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Plasmon-polariton fractal spectra in quasiperiodic multilayers

M. S. Vasconcelos and E. L. Albuquerque
Departamento de Fı´sica, Universidade Federal do Rio Grande do Norte, 59.072-970 Natal-RN, Brazil

~Received 16 May 1997; revised manuscript received 12 August 1997!

We carry out a theoretical analysis for the spectra of plasmon polaritons in multiple semiconductor layers
arranged in a quasiperiodical fashion. This quasiperiodicity can be of the type of so-called substitutional
sequences. They are characterized by the nature of their Fourier spectrum, which can be dense pure point
~Fibonacci sequences! or singular continuous~Thue-Morse and double-period sequences!. These substitutional
sequences are described in terms of a series of generations that obey peculiar recursion relations. In order to
study the plasmon-polariton spectra, we use a convenient theoretical model based on a transfer-matrix treat-
ment, with the layers characterized by a frequency-dependent dielectric function, including the effect of
retardation. We present numerical results to discuss the fractal aspect of the spectra, and compare it with the
nonfractal spectra presented in the periodic case.
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I. INTRODUCTION

The pioneering experimental works of Merlin an
collaborators1 on nonperiodic Fibonacci and Thue-Mors
GaAs-AlAs superlattices have generated a large amoun
research activity in the field of quasicrystals. These qua
rystals are formed by the superposition of two~or more!
incommensurate periods, so that they can be defined a
termediate systems between a periodic crystal and the
dom amorphous solids.2 One of the main motivations to
study these structures is because it was recognized tha
calization of electronic states, one of the most active field
condensed matter physics,3 could occur not only in disor-
dered systems, but also in the deterministic quasiperio
systems.4

Localization due to the electronic properties of a tig
binding Schro¨dinger equation was studied in one dimensi
by several groups.5–8 On the other hand, polariton spect
were also reported by Albuquerque and collaborators,9–12

and they could provide an excellent way to probe experim
tally these localized states. The reason for that is becaus
localization phenomenon is essentially due to the wave
ture of the electronic states, and thus could be found in
wave phenomena. Furthermore, there are distinct advant
to studying localization using a classical wave equation
stead of the quantum mechanical electronic problem. Ind
the latter usually deals with other types of interactions, s
as, to name a few, spin-orbit effects and the electron-elec
interaction.

In disordered dielectric materials, experimental proof
the complete localization of light waves is a difficult tas
Complete localization would be indicated by a vanishing d
fusion coefficient. Recently, an unusually small optical d
fusion coefficient consistent with the onset of localizati
has been realized in transmission and scattering experim
with microwaves in a random mixture of aluminum and T
flon spheres,13 where theoretically predicted scaling prope
ties of the transmission with sample thickness were verifi
Also, very recently,14 the optical transmission of quasiper
odic dielectric multilayer stacks of SiO2 and TiO2 thin film,
570163-1829/98/57~5!/2826~8!/$15.00
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ordered according to a Fibonacci sequence, was meas
and the spectrum was in good agreement with the theore
predictions.

A rather fascinating feature of these quasiperiodic str
tures is that they exhibit collective properties not shared
their constituents. Therefore, the long-range correlations
duced by the construction of these systems are expecte
be reflected someway in their various spectra~light propaga-
tion, electronic transmission, density of states, polarito
etc.!, defining a novel description of disorder.15–17 Indeed,
theoretical transfer-matrix treatments18–20 show that these
spectra are fractals. On the other hand, the procedure to g
these kind of structures became standard since the pione
works of Merlin et al.1 It involves defining two distinct
building blocks, each of them carrying out the necess
physical information, and having them ordered in a desi
manner~for instance, they can be described in terms o
series of generations that obey a particular recursion r
tion!. The presence of long-range correlations in this a
other systems avoids canonical approaches like perturba
theory, where one first separates a small localized piec
the system, treating the rest as a perturbationa posteriori.
This approach does not work in those cases, because
behavior of the macroscopic system is completely disti
from the behavior of its separated small piece, due to
long-range correlations. Fortunately, the presence of lo
range correlations itself gives the key to overcome this d
ficulty: Normally these systems are very robust, to wi
modifications on a microscopic scale.

In the study of continuous phase transitions, for instan
the critical behavior is known to depend only upon glob
properties, namely, the geometric dimension of the sys
and the symmetries of its order parameter. It is insensitive
the details of the microscopic interactions between atom
molecules, and then one can classify the various systems
few universality classes.

The aim of this work is twofold: First we want to show
the plasmon-polariton spectra of multiple semiconductor l
ers in quasiperiodic arrangements. These spectra gener
previous investigation in the field~for a review see Refs. 21
2826 © 1998 The American Physical Society
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57 2827PLASMON-POLARITON FRACTAL SPECTRA IN . . .
and 22!. Then, we intend to present a quantitative analysis
the results, pointing out the distribution of the polarito
bandwidths for high generations, which gives a good insi
about their localization and their power laws, which are
guide to theiruniversality classes.

The plan of this work is as follows: In Sec. II, we prese
the method of calculation employed here, which is based
the transfer-matrix approach. The plasmon-polariton disp
sion relation is then determined, and its expression follo
the pattern already shown in previous work.22 Section III is
devoted to a discussion of this dispersion relation for vari
quasiperiodic structures. In Sec. IV we show the numer
results of these spectra, with a discussion of their main
tures. The conclusions of this work are presented in Sec

II. GENERAL THEORY

In this section we present the general model to desc
the polariton dispersion relation in a periodic superlatti
The extension to more complex structures will be given
the next section.

To set up a periodic semiconductor superlattice, we c
sider two different building blocks~see Fig. 1! which are
arranged in the alternated wayabab••• . The building
block a(b) consists of a two-dimensional electron g
~2DEG! with a carrier concentrationnA(nB) supported by a
dielectric layerA(B). The layersA andB are characterized
by the dielectric functionseA(v) andeB(v), and have thick-
nessesa andb, respectively.

In order to find the bulk polariton modes, we consider
infinite structure, where the Cartesian axes are chose
such a way that thez axis is normal to thexy plane of the
layers. Let us assume that the propagation of the electrom
netic wave isp polarized. The 2DEG at each interface
modeled due to the presence of a surface density of cur
whose expression, given by Ohm’s law, is

Jxj5 ive0sjExj , ~1!

FIG. 1. Schematic representation of the building blocks for
quasiperiodic structures.
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where

sj5
nje

2

m* v~v1 igj!
. ~2!

Here, j5A or B, nj is the carrier concentration,e(m* ) is
the electron’s charge~effective mass!, e0 is the vacuum per-
missivity, andgj is the damping factor of the material.

To find the polariton bulk dispersion relation, one shou
solve the electromagnetic wave equation within the layerA
and B of the nth unit cell of the superlattice. Then, takin
into account Maxwell’s boundary conditions, we can find t
appropriate~unimodular! transfer matrix for the periodic su
perlattice, which is expressed by22

T5NA
21MANB

21MB . ~3!

Here the forms of the matricesM j andNj (j5A or B) can
be found in Ref. 20.

Now using Bloch’s ansatz, we obtain the dispersion re
tion for the bulk polariton modes, i.e.,

cos~QL!5~1/2!Tr~T!, ~4!

whereQ is the Bloch wave vector andL is the thickness of
the unit cell (L5a1b).

On the other hand, to set up the dispersion relation of
surface polariton modes, we consider that the infinite sup
lattice is truncated atz50, and that the regionz,0 is filled
by a transparent mediumC, whose frequency-independen
dielectric constant iseC . This semi-infinite superlattice doe
not possess full translational symmetry in thez direction
through multiples of the size of the unit cellL, and therefore
we may no longer assume Bloch’s ansatz as in the bulk c
However, Eq.~4! still holds provided we replaceQ by ib,
i.e.,

cosh~bL !5~1/2!Tr~T! . ~5!

Since we now have to consider the boundary conditions
the new interface at the planez50, this imposes a furthe
constraint in Eq.~5! which enables us eventually to dete
mine the attenuation factorb. This is given by22

T111T12l5T221T21l
21, ~6!

with

l5~eA81eC8 !/~eA82eC8 !, ~7!

ej85ej~v!/aj , ~8!

and

aj5H @kx
22ej~v/c!2#1/2 if kx.ej

1/2~v/c!,

i @ej~v/c!22kx
2#1/2 if kx,ej

1/2~v/c! .
~9!

HereTi j ( i , j 51,2) are elements of the transfer matrixT and
ej is the dielectric function of the medium in consideratio
(A or B); kx is the common in-plane wave vector,v is the
angular frequency, andc is the velocity of the light in
vacuum.

Equation~6! represents an implicit dispersion relation f
the surface polariton modes. Once it is solved, we can ob

e
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a value forb which must satisfy Eq.~5! with the requirement
Re(b).0 to ensure the localization.

This method can now be extended for more complex
perlattices, where it should be necessary to calculate o
transfer matricesT for the structure in consideration. The
one should use Eqs.~4!, ~5!, and ~6!, to find the bulk and
surface polariton modes.

III. TRANSFER-MATRIX APPROACH

We now intend to investigate the bulk and surfa
plasmon-polariton modes in structures that exhibit determ
istic disorders, i.e., Fibonacci, Thue-Morse, double-peri
and Cantor superlattices, by using the calculations of
previous section.

A Fibonacci structure can be grown experimentally
juxtaposing the two building blocksa andb in such a way
that thenth stage of the superlatticeSn is given iteractively
by the ruleSn5Sn21Sn22, for n>2 , with S05b and S1
5a. It is also invariant under the transformationsa→ab
andb→a. The Fibonacci generations are

S05@b#, S15@a#, S25@ab#, S35@aba#, etc.
~10!

The number of the bulding blocks increases according to
Fibonacci number,Fl5Fl 211Fl 22 ~with F05F151), and
the ratio between the number of building blocksa and the
number of building blocksb in the sequence is equal to th
golden mean numbert5 1

2 (11A5). The transfer matrices
for the Fibonacci generations are as follows.

~a! For S05@b# or S15@a#,

TS0
5NB

21MB , TS1
5NA

21MA . ~11!

~b! For S25@ab#,

TS2
5NA

21MBNB
21MA . ~12!

~c! For any higher generation (k>1),

TSk12
5TSk

TSk11
. ~13!

Therefore, from the knowledge of the transfer matricesTS0
,

TS1
, and TS2

we can determine the transfer matrix of a
generation.

The Thue-Morse sequence is defined bySn

5Sn21Sn21
1 (n>1),Sn

15Sn21
1 Sn21, with S05a and S0

1

5b. Another way to build up this sequence is through t
inflation rules a→ab,b→ba. The number of building
blocks in this quasiperiodic system increases with 2n, while
the ratio of the number of the building blocksa to the num-
ber of the building blockb is constant and equal to unity
The Thue-Morse generations are

S05@a#, S15@ab#, S25@abba#, etc., ~14!

and the transfer matrices for each generation are as follo
~a! For S15@ab#,

TS1
5NA

21MBNB
21MA5NA

21Tb1
Ta1

NA , ~15!

where
-
er

-
,
e

e

e

s.

Tj1
5M j

21Nj~j5a, j 5A or j5b, j 5B!. ~16!

~b! For S25@abba#,

TS2
5NA

21Ta1
Tb1

Tb1
Ta1

NA5NA
21Tb2

Ta2
NA , ~17!

where

Ta2
5Tb1

Ta1
, ~18!

Tb2
5Ta1

Tb1
. ~19!

~c! For any generationk (k>1),

TSk
5NA

21Tbk
Tak

NA , ~20!

with

Tak11
5Tbk

Tak
, ~21!

Tbk11
5Tak

Tbk
. ~22!

A similar rule holds for the double-period sequenc
where thenth stage is given bySn5Sn21Sn21

1 , with Sn
1

5Sn21Sn21, n>1. It is also invariant under the transforma
tions a→ab , b→aa.

The double-period generations are

S05@a#, S15@ab#, S25@abaa#, etc. ~23!

The number of bulding blocks for this sequence increa
as in the Thue-Morse sequence, i.e., 2n, but the ratio between
the number of the building blocksa to the number of the

FIG. 2. Plasmon-polariton spectra for the reduced freque
v/V vs kxa for a periodic superlattice. The physical parameters
given in the main text. The shadow areas represent the bulk ba
while the surface modes are represented by the dashed lines.
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FIG. 3. ~a! Same as Fig. 2, but for the quasiperiodic, fourth sequence, Fibonacci superlattice.~b! The distribution of bandwidths for the
plasmon polaritons as a function of the Fibonacci generation numbern. ~c! Log-log plot of the total width of the allowed regionsD against
the Fibonacci number.
e

so-
building blocksb is not constant; it tends to 2 when th
number of generations goes to infinity.

The transfer matrix for the second generationS2
5@abaa# is given by

TS2
5NA

21MANA
21MANA

21MBNB
21MA ~24!

or

TS2
5TS0

TS0
TS1

. ~25!
For any generationk>1,

TSk12
5TSk

TSk
TSk11

. ~26!

For completeness, we want to investigate also the
called Cantor superlattice, where thenth stage is given by
Sn5Sn21BnSn21. Here, thenth layer Bn differs from the
first layerB1 only by its thicknessdBn

53n21dB1
.11 We can

also construct the sequence by the transformationsa→aba,
b→bbb. The Cantor generations are
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FIG. 4. ~a! Same as Fig. 2, but for the quasiperiodic, third sequence, Thue-Morse superlattice.~b! The distribution of bandwidths for the
plasmon polaritons as a function of the Thue-Morse generation numbern. ~c! Log-log plot of the total width of the allowed regionsD against
2n.
is
S05@a#, S15@aba#, S25@ababbbaba#, etc.
~27!

The transfer matrix for thenth generation of this sequence

TSn
5TATn , ~28!

where

TA5NA
21MA ~29!

and
Tn5Tn21TABn
Tn21 ~n>2!, ~30!

with

TABn
5NA

21MBn
NBn

21MA ~31!

and

T15TAB1
. ~32!
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FIG. 5. ~a! Same as Fig. 2, but for the quasiperiodic, third sequence, double-period superlattice.~b! The distribution of bandwidths for
the plasmon polaritons as a function of the double-period generation numbern. ~c! Log-log plot of the total width of the allowed regionsD
against 2n.
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With the knowledge of all these transfer matrices, we c
now calculate the plasmon-polariton spectra~bulk and sur-
face modes! for these artificial structures, and this is the top
of the next section.

IV. NUMERICAL RESULTS

In this section we present some numerical results to c
acterize the spectrum of the polariton~bulk and surface
modes! that can propagate in the quasiperiodic structures
n

r-

e-

scribed in the last section. We consider mediumA as GaAs,
whose frequency-dependent dielectric function, appropria
for the interaction of the electromagnetic radiation with pla
mons, is given by

eA5e`AF12
vpA

2

v~v1 iGA!
G . ~33!

Here,e`A is the background dielectric constant,vpA is the
plasma fequency, andGA is the damping factor. For medium
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B, we consider the physical parameters of SiO2, whose
frequency-independent dielectric function iseB512.3. The
other physical parameters used here aree`A512.9, e`B

5eB512.3, na5nb563105 m22, mA* 56.4310232 kg, a
5b/2540 nm, vpA54.04 THz, andGA5gA50. We also
consider mediumC to be the vacuum (eC51).

For numerical results, instead of using the frequencyv,
we prefer to replace it by the reduced frequencyv/V where
V is given by

V5S e`AnAe2

m* e0a
D 1/2

. ~34!

For GaAs the value ofV is approximately equal to 23 THz
The plasmon-polariton spectra for the periodic, as wel

the quasiperiodic Fibonacci, Thue-Morse, double-period,
Cantor superlattices, are presented in Figs. 2, 3~a!, 4~a!, 5~a!,
and 6, respectively. In all these spectra the surface mode
represented by the dashed lines, while the bulk bands
characterized by the shadow areas, which are limited by
equationsQL50 and QL5p. These spectra encompa
those found in the literature so far.22

For the periodic case, depicted in Fig. 2, the plasm
polariton spectrum has two well-defined branches. The h
frequency branch is in the range 0.18,v/V,0.6, for kx
.0, while the low-frequency one lies in the regionv/V
,0.17 for the same value ofkx . The high-frequency surfac
mode merges from the bulk band atv/V50.6, and then
evolves quite apart from the bulk band. The low-frequen
surface mode, on the other hand, starts atv/V50 and then
merges into the bulk band atv/V.0.126 forkxa.2.6. The
inset in this figure shows clearly that the spectrum has
self-similarity pattern.

FIG. 6. Same as Fig. 2, but for the quasiperiodic, second
quence, Cantor superlattice.
s
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re
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In Fig. 3~a! we present the plasmon-polariton spectru
for the fourth Fibonacci generation. Observe that the num
of bulk bands is equal to the Fibonacci numberF4 , and
indeed, in general, this number is always equal to the
bonacci number of the correspondent generation. There
two surface modes which have a behavior similar to t
found in the periodic case: a high-frequency one, wh
starts at the bulk band and then propagates quite apart
for high kxa, and a low-frequency mode, which starts aw
of the bulk band, merging to it atkxa.2.6. Quite interesting,
the later property holds forall quasiperiodic structures stud
ied here. The inset of this figure is a qualitative indication
the fractal aspect of the spectrum. The distribution of
bandwidths is shown in Fig. 3~b!, for kxa50.25. From there,
one can infer the forbidden and allowed energies as a fu
tion of the generation numbern up to the tenth generation o
the Fibonacci sequence, which means a unit cell with 55a
and 34 b building blocks. Notice that, as expected, for lar
n the allowed band regions get narrower and narrower, a
indication of more localized modes. In fact, the total width
the allowed regions in energy goes down as the power
D;Fn

2d , whereFn is the Fibonacci number and the exp
nent d is a function of the common in-plane wave vect
kxa. In Fig. 3~c! we show a log-log plot of these power law
for three different values ofkxa, namely, 0.25, 0.35, and 0.5

The Thue-Morse quasiperiodic third generation is sho
in Fig. 4~a!. Here, as in the previous cases, we have t
well-defined regions for the plasmon-polariton spectru
The number of bulk bands increases as 2n11, n being the
Thue-Morse generation. The surface modes lie between
bulk bands. The qualitative self-similarity aspect of the sp
trum is apparent in the inset. Figure 4~b! shows the forbidden
and allowed regions of propagation for the plasmon pola
tons as a function of the Thue-Morse generation number.
went up to the tenth generation of the sequence, wh
means a unit cell with 210 a andb building blocks. The total
allowed bandwidthD scales as the power lawD;(2n)2d,
where nowd is independent of the common wave vectorkx.
Indeed, in Fig. 4~c! we can see a log-log plot of the widthD
of the allowed regions against 2n for three different values of
kxa, with almost the same value ofd, the small difference
probably due to numerical errors.

For the double-period quasiperiodic structure, t
plasmon-polariton spectrum for its third generation is sho
in Fig. 5~a!. It has a spectrum similar to those observed in
Thue-Morse case. However, there is an important differe
here: The number of bulk bands in the high-frequency reg
of the spectrum for each generation is equal to the numbe
a building blocks of the correspondent generation, while
number of bulk bands in the low-frequency region is equa
the number ofb building blocks of the same generatio
Altogether, however, the number of bulk bands increase
2n. The forbidden and allowed regions, as a function of
generation numbern, are shown in Fig. 5~b!. The scaling
behavior of the allowed bands widthD is D;(2n)2d, where
here, as in the Fibonacci case, the exponentd is a function of
the common wave vectorkxa, as can be seen in Fig. 5~c!.

Finally, for completeness, we show in Fig. 6, th
plasmon-polariton spectrum for the Cantor superlattice~sec-
ond generation!. Of course it is not inserted in the substitu

e-
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tional classes defined by the other structures. The numbe
bulk bands obeys the following sequence of numbers:

Sn5H 7n/2 for n even,

~7n21!/2 for n odd.
~35!

It has also a qualitative self-similarity aspect, which is cle
from the inset of this figure.

V. CONCLUSIONS

In this work we have presented a general theory for
propagation of plasmon polaritons in quasiperiodic super
tices of substitutional types, whose spectra are illustrated
the Figs. 3, 4, and 5. We have studied some physical p
erties of these substitutional sequences, mainly those re
to their self-similarity behavior, whose fractalitity can be d
scribed by the power laws depicted in Figs. 3~c!, 4~c!, and
5~c!, not found in the periodic case. Also, we presented so
discussion about localization, as expressed by the distr
ta
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tion of their bandwidths shown in Figs. 3~b!, 4~b!, and 5~b!.
The most important experimental techniques to pro

these spectra are the inelastic light scattering of Raman
and ATR ~attenuated total reflection!. In the case of Raman
scattering, one uses a grating spectrometer to detect the
tered light. The typical shift of the frequency of the scatter
light is in the range 0.6–500 meV, which makes this tec
nique one of the most appropriate to probe the polari
spectra. On the other hand, the ATR spectroscopy is m
easier to set up than the Raman one, but with less pre
results. However, this technique was employed with succ
in a number of experiments~for a review see Ref. 23!.
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