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Structural instability and electronic excitations in Nb3Sn

B. Sadigh and V. Ozolin¸š*

Department of Theoretical Physics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
~Received 28 May 1997!

We have performed an extensive first-principles study of the cubic-to-tetragonal structural phase transfor-
mation in theA15 compound Nb3Sn, using optimized norm-conserving pseudopotentials and the plane-wave
basis set. Our calculations confirm that cubic Nb3Sn is unstable with respect to the sublattice distortions ofG12

symmetry discovered by Shirane and Axe@Phys. Rev. B4, 2957~1971!#. However, the cubic phase is stable
with respect to the tetragonal strain if the atoms are frozen in their ideal positions. The structural instability
with respect to the sublattice distortions is explained by an unusually strong electron-phonon coupling between
the G12 phonons and the states at the Fermi level, while no such anomalous coupling has been found for the
tetragonal strain. Finite-temperature electronic-structure effects are modeled using the exact Fermi-Dirac dis-
tribution function in self-consistent local-density-approximation calculations. Electronic excitations are found
to stabilize the cubic phase aboveTM5450 K. The model correctly reproduces several experimental findings,
including the softening of the elastic constantC8 and zone-center opticalG12 frequencynG12

as T→TM , as
well as their subsequent stiffening belowTM . Furthermore,C8 is found to approach zero atTM , while nG12

does not, which is again consistent with the observed behavior of Nb3Sn. @S0163-1829~98!05105-4#
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I. INTRODUCTION

Metallic systems are known to exhibit interesting stru
tural and phonon anomalies associated with certain unu
features of the electronic structure~e.g., Fermi-surface nest
ing, strong electron-phonon interactions, Kohn anomalie!.
Furthermore, in contrast to insulating systems such as fe
electrics, where the structural transitions are driven byvibra-
tional excitations, the nonexistence of the gap in the el
tronic excitation spectrum offers the intriguing possibility
electronicexcitations stabilizing phases which are otherw
unstable atT50 K. A necessary prerequisite for this stab
lization is a profound change in the electronic structure w
the structural transformation, which manifests itself as
anomalously strong temperature dependence in prope
that are normally temperature independent. Nb3Sn, belong-
ing to the group ofA3B intermetallic compounds with the
A15 or b-tungsten structure, is known to exhibit suc
anomalies in the electric, magnetic, elastic, and struct
properties. Much research was focused on the study ofA15
compounds during the 1960’s and 1970’s because of t
relatively high superconducting transition temperatu
(Tc'18 K for Nb3Sn!. The review articles by Testardi,1

Weger and Goldberg,2 and Allen3 summarize the status o
two decades of experimental and theoretical effort in t
area.

TheA15 ~or b-W! structure~cubic space groupPm3n) is
shown in Fig. 1. Soon after the discovery of their high s
perconductivity temperatures, structural instabilities w
observed in manyA15 compounds. The reported measu
ments were done by Batterman and Barrett4 on V3Si. Later,
Mailfert et al.5 found that Nb3Sn belowTM543 K under-
goes a martensitic transition from the cubicA15 to a tetrag-
onal phase. The proximity of this and the superconduct
transition temperatureTc suggests a possible relation b
tween the structural instability and superconductivity
570163-1829/98/57~5!/2793~8!/$15.00
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Nb3Sn. The strain parameter of the low-T phase,e[c/a21,
was measured to be20.0062. Keller and Hanak6 showed
that the elastic constantC85 1

2 (C112C12) softens with de-
creasing temperature and approaches zero at the marte
transition temperatureTM . Thus, the Batterman-Barrett in
stability appears to be a ‘‘soft-mode’’ phase transition driv
by long-wavelength~acoustic! instability.

The early measurements by Batterman and Barrett4 indi-
cated the occurrence of asecond-ordertransition. Using phe-
nomenological Landau theory, Anderson and Blount7 found
that a transition with strain as the primary order parame
would be first order with a discontinuity ine(T) and C11
2C12 behaving asT2TM for temperatures aboveTM . In an
attempt to reconcile their findings with the existing expe
mental data,4 Anderson and Blount proposed the existence
a hidden ‘‘primary’’ order parameter~e.g., a sublattice dis-
tortion!, which couples to the strain through a high
(n.2) order term in the Hamiltonian and causes a seco
order transition with no discontinuity ine(T). Shirane and

FIG. 1. TheA15 structure. It contains eight atoms in a simp
cubic unit cell. The Sn atoms occupy the bcc sites in the unit c
while two Nb atoms are located on each face of the cube, half-w
displaced from the center of the cube face towards the edges.
2793 © 1998 The American Physical Society
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2794 57B. SADIGH AND V. OZOLIŅŠ
Axe8 later found a sublattice distortion in Nb3Sn, corre-
sponding to a frozen-in optical phonon withG12 symmetry. It
could be characterized by a displacement parameterd which
is the fraction of the pairing of the Nb atoms along the tw
chains orthogonal to the tetragonal axis~see Fig. 1!.
Neutron8 and x-ray9 measurements have determined thad
ande have the same sign in Nb3Sn, andd'20.0032. This
sublattice distortion does not satisfy the criteria of Anders
and Blount7 for a second-order transition since it has t
same tetragonal symmetry as the strain, which allows
bilinear coupling between them~of type A1de) and still
leads to a first-order transition. However, more accurate m
surements had already shown that the transition in Nb3Sn is
in fact first order with a small discontinuity ine(T),5 and
that C112C12 behaves asT2TM for temperatures abov
TM ,10 in agreement with the results of thermodynam
analysis.7

There have been numerous attempts to explain the ano
lous properties ofA15 compounds either by their unusu
electronic structure11–15 or by strongly anharmonic lattice
vibrations.16 Several authors17–22 have considered the ban
structure of variousA15 compounds, but the severe comp
tational cost has prevented extensive and accurateab initio
total-energy calculations mapping out the energy surface
derlying the cubic-to-tetragonal structural transition. It h
been shown17–22 that the electronic band structures ofA15
compounds are very similar, suggesting that the anoma
behavior is caused by similar physical mechanisms. In
work we concentrate on one particular A15 compou
namely Nb3Sn, which we study in detail. Through sel
consistent total-energy and electronic free-energy calc
tions, we investigate the nature of the transition and dem
strate the importance of electronic excitations for the rela
stabilities of the cubic and tetragonal phases atT.0.

The paper is organized as follows. Section II contain
description of the computational details. Section III gives
account of ourT50 results for the energy surface as a fun
tion of the two distortion parametersd and e. Finite-
temperature and electronic excitation effects are describe
Sec. IV where it is shown that the cubic phase of Nb3Sn is
stabilized by the electronic free energy. Finally, we conclu
with a discussion in Sec. V.

II. METHOD

A. T50 calculations

The electronic band structure is calculated within t
local-density approximation~LDA ! of the density-functional
theory,23 using the Perdew-Zunger24 parametrization of the
Ceperley-Alder25 results for the exchange-correlation fun
tional. The electron-ion interaction is represented by se
rable norm-conserving pseudopotentials,26 generated to trea
the extended 4s and 4p semicore states of Nb as valence,
equal footing with the 5s, 5p, and 4d states. This treatmen
has the additional advantage of eliminating the need for
nonlinear core correction,27 and has been found to produc
accurate pseudopotentials for all early transition metal28

The optimization technique of Ref. 29 is employed to redu
the required plane-wave cutoff to a manageableEcut540 Ry,
which amounts to approximately 4200 plane waves per w
function at the equilibrium volume. We use the conjuga
n
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gradient method to solve iteratively the Schro¨dinger equation
and the modified Broyden mixing scheme to achieve the
tential self-consistency.

Particular attention has been paid to the accuracy of
Brillouin-zone summations. Most special-points methods
artificial thermal broadening30–32to reduce the required num
ber of k points. Such a procedure complicates the definit
of temperature for the electronic subsystem and introdu
an unphysical dependence of the calculated total energy
the chosen broadening width. Since we intend to study
fects of finite temperature and electronic excitations, we n
a method which treats theT50 andT.0 cases consistently
Therefore, the corrected tetrahedron method of Blo¨chl,
Jepsen, and Andersen33 has been selected for the prese
study. We have chosen a 14314314 mesh, yielding 196
points in the irreducible part of the tetragonal Brillouin zon
Several tests have been performed with a higher (Ecut550
Ry! plane-wave cutoff and a 20320320 k point mesh,
showing that the total-energy differences are very well c
verged with respect to these parameters.

We obtain the equilibrium lattice constantacalc55.257 Å,
to be compared with the experimental value34 aexp55.292 Å.
All calculations in this work are performed at the theoretic
zero pressure volumeV05acalc

3 . Distortion energies are stud
ied by freezing-in the sublattice distortiond and tetragonal
straine, and taking the energy difference:

DELDA~e,d!5Etot~e,d!2Etot
cubic, ~1!

whereEtot
cubic is the energy of the cubic phase.DELDA(e,d)

has been computed for pairs of (d,e) on a regular grid of
valuesueu<0.02u and udu<0.01.

B. T>0 calculations

Our finite-temperature calculations are performed with
electronic occupation numbers obtained from the Fer
Dirac distribution. These occupation numbers are used in
self-consistency process to obtain the charge density and
tal energy. In practice, it is done by integrating the ze
temperature results for various Fermi energies, weigh
with the energy derivative of the distribution functio
f „(e2eF)/kBT…:

r~T!52E deF8 f 8S eF82eF

kBT D E
2`

eF8 r~e!de, ~2!

whereeF is the actual Fermi energy andr(e) is a sum over
all electronic states,r(e)5( id(e2e i)r i ~everywhere in this
sectione is the energy, not the tetragonal distortion!. The
second integral in Eq.~2! is calculated using the correcte
tetrahedron method, while the first integration can be con
niently carried out by averaging the occupation numbers
the tetrahedron method33 for different positions of the Ferm
level.

The electronic entropy is calculated from the density-
statesN(e,T) using the standard expression for the nonint
acting electron gas:35
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57 2795STRUCTURAL INSTABILITY AND ELECTRONIC . . .
Sel~T!52kBE
2`

`

deN~e,T!@ f ~x!lnf ~x!

1„12 f ~x!…ln„12 f ~x!…#, ~3!

wherex5(e2eF)/kBT. The free energy, including the elec
tronic entropy of Eq.~3!, is

F~T!5Etot~T!2TSel~T!. ~4!

At ambient temperatures the following expressions hold
the electronic entropyS(T), total energyEtot(T), and free
energyF(T):

S~T!5gT, ~5!

Etot~T!5Etot~T!uT501
g

2
~kBT!2, ~6!

F~T!5Etot~T!uT502
g

2
~kBT!2, ~7!

whereg is the linear coefficient of the low-T electronic spe-
cific heat. The low-temperature Sommerfeld expansio36

gives

g5
p2

3
N~eF!, ~8!

whereN(eF) is the density of the states at the Fermi lev
Equation ~8! shows that the electronic excitations fav
phases with highN(eF). However, the Sommerfeld expan
sion may fail even for fairly low temperatures and therefo
it is not used to obtain the results of this work. Instead,
calculateF(T) self-consistently at two different temperatur
using Eqs.~3! and ~4!, and then extractg with the help of
Eq. ~7!.

III. STRUCTURAL INSTABILITY OF THE CUBIC PHASE
AT T50

A. T50 energy

The calculated deformation energy of Nb3Sn as a func-
tion of the tetragonal sheare and sublattice distortiond is
shown in Fig. 2. This figure is obtained by fitting the direc
calculated total-energy differencesDELDA(e,d) of Eq. ~1!
with the following functional form:

DE~e,d!5E0~d!1
1

2
C8~d!@e2e0~d!#2. ~9!

Here E0(d), C8(d), and e0(d) are 8th degree polynomia
functions of the sublattice distortiond. The cubic symmetry
of the undistortedA15 structure~corresponding toe5d
50) requires that the coefficients of the first-order term
E0(d) and of the zeroth-order term ine0(d) are both zero.
The functionsE0(d), C8(d), ande0(d) have a simple physi-
cal interpretation: If the sublattice distortion is fixed to
certain valued0 and the crystal is allowed to relax by spo
taneous tetragonal strain, thenE0(d0) is the strain energy
C8(d0) is the tetragonal elastic constant1

2 (C112C12), and
e0(d0) is the equilibrium tetragonal strain. The quality of th
fit using Eq. ~9! is found to be very good, with maximum
r

.

e

deviations between the directly calculated and fitted ener
being less than 1 meV/cell. An interesting feature of Eq.~9!
is that it is strictly harmonic with respect to the tetragon
sheare for any fixed distortiond. Furthermore, the tetrago
nal shear and lattice distortion couple in the first ord
through a term withed, showing that a nonzero value of on
causes a generalized force on the other. In other words
tragonal straineÞ0 leads to nonzero atomic forces, and
nite d gives rise to a tetragonal stress field.

The total-energy surfaceDE(e,d) in Fig. 2 has two
minima: one at (e,0, d,0) and the other at (e.0, d.0).
The undistorted cubic structure with (e50, d50), located at
the center of the plot, is not an energy minimum but a sad
point ~maximum with respect tod, minimum with respect to
e). Thus, the cubic phase of Nb3Sn is unstable atT50 with
respect to a spontaneous sublattice distortion. This distor
lowers the crystal symmetry and induces tetragonal strain
theed term implicit in Eq.~9!. For a better understanding o
the energy surface in Fig. 2 we have marked two lines, e
describing a different way of minimizingDE(e,d). The
dashed lines show the relationd0(e) implicitly determined
by the following condition:

]

]d
DE~e,d!U

d5d0

50, ~10!

which describes the equilibrium value ofd under a fixed
tetragonal sheare. It can be obtained from standard LDA
total-energy calculations37 by fixing thec/a ratio and relax-
ing the atomic positions using the Hellmann-Feynm
forces. The dash-dotted line is the functione0(d) in Eq. ~9!,
which is the solution of

]

]e
DE~e,d!U

e5e0

50. ~11!

It can also be calculated directly from the LDA by fixingd
and optimizing thec/a ratio. These quantities exhibit re
markably different behavior;e0(d) is continuous and passe

FIG. 2. Contour plot of the calculatedT50 distortion energy
DE(e,d). Locally stable minima are located at (e520.012,d5
20.06) and (e510.014,d510.07), while the cubic phase corre
sponds to a saddle point unstable with respect to the subla
distortion d. The dashed lines show the stable branches ofd0(e)
obtained from Eq.~10!, and the dot-dashed line showse0(d) in Eq.
~9!.
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2796 57B. SADIGH AND V. OZOLIŅŠ
through the cubic phase, whiled0(e) is discontinuous ate
50 and is never zero~we exclude the special solutione
5d50 since it does not describe a locally stable state ifd is
not fixed!. This discontinuity is another reflection of the in
stability of the cubic phase, i.e.,even ate50 the crystal will
spontaneously distort todÞ0.

Figure 3 shows the deformation energy of Nb3Sn as a
function of the tetragonal shear. The upper curve~unrelaxed
or ‘‘UR’’ ! is obtained by straining the crystal tetragona
without relaxing the cell-internal coordinated. Points repre-
sent the directly calculated LDA deformation energies, E
~1!. It is seen that there is no instability in this case. T
bottom curves are obtained by minimizing the total ene
with respect to the cell-internal degree of freedomd for each
sheare, showing the total energy along the dashedd0(e)
lines in Fig. 2. Since thed0(e) curve has two branches, the
are two distinct limiting values ofDErel(e) ase→60. Both
these values are negative, showing that the cubic phas
unstable. Since the sublattice distortiond corresponds to an
optical phonon ofG12 symmetry, we conclude that the cub
phase atT50 exhibits phonon instabilities.

The relaxed deformation energyDErel(e) has two local
minima, marked bye1 ande2 in Fig. 3 and located around
the c/a values 0.988 and 1.014. The minimum atc/a
51.014 is insignificantly deeper than the minimum atc/a
50.988. This energy difference is less than 0.5 meV/cell,
below the accuracy that is usually expected from the LD
Experimentally, the low-temperature values ofc/a range
from 0.9938 to 0.9964, depending on the sample, and
many cases the cubic-to-tetragonal transition is suppre
by lattice defects. Our calculated strain on the negativee side
c/a50.988 is larger than what is seen experimentally,
sample imperfections may account for part of the discr
ancy. Figure 3 can be directly compared to Fig. 3 in Lu a
Klein.37 The agreement between the predicted distortion
ergies is very good, although they obtain a slightly differe

FIG. 3. The deformation energy of Nb3Sn as a function of the
tetragonal sheare. The top curve@markedDEUR(e)] is obtained
from DE(e,d50) and corresponds to the ‘‘unrelaxed’’d. The bot-
tom curves are calculated fromDErel(e)5mind DE(e,d). The filled
circles are directly calculated LDA values and the empty circ
show the limiting values ate50 for both branches ofd0(e) from
Fig. 2.
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equilibrium value ofc/a and find that the global minimum o
DErel(e) is on the negativee side. However, their calculate
energy differenceDE(e1)2DE(e2) is also extremely
small, and Lu and Klein note that the flatness of theDErel(e)
curve complicates an accurate determination of the equ
rium c/a value. Both studies agree on the essential asp
that atT50 K the cubic Nb3Sn phase is dynamically un
stable.

B. Electronic structure of Nb 3Sn

Several microscopic theories11–15 have attempted to ex
plain the unusual properties ofA15 compounds in terms o
their electronic structure. The most realistic of these theo
identify the source of anomalies in the unique occurrence
a sixfold degeneracy at theR point of the Brillouin zone and
a singularity in the density-of-states near the Fermi lev
The difficulty with such models has been their focusing o
small part of the Brillouin zone. Mattheiss and Weber22 per-
formed a very thorough study of the band structure
Nb3Sn, using the nonorthogonal tight-binding method, a
found that tetragonal distortions cause a splitting of flat p
tions of the cubicG12 subbands neareF , producing substan-
tial changes in the shape and topology of the Fermi surfa
They suggested that this splitting pushes one of the ba
above and the other below the Fermi energy, thus lower
the band-structure energy.

It is interesting to see if the earlier theories are confirm
by state-of-the-art electronic-structure calculations. In w
follows, the structural instability of cubic Nb3Sn is analyzed
in terms of the electronic response to the structural dis
tions. Figures 4 and 5 show the self-consistently calcula
LDA energy band structure of Nb3Sn subject to a tetragona
shear (e50.075,d50) and sublattice distortion (e50, d
50.005), correspondingly. The energy bands of the cu
crystal are shown as dotted lines, the points represent
levels of the distorted crystal, the dashed and the continu
lines in the density-of-states~DOS! panels are the electroni
DOS of the cubic and distorted phases. The Fermi le

s

FIG. 4. Electronic band structure of tetragonally sheared Nb3Sn
with (e50.075,d50). The bands of the cubic and tetragonal cry
tal are marked by dotted lines and dots, correspondingly. The d
sity of states curve of the distorted crystal is given as continu
line.



a
l

rp

d

at

en
a
bi
e

ha
tie
pi

g
th

th

ls
gy

a
th
i

on

ra
e

ne

e
oth

cal

r at
y in

mi

it is
xci-

udy

tion
I B.
re
al

t

ita-

dis-
h
al

ice

c

57 2797STRUCTURAL INSTABILITY AND ELECTRONIC . . .
which is almost unaffected by these distortions, is marked
a continuous horizontal line ateF50.574 Hartree. Severa
important observations can be made from Figs. 4 and 5.

~i! The Fermi level of the cubic phase falls on a sha
peak in the electronic DOS, with a value per cell ofN(eF)
'500 states/Hartree. This peak is caused by flat, nearly
persionless bands ateF , seen in Fig. 4 in theG2X, G2R,
andR2M directions. Afourfold degenerateR state is only a
few meV above the Fermi level, while the sixfold degener
R state is 1.4 eV beloweF .

~ii ! Pure tetragonal shear~see Fig. 4! does not affect the
electronic structure in any anomalous way. In fact, the
ergy bands of the distorted and undistorted crystal are ne
the same, showing no appreciable splitting of the cu
bands at the Fermi level. The DOS curve of the strain
crystal is not affected either. Therefore, we conclude t
theories which attempt to explain the anomalous proper
of Nb3Sn on the basis of band splitting under macrosco
tetragonal strain do not capture the relevant physics.

~iii ! Figure 5 shows that the sublattice distortion~corre-
sponding to aG12 optical phonon! has a remarkably stron
influence on the bands at the Fermi level, while most of
states beloweF are affected very little~the dots fall on the
dashed lines beloweF in Fig. 5!. The flat bands betweenG
and X, G and R, and at theR point are split by a huge
amount, many states move below the Fermi level, while
unoccupied states move further away fromeF . The fourfold
degenerate state above the Fermi level at theR point is split
in a proportion 2:2. The sharp peak of the cubic DOS is a
split into two, one above and one below the Fermi ener
The density of states at the Fermi level,N(eF), is reduced by
25% to below 400 states/Hartree. These large splittings
indicative of a strong electron-phonon coupling between
G12 optical phonon and states at the Fermi level, which
probably also responsible for the relatively high superc
ductingTc of this compound.

We conclude that the instability of cubic Nb3Sn is caused
by a simultaneous presence of two factors: flat degene
bands at the Fermi level and unusually large shifts in th
energies upon the phonon distortion ofG12 symmetry. It is
hard to single out one particular region of the Brillouin zo

FIG. 5. The same as Fig. 4, but for a crystal with sublatt
distortion (e50, d50.005).
s
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which could be ‘‘blamed’’ for the instability, since we find
that the states ateF throughout the Brillouin zone contribut
rather democratically. It is tempting to speculate that b
the structural instability and high superconductingTc of
Nb3Sn are manifestations of the same physi
phenomenon—strong electron-phonon interaction.

IV. STABILIZATION OF THE CUBIC PHASE
AT FINITE TEMPERATURES

The abrupt changes in theT50 electronic structure in-
duced by the sublattice distortiond ~cf. Sec. III B! suggest
that the electronic excitations may change the behavio
elevated temperatures. Indeed, the electronic free energ
the low-temperature limit is given by Eq.~7!, whereg is
roughly proportional to the density of states at the Fer
level, Eq. ~8!. Since the value ofN(eF) is highest in the
cubic phase and decreases with increasing distortion,
possible that the cubic phase is stabilized by electronic e
tations at someT.0.

These considerations motivate a finite-temperature st
of the electronic free energy of Nb3Sn. We have performed
self-consistent calculations using the Fermi-Dirac occupa
function for the electronic system, as described in Sec. I
Lattice vibrations are not included, but their likely effects a
briefly discussed in Sec. V. The free-energy function
F(T,e,d) is calculated directly from the LDA atT5158 K
andT5316 K using Eqs.~3! and~4!, and then fitted with the
low-temperature form Eq.~7! to obtain g(e,d). Since the
temperatures considered are very low compared toeF , no
accuracy is lost by using Eq.~7! instead of the formally exac
but somewhat inconvenient Eq.~4!.

In Fig. 6 we show the contour plot ofg(e,d). The global
maximum ofg(e,d), occurs at (e50, d50) indicating that
the cubic phase is indeed favored by the electronic exc
tions. We also point out thatg is a rapidly varying function
of the sublattice distortiond, and a slowly varying function
of the tetragonal sheare. This is completely consistent with
the results of Sec. III B where it is found thatd causes large
changes in the band structure at the Fermi level, whilee does
not.

Figure 7 shows the relaxed free energy of tetragonal
tortion DF rel(e,T) at four different temperatures. Eac
DF rel(e,T) curve is obtained by relaxing the cell-intern

FIG. 6. Contour plot of the functiong(e,d) describing the elec-
tronic excitations in Eq.~7!. The maximum is attained in the cubi
phase with (e50, d50).
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2798 57B. SADIGH AND V. OZOLIŅŠ
coordinated to its equilibrium value, in the same fashion
for theDErel(e) curves in Fig. 3. The free energyDF rel(e,T)
at T5632 K is non-negative and very harmonic, showi
that at this temperature the cubic phase is completely st
with respect to all considered distortions. The temperat
dependence of the elastic constantC8(T) is calculated from
the curvature of the free-energy curves of Fig. 7 at the eq
librium valuese0(T) ~which are nonzero below the transitio
point!. It would be incorrect to calculateC8(T) by differen-
tiating the electronic free energy twice with respect to
strain,

C8~T!Þ
1

3

]2

]e2
F~e,d,T!U

0

, ~12!

since cell-internal relaxations would be completely neglec
by this treatment. Furthermore, it would give incorrect
sults for cubic Nb3Sn. Indeed, Fig. 6 shows thatg varies
slowly with e, and Eq.~9! gives that theT50 deformation
energyDE is a non-negative harmonic function ofe. There-
fore, one would obtain an almostT-independent elastic con
stantC8(T), which would counter with the experimental fa
that C8 shows a pronounced softening above t
transition.6,38 The correct procedure is to assume that
sublattice distortions occur on a fast time scale and foll
the strain adiabatically,3 minimizing the free energy for eac
e. Then one can show that

C8~T!5
1

3 S Fe,e~e,d,T!2
Fe,d

2 ~e,d,T!

Fd,d~e,d,T!
DU

0

, ~13!

evaluated ate and d which minimize the free energy
F(e,d,T). The calculated elastic constantC85 1

2 (C11
2C12) at T5632 K is 0.82 Mbar, which is close to th
experimental room-temperature value'0.7 Mbar. It is very
surprising that such a dramatic change in the elastic cons
of the cubic phase~from C8,0 to C850.82 Mbar! can be
caused by electronic excitations due to a seemingly insig
cant ~on the electronic energy scale! temperature increas
from T50 K to T5632 K.

FIG. 7. The relaxed free energy as a function of the tetrago
shear at four different temperatures. Empty circles are the limi
values ate50 for sublattice distortions withd.0 andd,0.
le
re

i-

e

d
-

e

nt

-

As the temperature is lowered, the free-energy curve
Fig. 7 becomes flatter arounde50, corresponding to a soft
ening shear elastic constantC8(T), and already atT5316 K
there are two distinct minima inDF rel(e,T). The spontane-
ous energy lowering ate50 due to the sublattice distortiond
~represented by open circles on theT5316 K curve in Fig.
7! is very small at this temperature, indicating only a we
instability of the opticalG12 phonon. In fact, the minima a
eÞ0 developbeforethe cubic phase becomes unstable w
respect to the sublattice distortion at fixede50. Therefore,
we find that the opticalG12 phonon frequency does not ten
to zero asT approaches the cubic-to-tetragonal transiti
point TM , in good agreement with the experimental obs
vation that this frequency softens when approaching the t
sition but never actually reaches zero, and stiffens again
low the transition point.

The predicted temperature dependence of physical qu
tities is illustrated in Fig. 8, showing the tetragonal stra
e0(T), elastic constantC8(T), zone-center opticalG12 pho-
non frequencynG12

(T), and equilibrium free energies of th
cubic and tetragonal phases. Our results demonstrate
with decreasing temperature the crystal becomes unst
with respect to a combination of the tetragonal straine and
sublattice distortiond. In what follows, we show the result
for c/a,1 corresponding toe,0, although the cubic phas
is unstable with respect toe.0 as well.

Figure 8~a! shows that the cubicA15 phase is stabilized a
TM'450 K, which is ten times larger than the experime
tally observed transition temperature,TM

exp'40 K. The tran-
sition is weakly first order@see the discussion of the behavi
of e(T) andC8(T)]. Since the free energy has almost co
tinuous derivative atTM , we do not expect a significan
latent heat production. The free-energy differenceFcubic(T)
2F tet(T) becomes smaller thankBT at 130 K, suggesting
that lattice vibrations should also influence the relative s
bility of both phases. At present we can only argue that
vibrational entropy should favor the high-symmetry cub
phase and therefore reduce the calculatedTM . The tetrago-
nality parametere(T), shown in Fig. 8~b!, has a small dis-
continuity atTM , making this transition nearly second orde
Similar behavior is seen in the experiments.39 Fluctuations
will presumably increase the first-order character, since t
only delay the transition but do not change the underly
energy surface.

We next discuss the temperature-dependent elastic p
erties of Nb3Sn. Figure 8~c! demonstrates that the shear ela
tic constantC8(T) shows a very pronounced softening
T→TM , approaches zero atTM and then stiffens to a finite
value asT→0 in the tetragonal phase. FurthermoreC8(T)
}uT2TMu close toTM , which is a clear indication of the
occurrence of a first-order transition.7 This is a clear succes
of the present calculation, since it describes the experime
observations38 very well.

Another quantity of interest is the temperature dep
dence of the opticalG12 phonon frequency:

nG12
~T!5

1

2p
AFd,d~T!

M* a0
2

, ~14!
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whereM* 54MNb is the effective mass of the mode anda0

is the equilibrium lattice parameter. Due to the larged de-
pendence ofg(e,d), it is expected thatnG12

(T) will show a

strong temperature dependence. Figure 8~d! illustrates that
this is indeed the case. It is rewarding to see that the
quency does not approach zero at the transition point, wh
has been explained above in the discussion of Fig. 7. Th
also consistent with the conclusion of Miller and Axe40 that
it is impossible for the frequency of a Raman-active mo
~like nG12

) to go to zero without first producing an elast

instability of the crystal.

FIG. 8. The calculated temperature dependent physical pro
ties of Nb3Sn.
e-
h
is

e

V. DISCUSSION

Based on first-principles LDA total-energy and fre
energy calculations, we have ascribed the anomalous s
tural properties of Nb3Sn to a low-temperature structural in
stability of the cubicA15 phase. The effects of the electron
excitations on the structural stability and cubic-to-tetrago
phase transition have been studied by using the finitT
Fermi-Dirac distribution function, noninteracting electron
entropy Eq.~3!, and LDA T50 exchange and correlatio
energy functional. Phonon excitations and electron-pho
interactions have been excluded from this simple pictu
although there is good reason to suspect that they sh
play an important role in this system. In what follows w
discuss what are the successes and failures of this sim
approach, and what are the implications for more refin
theoretical treatments of the structural transitions inA15
compounds.

Several qualitative features of the structural phase tra
tion are reproduced correctly:

~i! The cubic phase is stable at elevated temperatures,
spontaneously distorts tetragonally at low temperatures.

~ii ! The transition develops negligible latent heat as w
as small discontinuity in the tetragonality parametere(T),
which makes it appear as nearly second order.

~iii ! The elastic constantC8(T) tends to 0 asT→TM
1 @in

fact, C8(T)}T2TM], and then stiffens rapidly asT→0. It
has a discontinuous derivative atTM .

~iv! The frequency of the opticalG12 phonon decreases a
T→TM , but never actually reaches zero. It stiffens ag
below the transition temperature.

Taking into account the simplicity of the present model
is not surprising that the calculated transition temperatur
TM

calc5450 K, while experimentallyTM'40 K. There are
several possible causes for this discrepancy. First,
electron-phonon interaction has been completely neglec
More refined treatments should attempt to include finite li
time and nonadiabatic effects on the states at the Fermi
face. Whether they would lead to an increase in the effec
temperature for the electrons at the Fermi level is an o
question which can only be settled by further studies. S
ond, the experimental samples are known to contain a s
stantial fraction of crystal defects. It is difficult to predic
how these defects affect the behavior of Nb3Sn, although it
has been speculated1,3 that they would somewhat smear o
the sharp features in the electronic structure. And fina
anharmonic effects should also be important at low tempe
tures, since the calculated energy barrier atT50 K between
the local minima atd,0 andd.0 whene50 is only 4 –5
meV/cell, which is of the same magnitude askBTM . We
have demonstrated that these anharmonicities do not sur
at elevated temperatures where the electronic excitations
bilize the cubic phase and theG12 optical phonon is both
stable and harmonic. In conclusion, Nb3Sn exhibits a subtle
interplay between the vibrational and electronic excitatio
and the present calculations strongly suggest that a comp
theory of the unusual properties ofA15 compounds should
include both.
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