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Density of neutral solitons in weakly disordered Peierls chains

M. V. Mostovoy,* M. T. Figge, and J. Knoester
Institute for Theoretical Physics, Materials Science Center, University of Groningen, Nijenborgh 4,

9747 AG Groningen, The Netherlands
~Received 8 July 1997; revised manuscript received 2 October 1997!

We study the effects of weak off-diagonal disorder on Peierls systems with a doubly degenerate ground
state. We show that for these systems disorder in the electron hopping amplitudes induces a finite density of
solitons in the minimal-energy lattice configuration of a single chain. These disorder-induced dimerization
kinks are neutral and have spin12. Using a continuum model for the Peierls chain and treating the lattice
classically, we analytically calculate the average free energy and density of kinks. We compare these results to
numerical calculations for a discrete model and discuss the implications of the kinks for the optical and
magnetic properties of the conjugated polymertrans-polyacetylene.@S0163-1829~98!05405-8#
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I. INTRODUCTION

Recently we considered the effects of weak disorder
the electron hopping amplitudes on the lattice configurat
of Peierls systems with a doubly degenerate ground s
using the conjugated polymertrans-polyacetylene as an
example.1 In the absence of disorder the ground state o
trans-polyacetylene chain is uniformly dimerized due to t
interaction of the lattice with the half-filled band ofp elec-
trons propagating along the chain.2 The ground-state energ
is independent of the sign of the dimerization, i.e., it is eq
for the two carbon-carbon bond alternations. . . -long-
short-long-short- . . . and . . .-short-long-short-long- . . . .
Disorder in the electron hopping amplitudes, originatin
e.g., from random twists of bonds, removes this degener
This can be understood from the fact that such conform
tional disorder reduces the overlap between the electron
bitals of neighboring carbon atoms and thus increases
chain energy. The energy increase is less for the long bo
~with relatively small hopping amplitudes! than for the stron-
ger short bonds.

Due to the random nature of the disorder fluctuations,
preferable sign of the dimerization varies along the cha
This explains why domain walls~kinks!, separating regions
with positive and negative dimerization, can be stabilized
disorder.1,3,4 While in the absence of disorder, kinks~or soli-
tons! are topological excitations with a rather high energ
(;0.5 eV in the case oftrans-polyacetylene!, they do appear
in the minimal-energy lattice configuration of a disorder
chain. This was first noted in numerical simulations of t
Su-Schrieffer-Heerger~SSH! model.3,4 The large kink en-
ergy is compensated by adjusting the sign of the ch
dimerization to the disorder fluctuations in the intervals b
tween the kinks. The weaker the disorder, the longer
distance between neighboring domain walls has to
Simple arguments, based on an estimate of the size of
typical disorder fluctuation that stabilizes a kink-antikin
pair, show that at weak disorder the average density
disorder-induced kinks in the minimal-energy lattice co
figuration is proportional to the strength of the disorder.1

The effect of off-diagonal disorder on a Peierls chain
similar to the effect of nonzero temperature. It is well know
570163-1829/98/57~5!/2861~11!/$15.00
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that the Z2 symmetry in one-dimensional systems can
spontaneously broken only atT50. At any nonzero tempera
ture the symmetry is restored by thermally induced kinks.
this case the kink creation energy is compensated by its la
entropy, as kinks can be located at any place in the ch
The topological nature of kinks is responsible for the d
struction of the long-range order in isolated Peierls cha
both at arbitrarily small temperature and at arbitrarily we
disorder.

In this paper we put a firm basis under the results wh
we obtained through simple scaling arguments in Ref. 1,
giving a detailed calculation of the free energy and the d
sity of kinks for half-filled Peierls chains with off-diagona
disorder. The continuum model describing such chains is
troduced in Sec. II. In Sec. III we briefly repeat the arg
ments of Ref. 1, showing that the energy of a disorde
chain can be decreased by creating a kink-antikink pair. T
implies a special role of kinks. In Sec. IV we consider t
partition function of a disordered chain, treating the latti
classically. Integrating out small lattice fluctuations, we o
tain an effective free energy describing kinks. The details
this integration can be found in the Appendix. We then u
the transfer-matrix approach to reduce the averaging of
chain’s free energy over the disorder realizations to the
eraging of the wave function that describes the relaxation
a spin 1/2 in a magnetic field with one random compone
For long chains, the latter average can be calculated ana
cally. The derivative of the thus obtained free energy w
respect to the chemical potential of kinks gives the aver
density of kinks, induced both thermally and by disord
~Sec. V!.

As we shall see, in the continuum model with whi
Gaussian disorder and a classical lattice, the entropy of k
becomes negative below a certain temperatureT0 which de-
pends on the disorder strength. Therefore, in Sec. VI we a
study the generation of kinks by disorder in a discrete mod
which does not suffer from this pathology. The discre
model is the one-dimensional random-field Ising mod
~RFIM!. It was realized long ago by Imry and Ma,5 that
kinks destroy the long-range order in this model even at z
temperature. We present results of numerical simulation
the average density of kinks in the RFIM as a function
2861 © 1998 The American Physical Society
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2862 57M. V. MOSTOVOY, M. T. FIGGE, AND J. KNOESTER
both the disorder strength and temperature and compa
the analytical results for the continuum model. In Sec. V
we summarize and conclude. We also connect to prev
work and discuss the effects of disorder-induced kinks on
optical and magnetic properties of quasi-one-dimensio
Peierls systems.

II. CONTINUUM MODEL OF A DISORDERED
PEIERLS CHAIN

We start by considering a tight-binding model that d
scribes the hopping of electrons along a chain of atoms.
electron hopping amplitudes depend on the interatomic
tances and the relative orientation of the electronic orbi
on neighboring atoms. Therefore, the hopping amplitudes
affected by both the lattice motion~the displacement of the
atoms parallel to the chain! and conformational disorde
~chain twists!. Let t0 denote the hopping amplitude betwe
neighboring atoms in a perfect rigid chain of equidistant
oms with lattice constanta. Then, in the presence of atom
displacements and conformational disorder, the hopping
plitudes may be written

tm,m115t01a~um2um11!1dtm,m11 . ~1!

Here, the second term is the SSH-type of electron-pho
interaction,2 with the coupling constanta andum being the
displacement of themth atom from its uniform-lattice posi
tion. The third term is a random contribution resulting fro
the conformational disorder. While the lattice displaceme
um are dynamic variables, we will assume that the fluct
tions dtm,m11 are frozen~‘‘quenched’’ disorder!.

The Peierls order parameter is the alternating part of
hopping amplitudes

D~2ma!5t2m21,2m2t2m,2m11 , ~2!

which consists of two parts

D~2ma!5D lat~2ma!1h~2ma!. ~3!

The first part is the lattice dimerization

D lat~2ma!5a~u2m2122u2m1u2m11!, ~4!

which describes the alternating part of the hopping amplit
determined by the shiftsum of the atoms and is the usua
order parameter of the SSH model. The second term in
~3! describes the disorder

h~2ma!5dt2m21,2m2dt2m,2m11 . ~5!

We assume the random variations of the hopping amplitu
dt on different bonds to be independent.

For weak electron-phonon coupling and small disorder
can, in analogy to Ref. 6, use a continuum description
both electrons and lattice with the order parameter

D~x!5D lat~x!1h~x!. ~6!

Here,D lat(x) is the continuum analog of Eq.~4! andh(x) is
the white noise disorder:

^h~x!h~y!&5Ad~x2y!. ~7!
to
I
us
e

al

-
e

s-
ls
re

-

-

n

ts
-

e

e

q.

es

e
f

Note, that while the random chain twists always decrease
hopping amplitudes (dtm,m11,0), h(x) can be both posi-
tive and negative, as it is the alternating part of the fluct
tions.

The Hamiltonian of the continuum model has the form

H@D lat~x!,h~x!#5Elat@D lat~x!#1Hel@D~x!#. ~8!

The first term is the harmonic lattice energy,

Elat@D lat~x!#5
1

plvF
E dxD lat~x!2, ~9!

where l54a2/pt0K is the dimensionless electron-phono
coupling constant (K is the spring constant!, vF52at0 is the
bare value of the Fermi velocity, and we set\51 ~cf. Ref.
6!. In this paper we treat the lattice classically, i.e., we d
regard the lattice kinetic energy, which is reasonable
chains of sufficiently heavy atoms. It should be noted that
trans-polyacetylene, which consists of relatively light C
groups, quantum lattice effects may be rather important.7–10

The electrons in the continuum model are described b

cs~x!5S c1s~x!

c2s~x!D ,

where the two amplitudesc1s(x) andc2s(x) correspond to
particles moving, respectively, to the right and to the l
with the ~bare! Fermi velocityvF , ands is the spin projec-
tion.

The electron Hamiltonian has the form

Hel@D~x!#5 (
s561

E dxcs
†~x!S vF

i
s3

d

dx
1D~x!s1Dcs~x!

1Hel-el. ~10!

The first term describes the motion of electrons in the pr
ence of both the chain distortion and the disorder (s1 ands3
are the Pauli matrices!, while the second term describes th
~Coulomb! interactions between electrons. Apart from t
disorder and the electron-electron interaction term
Hamiltonian of our model is the same as the Hamiltonian
the continuum version of the SSH model.6

In the absence of disorder the~half-filled! chain reaches
its minimal energy in either one of two uniformly dimerize
configurationsD lat(x)56D0. This Peierls instability was
initially found for noninteracting electrons11 (Hel-el50). It
also occurs, however, in the presence of electron-elec
interactions like, e.g., the on-site Hubbard repulsionU,
which opens a gap for charge excitations, but~in the absence
of electron-phonon interaction! leaves the spectrum of spi
excitations gapless.12–14 Numerical calculations have show
that a moderately largeU can even increase the value of th
lattice dimerization.15–17 As we shall shortly see, the exis
tence of two degenerate ground states, which also implies
existence of kink solutions, is crucial for the appearance
disorder-induced kinks. The precise form ofHel-el does not
affect this basic phenomenon; it only is important to t
extent that it determines the value ofD0 and the kink energy.
Therefore, in this paper we do not specify the expression
Hel-el.
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57 2863DENSITY OF NEUTRAL SOLITONS IN WEAKLY . . .
An important property of the dimerized Peierls state is
existence of gaps in the spectra of spin and charge ex
tions. For free electrons (Hel-el50) both gaps are equa
while in the presence of Coulomb repulsion the spin gap
smaller than the charge gap.13,14 In what follows, we will
assume the temperature to be much smaller than the
gap, so that we can neglect electronic excitations and rep
Hel@D(x)# by its ground-state expectation value~adiabatic
approximation!,

Eel@D~x!#5^0uHel@D~x!#u0&. ~11!

III. STABILIZATION OF KINKS BY
OFF-DIAGONAL DISORDER

For the sake of completeness, we briefly repeat in
section the arguments of Ref. 1, which show that the low
energy lattice configuration in the presence of disorder m
contain kinks.

At zero temperature the lattice configuration, i.e.,D lat(x),
has to be found by minimizing the total chain energy,

E@D lat~x!,h~x!#5Eel@D~x!#1Elat@D lat~x!#, ~12!

with respect toD lat(x) at a given disorder realizationh(x).
This makesD lat(x) implicitly dependent onh(x).

As noted in Sec. II, in the absence of disorder the to
energy of a half-filled chain has two minima,D(x)56D0,
corresponding to two uniformly dimerized configuratio
with the same energy. Apart from the minima, there are
finitely many lattice configurations that are nearly perfe
extrema of the total energy. These are the multikink confi
rations, in which a sequence of solitons and antisolitons
terpolate between2D0 and1D0 and vice versa~Fig. 1!. A
kink is locally stable, i.e., the chain energy increases, w
its form is perturbed. The energy of a multikink configur
tion can be decreased only by changing the distances
tween the kinks. However, when the separation betw
neighboring kinks is large compared to their size~which is of
the order of the correlation lengthj05vF /D0),2 the change
of the energy caused by shifts of the kinks is exponentia
small, so that the energy of the configuration withN kinks is
approximately

EN5E01Nm. ~13!

Here,m is the energy needed to create a single kink~about
0.5 eV fortrans-polyacetylene! andE0 is the chain energy in
the absence of kinks. The kinks can be either charged
spinless, or neutral with spin12.

2 In the SSH model (Hel-el
50), both types have the same energy;2 if the Coulomb
repulsion between electrons is taken into account, the ne

FIG. 1. Order parameter along a Peierls chain for a multik
configuration with seven kinks.z1 ,z2 , . . . ,z7, denote the kink po-
sitions.
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soliton has lower energy.18,19 Since the on-site Coulomb re
pulsion in trans-polyacetylene is appreciable,20 we will as-
sume that only neutral kinks are induced by disorder.

Next we find the change of the energy of a multikin
configuration due to weak disorder. We will denote the l
tice configuration containingN kinks, whose positions are
described by theN-dimensional vectorz5(z1 ,z2 , . . . ,zN),
by DN(xuz). To first order inh(x), the correction to the
energy of the configuration reads

dEN52
2

plvF
E dxDN~xuz!h~x!, ~14!

where the extremum condition for the configurationDN(xuz)
at zero disorder was used.

For instance, the change of the energy of the uniform
dimerized configuration@D(x)5D0# due to disorder is

dE052
2D0

plvF
E dxh~x!, ~15!

while for the configuration with an antikink atz1 and a kink
at z2, such that the whole disorder fluctuation lies betweenz1
and z2, the change of energy equalsdE252dE0, because
betweenz1 andz2 D2(xuz1 ,z2)'2D0. We thus see that in
the disordered chain, the configuration obtained by the p
turbation of a kink-antikink pair is energetically favorable
the perturbed uniform configuration if

2E dxh~x!.gklvF . ~16!

Here we introducedgk5pm/(2D0), which for free electrons
~SSH model! equals 1. Since the fluctuations in*0

Ldxh(x)
grow with the chain sizeL, for a sufficiently long chain the
inequality Eq.~16! can certainly be fulfilled, no matter how
small the disorder is.

We note that in addition to multikink configurations, als
nontopological lattice configurations exist that are extrema
the total chain energy. An example is the polaron.21,22 How-
ever, since the polaron disturbs the lattice only locally, in
interval of lengthl;j0 ~wherej0 is the correlation length!, a
disorder fluctuation having large magnitude in this interva
needed to stabilize it. At weak disorder the probability de
sity of such a fluctuation is exponentially small. On the oth
hand, the disorder fluctuations stabilizing kinks, i.e., tho
that satisfy Eq.~16!, can have small magnitude compensat
by a large spatial extension given by the distance betw
neighboring kinks. The weight of such a fluctuation grow
with its length and becomes of the order unity if the leng
equals the average distance between the disorder-ind
kinks.1 In other words, the fluctuations that stabilize kin
are not at all suppressed. This is why in what follows we ta
into account only multikink configurations, disregarding a
other large variations of the Peierls order parameter.

IV. FREE ENERGY OF DISORDERED CHAINS

We start by considering the partition function of a weak
disordered Peierls chain. As was mentioned above, we t
the lattice classically and assume the temperature to be
ficiently small to neglect electron excitations across the g

k
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The partition function is then given by the weighted su
over all possible lattice configurations

Z@h~x!#5E DD latexp$2bE@D lat~x!,h~x!#%, ~17!

and is a functional of the disorder realizationh(x). In Eq.
~17! we have omitted the part related to the kinetic energy
the lattice, as ultimately we will only be interested in th
density of kinks in the chain.

It is, of course, impossible to perform the integration ov
D lat(x) in the partition function exactly, since even the d
pendence of the electron energy onD(x) is, in general, not
known. However, when the temperature tends to zero, o
the lattice configurations near the absolute minimum of
chain energy contribute significantly to the partition fun
tion. As we discussed in the previous section, in the prese
of weak disorder the minimal energy lattice configuration
close to a certain multikink configuration. How many kin
it contains and where they are located depends onh(x). To
make sure that for any disorder realization we take all
portant lattice configurations into account, we perform
integration in Eq.~17! over D(x) close to all possible mul-
tikink configurations. Thus, we first perform the saddle-po
integration near the configurationDN(xuz) with fixed number
and positions of kinks, and then we integrate over the p
tionsz1,z2, . . . ,zN of the kinks and sum over their num
ber N.

The details of the saddle-point calculation are contain
in the Appendix. The resulting expression for the free ene
of a chain with disorder realizationh(x) is

F@h~x!#5F01F1@h~x!#, ~18!

where the first term is the free energy of a chain witho
kinks and at zero disorder, and the second term is given

F1@h~x!#52
1

b
lnF(

N

1

d~T!NE dNzexpH 2bS mN

2
2

plvF
E dxDN~xuz!h~x! D J G . ~19!

Hered(T) is a variable having dimension of length defin
by Eq. ~A17!.

We assume the size of the kinks to be much smaller t
the average distance between them. In this case the kinks
be replaced by abrupt steps,

DN~xuz!→D0f N~xuz![D0)
n51

N

sgn~zn2x!. ~20!

Equation~19! can then be rewritten as

F1@h~x!#52
1

b
lnF(

N

1

d~T!NE dNzexpH 2bS mN

2kE dx fN~xuz!h~x! D J G , ~21!

where we introduced
f

r
-
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e
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e
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k5
2D0

plvF
. ~22!

In the absence of disorder (h(x)50) the integration over
the kink positions in Eq.~21! is trivial and the free energy
can be easily found,

F1@h~x!50#52
L

d~T!b
e2bm. ~23!

In this case there are only thermally induced kinks and th
density

ntherm5
1

L

]F

]m
5

1

d~T!
e2bm, ~24!

is exponentially small atT5b21!m. This condition, which
was already assumed to hold in writing Eq.~11!, is always
met for solitons intrans-polyacetylene (m;0.5 eV!.

Disorder breaks the translational invariance. Neverthel
the integration over the positions of kinks and the sum o
their number can be performed immediately, by noting t
Eq. ~21! can be written in terms of the matrix elements of
ordered exponential

F1@h~x!#52
1

b
ln(

n,n8
K n8U T expF E

0

L

dx

3@z~x!s31rs1#GUnL , ~25!

wherez(x)5bkh(x), r5e2bm/d(T), and un& is an eigen-
vector of the Pauli matrixs3,

s3un&5nun&.

The sum in Eq.~25! overn,n8561 corresponds to the sum
over all possible signs of the dimerization at the chain en
We stress that this choice of boundary conditions is a ma
of convenience and does not affect our final result for
density of solitons. The ordered exponential describes
evolution ~in imaginary timex) of a spin 1/2 in a magnetic
field, which has a constantx component and a random time
dependentz component. The corresponding time-depend
Hamiltonian is

H~x!5z~x!s31rs1 . ~26!

Kinks induced in a disordered chain correspond to spin fl
and the sum over all possible numbers of kinks and the
tegration over their positions in Eq.~21! correspond to the
expansion of the evolution operator in Eq.~25! in powers of
the random magnetic field.

It is now convenient to rotate the ‘‘coordinate’’ frame b
an anglep/2 arounde2, which transforms the HamiltonianH
into

H8~x!5expS i
p

4
s2DHexpS 2 i

p

4
s2D52z~x!s11rs3 .

~27!

The expression for the free energy then becomes
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F1@h~x!#52
1

b
lnS 2K 1U T expF E

0

L

dxH8~x!GU1L D
52

1

b
ln„2c↑~L !…, ~28!

where we introduced the wave function of the spin,c(x)
5(c↓(x)

c↑(x)), which satisfies the equation

dc

dx
5H8~x!c, ~29!

with the initial conditionc(0)5(0
1).

We now introducev(x) andf(x), such that

c5vS coshS f

2 D
sinhS f

2 D D . ~30!

The equation forv(x),

1

v
dv
dx

5rcosh~f!, ~31!

can be easily integrated, yielding

c↑~L !5coshS f~L !

2 DexpFrE
0

L

dxcosh„f~x!…G . ~32!

The equation forf(x) has the form of a Langevin equation23

df

dx
52

dU~f!

df
1 f ~x!, ~33!

with the potential

U~f!52rcosh~f!, ~34!

and the random force

f ~x!522z~x!52bkh~x!. ~35!

Since the potentialU(f) grows atf→6`, the distribu-
tion of f at largex tends to the equilibrium distribution
given by the Boltzmann formula

Peq~f!5e2U~f!/TfY E
2`

1`

dfe2U~f!/Tf . ~36!

where the effective temperature,Tf52A(bk)2, is deter-
mined by the correlation function of the random force

^ f ~x! f ~y!&54A~bk!2d~x2y![2Tfd~x2y!. ~37!

Assuming the chain lengthL to be much larger than th
average distance between kinks, we can use the equilib
distribution function Eq.~36! to average the free energy ov
the disorder. Using Eqs.~28! and ~32! and neglecting 1/L
terms, we obtain

^F&5F02
Lr

b
^cosh~f!&eq. ~38!
m

The average of cosh(f) over the equilibrium distribution
function Eq.~36! can be expressed in terms of the modifi
Bessel functions,

^cosh~f!&eq5E
2`

1`

dfPeq~f!cosh~f!5
K1~z!

K0~z!
, ~39!

with z52r/Tf}exp(2bm). As we assumed before alread
that T!m, we can use the approximate expressions for
modified Bessel functions at small value of the argumenz.
The average free energy of a disordered Peierls chain
then be written in the form

^F&5F02LAS 2D0

plvF
D 2 1

m1~3/2!Tln~eT0 /T!
, ~40!

where the temperatureT0 is defined by

T05
1

elvF
S 4AD0

2

pgAcr
D 2/3

, ~41!

andg51.781 072 . . . , is theexponential of Euler’s constant

V. AVERAGE DENSITY OF KINKS

We now turn to the average densityn of disorder-induced
kinks, which is obtained by differentiating the free ener
Eq. ~40! with respect tom @cf. Eq. ~24!#. This leads to

n5
A

~gklvF!2

1

@11~3T/2m!ln~eT0 /T!#2
, ~42!

which at zero temperature reduces to

n~T50!5
A

~gklvF!2
. ~43!

This zero-temperature result was derived in Ref. 1 by us
scaling arguments.

Strictly speaking, however, we cannot setT50 in our
general result, because forT,T0 the entropy of kinks,

^Skink&52
]^F&
]T

} lnS T

T0
D , ~44!

becomes negative and the density of kinks increases
decreasing temperature. We note that in the expression
the free energy Eq.~40!, the kink energym is effectively
replaced by

m~T!5m1
3

2
TlnS eT0

T D . ~45!

This can be readily understood as follows. Each kink ent
in the expression Eq.~18! with a weight

e2bm~T!5
l ~T!

d~T!
e2bm, ~46!

where l (T) is the typical size of the thermal fluctuation o
the kink position. For the white noise disorder that we co
sider, l (T) can be estimated from the condition

~bk!2Al~T!;1. ~47!
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This derives from the criterion that shifting the kink ov
l (T) from its optimal position should cause a fluctuation
the order ofT in its interaction energy Eq.~14! with the
disorder. Using Eq.~A17! we find that

l ~T!

d~T!
}T3/2, ~48!

which in combination with Eq.~46! indeed gives Eq.~45! for
m(T). The temperature dependence ofm(T) is plotted in
Fig. 2. BelowT5T0, dm(T)/dT.0, i.e., kinks become les
‘‘heavy’’ as temperature decreases, which explains
pathological behavior of the entropy.

Keeping in mind that our description of the lattice is bo
classical and continuum, this pathology is hardly suprisi
In practice, quantum effects will prevent the entropy fro
becoming negative at low temperatures. A simpler way
regularize the model lies in a discretization. From Eqs.~45!
and ~46!, it follows that T0 is determined by the condition
l (T);d(T). For smaller temperatures,l (T) gets smaller
than d(T), which plays the role of an effective lattice con
stant and becomes arbitrarily small at small temperatu
Clearly, however, the continuum description of the o
diagonal disorder fails whenl (T) drops below the lattice
constanta. Moreover, the Peierls-Nabarro barrier24 at low
temperature fixes the kink position within the unit cell of t
atomic lattice. These facts motivate us to consider in the n
section a discrete version of Eq.~18!, in which a
temperature-independent lattice constantd is used and the
integrations over kink positions are substituted by finite l
tice sums.

It should be noted that just replacingd(T) in Eq. ~18! by
a temperature-independent distanced does not, by itself,
make the entropy positive. Retracing the steps following
~18! in that case leads to

^F&5F02LAS 2D0

plvF
D 2 1

m12Tln~eT08/T!
, ~49!

FIG. 2. Temperature dependence of the effective chemical
tential of kinks according to Eq.~45! for m510T0.
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with

T085
2D0

pelvF
S 2dA

g D 1/2

. ~50!

The density of disorder-induced kinks is then found to be

n5
A

~gklvF!2

1

@11~2T/m!ln~eT08/T!#2
. ~51!

Obviously, this result has the same zero-temperature l
as Eq.~42! and it also shows a similar pathology below
certain temperature, which now is given byT08 . Only if we
discretize the kink positions on the lattice with constantd,
will we indeed obtain a classical model that also at low te
peratures gives sensible results.

VI. DISCRETE MODEL AND NUMERICAL RESULTS

As motivated in the previous section, we now conside
discrete model, in which the chain is divided intoM cells of
length d ~independent ofT) and kinks are allowed to be
located only at the boundariesxm5md (m51, . . . ,M ) be-
tween the cells. Then the functionf (x)5D(x)/D0 @cf. Eq.
~20!# has a constant value61 inside each cell. In othe
words, the chain configuration is described by a set of Is
variables,$s1 ,s2 , . . . ,sM%, wheresm is the value off (x)
in the mth cell. We impose periodic boundary condition
sM115s1. Kinks occur between cells with opposite valu
of s and the sum over all possible configurations of the Is
spins represents the sum over the number of kinks, as we
over their positions on the one-dimensional lattice. This l
tice model for the statistics of disorder-induced kinks
equivalent to the one-dimensional random-field Ising mod5

~RFIM!. The constant-d continuum model which led to Eq
~51! is, in fact, the continuum version of this RFIM.

The partition function of the one-dimensional RFIM rea

Z5 (
$sm%

e2bE$sm%, ~52!

with

E$sm%5 (
m51

M Fm ~12smsm11!

2
2hmsmG . ~53!

The first term in Eq.~53! equalsm times the number of spin
flips in the chain and thus represents the total kink crea
energy. The second term describes the interaction with
random ‘‘magnetic’’ field defined by

hm5kE
xm

xm11
dxh~x!, ~54!

i.e., the value of the field in each cell is proportional to t
value of disorder in the continuum model integrated over
cell. The distribution of the random field is also Gaussia
with correlator:

^hkhl&5Ddkl , ~55!

whereD5dk2A.
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It is well known that arbitrarily small disorder or temper
ture destroys the long-range order in the one-dimensio
RFIM.5 The density of the thermally excited domain walls
the absence of disorder ise2bm, while at zero temperature
the density of the disorder-induced kinks is proportional
the strength of the disorder. A full calculation of the avera
free energy and the density of kinks in the RFIM involv
numerical simulations. We performed such simulations us
the transfer-matrix approach, as we did in the continu
treatment. In the discrete case, the Schro¨dinger equation~29!
for the continuum model is replaced by

cm115T̂mcm , ~56!

with the transfer matrixT̂m ,

T̂m5S exp$bhm% exp$2b~m2hm!%

exp$2b~m1hm!% exp$2bhm%
D , ~57!

The free energy for a given realization$hm% of the random
field is then given by

F@$hm%#52TlnS Tr )
m51

M

T̂mD . ~58!

To obtain a smooth temperature dependence of the densi
kinks, we had to average the free energy over 103 random-
field realizations for a chain with 103 sites.

We now turn to the results of these simulations. In Fig
the free energy is plotted as a function of temperature for
values of the disorder strength:D50.005m2 and D
50.01m2. Stars indicate the numerical results for the discr
model, while the solid lines represent the continuum vers
of the RFIM @Eq. ~49!#. The latter curves have maxima

FIG. 3. The free energy of dimerization kinks in a Peierls ch
as a function of temperature for two values of the disorder stren
D50.005m2 ~a! andD50.01m2 ~b!. The solid lines give the ana
lytical result Eq.~49!, while the stars indicate the numerical resul
The part of the free energy related to an ordered chain without k
(F0) is discarded.M5L/d denotes the number of unit cells. Th
dashed curve intersects the solid lines at the temperature for w
the analytically calculated entropy equals zero.
al

e

g

of

o

e
n

T5T08 , below which the entropy becomes negative. For c
venience, we also plotted the dashed curve, which pa
through the maxima of the solid lines. The continuum resu
become meaningless to the left of this curve. The slope
the numerically obtained free energy of the discrete mode
always negative, corresponding to a positive entropy, wh
tends to 0 asT→0. We also observe that aboveT08 the
numerical~discrete! and analytical~continuum! results only
differ little from each other.

In Fig. 4 we give the density of kinks as a function
temperature for the same two values of the disorder as in
3. Again, solid lines and stars represent the continuum mo
and the discrete model, respectively, while the dashed cu
passes through the minima of the continuum results, be
which the continuum model becomes meaningless. The t
perature dependence of the density of kinks forT,0.15m is
very slow. At T50.15m the density of thermally induced
kinks in a chain without disorder is about 1.331023/d. This
means that the increase of the kink density observed in Fi
is mostly related to the fact that more multikink configur
tions become available in a disordered chain as tempera
grows.

Figure 5 shows the density of kinks as a function of t
disorder strengthD at T50. Stars give the numerical resul
for the discrete model~simulated atT50.005m in order to
avoid numerical instabilities!. The dashed line gives theT
50 continuum result, Eq.~43!, which in terms ofD reads
n(T50)5D/(dm2). As is observed from Fig. 4, for decrea
ing disorder these two results get in better agreement w
each other. This is a consequence of the fact thatT08 then also
decreases. In the limit ofD→0, the agreement should be
come exact, as indeed appears from Fig. 5. For higher di
der, however, the nonphysical nature of the continu
model forT,T08 causes the numerical and analytical resu
to deviate by an increasing amount atT50. An alternative

h:

.
s

ch

FIG. 4. The density of dimerization kinks in a Peierls chain a
function of temperature for two values of the disorder strengthD
50.005m2 ~a! andD50.01m2 ~b!. The solid lines give the analyti-
cal result Eq.~51! and the stars indicate the numerical resul
Dashed curve as in Fig. 3.
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2868 57M. V. MOSTOVOY, M. T. FIGGE, AND J. KNOESTER
approach to obtain an analytical zero-temperature result,
use the continuum result Eq.~51! at the lowest possible valu
where the result is still physical, i.e., atT5T08 . The thus
obtained value of the density of kinks as a function of t
disorder is also plotted in Fig. 5~solid line! and is indeed
seen to be in much better agreement with the numericaT
50 results over a large interval of the disorder. This sho
the importance of the corrections to the linearD dependence
expected on the basis of scaling arguments,5 of the density of
domain walls in the RFIM.

VII. SUMMARY AND DISCUSSION

In this paper we studied a continuum model describ
Peierls chains with a doubly degenerate ground state in
presence of weak off-diagonal disorder. In such chains, t
mally and disorder-induced neutral solitons~dimerization
kinks! occur. By integrating out all irrelevant lattice degre
of freedom, we obtained the free energy of these kinks. T
free energy was then averaged over the disorder realiza
leading to an analytical expression Eq.~42! for the average
density of kinks.

In the continuum model, the entropy of the kinks w
found to become negative below a certain temperatureT0. At
this temperature the thermal fluctuation of the kink positio
l (T) becomes of the order of the effective ‘‘lattice constan
d(T). It was then argued that below this temperature o
should either take the effects of the lattice discreteness
account, or consider the lattice quantum mechanically.
noted that the discrete version of the model that describes
thermal or disorder-induced kinks is the one-dimensio
RFIM. The free energy and the density of kinks in the lat
model were found numerically and the results were co
pared with the continuum model. It was found that forT
.T0, both models are in good agreement.

FIG. 5. Density of dimerization kinks in a Peierls chain as
function of disorder strength. The dashed line represents the
lytical continuum result Eq.~51! taken atT50, the solid line gives
the same result atT5T08 , while the stars indicate the results o
numerical simulations of the discrete model atT50.005m ~which
for all practical purposes may be considered zero temperature!.
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To obtain the free energy of the kinks~Appendix!, we
used a technique developed for the semiclassical solutio
quantum problems.25 This is not accidental, because a Peie
chain with a doubly degenerate ground state in the prese
of weak disorder or at a small temperature behaves simil
to a quantum particle in a double well. If the wells are ve
deep, the small quantum fluctuations around the two class
vacua may be relatively insignificant. A more important e
fect, however, is that the quantum particle can tunnel
tween the two minima. The tunneling probability is d
scribed by instantons, which are the imaginary-time class
trajectories leading from one minimum of the potential to t
other. In fact, an exact mapping exists between the instan
gas for a double-well potential and the gas of thermally
duced kinks.26 The disorder-induced kinks are somewhat d
ferent: their positions, unlike the instanton positions, are
arbitrary. These kinks are, to some extent, pinned by
disorder which induces them.

The main assumption of our calculation is the validity
the expansion of the free energy in powers of the disord
As was already discussed in Ref. 1, this translates into
condition

nj0!1, ~59!

meaning that the average distance between kinks shoul
much larger than their size. For stronger disorder the lat
distortions would be random over the length scale of
order ofj0, and the notion of multikink configurations woul
lose sense.

Effects of disorder on the properties of Peierls cha
have been studied before by a number of authors. Man
these studies were devoted to charged solitons induced
random doping27 and the effects of localized bond and si
impurities on the electronic states.28 The minimal-energy lat-
tice configuration in the presence of a finite density of bo
impurities was studied numerically in Refs. 3,4. There it w
found that for some disorder realizations the configurat
contained kinks. As these calculations were perform
within the SSH model~in which electron-electron interac
tions are not included!, the obtained disorder-induced kink
did not have a definite charge or spin. Also, no attempt w
made in these papers to obtain~numerically or analytically!
the density of solitons as a function of the disorder streng

Another large body of work on disordered Peierls syste
deals with the fluctuating gap model~FGM!.29 This work not
only addresses the study of disorderper se,30,31 but also in-
cludes studies of quantum lattice fluctuations modeled
static disorder.32–34 In the FGM, one assumes that the latti
part D lat of the order parameter is a constant throughout
chain and does not respond to the local disorder. This im
diately eliminates the possibility of disorder-induced so
tons. Nevertheless, solitons play an important role in
FGM: we recently showed that the optimal fluctuation th
determines the density of states inside the pseudogap in
model has the form of a soliton-antisoliton pair.35

We finally mention that, while we considered weak o
diagonal disorder, one may also consider a type of disor
where the electron conjugation over certain bonds is bro
completely (tn,n1150). This model leads to a distribution o
chain sizes.36 If the conjugation breaks occur randoml
chains with an odd number of carbon atoms will occ

a-
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57 2869DENSITY OF NEUTRAL SOLITONS IN WEAKLY . . .
which necessarily contain a kink.37 Thus, the density of
kinks is proportional to the disorder strength~i.e., the density
of chain breaks!, as it is in our model@see Eq.~43!#.

As was already discussed in our previous paper,1 the elec-
tron state in the presence of neutral solitons is different fr
that of a perfectly dimerized chain. This gives the possibi
to detect the disorder-induced kinks. First, the kinks sho
give rise to a peak in the optical-absorption spectrum t
occurs inside the gap of the perfectly dimerized chain. S
ond, having spin 1/2, the neutral kinks contribute to the C
rie susceptibility. As we noted in Ref. 1, experiments
undopedtrans-polyacetylene do not seem to agree with t
large density of free solitons that one would expect on
basis of the small average electron conjugation length~sev-
eral tens of carbon atoms36! in this material. In particular,
experiments indicate that only 1 free spin occurs per 3
carbon atoms.38 It should be noted, however, that a meanin
ful comparison between theory and experiment can only
made if one accounts for interchain interactions, which s
press the generation of isolated kinks.39 A study of the inter-
play between the disorder-induced kinks, destroying
long-range coherence, and the interchain interactions, b
ing kinks into pairs, will be reported elsewhere. It should
noted that this interplay seems to be very important to
scribe the Peierls phase transition.40

We finally note that another important issue is the qu
tum treatment of the lattice dynamics coupled to the s
dynamics of the kinks. The interaction between neighbor
kinks may bind their spins into a singlet ground state, th
explaining why the density of free spins observed in undo
trans-polyacetylene is so low. We plan to address this pr
lem in the future.
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APPENDIX

In this appendix we obtain the effective free energy
kinks by integrating out all irrelevant lattice degrees of fre
dom in the partition function of the disordered chain E
~17!.

It is convenient to replace the integration over lattice co
figurationsD lat by the integration overD(x), which also in-
cludes the disorder@cf. Eq. ~6!# . The chain energy can b
written as

E@D lat~x!,h~x!#5Eel@D~x!#1Elat@D~x!2h~x!#.
~A1!

Since the lattice energy is quadratic inD lat5D(x)2h(x), we
obtain

E@D lat~x!,h~x!#5E@D~x!,0#2
2

plvF
E

0

L

dxD~x!h~x!

1
1

plvF
E

0

L

dxh~x!2, ~A2!
d
t

c-
-

e
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e
-

e
d-

-

-
n
g
s
d
-

f
-
.

-

where the first term is the chain energy at zero disorder
L is the chain length.

For D(x) close to the multikink configurationDN(xuz) we
can expand the chain energyE@D(x),0# in powers ofj(x)
defined by

j~x!5D~x!2DN~xuz!. ~A3!

Retaining terms up to second order inj(x), we have

E@D,0#5E01Nm1
1

plvF
E

0

L

dxj~x!D̂N~z!j~x!.

~A4!

Here, we assumed the distances between kinks to be m
larger than the correlation lengthj0. As we discussed in Sec
III, in the absence of disorder the multikink configuration
then an almost exact extremum of the chain energy, whic
why Eq.~A4! does not contain a first-order term. The ope
tor D̂N(z) is defined through

D̂N~z!j~x!5E dyDN~x,yuz!j~y!, ~A5!

with the kernelDN(x,yuz) related to the second variationa
derivative of the total chain energy

1

plvF
DN~x1 ,x2uz!5

1

2

d2E@D,0#

dD~x1!dD~x2!
U

D5DN~xuz!

.

~A6!

Let V5A4K/M denote the bare optical phonon frequenc
Then, the eigenfunctionsfa(xuz) of D̂N(z) obeying

D̂N~z!fa~xuz!5S va~z!

V D 2

fa~xuz!, ~A7!

are ~optical! phonon modes in the presence ofN kinks with
frequenciesva(z).

When the kinks are far apart, theN lowest phonon fre-
quencies (a51, . . . ,N) are very small, since these norm
modes correspond to shifts of the kinks, which leave
chain energy practically unchanged.~The frequency of one
mode is exactly zero, as it corresponds to the translation
the multikink configuration as a whole!. To avoid double
counting, the integration over the firstN modes is replaced
by the integration over theN kink positions, which is the
standard approach in the instanton calculus.25 Then the mea-
sure of the functional integration in the vicinity of the mu
tikink configuration becomes

Dj~x!5JNdNz)
a.N

dja , ~A8!

whereja are the amplitudes of the normal modes,

j~x!5(
a

jafa~xuz!, ~A9!

andJN is the Jacobian of the substitution of the integrati
over theN ~almost! zero modes by the integration over th
kink positions. We have

JN5~J1!N[cN/2, ~A10!
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with J1 the Jacobian for the single-kink configurationD1(x),
leading to

c5E dxS dD1~x!

dx D 2

;
D0

2

j0
. ~A11!

The constantc can be expressed asc5plvFV2Mk/2, with
Mk the soliton mass, which in the SSH model is about 6me .2

The Gaussian integration over the amplitudes of the n
zero modes now reduces the partition function to

Z5Z0(
N

S 4bc

p2lvF
D N/2E dNzRN~z!exp$2bWN~z!%.

~A12!

Here

WN~z!5Nm2
2

plvF
E

0

L

dxDN~xuz!h~x!

1
1

plvF
S E

0

L

dxh~x!22 (
a.N

V2

va
2~z!

ha
2 D ,

~A13!

with ha the expansion coefficients ofh(x) over the ortho-
normal basisfa(xuz) @cf. Eq. ~A9!#. Z0 is the partition func-
tion of the chain in the absence of kinks and disorder:

Z05e2bE0)
a

S pAlvF

b

V

va~0!
D , ~A14!

whereva(0) denote the phonon frequencies in the abse
of kinks and disorder. Finally, the factorRN(z) in Eq. ~A12!
is the product of nonzero phonon frequencies for the latt
configuration containing no kinks divided by the same pro
uct for the configuration withN kinks,
n-

ce

ce
d-

RN~z!5S )
a

va~0!

V D S )
a.N

va~z!

V D 21

. ~A15!

Similarily to Eq. ~A10!, for widely separated kinks,RN(z)
equals theNth power of the regularized product of nonze
phonon frequencies for a configuration with one kink,25

RN~z!5„R1~z1!…N[r N/2, ~A16!

wherer is a number of the order unity.
Finally, for weak disorder we can neglect the third term

Eq. ~A13!, as it is of second order inh(x). From Eqs.~A12!,
~A13!, and ~A16! we then obtain the expressions Eqs.~18!
and~19! for the free energy of a chain with disorder realiz
tion h(x), whered(T) is given by

d~T!5
p

2
AlvFT

cr
; j0Al

T

D0
. ~A17!

In this calculation we neglected electron excitations, a
suming the temperature to be sufficiently low. However, t
electron ground state for the lattice configuration contain
N neutral kinks, separated by distances much larger than
correlation length, is 2N-fold degenerate, due to the fact tha
the spin projection of each kink can be arbitrary. Because
this degeneracy, the weight factor of each kink acquires
extra factor of 2, which was taken into account in Eq.~A12!.
The degeneracy is not exact: excitations of this spin sys
have a typical energy of the order of the exchange cons
for the spins of two neighboring kinks. Thus, our assumpti
requires that the temperature is much larger than this ene
@D0exp„21/(nj0)…#, yet much smaller than the Peierls ga
@D0#.
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