain an effective free energy describing kinks. The details of
Due to the random nature of the disorder fluctuations, théhis integration can be found in the Appendix. We then use
preferable sign of the dimerization varies along the chainthe transfer-matrix approach to reduce the averaging of the
This explains why domain wall&kinks), separating regions chain’s free energy over the disorder realizations to the av-
with positive and negative dimerization, can be stabilized byeraging of the wave function that describes the relaxation of
disorder*3#While in the absence of disorder, kinksr soli-  a spin 1/2 in a magnetic field with one random component.
tong are topological excitations with a rather high energy For long chains, the latter average can be calculated analyti-
(~0.5 eV in the case dfanspolyacetyleng they do appear cally. The derivative of the thus obtained free energy with
in the minimal-energy lattice configuration of a disorderedrespect to the chemical potential of kinks gives the average
chain. This was first noted in numerical simulations of thedensity of kinks, induced both thermally and by disorder
Su-Schrieffer-HeergefSSH model®* The large kink en- (Sec. V).
ergy is compensated by adjusting the sign of the chain As we shall see, in the continuum model with white
dimerization to the disorder fluctuations in the intervals be-Gaussian disorder and a classical lattice, the entropy of kinks
tween the kinks. The weaker the disorder, the longer thdecomes negative below a certain temperaliyevhich de-
distance between neighboring domain walls has to bepends on the disorder strength. Therefore, in Sec. VI we also
Simple arguments, based on an estimate of the size of th&udy the generation of kinks by disorder in a discrete model,
typical disorder fluctuation that stabilizes a kink-antikink which does not suffer from this pathology. The discrete
pair, show that at weak disorder the average density ofmodel is the one-dimensional random-field Ising model
disorder-induced kinks in the minimal-energy lattice con-(RFIM). It was realized long ago by Imry and Mathat
figuration is proportional to the strength of the disortler.  kinks destroy the long-range order in this model even at zero
The effect of off-diagonal disorder on a Peierls chain istemperature. We present results of numerical simulations of
similar to the effect of nonzero temperature. It is well knownthe average density of kinks in the RFIM as a function of
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both the disorder strength and temperature and compare tdote, that while the random chain twists always decrease the
the analytical results for the continuum model. In Sec. VIlhopping amplitudes &, n+1<0), 7(x) can be both posi-
we summarize and conclude. We also connect to previousve and negative, as it is the alternating part of the fluctua-
work and discuss the effects of disorder-induced kinks on thé&ons.

optical and magnetic properties of quasi-one-dimensional The Hamiltonian of the continuum model has the form

Peierls systems.
HIA (%), 7(X) ]=Ead A X) [+ He[A(X)]. (8

Il. CONTINUUM MODEL OF A DISORDERED The first term is the harmonic lattice energy,
PEIERLS CHAIN

We start by considering a tight-binding model that de- ElaT[Alat(x)]:Lf dXA (X)2, (9
scribes the hopping of electrons along a chain of atoms. The TAVE

electron hopping amplitudes depend on the interatomic dis\?vhere)\=4a2/wtoK is the dimensionless electron-phonon
tances and the relative orientation of the electronic Orbital%oupling constantk is the spring constant g = 2at, is the

on neighboring atoms. Therefore, the hopping amplitudes arg, .« \alue of the Fermi velocity, and we get 1 (cf. Ref.
affected by both the Iattice.motio(mhe displa_cement. of the 6). In this paper we treat the lattice classically, i.e., we dis-
atoms parallel to the chainand conformational disorder oqa14 the lattice kinetic energy, which is reasonable for
(chain twist3. Let t, denote the hopping amplitude between pains of sufficiently heavy atoms. It should be noted that for
neighboring atoms in a perfect rigid chain of equidistant at'transpolyacetylene, which consists of relatively light CH

oms with lattice constard. The_:n, in the presence of at'omic groups, quantum lattice effects may be rather importat®.
displacements and conformational disorder, the hopping am- 1a electrons in the continuum model are described by
plitudes may be written

wla(x) )

tm1=toT @(Un—=Umni1) + tmmer- 1) W (X)=( Yoo (X)
a 20

Here, the second term is the SSH-type of electron-phonon

interactionz, with the coupling constani andur, being the  \yhere the two amplitudeg,,(x) and ¢, (X) correspond to
displacement of thenth atom from its uniform-lattice posi- particles moving, respectively, to the right and to the left

tion. The third term is a random contribution resulting from ith the (bare Fermi velocityvg, ando is the spin projec-
the conformational disorder. While the lattice displacements;jqy.

Uy are dynamic variables, we will assume that the fluctua- The electron Hamiltonian has the form
tions 6t -1 are frozen(*quenched” disordey.

The Peierls order parameter is the alternating part of the R ve d
hopping amplitudes He[A(X)]= Zﬂ f Xmﬁo(X)(i—Us&JrA(X)Ul Po(X)
A(2ma)=tym_1.om— tomam+1: 2 +Hepel- (10)
which consists of two parts The first term describes the motion of electrons in the pres-

ence of both the chain distortion and the disordey &ndo;

A(2ma)=Ajx(2ma) + 7(2ma). C) are the Pauli matriceswhile the second term describes the

The first part is the lattice dimerization (Coulomb interactions between electrons. Apart from the
disorder and the electron-electron interaction term the

A(2ma) = (Uo7 2Uom+ Usma 1), (4) Hamiltonian of our model is the same as the Hamiltonian of

the continuum version of the SSH model.
which describes the alternating part of the hopping amplitude |n the absence of disorder tlikalf-filled) chain reaches
determined by the shifts,, of the atoms and is the usual its minimal energy in either one of two uniformly dimerized
order parameter of the SSH model. The second term in EqconfigurationsA,,(x)==*=A,. This Peierls instability was

(3) describes the disorder initially found for noninteracting electrofs (Hg.q=0). It
also occurs, however, in the presence of electron-electron
7(2ma) = dtom—1,an— Momams1- (5 interactions like, e.g., the on-site Hubbard repulsidn

We assume the random variations of the hopping amplitudevsvhICh opens a gap fpr charge excitations, bmthe absencg
: . of electron-phonon interactiprieaves the spectrum of spin
St on different bonds to be independent.

excitations gaples$—1*Numerical calculations have shown

For weak electron-phonon coupling and small disorder wi :
) . - hat a moderately largg can even increase the value of the
can, in analogy to Ref. 6, use a continuum description of__ . : AT .
: . attice dimerization®>~'” As we shall shortly see, the exis-
both electrons and lattice with the order parameter d L
tence of two degenerate ground states, which also implies the
AGO= Al X) + 7(X). 6 e?qstence_ of kink slolutlons, is cru.mal for the appearance of
() =A1a) + 7(x) © disorder-induced kinks. The precise form ldf,. does not
Here,A () is the continuum analog of E¢4) and n(x) is  affect this basic phenomenon; it only is important to the
the white noise disorder: extent that it determines the value/®d§ and the kink energy.
Therefore, in this paper we do not specify the expression for

(n(X)n(y))=Ad(Xx~Y). (7)  Hepel-
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+A soliton has lower energ}:* Since the on-site Coulomb re-
424 Zs Zs 2 pulsion intranspolyacetylene is appreciab?%,we will as-
- - — —\|- sume that only neutral kinks are induced by disorder.
Next we find the change of the energy of a multikink
-4y configuration due to weak disorder. We will denote the lat-
tice configuration containingN kinks, whose positions are
described by théN-dimensional vector=(z;,z,, .. .,z\),

'?G' 1t'. Ordt_atrhparameli_erkalong a Peierlz Chati” tfr?r E_ rT;Ultikinkby An(X|2). To first order in7(x), the correction to the
configuration with seven kinkg; 2, . ... z7, denote the kink po- oo "ot the configuration reads

sitions.

2
An important property of the dimerized Peierls state is the SEN=— —f dxAn(X|2) p(x), (14)
existence of gaps in the spectra of spin and charge excita- TAUE
tions. For free electronsHc.,=0) both gaps are equal, where the extremum condition for the configuratibg(x|2)
while in the presence of Coulomb repulsion the spin gap iyt zero disorder was used

14 . .
smaller than the charge gap:*In what follows, we will For instance, the change of the energy of the uniformly

assume the temperature to be much smaller than the Spiimerized configuratiofi(x)=A,] due to disorder is
gap, so that we can neglect electronic excitations and replace

Ho[A(X)] by its ground-state expectation valgadiabatic 2A,
approximation, 5Eo:—mj dxn(x), (19
Eel A(X)]=(0[He[A(X)]]0). (1) while for the configuration with an antikink a and a kink
atz,, such that the whole disorder fluctuation lies betwegn
Ill. STABILIZATION OF KINKS BY and z,, the change of energy equad&,= — SE,, because
OFF-DIAGONAL DISORDER betweenz, andz, A,(x|z1,2,)~—A,. We thus see that in

the disordered chain, the configuration obtained by the per-

For the sake of completeness, we briefly repeat in thig mation of a kink-antikink pair is energetically favorable to
section the arguments of Ref. 1, which show that the lowestg, o perturbed uniform configuration if

energy lattice configuration in the presence of disorder may
contain kinks.
At zero temperature the lattice configuration, i%&,(x), —f dxn(X)> YA vE . (16)
has to be found by minimizing the total chain energy,
Here we introduced, = wu/(2A,), which for free electrons
E[ApdX), 7(X)]=Ee[A(X) ]+ Euf Al(¥) ], (12 (SSH model equals 1. Since the fluctuations Jisdxz(x)

with respect toA (x) at a given disorder realization(x). grow W!th the chain sizé., fqr a sufficigntly long chain the
This makesA (x) implicitly dependent ory(x). inequality Eq.(16) can certainly be fulfilled, no matter how

As noted in Sec. II, in the absence of disorder the totaPMall the disorderis. - -
energy of a half-filed chain has two minima(x)=* A, We note that in addition to multikink configurations, also

corresponding to two uniformly dimerized configurations nontopological lattice configurations exist that are extrema of
with the same energy. Apart from the minima, there are in{h€ total chain energy. An example is the polafbf: How-

finitely many lattice configurations that are nearly perfectever’ since the polaron disturbs the lattice only locally, in an

extrema of the total energy. These are the multikink configuinterval of lengthl ~ &, (where, is the correlation lengtha

rations, in which a sequence of solitons and antisolitons indisorder fluctuation having large magnitude in this interval is

terpolate betweer A, and + A, and vice versaFig. 1). A needed to stabilize it. At weak disorder the probability den-
kink is locally stable, i.e., the chain energy increases, whenity of such a fluctuation is exponentially small. On the other

its form is perturbed. The energy of a multikink configura- hand, the disorder fluctuations stabilizing kinks, i.e., those

tion can be decreased only by changing the distances b nat satisfy Eq(1_6), can he_lve S’.“a” magnitudg compensated
tween the kinks. However, when the separation betweeRY a large spatial extension given by the distance between

neighboring kinks is large compared to their siaich is of neighboring kinks. The weight of such a fluctuation grows
the order of the correlation lengty=v/A,),2 the change with its length and becomes of the order unity if the length

of the energy caused by shifts of the kinks is exponentiall)f‘\_quals the average distance between the disorder-induced

small, so that the energy of the configuration whtrkinks is kinks! In other words, the fluctuations that stabilize kinks
appr(),ximately are not at all suppressed. This is why in what follows we take

into account only multikink configurations, disregarding all
En=Eo+Ngu. (13)  other large variations of the Peierls order parameter.

Here, u is the energy needed to create a single Kakout IV. FREE ENERGY OF DISORDERED CHAINS
0.5 eV fortrans-polyacetylengandE, is the chain energy in '

the absence of kinks. The kinks can be either charged and We start by considering the partition function of a weakly

spinless, or neutral with spif? In the SSH model ..,  disordered Peierls chain. As was mentioned above, we treat
=0), both types have the same enefgif;the Coulomb the lattice classically and assume the temperature to be suf-
repulsion between electrons is taken into account, the neutrficiently small to neglect electron excitations across the gap.



2864 M. V. MOSTOVOY, M. T. FIGGE, AND J. KNOESTER 57

The partition function is then given by the weighted sum 2A¢
over all possible lattice configurations K= : (22
7T)\U|:
Z[ n(x)]:j DA exp — BE[Ad(X), 7(X) ]}, (17) In the absence of disorder(x) =0) the integration over

the kink positions in Eq(21) is trivial and the free energy

and is a functional of the disorder realizatioffx). In Eq.  ¢&n be easily found,

(17) we have omitted the part related to the kinetic energy of

the Iz_ittice, as uI_timater we will only be interested in the Fu 7(x)=0]=—

density of kinks in the chain. d(mp
It is, of course, impossible to perform the integration over

A(x) in the partition function exactly, since even the de-

pendence of the electron energy &fx) is, in general, not

known. However, when the temperature tends to zero, only 1 9F 1

the lattice configurations near the absolute minimum of the therm=— — =———€

chain energy contribute significantly to the partition func- L du d(T)

tion. As we discussed in the previous section, in the presence exponentially small aT = 8~ 1< . This condition, which

o wesk dicrter he i enero i confuralon Swas lready sssumed to o n writng BQQ s ahays
9 ) y met for solitons intrans-polyacetylene £~ 0.5 eV).

it contains and where they are located depends)0g. To Disorder breaks the translational invariance. Nevertheless,

make sure.that for.any (;hsor(:!er realization we take all Mine integration over the positions of kinks and the sum over
portant lattice configurations into account, we perform th

integration in Eq.(17) over A(x) close to all possible mul- €heir number can be performed immediately, by noting that

tikink configurations. Thus, we first perform the saddIe—pointclfrqd'éial()j cea)\(r;)gr?evr\::;;t;en in terms of the matrix elements of an
integration near the configuratidny(x|z) with fixed number

e hr, (23

In this case there are only thermally induced kinks and their
density

*ﬁu, (24)

and positions of kinks, and then we integrate over the posi- 1 L
tionsz;<z,< ...<zy of the kinks and sum over their num- Filn(x)]=— EInE < v'| T exp{ f dx
ber N. v,v' 0

The details of the saddle-point calculation are contained
in the Appendix. The resulting expression for the free energy X[¢{(X)o3+poq] v> , (25
of a chain with disorder realization(x) is

_ where {(x) =Bk n(x), p=e~P#/d(T), and|v) is an eigen-
FLn(0]1=Fot Fal 7001, (18 \ector of the Pauli matrixrs,
where the first term is the free energy of a chain without
kinks and at zero disorder, and the second term is given by oslv)=v|v).
1 The sum in Eq(25) overv,v»'==*1 corresponds to the sum

> ! f szexp[ _,B(MN over all possible signs of the dimerization at the chain ends.
N d(T)N We stress that this choice of boundary conditions is a matter
of convenience and does not affect our final result for the
density of solitons. The ordered exponential describes the
evolution (in imaginary timex) of a spin 1/2 in a magnetic
field, which has a constamtcomponent and a random time-
Hered(T) is a variable having dimension of length defined dependentz component. The corresponding time-dependent
by Eq. (A17). Hamiltonian is

We assume the size of the kinks to be much smaller than
the average distance between them. In this case the kinks can H(X)={(X)o3+poy. (26)
be replaced by abrupt steps,

F1[77(X)]=—E|n

. (19

2
—mf dXAN(X|Z)77(X)>]

Kinks induced in a disordered chain correspond to spin flips

N and the sum over all possible numbers of kinks and the in-
AN(x|z)—>AOfN(x|z)EA0H sgn(z,—X). (200  tegration over their positions in Eq21) correspond to the
n=1 expansion of the evolution operator in E85) in powers of

the random magnetic field.
It is now convenient to rotate the “coordinate” frame by
1 an angler/2 arounde,, which transforms the Hamiltonian
% f szexp{ - B( uN into

d(m™

Equation(19) can then be rewritten as

1
F1[77(X)]=—E|n

, . T
H'(x)=ex I 702 Hex —ig 02 =—{({(X)o1tpos.

: 21
(21) @7

| dfo<x|z>n<x>)}

where we introduced The expression for the free energy then becomes
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1
F1[77(X)]=—E|n

L
2<+ Tex;{j dxH’(x)
0

1
=—Eln(2d/1(L)),

'

where we introduced the wave function of the spj{x)

= ("1 which satisfies the equation
v,007 q

(28)

de

o =M 00d, 29)

with the initial condition¢(0)=(é).
We now introducey(x) and ¢(x), such that

[
s

The equation fow (x),

(30

1 dv

5 &:PCOSPW’), (31

can be easily integrated, yielding

L)) exr{p JOdecosr(¢>(x)) .

wT(L)=COS|’< ¢(2

(32

The equation fors(x) has the form of a Langevin equatfon

d¢  dU(¢)
- o +f(x), (33
with the potential
U(¢)=2pcosh o), (34
and the random force
f(X)=—=2L(x)=2Bkn(X). (395

Since the potentidl (¢) grows at¢— *x, the distribu-

tion of ¢ at largex tends to the equilibrium distribution,

given by the Boltzmann formula

peq(¢)=eu(¢)/Tf/ J'Mdd,efu(d))/Tf_

where the effective temperatur@;=2A(B«k)?, is deter-
mined by the correlation function of the random force

(FOOf(y))=4A(BK)?8(x—y)= (37

(36)

2T;6(x—y).

Assuming the chain length to be much larger than the
average distance between kinks, we can use the equilibrium
distribution function Eq(36) to average the free energy over

the disorder. Using Eq¥28) and (32) and neglecting 1/
terms, we obtain

Lp
(F)=Fo— ?<COSK¢)>eq- (39

2865

The average of coskf over the equilibrium distribution
function Eq.(36) can be expressed in terms of the modified
Bessel functions,

Ki(2)

K (z)’ (39)

(oSt ))ee | dPef )cosH )=
with z=2p/T;xcexp(—Bu). As we assumed before already
that T<u, we can use the approximate expressions for the
modified Bessel functions at small value of the argunzent
The average free energy of a disordered Peierls chain can
then be written in the form

Fy=Fo—Lal 220 | ! 40
(F)=Fo m\vg) p+(32)TIn(eT,/T)’ (40
where the temperaturg, is defined by
1 [ 4AA3 m
enve| wyer)

andy=1.78102. .., is theexponential of Euler's constant.

V. AVERAGE DENSITY OF KINKS

We now turn to the average densityof disorder-induced
kinks, which is obtained by differentiating the free energy
Eq. (40) with respect tou [cf. Eq. (24)]. This leads to

A 1
= : (42)
(vihvg)? [1+(3T/2w)In(eTy/T)]?
which at zero temperature reduces to
n(T=0)= (43

(yihvp)?

This zero-temperature result was derived in Ref. 1 by using
scaling arguments.

Strictly speaking, however, we cannot Set0 in our
general result, because for< T, the entropy of kinks,

ol

becomes negative and the density of kinks increases with
decreasing temperature. We note that in the expression for
the free energy Eq40), the kink energyu is effectively
replaced by

<Sk|nk> (44)

T)= ot oin| &0 45
This can be readily understood as follows. Each kink enters
in the expression Eq18) with a weight
efﬁ/vb(-r)—ﬂe Br

d(T) '

wherel(T) is the typical size of the thermal fluctuation of
the kink position. For the white noise disorder that we con-
sider,I(T) can be estimated from the condition

(Br)ZAI(T)~

(46)

(47)
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1.25 with

!

2A, (ZdA) 12
= — . (50)

O_ﬂ'e)\vp Y

The density of disorder-induced kinks is then found to be

A 1
N e [1+ (2T w)in(e Ty T)

(51

wM/u

Obviously, this result has the same zero-temperature limit
0.75 as Eq.(42) and it also shows a similar pathology below a
certain temperature, which now is given By. Only if we
discretize the kink positions on the lattice with constent
will we indeed obtain a classical model that also at low tem-
peratures gives sensible results.

0.5
0 1 2 3 4 5 VI. DISCRETE MODEL AND NUMERICAL RESULTS

T/T, . . . . .
M As motivated in the previous section, we now consider a

FIG. 2. Temperature dependence of the effective chemical podiscrete model, in which the chain is divided irib cells of
tential of kinks according to Eq45) for u=10T,. length d (independent ofT) and kinks are allowed to be
located only at the boundaries,=md (m=1,... M) be-
This derives from the criterion that shifting the kink over tween the cells. Then the functidi{x) =A(x)/A, [cf. Eq.
[(T) from its optimal position should cause a fluctuation of (20)] has a constant value-1 inside each cell. In other
the order ofT in its interaction energy Eq(14) with the  words, the chain configuration is described by a set of Ising

disorder. Using Eq(A17) we find that variables{o,05, ..., om}, Whereo,, is the value off (x)
in the mth cell. We impose periodic boundary conditions
@oq-s/z (48) om+1=01. Kinks occur between cells with opposite values
d(T) ’ of o and the sum over all possible configurations of the Ising

spins represents the sum over the number of kinks, as well as
over their positions on the one-dimensional lattice. This lat-
tice model for the statistics of disorder-induced kinks is
equivalent to the one-dimensional random-field Ising ntodel
?RFIM). The constantt continuum model which led to Eq.

h (51) is, in fact, the continuum version of this RFIM.

The partition function of the one-dimensional RFIM reads

which in combination with Eq(46) indeed gives Eq45) for
©(T). The temperature dependence ©fT) is plotted in
Fig. 2. BelowT=T,, du(T)/dT>0, i.e., kinks become less
“heavy” as temperature decreases, which explains th
pathological behavior of the entropy.

Keeping in mind that our description of the lattice is bot
classical and continuum, this pathology is hardly suprising.
In practice, quantum effects will prevent the entropy from
becoming negative at low temperatures. A simpler way to Z= E e AEloml, (52
regularize the model lies in a discretization. From Eg$) {om
and (46), it follows that T, is determined by the condition \y;itp
[(T)~d(T). For smaller temperature$(T) gets smaller
thand(T), which plays the role of an effective lattice con- M
stant and becomes arbitrarily small at small temperatures. E{omn= E
Clearly, however, the continuum description of the off- m=1

diagonal disorder fails whef(T) drops below the lattice The first term in Eq(53) equalsu times the number of spin
constanta. Moreover, the Peierls-Nabarro barfiéat low  flips in the chain and thus represents the total kink creation

temperature fixes the kink position within the unit cell of the energy. The second term describes the interaction with the
atomic lattice. These facts motivate us to consider in the nextandom “magnetic” field defined by

section a discrete version of Eql8), in which a
temperature-independent lattice constdnis used and the Xt 1
integrations over kink positions are substituted by finite lat- hm= Kf dxn(x), (54
tice sums. Xm

It should be noted that just replacidgT) in Eq.(18) by  i.e., the value of the field in each cell is proportional to the
a temperature-independent distarstedoes not, by itself, value of disorder in the continuum model integrated over the
make the entropy positive. Retracing the steps following Eqcell. The distribution of the random field is also Gaussian,

1_
M%_hmam 53

(18) in that case leads to with correlator:
2A0 \2 1 heh))=Déy, 55
<F>=F0—LA( 0 ) (hehi)=D oy (59

TANUE] pu+2TIn(eTo/T) whereD =d«?A.
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T
FIG. 3. The free energy of dimerization kinks in a Peierls chain K

as a function of temperature for two values of the disorder strength: FIG. 4. The density of dimerization kinks in a Peierls chain as a
D=0.005:2 (@ andD=0.01u? (b). The solid lines give the ana- function of temperature for two values of the disorder strenBth:
lytical result Eq.(49), while the stars indicate the numerical results. =0.005.2 (a) andD=0.01x? (b). The solid lines give the analyti-
The part of the free energy related to an ordered chain without kinksal result Eqg.(51) and the stars indicate the numerical results.
(Fo) is discardedM =L/d denotes the number of unit cells. The Dashed curve as in Fig. 3.

dashed curve intersects the solid lines at the temperature for which

the analytically calculated entropy equals zero. T=Tg, below which the entropy becomes negative. For con-

venience, we also plotted the dashed curve, which passes

i It '3 W?” knotvr\:n tlhat arbitrarily zmalll dltsr,]order ord'Fempe.ra-th]rough the maxima of the solid lines. The continuum results
ure destroys the long-range orger In the one-dimensiongyq ;e meaningless to the left of this curve. The slope of

RFIM.” The density of the thermally excited domain walls in the numerically obtained free energy of the discrete model is

the absence of disorder & ##, while at zero temperature . - o~ :
) . . ) : ) always negative, corresponding to a positive entropy, which
the density of the disorder-induced kinks is proportional to y 9 b 9 P Py

the strength of the disorder. A full calculation of the averageaeunrgzr;{(?al(() dizfrrgeoén\(lj\gnizziczllj(zﬁaﬁwJB?I; 22%@ ;2@
free energy and the density of kinks in the RFIM involvesdiffer little from each other
numerical simulat_ions. We performed su_ch_simulations_ using In Fig. 4 we give the dénsity of kinks as a function of
:?ee attgqagr?'[felrr;r?hi[r:jxi sifept:aoggzé ?ﬁewse dﬁ'ge:ne;zzti%?gguun}emperature _for_ the same two values of the disor_der as in Fig.
for the coﬁtinuum model is rep;laced by 3. Again, solid lines and stars represent the continuum model
and the discrete model, respectively, while the dashed curve
_3 (56) passes through the minima of the continuum results, below
Ym+1=Tm¥m, which the continuum model becomes meaningless. The tem-
with the transfer matrixt ,, perature dependence of the density of kinksTer0.15. is
very slow. At T=0.15« the density of thermally induced
. exp{ Bhy} exp{— B(u—hp)} kinks in a chain without disorder is about X30 ¥d. This
Th= _ Tho) expl — Bh, ) , (570 means that the increase of the kink density observed in Fig. 4
exp — B(p+ i Bhm is mostly related to the fact that more multikink configura-
The free energy for a given realizati¢h,,,} of the random tions become available in a disordered chain as temperature

field is then given by grows.
Figure 5 shows the density of kinks as a function of the

Mo disorder strengtlD at T=0. Stars give the numerical results
F[{hm}t]= —TIn(TrH Tm)- (58)  for the discrete modelsimulated afT=0.005 in order to
m=1 avoid numerical instabilitigs The dashed line gives the
To obtain a smooth temperature dependence of the density 6f0 continuum result, Eq(43), which in terms ofD reads
kinks, we had to average the free energy ovet ehdom-  N(T=0)=D/(du?). As is observed from Fig. 4, for decreas-
field realizations for a chain with £Gsites. ing disorder these two results get in better agreement with
We now turn to the results of these simulations. In Fig. 3each other. This is a consequence of the factTjahen also
the free energy is plotted as a function of temperature for twalecreases. In the limit dd— 0, the agreement should be-
values of the disorder strengthD=0.005.2 and D come exact, as indeed appears from Fig. 5. For higher disor-
=0.01x2. Stars indicate the numerical results for the discretgler, however, the nonphysical nature of the continuum
model, while the solid lines represent the continuum versiormodel forT<T; causes the numerical and analytical results
of the RFIM[Eqg. (49)]. The latter curves have maxima at to deviate by an increasing amountTat0. An alternative
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1 y To obtain the free energy of the kinK&ppendiy, we
used a technique developed for the semiclassical solution of
quantum problem® This is not accidental, because a Peierls
y A chain with a doubly degenerate ground state in the presence
0.75 s of weak disorder or at a small temperature behaves similarly
- * to a quantum patrticle in a double well. If the wells are very
deep, the small quantum fluctuations around the two classical
y vacua may be relatively insignificant. A more important ef-
0.5 fect, however, is that the quantum particle can tunnel be-
tween the two minima. The tunneling probability is de-
scribed by instantons, which are the imaginary-time classical
y trajectories leading from one minimum of the potential to the
0.25 other. In fact, an exact mapping exists between the instanton
gas for a double-well potential and the gas of thermally in-
duced kinks?® The disorder-induced kinks are somewhat dif-
ferent: their positions, unlike the instanton positions, are not

n (1072 /d)

0 arbitrary. These kinks are, to some extent, pinned by the
0 0.005 0.01 disorder which induces them.
D/ The main assumption of our calculation is the validity of

the expansion of the free energy in powers of the disorder.

FIG. 5. Density of dimerization kinks in a Peierls chain as a . - . .
function of disorder strength. The dashed line represents the anaAfs was already discussed in Ref. 1, this translates into the

lytical continuum result Eq(51) taken atT =0, the solid line gives condition
the same result af=T}, while the stars indicate the results of néy<1 (59)
numerical simulations of the discrete modelTat 0.005. (which 0=
for all practical purposes may be considered zero tempejature  meaning that the average distance between kinks should be
much larger than their size. For stronger disorder the lattice
approach to obtain an analytical zero-temperature result, is tdistortions would be random over the length scale of the
use the continuum result E1) at the lowest possible value order of&, and the notion of multikink configurations would
where the result is still physical, i.e., a&=T;,. The thus lose sense.
obtained value of the density of kinks as a function of the Effects of disorder on the properties of Peierls chains
disorder is also plotted in Fig. &olid line) and is indeed have been studied before by a number of authors. Many of
seen to be in much better agreement with the numefiical these studies were devoted to charged solitons induced by
=0 results over a large interval of the disorder. This showgandom doping’ and the effects of localized bond and site
the importance of the corrections to the lin@adependence, impurities on the electronic stat&&The minimal-energy lat-
expected on the basis of scaling argumeénibthe density of tice configuration in the presence of a finite density of bond

domain walls in the RFIM. impurities was studied numerically in Refs. 3,4. There it was
found that for some disorder realizations the configuration
VII. SUMMARY AND DISCUSSION contained kinks. As these calculations were performed

within the SSH modelin which electron-electron interac-

In this paper we studied a continuum model describingions are not included the obtained disorder-induced kinks
Peierls chains with a doubly degenerate ground state in théid not have a definite charge or spin. Also, no attempt was
presence of weak off-diagonal disorder. In such chains, themade in these papers to obtdimumerically or analytically
mally and disorder-induced neutral solitofdimerization the density of solitons as a function of the disorder strength.
kinks) occur. By integrating out all irrelevant lattice degrees  Another large body of work on disordered Peierls systems
of freedom, we obtained the free energy of these kinks. Thisleals with the fluctuating gap mod@&GM).? This work not
free energy was then averaged over the disorder realizatiomsly addresses the study of disorgmr se°! but also in-
leading to an analytical expression E¢2) for the average cludes studies of quantum lattice fluctuations modeled by
density of kinks. static disordef?—3*In the FGM, one assumes that the lattice

In the continuum model, the entropy of the kinks waspart A, of the order parameter is a constant throughout the
found to become negative below a certain temperafgréit  chain and does not respond to the local disorder. This imme-
this temperature the thermal fluctuation of the kink positiongdiately eliminates the possibility of disorder-induced soli-
I(T) becomes of the order of the effective “lattice constant” tons. Nevertheless, solitons play an important role in the
d(T). It was then argued that below this temperature ond=GM: we recently showed that the optimal fluctuation that
should either take the effects of the lattice discreteness intdetermines the density of states inside the pseudogap in this
account, or consider the lattice quantum mechanically. Wenodel has the form of a soliton-antisoliton p2ir.
noted that the discrete version of the model that describes the We finally mention that, while we considered weak off-
thermal or disorder-induced kinks is the one-dimensionabiagonal disorder, one may also consider a type of disorder
RFIM. The free energy and the density of kinks in the latterwhere the electron conjugation over certain bonds is broken
model were found numerically and the results were comcompletely €, ,+1=0). This model leads to a distribution of
pared with the continuum model. It was found that for chain sizes® If the conjugation breaks occur randomly,
>Tq, both models are in good agreement. chains with an odd number of carbon atoms will occur,
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which necessarily contain a kirtk. Thus, the density of where the first term is the chain energy at zero disorder and
kinks is proportional to the disorder strengile., the density L is the chain length.
of chain breakk as it is in our mode[see Eq.(43)]. For A(x) close to the multikink configuratioa (x|z) we

As was already discussed in our previous paphe elec- can expand the chain ener@fA(x),0] in powers of&(x)
tron state in the presence of neutral solitons is different fromdefined by
that of a perfectly dimerized chain. This gives the possibility
to detect the disorder-induced kinks. First, the kinks should EX)=A(X)—An(X[2). (A3)
give rise to a peak in the optical-absorption spectrum thahetaining terms up to second orderd(x), we have
occurs inside the gap of the perfectly dimerized chain. Sec-
ond, having spin 1/2, the neutral kinks contribute to the Cu- 1 L .
rie susceptibility. As we noted in Ref. 1, experiments on E[A,0]=Eo+ NM+WJ dxé(x)Dn(2) &(x).
undopedtrans-polyacetylene do not seem to agree with the F7o (Ad)
large density of free solitons that one would expect on the
basis of the small average electron conjugation lerigélv-  Here, we assumed the distances between kinks to be much
eral tens of carbon atorify in this material. In particular, larger than the correlation leng#ly. As we discussed in Sec.
experiments indicate that only 1 free spin occurs per 3000dll, in the absence of disorder the multikink configuration is
carbon atom&® It should be noted, however, that a meaning-then an almost exact extremum of the chain energy, which is
ful comparison between theory and experiment can only bavhy Eq.(A4) does not contain a first-order term. The opera-
made if one accounts for interchain interactions, which suptor Dy(z) is defined through
press the generation of isolated kinRsA study of the inter-
play between the disorder-induced kinks, destroying the A _
long-range coherence, and the interchain interactions, bind- DN(Z)é(X)_f dyDn(xy
ing kinks into pairs, will be reported elsewhere. It should be

noted that this interplay seems to be very important to de\-NIth the kemelDy(x,y|2) related to the second variational

scribe the Peierls phase transitfin. derivative of the total chain energy
We finally note that another important issue is the quan- 1 1 8%E[A,0]

tum treatment of the lattice dynamics coupled to the spin N DN(xl,x2|z)=§5A—5A) .

dynamics of the kinks. The interaction between neighboring " \°F (X1) 08X A=A\(x[2)

kinks may bind their spins into a singlet ground state, thus (A6)

explaining why the density of free spins observed in undopeq ot — /aK/M denote the bare optical phonon frequency.

trans-polyacetylene is so low. We plan to address this prob- . . N .
lem ir?th%a futlilre. P P Then, the eigenfunctions ,(x|z) of Dy(z) obeying

2)&(y), (A5)

R «(2)\?
ACKNOWLEDGMENTS DN(Z)¢a(X|Z):<wQ ) ba(X[2), (A7)

This work is supported by the Stichting Scheikundig are (optica) phonon modes in the presenceMfkinks with
Onderzoek in NederlanBON) and the Stichting voor Fun-  frequenciesw ,(2).

damenteel Onderzoek der MateffEOM). When the kinks are far apart, thé¢ lowest phonon fre-
quencies ¢=1, ... N) are very small, since these normal
APPENDIX modes correspond to shifts of the kinks, which leave the

chain energy practically unchanged@he frequency of one

In this appendix we obtain the effective free energy ofmode is exactly zero, as it corresponds to the translation of
kinks by integrating out all irrelevant lattice degrees of free-the multikink configuration as a whaleTo avoid double
dom in the partition function of the disordered chain Ed.counting, the integration over the first modes is replaced
(17). by the integration over th& kink positions, which is the
It is convenient to replace the integration over lattice con-standard approach in the instanton calcdfishen the mea-

figurationsA, by the integration oveA(Xx), which also in-  sure of the functional integration in the vicinity of the mul-
cludes the disordejcf. Eq. (6)] . The chain energy can be tikink configuration becomes
written as

_ N
EL 80,7001 E A1+ Eud 00— 0] Dg00=dd"z]] d.. (A8)

where¢, are the amplitudes of the normal modes,
Since the lattice energy is quadraticAp,= A(x) — 7(x), we

obtain EX)=2 £,04(X/2), (A9)
2 L
E[A|at(X),7/(X)]=E[A(X),O]—)\—f dxA (x) 7(X) and Jy is the Jacobian of the substitutipn of thg integration
TAUEJO over theN (almos) zero modes by the integration over the
1 L kink positions. We have
+ d 2, A2
W)\UFJO X7](X) ( ) JNZ(J]_)NECN/Z, (AlO)
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with J,; the Jacobian for the single-kink configuratidn(x),
dAl(x))2 A2

leading to
c=fdx( dx ~§—0.

The constant can be expressed as= m\vQ2M /2, with
M the soliton mass, which in the SSH model is abou, 6

(Al11)

The Gaussian integration over the amplitudes of the non-

zero modes now reduces the partition function to

48c

’772)\U|:

N/2
Z:Zo% ) f d“zRy(z)exp{— BWn(2)}.

(A12)

Here

2 L
WN(Z)zN’“_TvFL dxAn(x|2) 7(x)

1 L 0?
+ dxn(x)2— 21,
wkv;(fo n0%= 2, e na)

(A13)

with 7, the expansion coefficients of(x) over the ortho-
normal basisp,(x|2) [cf. Eq.(A9)]. Z, is the partition func-
tion of the chain in the absence of kinks and disorder:

Q

o }\UF
Zo=e %] (” V?waw))’

(A14)
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,(2)
Q

Il

a>N

Rn(2) =

5|

Similarily to Eq. (A10), for widely separated kinksRy(z)
equals theNth power of the regularized product of nonzero
phonon frequencies for a configuration with one Kk,

—1
) . (A15)

Rn(2) = (Ry(z))N=rN?, (A16)
wherer is a number of the order unity.

Finally, for weak disorder we can neglect the third term in
Eq. (A13), as it is of second order in(x). From Eqs(A12),
(A13), and (A16) we then obtain the expressions E¢ES)
and(19) for the free energy of a chain with disorder realiza-
tion n(x), whered(T) is given by

T [NUET T
dM=5V 75— ~ % )\A_o'

In this calculation we neglected electron excitations, as-
suming the temperature to be sufficiently low. However, the
electron ground state for the lattice configuration containing
N neutral kinks, separated by distances much larger than the
correlation length, is ®-fold degenerate, due to the fact that
the spin projection of each kink can be arbitrary. Because of
this degeneracy, the weight factor of each kink acquires an
extra factor of 2, which was taken into account in E412).

The degeneracy is not exact: excitations of this spin system

(A17)

wherew ,(0) denote the phonon frequencies in the absencbhave a typical energy of the order of the exchange constant

of kinks and disorder. Finally, the fact®(z) in Eq. (A12)

for the spins of two neighboring kinks. Thus, our assumption

is the product of nonzero phonon frequencies for the latticeéequires that the temperature is much larger than this energy
configuration containing no kinks divided by the same prod{ Ayexp(— 1/(n&gy))], yet much smaller than the Peierls gap

uct for the configuration wittN kinks,

[Ao]-
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