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Plasmon-polariton fractal spectra in quasiperiodic multilayers
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We carry out a theoretical analysis for the spectra of plasmon polaritons in multiple semiconductor layers
arranged in a quasiperiodical fashion. This quasiperiodicity can be of the type of so-called substitutional
sequences. They are characterized by the nature of their Fourier spectrum, which can be dense pure point
(Fibonacci sequencgsr singular continuousThue-Morse and double-period sequenc&hese substitutional
sequences are described in terms of a series of generations that obey peculiar recursion relations. In order to
study the plasmon-polariton spectra, we use a convenient theoretical model based on a transfer-matrix treat-
ment, with the layers characterized by a frequency-dependent dielectric function, including the effect of
retardation. We present numerical results to discuss the fractal aspect of the spectra, and compare it with the
nonfractal spectra presented in the periodic case.
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[. INTRODUCTION ordered according to a Fibonacci sequence, was measured,
and the spectrum was in good agreement with the theoretical

The pioneering experimental works of Merlin and predictions.
collaborator$ on nonperiodic Fibonacci and Thue-Morse A rather fascinating feature of these quasiperiodic struc-
GaAs-AlAs superlattices have generated a large amount dfires is that they exhibit collective properties not shared by
research activity in the field of quasicrystals. These quasictheir constituents. Therefore, the long-range correlations in-
rystals are formed by the superposition of tar more duced by the construction of these systems are expected to
incommensurate periods, so that they can be defined as ibe reflected someway in their various spe¢light propaga-
termediate systems between a periodic crystal and the ration, electronic transmission, density of states, polaritons,
dom amorphous solids.One of the main motivations to etc), defining a novel description of disorder.}’ Indeed,
study these structures is because it was recognized that Itheoretical transfer-matrix treatmetfts?® show that these
calization of electronic states, one of the most active fields irspectra are fractals. On the other hand, the procedure to grow
condensed matter physits;ould occur not only in disor- these kind of structures became standard since the pioneering
dered systems, but also in the deterministic quasiperiodiworks of Merlin et all It involves defining two distinct
systemg' building blocks, each of them carrying out the necessary

Localization due to the electronic properties of a tight- physical information, and having them ordered in a desired
binding Schrdinger equation was studied in one dimensionmanner(for instance, they can be described in terms of a
by several groups.® On the other hand, polariton spectra series of generations that obey a particular recursion rela-
were also reported by Albuquerque and collaboratofs, tion). The presence of long-range correlations in this and
and they could provide an excellent way to probe experimenether systems avoids canonical approaches like perturbation
tally these localized states. The reason for that is because tligeory, where one first separates a small localized piece of
localization phenomenon is essentially due to the wave nathe system, treating the rest as a perturbatioposteriori
ture of the electronic states, and thus could be found in anfhis approach does not work in those cases, because the
wave phenomena. Furthermore, there are distinct advantagbehavior of the macroscopic system is completely distinct
to studying localization using a classical wave equation infrom the behavior of its separated small piece, due to the
stead of the quantum mechanical electronic problem. Indeedpng-range correlations. Fortunately, the presence of long-
the latter usually deals with other types of interactions, sucliange correlations itself gives the key to overcome this dif-
as, to name a few, spin-orbit effects and the electron-electroficulty: Normally these systems are very robust, to wide
interaction. modifications on a microscopic scale.

In disordered dielectric materials, experimental proof of In the study of continuous phase transitions, for instance,
the complete localization of light waves is a difficult task. the critical behavior is known to depend only upon global
Complete localization would be indicated by a vanishing dif-properties, namely, the geometric dimension of the system
fusion coefficient. Recently, an unusually small optical dif-and the symmetries of its order parameter. It is insensitive to
fusion coefficient consistent with the onset of localizationthe details of the microscopic interactions between atoms or
has been realized in transmission and scattering experimemtsolecules, and then one can classify the various systems in a
with microwaves in a random mixture of aluminum and Te-few universality classes
flon spheres? where theoretically predicted scaling proper-  The aim of this work is twofold: First we want to show
ties of the transmission with sample thickness were verifiedthe plasmon-polariton spectra of multiple semiconductor lay-
Also, very recently:* the optical transmission of quasiperi- ers in quasiperiodic arrangements. These spectra generalize
odic dielectric multilayer stacks of Sigand TiO, thin film,  previous investigation in the fielfor a review see Refs. 21
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n, where

n.e?

A T w(wtive)
o =

Here, £&=A or B, n; is the carrier concentratiog(m*) is
the electron’s chargéeffective mask ¢, is the vacuum per-
missivity, andy, is the damping factor of the material.

a To find the polariton bulk dispersion relation, one should
g solve the electromagnetic wave equation within the layers
and B of the nth unit cell of the superlattice. Then, taking
into account Maxwell’'s boundary conditions, we can find the
appropriatg(unimodulaj transfer matrix for the periodic su-
B = B perlattice, which is expressed By

@

T=N,'MNzMg. 3

Here the forms of the matriced ; andN, ({é=A or B) can
b be found in Ref. 20.
Now using Bloch’s ansatz, we obtain the dispersion rela-

FIG. 1. Schematic representation of the building blocks for thetion for the bulk polariton modes, i.e.,
uasiperiodic structures.
quasip cog QL) =(1/2)TH(T), 4)

and 22. Then, we intend to present a quantitative analysis ofvhereQ is the Bloch wave vector and is the thickness of
the results, pointing out the distribution of the polariton the unit cell L=a+b).
bandwidths for high generations, which gives a good insight On the other hand, to set up the dispersion relation of the
about their localization and their power laws, which are asurface polariton modes, we consider that the infinite super-
guide to theiruniversality classes lattice is truncated at=0, and that the region<0 is filled

The plan of this work is as follows: In Sec. Il, we presentby a transparent mediur@, whose frequency-independent
the method of calculation employed here, which is based odielectric constant iz . This semi-infinite superlattice does
the transfer-matrix approach. The plasmon-polariton dispemot possess full translational symmetry in thedirection
sion relation is then determined, and its expression followshrough multiples of the size of the unit céll and therefore
the pattern already shown in previous wéfkSection Il is  we may no longer assume Bloch'’s ansatz as in the bulk case.

devoted to a discussion of this dispersion relation for variousdowever, Eq.(4) still holds provided we replac® by i3,
quasiperiodic structures. In Sec. IV we show the numericaj.e.,

results of these spectra, with a discussion of their main fea-
tures. The conclusions of this work are presented in Sec. V. cosiBL)=(1/Tr(T). )

Since we now have to consider the boundary conditions at
Il. GENERAL THEORY the new interface at the plare=0, this imposes a further

. . __constraint in Eq.(5) which enables us eventually to deter-
In this section we present the general model to descnbmne the attenuation factgs. This is given b§?

the polariton dispersion relation in a periodic superlattice.
The extension to more complex structures will be given in Tyt TiA=Toot Toh ™2, (6)
the next section. )
To set up a periodic semiconductor superlattice, we conWith
sider two different building blockgsee Fig. 1 which are

arranged in the alternated wayBag--- . The building \=(eat ec)/(ea—€c), @)
block «(B) consists of a two-dimensional electron gas L
(2DEQG) with a carrier concentrations(ng) supported by a eg=€elw)lay, ®

dielectric layerA(B). The layersA andB are characterized 5pq

by the dielectric functiong,(w) andeg(w), and have thick-

nesses andb, respectively. [Ki— e wlC)?]Y2  if k> el wlC),
In order to find the bulk polariton modes, we consider an ag=9 . 5 L2912 112

infinite structure, where the Cartesian axes are chosen in ifedw/c)"—k] if k<€ (wlc) .

such a way that the axis is normal to thecy plane of the  HereT;; (i,j=1,2) are elements of the transfer matfband
layers. Let us assume that the propagation of the electromag; s the dielectric function of the medium in consideration

modeled due to the presence of a surface density of curreghgylar frequency, and is the velocity of the light in
whose expression, given by Ohm'’s law, is vacuum.

9

Equation(6) represents an implicit dispersion relation for
Jye=iwegoEyg, (1)  the surface polariton modes. Once it is solved, we can obtain
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a value forg which must satisfy Eq5) with the requirement T, = Mj—le(gz a,j=A or £é=8,j=B). (16
Re(B) >0 to ensure the localization. !

This method can now be extended for more complex su- (p) For S,=[aBB«],
perlattices, where it should be necessary to calculate other

transfer matrice§ for the structure in consideration. Then To=N1T, T, T T, Na=NA T, T, Na, (17
; ST A Tap BBy A Byl ap
one should use Eqg4), (5), and (6), to find the bulk and
surface polariton modes. where
To=TpTa, (18
Il. TRANSFER-MATRIX APPROACH 2 1™

We now intend to investigate the bulk and surface Tp,=Ta Tp, (19
plasmon-polariton modes in structures that exhibit determin-
istic disorders, i.e., Fibonacci, Thue-Morse, double-period, (c) For any generatiok (k=1),
and Cantor superlattices, by using the calculations of the
previous section. Ts,=Na'Ts Te Na, (20)
A Fibonacci structure can be grown experimentally by

juxtaposing the two building blocke and 8 in such a way with
that thenth stage of the superlattic®, is given iteractively T =T.T 21)
by the ruleS,=S,_1S,_», for n=2 , with S,=8 and S; M1 P e
=a. It is also invariant under the transformatioas- af To—T T 22)
and B— «. The Fibonacci generations are Bre1™ T By
$=[B8], Si=[a]l, S;=[aB], S3=[apa], etc. A similar rule holds for the double-period sequence,

(100  where thenth stage is given by5,=S, 1S, ,, with S

= =1.1ti i i -
The number of the bulding blocks increases according to the Sn-1Sy-1, N=1. Itis also invariant under the transforma

. . - ionsa—af , f—aa.
Fibonacci numberF|=F,_;+F,_, (with Fy=F;=1), and L .
the ratio between the number of building blocksand the The double-period generations are

number of building blockg in the sequence is equal to the So=[al, S;=[aB], S,=[aBaa], etc. (23
golden mean number=2%(1+5). The transfer matrices
for the Fibonacci generations are as follows. The number of bulding blocks for this sequence increases
(@) For Sy=[B] or S;=[«], as in the Thue-Morse sequence, i.&,, 1t the ratio between
. . the number of the building blocka to the number of the
TSOZNB MB! TS]_:NA MA' (11)
(b) For S;=[ap], 16 |
Ts=Ny'MgNg M. 12
2 14 F
(c) For any higher generatiork& 1),
12 |
Ts o= TsTs o (13
Therefore, from the knowledge of the transfer matri'tEgOs 1.0 -
Ts,, and Ts, we can determine the transfer matrix of any S
generation. S o8t
The Thue-Morse sequence is defined b, 5
=5,-18,-1(n=>1),5,=S,_1S,-1, With S=a and Sy 06 |

= B. Another way to build up this sequence is through the
inflation rules a— aB,8— Ba. The number of building
blocks in this quasiperiodic system increases with\ghile

the ratio of the number of the building blocksto the num- i / O'm

ber of the building blocks is constant and equal to unity. 02 00 01 02 03 04 ds

The Thue-Morse generations are I -
So=[al, S;=[aB], S,=[aBBa], etc., (14 %0 o5 10 15 20

and the transfer matrices for each generation are as follows. k.a
(@) For §;=[ap],

FIG. 2. Plasmon-polariton spectra for the reduced frequency
Tg = N;lM BNglM A=Nx 1TB To.Na, (15 wlQ vsk,a for a periodic superlattice. The physical parameters are
1 1 1 . . .
given in the main text. The shadow areas represent the bulk bands,
where while the surface modes are represented by the dashed lines.



PLASMON-POLARITON FRACTAL SPECTRAIN ...

2829

1.6
11 T T T T T T T T T T
14| T 1ol i
//’ 09 | .
12+ o i ]
s 08| -
1.0 - 0.7 - g B
o 06 - I 13} i
g0 T s TR
S 05 1 = 1]
L R I = 5 =]
0.6 0.4 I -
03} I o =z = 2 =
04 ' i [ | - - = = = = =
/ 02} -
. A - = = = = - -
0.2 0000 01 02 03 04 05 0.1 7
B /i—" B 0.0 1 1 1 1 1 1 1 1 1 1
0.0 -~ L 1 N 1 0 1 2 3 4 5 6 7 8 9 10
. ) 1.0 15 2.0
0.0 0.5 () n
(a) ka
bl T T T
kka’OZS
/ §=0.05762
ka=035
2 - L
— 10 - §=0.10891
<
N’
an
8

-5
A~F,

11l L1 1l

ka=05
§=10.17508

10"

()

10?

10° 10*

log(F)

FIG. 3. (a) Same as Fig. 2, but for the quasiperiodic, fourth sequence, Fibonacci super{ajtithe distribution of bandwidths for the
plasmon polaritons as a function of the Fibonacci generation numkey Log-log plot of the total width of the allowed regiods against

the Fibonacci number.

building blocks 8 is not constant; it tends to 2 when the For any generatiok=1,
number of generations goes to infinity.
The transfer matrix for the second generati®)

=[aBaa] is given by

Ts,=Na MaANL "MaNL "MgNg M 4

or

TSZ = TSOTSOTsl

(24

(25

Ts, = TsTs sy (26)

For completeness, we want to investigate also the so-
called Cantor superlattice, where théh stage is given by
S,=S,-1B,S,_1. Here, thenth layer B, differs from the
first layerB; only by its thicknesslg =3""'dg .** We can
also construct the sequence by the transformationsy B«

B— BBB. The Cantor generations are
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FIG. 4. (a) Same as Fig. 2, but for the quasiperiodic, third sequence, Thue-Morse supenlbitidee distribution of bandwidths for the
plasmon polaritons as a function of the Thue-Morse generation numiger Log-log plot of the total width of the allowed regiodsagainst
2"

So=[al, Si=[eBal, S;=[eBaBBBaBal, et?. ) To=Th-1Tag Th-1  (N=2), (30)
2
The transfer matrix for thath generation of this sequence is With
Ts, = TaTn. (28 Tas,=Na*Mg Ng ~*Ma (3D
where
and
Ta=Nz M, (29)

and T1=Thag,- (32



57 PLASMON-POLARITON FRACTAL SPECTRAIN ... 2831

1.6
0.9 T T T T I T T T T T
14 - 08 k- i
i I [ ] - - - -
12 F 07 T T .
I - = = = =
[ T B B |
06 I 1§ 8 8 8 1 -
or (I A
B 0.5 F —
" = B o= =
G osf S I = =
3 S 04 I . - = -
' R " = = = = =
06 03| = F E E E E = ]
I 1 = § = 8 8 8 &
F - | [ [ ] n n | -
04 | 0.2 = - - - - - - 7 7
- = - -
01 —
02
00 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
0.0 . . R
0.0 0.5 1.0 1.5 2.0 (b) n
(a) ka
T bl | 1 T
107" E
ka=025 E
§=035012
10’2:-
VS 3
—~ o ka=035 [}
3 5=0.54508 |
oD o)
= -3
— 107 F [¢] E
3 ° E
T~
ka=05
5=072307 |
10 F 3
E e E
A~(2")° N
T EETEEETTTY BT IR T BT | Lo
10" 102 10° 10* 10° 108
©) log(2")

FIG. 5. (@) Same as Fig. 2, but for the quasiperiodic, third sequence, double-period super(attitiee distribution of bandwidths for
the plasmon polaritons as a function of the double-period generation numb@r_og-log plot of the total width of the allowed regiors
against 2.

With the knowledge of all these transfer matrices, we carscribed in the last section. We consider medifiras GaAs,
now calculate the plasmon-polariton spedfpalk and sur- whose frequency-dependent dielectric function, appropriated
face modeksfor these artificial structures, and this is the topic for the interaction of the electromagnetic radiation with plas-
of the next section. mons, is given by

2
pr

IV. NUMERICAL RESULTS N s
w(w+ilp)

1

EA= €Exp . (33)

In this section we present some numerical results to char-

acterize the spectrum of the polaritdbulk and surface Here,e.., is the background dielectric constaat,, is the
mode$ that can propagate in the quasiperiodic structures deplasma fequency, and, is the damping factor. For medium
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16 In Fig. 3@ we present the plasmon-polariton spectrum
for the fourth Fibonacci generation. Observe that the number

14l of bulk bands is equal to the Fibonacci number, and
indeed, in general, this number is always equal to the Fi-
bonacci number of the correspondent generation. There are

12 two surface modes which have a behavior similar to that
found in the periodic case: a high-frequency one, which

10k starts at the bulk band and then propagates quite apart of it
for high k,a, and a low-frequency mode, which starts away
of the bulk band, merging to it &,a=2.6. Quite interesting,

G 08k the later property holds faall quasiperiodic structures stud-
S ied here. The inset of this figure is a qualitative indication of

06 the fractal aspect of the spectrum. The distribution of the
bandwidths is shown in Fig.(B), for k,a=0.25. From there,
one can infer the forbidden and allowed energies as a func-

04 1= tion of the generation numberup to the tenth generation of
the Fibonacci sequence, which means a unit cell withds5

02| and 34 g building blocks. Notice that, as expected, for large
n the allowed band regions get narrower and narrower, as an

00 indication of more localized modes. In fact, the total width of

0.0 the allowed regions in energy goes down as the power law

A~F;5, whereF,, is the Fibonacci number and the expo-
nent § is a function of the common in-plane wave vector
FIG. 6. Same as Fig. 2, but for the quasiperiodic, second seky@. In Fig. 3(c) we show a log-log plot of these power laws
guence, Cantor superlattice. for three different values d{,a, namely, 0.25, 0.35, and 0.5.
The Thue-Morse quasiperiodic third generation is shown

B, we consider the physical parameters of Si@hose in Fig. {l(a). Herg, as in the previous cases, we have two
frequency-independent dielectric function dg=12.3. The well-defined regions for the plasmon-polariton spectrum.
other physical parameters used here arg=12.9, e.g The number of bulk bands increases ds-2, n being the

—_ _ o — -2 ok _ _ 32 Thue-Morse generation. The surface modes lie between the
_ N _12'3’ Ma="o _GX 10° m™%, ma E'4X_10 kg, & bulk bands. The qualitative self-similarity aspect of the spec-
=b/2=40 nm, wpa=4.04 THZ, andl'a=y,=0. We also s annarent in the inset. Fi urétshows the forbidden
consider mediunt to be the vacuumedc-=1). bp -9

For numerical results, instead of using the frequency and allowed regions of propagation for the plasmon polari-

) tons as a function of the Thue-Morse generation number. We
we prefer to replace it by the reduced frequengf) where went up to the tenth generation of the sequence, which
Q is given by X

means a unit cell with ?® o and building blocks. The total
allowed bandwidthA scales as the power law~(2")~?,
where nows is independent of the common wave veadtQr
Indeed, in Fig. 4c) we can see a log-log plot of the width
of the allowed regions against 2or three different values of
For GaAs the value of) is approximately equal to 23 THz. k,a, with almost the same value &, the small difference
The plasmon-polariton spectra for the periodic, as well agprobably due to numerical errors.
the quasiperiodic Fibonacci, Thue-Morse, double-period, and For the double-period quasiperiodic structure, the
Cantor superlattices, are presented in Figs(a, 3(a), 5(a), plasmon-polariton spectrum for its third generation is shown
and 6, respectively. In all these spectra the surface modes aireFig. 5@). It has a spectrum similar to those observed in the
represented by the dashed lines, while the bulk bands arEhue-Morse case. However, there is an important difference
characterized by the shadow areas, which are limited by thbere: The number of bulk bands in the high-frequency region
equationsQL=0 and QL==. These spectra encompass of the spectrum for each generation is equal to the number of
those found in the literature so f&. «a building blocks of the correspondent generation, while the
For the periodic case, depicted in Fig. 2, the plasmonnumber of bulk bands in the low-frequency region is equal to
polariton spectrum has two well-defined branches. The highthe number of building blocks of the same generation.
frequency branch is in the range 048/(Q<0.6, for k,  Altogether, however, the number of bulk bands increases as
=0, while the low-frequency one lies in the regia () 2". The forbidden and allowed regions, as a function of its
<0.17 for the same value & . The high-frequency surface generation numben, are shown in Fig. &). The scaling
mode merges from the bulk band a/Q)=0.6, and then behavior of the allowed bands widthis A~ (2")~°, where
evolves quite apart from the bulk band. The low-frequencyhere, as in the Fibonacci case, the expordeista function of
surface mode, on the other hand, startad2 =0 and then the common wave vectdga, as can be seen in Fig(d.
merges into the bulk band at/()=0.126 fork,a=2.6. The Finally, for completeness, we show in Fig. 6, the
inset in this figure shows clearly that the spectrum has nglasmon-polariton spectrum for the Cantor superlattsze-
self-similarity pattern. ond generation Of course it is not inserted in the substitu-

(34

e anae?|
oAlA
Q—(—) |

m* €pa
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tional classes defined by the other structures. The number ¢ion of their bandwidths shown in Figs(8, 4(b), and gb).

bulk bands obeys the following sequence of numbers: The most important experimental techniques to probe
these spectra are the inelastic light scattering of Raman type
/2 forn even, and ATR (attenuated total reflectipnin the case of Raman

(35 scattering, one uses a grating spectrometer to detect the scat-

S (7n—1)/2 forn odd.
L o . tered light. The typical shift of the frequency of the scattered
It has also a qualitative self-similarity aspect, which is clear"ght is in the range 0.6—500 meV, which makes this tech-
from the inset of this figure. nique one of the most appropriate to probe the polariton
spectra. On the other hand, the ATR spectroscopy is much
V. CONCLUSIONS easier to set up than the Raman one, but with less precise

In this work we have presented a general theory for théesults. However, this techniqgue was employed with success

propagation of plasmon polaritons in quasiperiodic superlat'—n a number of experimentgor a review see Ref. 23

tices of substitutional types, whose spectra are illustrated by
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