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We have performed an extensive first-principles study of the cubic-to-tetragonal structural phase transfor-
mation in theA15 compound NBSn, using optimized norm-conserving pseudopotentials and the plane-wave
basis set. Our calculations confirm that cubic;8h is unstable with respect to the sublattice distortiorsgf
symmetry discovered by Shirane and ARthys. Rev. B4, 2957(1971)]. However, the cubic phase is stable
with respect to the tetragonal strain if the atoms are frozen in their ideal positions. The structural instability
with respect to the sublattice distortions is explained by an unusually strong electron-phonon coupling between
theI'y, phonons and the states at the Fermi level, while no such anomalous coupling has been found for the
tetragonal strain. Finite-temperature electronic-structure effects are modeled using the exact Fermi-Dirac dis-
tribution function in self-consistent local-density-approximation calculations. Electronic excitations are found
to stabilize the cubic phase abaoVg =450 K. The model correctly reproduces several experimental findings,
including the softening of the elastic const&ht and zone-center opticdl,, frequencyvr12 asT—Ty, as
well as their subsequent stiffening beldvy, . FurthermoreC’ is found to approach zero &, , while vr,
does not, which is again consistent with the observed behavior g&hI)S0163-182808)05105-4

[. INTRODUCTION Nb3Sn. The strain parameter of the lolwphasee=c/a—1,
was measured to be 0.0062. Keller and Han&kshowed
Metallic systems are known to exhibit interesting struc-that the elastic constai@’ =3(C,;— C,,) softens with de-
tural and phonon anomalies associated with certain unusugreasing temperature and approaches zero at the martensitic
features of the electronic structufe.g., Fermi-surface nest- transition temperatur&), . Thus, the Batterman-Barrett in-
ing, strong electron-phonon interactions, Kohn anomalies stability appears to be a “soft-mode” phase transition driven
Furthermore, in contrast to insulating systems such as ferrd?y long-wavelength{acoustig instability.
electrics, where the structural transitions are drivewibya- The early measurements by Batterman and BAVM-
tional excitations, the nonexistence of the gap in the electatéd the occurrence ofsecond-ordetransition. Using phe-

tronic excitation spectrum offers the intriguing possibility of "omMenological Landau theory, Anderson and Blduntind

electronicexcitations stabilizing phases which are otherwiselNat @ transition with strain as the primary order parameter

unstable aff=0 K. A necessary prerequisite for this stabi- would befir;t order with a discontinuity ine(T) and Cy,
lization is a profound change in the electronic structure with_, C12 behaving ad —Ty for temperatures abovey . Inan
attempt to reconcile their findings with the existing experi-

the structural transformation, which manifests itself as anmental datd Anderson and Blount proposed the existence of

anomalously strong temperatqre dependence in prOpertieashidden “primary” order parameteie.g., a sublattice dis-
fchat are normally tempe_rature mde_:pendent.SShb, be_Iong- tortion), which couples to the strain through a higher
ing to the group ofA;B intermetallic compounds with the 1~ ) order term in the Hamiltonian and causes a second-

Al5 or p-tungsten structure, is known to exhibit such orger transition with no discontinuity ie(T). Shirane and
anomalies in the electric, magnetic, elastic, and structural

properties. Much research was focused on the study1&f
compounds during the 1960’s and 1970’s because of their
relatively high superconducting transition temperatures
(T.~18 K for NbgSn). The review articles by Testardi, Sn
Weger and Goldber§,and Aller’ summarize the status of
two decades of experimental and theoretical effort in this
area.

The Al15 (or B-W) structure(cubic space groupma3n) is
shown in Fig. 1. Soon after the discovery of their high su-
perconductivity temperatures, structural instabilities were
observed in manyA15 compounds. The reported measure-
ments were done by Batterman and Bafrett V3Si. Later,
Mailfert et al® found that NSn belowTy, =43 K under-
goes a martensitic transition from the cuBig5 to a tetrag- FIG. 1. TheA15 structure. It contains eight atoms in a simple
onal phase. The proximity of this and the superconductingubic unit cell. The Sn atoms occupy the bcc sites in the unit cell,
transition temperaturd, suggests a possible relation be- while two Nb atoms are located on each face of the cube, half-way
tween the structural instability and superconductivity indisplaced from the center of the cube face towards the edges.
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Axe® later found a sublattice distortion in NBn, corre- gradient method to solve iteratively the Satlirmyer equation
sponding to a frozen-in optical phonon with, symmetry. It  and the modified Broyden mixing scheme to achieve the po-
could be characterized by a displacement param®tenich  tential self-consistency.
is the fraction of the pairing of the Nb atoms along the two Particular attention has been paid to the accuracy of the
chains orthogonal to the tetragonal axisee Fig. 1 Brillouin-zone summations. Most special-points methods use
Neutrorf and x-ray measurements have determined that artificial thermal broadenirid—?to reduce the required num-
and e have the same sign in NBn, andé~ —0.0032. This  ber ofk points. Such a procedure complicates the definition
sublattice distortion does not satisfy the criteria of Andersorpf temperature for the electronic subsystem and introduces
and Blounf for a second-order transition since it has thean unphysical dependence of the calculated total energy on
same tetragonal symmetry as the strain, which allows fothe chosen broadening width. Since we intend to study ef-
bilinear coupling between therfof type A;5¢) and still  fects of finite temperature and electronic excitations, we need
leads to a first-order transition. However, more accurate mes& method which treats thE=0 andT>0 cases consistently.
surements had already shown that the transition inStbis ~ Therefore, the corrected tetrahedron method of cBlo
in fact first order with a small discontinuity ie(T),°> and ~ Jepsen, and Anders€nhas been selected for the present
that C,;— C,, behaves asT—T,, for temperatures above study. We have chosen a X44Xx14 mesh, yielding 196
Tw.% in agreement with the results of thermodynamicpoints in the irreducible part of the tetragonal Brillouin zone.
analysis’ Several tests have been performed with a highte&g,€ 50
There have been numerous attempts to explain the anomRy) plane-wave cutoff and a 2020x20 k point mesh,
lous properties ofA15 compounds either by their unusual showing that the total-energy differences are very well con-
electronic structuré='° or by strongly anharmonic lattice verged with respect to these parameters.
vibrations!® Several authot$=?2 have considered the band ~ We obtain the equilibrium lattice constaant,=5.257 A,
structure of variousA15 compounds, but the severe compu-to be compared with the experimental vaftige,,=5.292 A.
tational cost has prevented extensive and accuaiatitio  All calculations in this work are performed at the theoretical
total-energy calculations mapping out the energy surface urgero pressure volumé,= agalc. Distortion energies are stud-
derlying the cubic-to-tetragonal structural transition. It hasied by freezing-in the sublattice distortiahand tetragonal
been showl ~?2that the electronic band structures 15  straine, and taking the energy difference:
compounds are very similar, suggesting that the anomalous
behavior is caused by similar physical mechanisms. In this LDA cubic
work we concentrate on one particular A15 compound, AE="(€,6)=E(€,6) —Eg (1)
namely Nb;Sn, which we study in detail. Through self-

consistent total-energy and electronic free-energy calculayhere ESUP is the energy of the cubic phas&E'PA (e, 5)

tions, we investigate the nature of the transition and demomas peen computed for pairs of,€) on a regular grid of
strate the importance of electronic excitations for the relativevames| €|<0.02 and|8|<0.01.

stabilities of the cubic and tetragonal phase3 at0.
The paper is organized as follows. Section Il contains a
description of the computational details. Section Ill gives an B. T>0 calculations

?Ccou?t (?]f ourT= Od_resulj[s for the ener%y Sur(;ace i_s a func- Our finite-temperature calculations are performed with the
lon of the two |st0rt|qn parameter and e. |n|t§- electronic occupation numbers obtained from the Fermi-
temperature and electronic excitation effects are described Birac distribution. These occupation numbers are used in the
Sec. IV where it is ShOWF‘ that the cubic phase ofy8h is self-consistency process to obtain the charge density and to-
stgblhzeq by the e!ectronlc free energy. Finally, we conclude, energy. In practice, it is done by integrating the zero-
with & discussion in Sec. V. temperature results for various Fermi energies, weighted
with the energy derivative of the distribution function
Il. METHOD f((e—ep)/kgT):

A. T=0 calculations

The electronic band structure is calculated within the €r—€g)\ (¢
local-density approximatiofLDA) of the density-functional P(T):_f de'( KT )J Fp(e)de, 2
theory?® using the Perdew-Zungérparametrization of the B o
Ceperley-Alde?® results for the exchange-correlation func-
tional. The electron-ion interaction is represented by sepawhereer is the actual Fermi energy anqe) is a sum over
rable norm-conserving pseudopotentfilgienerated to treat all electronic stategy(€) ==, 5(e— €;) p; (everywhere in this
the extended g¢and 4p semicore states of Nb as valence, onsectione is the energy, not the tetragonal distorfioifhe
equal footing with the §, 5p, and 4l states. This treatment second integral in Eq(2) is calculated using the corrected
has the additional advantage of eliminating the need for théetrahedron method, while the first integration can be conve-
nonlinear core correctiofl, and has been found to produce niently carried out by averaging the occupation numbers of
accurate pseudopotentials for all early transition métals. the tetrahedron methdiifor different positions of the Fermi
The optimization technique of Ref. 29 is employed to reducdevel.
the required plane-wave cutoff to a managedhlg= 40 Ry, The electronic entropy is calculated from the density-of-
which amounts to approximately 4200 plane waves per wavstatesN( e, T) using the standard expression for the noninter-
function at the equilibrium volume. We use the conjugateacting electron ga¥
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d 0.010
Se(T)= —ka_wdeN(e,T)[f(x)lnf(x)

£ 0.005
+ (A=A - (x)], () £
whe_rex=(e— €r)/kgT. T_he free energy, including the elec- % 0.000
tronic entropy of Eq(3), is 2
=
F(T)=Ei(T) = TSuT). 4 2 0005
At ambient temperatures the following expressions hold for /
the electronic entropys(T), total energyE,(T), and free -0.010=—= —
energyF(T): 002 -001 000 001 0.02
S(T) T (5) Tetragonal shear (c/a-1)
=T,

FIG. 2. Contour plot of the calculatefi=0 distortion energy
y 5 AE(e,d). Locally stable minima are located a¢€ —0.012,6=
Ewo( T)= Etot(T)|T:0+ E(kBT) ’ (6) —0.06) and €= +0.014,5= +0.07), while the cubic phase corre-
sponds to a saddle point unstable with respect to the sublattice
y distortion 6. The dashed lines show the stable brancheg0€)
F(T)=Ew(T)|t=0— E(kBT)Z, (7)  obtained from Eq(10), and the dot-dashed line showg( ) in Eq.
9).
wherey is the linear coefficient of the low-electronic spe-

cific heat. The low-temperature Sommerfeld expari§ion deviations between the directly calculated and fitted energies
gives being less than 1 meV/cell. An interesting feature of &).

is that it is strictly harmonic with respect to the tetragonal

sheare for any fixed distortions. Furthermore, the tetrago-
YZ?N(GF)a 8 nal shear and lattice distortion couple in the first order

through a term withe §, showing that a nonzero value of one

whereN(eg) is the density of the states at the Fermi level.causes a generalized force on the other. In other words, te-

Equation (8) shows that the electronic excitations favor tragonal straine+0 leads to nonzero atomic forces, and fi-

phases with highN(eg). However, the Sommerfeld expan- nite § gives rise to a tetragonal stress field.

sion may fail even for fairly low temperatures and therefore  The total-energy surfacE(e,d) in Fig. 2 has two

it is not used to obtain the results of this work. Instead, weminima: one at é<0, §<0) and the other ate>0, 5>0).

calculateF(T) self-consistently at two different temperatures The undistorted cubic structure wite€ 0, §=0), located at

using Egs.(3) and (4), and then extracy with the help of  the center of the plot, is not an energy minimum but a saddle

77_2

Eq. (7). point (maximum with respect té, minimum with respect to
€). Thus, the cubic phase of NBn is unstable af =0 with
lll. STRUCTURAL INSTABILITY OF THE CUBIC PHASE respect to a spontaneous sublattice distortion. This distortion
AT T=0 lowers the crystal symmetry and induces tetragonal strain via

the €5 term implicit in Eq.(9). For a better understanding of

the energy surface in Fig. 2 we have marked two lines, each
The calculated deformation energy of Mn as a func- describing a different way of minimizind\E(e,8). The

tion of the tetragonal shear and sublattice distortiod is dashed lines show the relatia®y(e) implicitly determined

shown in Fig. 2. This figure is obtained by fitting the directly by the following condition:

calculated total-energy differencesE-PA(¢,8) of Eq. (1)

with the following functional form:

A. T=0 energy

J
. &5AE(5,5) s 0, (10
AE(€,8)=Eo(8)+ 5C' () e~ eo( 9)]* 9)

which describes the equilibrium value &f under a fixed
Here Eo(8), C'(8), and e,(5) are 8th degree polynomial tetragonal sheae. It can be .o.btained from §tandard LDA
functions of the sublattice distortiof. The cubic symmetry total-energy calculatiori§ by fixing thec/a ratio and relax-
of the undistortedA15 structure (corresponding toe=s  ing the atomic positions using the Hellmann-Feynman
=0) requires that the coefficients of the first-order term inforces. The dash-dotted line is the functieg{) in Eq. (9),
Eo(8) and of the zeroth-order term iey(5) are both zero. Which is the solution of
The functionsEy (), C’' (), andey(d) have a simple physi-
cal interpretation: If the sublattice distortion is fixed to a iAE(e ) -0 (11)
certain values, and the crystal is allowed to relax by spon- de ’ '
taneous tetragonal strain, thé&p(d,) is the strain energy,
C’(6,) is the tetragonal elastic constaptC,;—C;,), and It can also be calculated directly from the LDA by fixird)
€o(8p) is the equilibrium tetragonal strain. The quality of the and optimizing thec/a ratio. These quantities exhibit re-
fit using Eq.(9) is found to be very good, with maximum markably different behaviory( ) is continuous and passes

E:EO
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FIG. 3. The deformation energy of NBn as a function of the FIG. 4. Electronic band structure of tetragonally shearedSyb

tetragonal sheae. The top curvelmarked AE r(€)] is obtained with (e=0.075,6=0). The.bands of the cubic and tet.ragonal crys-

from AE(e, 5=0) and corresponds to the “unrelaxed: The bot- tal are marked by dotted lines and dots, correspondingly. The den-

tom curves' are calculated frotE, (€)= mins AE(e,8). The filled sity of states curve of the distorted crystal is given as continuous
re 1l - .

circles are directly calculated LDA values and the empty circles'"®

show the limiting values a¢=0 for both branches ofy(e) from o ) o
Fig. 2. equilibrium value ofc/a and find that the global minimum of

AE,.(€) is on the negative side. However, their calculated
energy differenceAE(e")—AE(e”) is also extremely
small, and Lu and Klein note that the flatness of Mg ( €)
curve complicates an accurate determination of the equilib-
rium c/a value. Both studies agree on the essential aspect
that atT=0 K the cubic NiySn phase is dynamically un-
stable.

through the cubic phase, whilé,(€) is discontinuous at
=0 and is never zergwe exclude the special solution
= 6=0 since it does not describe a locally stable stai@iff
not fixed. This discontinuity is another reflection of the in-
stability of the cubic phase, i.eeyen ate=0 the crystal will
spontaneously distort t6+ 0.

Figure 3 shows the deformation energy of J8m as a )
function of the tetragonal shear. The upper cuiwerelaxed B. Electronic structure of Nb3Sn
or “UR” ) is obtained by straining the crystal tetragonally ~ Several microscopic theori¥s'® have attempted to ex-
without relaxing the cell-internal coordinate Points repre-  plain the unusual properties #f15 compounds in terms of
sent the directly calculated LDA deformation energies, Eqtheir electronic structure. The most realistic of these theories
(1). It is seen that there is no instability in this case. Theidentify the source of anomalies in the unique occurrence of
bottom curves are obtained by minimizing the total energya sixfold degeneracy at tHe point of the Brillouin zone and
with respect to the cell-internal degree of freedérfor each  a singularity in the density-of-states near the Fermi level.
sheare, showing the total energy along the dash&e) The difficulty with such models has been their focusing on a
lines in Fig. 2. Since théy(€) curve has two branches, there small part of the Brillouin zone. Mattheiss and Wel3grer-
are two distinct limiting values oAE(€) ase— £0. Both  formed a very thorough study of the band structure of
these values are negative, showing that the cubic phase b;Sn, using the nonorthogonal tight-binding method, and
unstable. Since the sublattice distortiércorresponds to an  found that tetragonal distortions cause a splitting of flat por-
optical phonon of’;, symmetry, we conclude that the cubic tions of the cubid";, subbands neas, producing substan-
phase aff =0 exhibits phonon instabilities. tial changes in the shape and topology of the Fermi surface.

The relaxed deformation energyE,.(e) has two local They suggested that this splitting pushes one of the bands
minima, marked by™ ande™ in Fig. 3 and located around above and the other below the Fermi energy, thus lowering
the c/a values 0.988 and 1.014. The minimum eta  the band-structure energy.
=1.014 is insignificantly deeper than the minimumcaa It is interesting to see if the earlier theories are confirmed
=0.988. This energy difference is less than 0.5 meV/cell, faby state-of-the-art electronic-structure calculations. In what
below the accuracy that is usually expected from the LDA follows, the structural instability of cubic N{sn is analyzed
Experimentally, the low-temperature values @fa range in terms of the electronic response to the structural distor-
from 0.9938 to 0.9964, depending on the sample, and itions. Figures 4 and 5 show the self-consistently calculated
many cases the cubic-to-tetragonal transition is suppresseédA energy band structure of N§$n subject to a tetragonal
by lattice defects. Our calculated strain on the negatisele  shear €=0.075,6=0) and sublattice distortione&0, &
c/a=0.988 is larger than what is seen experimentally, but=0.005), correspondingly. The energy bands of the cubic
sample imperfections may account for part of the discreperystal are shown as dotted lines, the points represent the
ancy. Figure 3 can be directly compared to Fig. 3 in Lu andevels of the distorted crystal, the dashed and the continuous
Klein.®” The agreement between the predicted distortion enlines in the density-of-statg®©0S) panels are the electronic
ergies is very good, although they obtain a slightly differentDOS of the cubic and distorted phases. The Fermi level,
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0.50 FIG. 6. Contour plot of the function(e, §) describing the elec-

005 €Oh oY €&y &Ly &Ly O 600 tronic excitations in Eq(7). The maximum is attained in the cubic
Reduced wave vector [(st/Hartree)/cell] phase with €=0, 5=0).
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FIG. 5. The same as Fig. 4, but for a crystal with sublattice

distortion (e=0, 5=0.005). which could be “blamed” for the instability, since we find

that the states at: throughout the Brillouin zone contribute

o _ _ ) rather democratically. It is tempting to speculate that both
which is almost unaffected by these distortions, is marked aghe structural instability and high superconductifig of

a continuous horizontal line &tF20574 Hartree. Several NbSSn are manifestations of the same physica|

imp_ortant obseryations can be made from Figs. 4 and 5. phenomenon—strong electron-phonon interaction.
(i) The Fermi level of the cubic phase falls on a sharp

peak in the electronic DOS, with a value per cellNfer) IV. STABILIZATION OF THE CUBIC PHASE

~500 states/Hartree. This peak is caused by flat, nearly dis- AT FINITE TEMPERATURES

persionless bands at, seen in Fig. 4 in thd'— X, I' =R,

andR— M directions. Afourfold degenerat® state is only a The abrupt changes in thE=0 electronic structure in-
few meV above the Fermi level, while the sixfold degenerateduced by the sublattice distortioh (cf. Sec. Il B) suggest

R state is 1.4 eV belowveg . that the electronic excitations may change the behavior at

(i) Pure tetragonal shegsee Fig. 4 does not affect the elevated temperatures. Indeed, the electronic free energy in
electronic structure in any anomalous way. In fact, the enthe low-temperature limit is given by Ed7), where y is
ergy bands of the distorted and undistorted crystal are nearlfpughly proportional to the density of states at the Fermi
the same, showing no appreciable splitting of the cubidevel, Eq.(8). Since the value oN(eg) is highest in the
bands at the Fermi level. The DOS curve of the strainecdubic phase and decreases with increasing distortion, it is
crystal is not affected either. Therefore, we conclude thapossible that the cubic phase is stabilized by electronic exci-
theories which attempt to explain the anomalous propertietations at som@>0.
of Nb3Sn on the basis of band splitting under macroscopic These considerations motivate a finite-temperature study
tetragonal strain do not capture the relevant physics. of the electronic free energy of NBn. We have performed

(iii ) Figure 5 shows that the sublattice distorti@morre-  self-consistent calculations using the Fermi-Dirac occupation
sponding to al';, optical phonoi has a remarkably strong function for the electronic system, as described in Sec. Il B.
influence on the bands at the Fermi level, while most of thd_attice vibrations are not included, but their likely effects are
states belower are affected very littlgthe dots fall on the briefly discussed in Sec. V. The free-energy functional
dashed lines belowr in Fig. 5. The flat bands betwedn  F(T,e,d) is calculated directly from the LDA af=158 K
and X, T and R, and at theR point are split by a huge andT=316 K using Eqs(3) and(4), and then fitted with the
amount, many states move below the Fermi level, while thdow-temperature form Eq(7) to obtain y(e, §). Since the
unoccupied states move further away fram The fourfold ~ temperatures considered are very low comparedgtp no
degenerate state above the Fermi level aRhmoint is split ~ accuracy is lost by using E¢7) instead of the formally exact
in a proportion 2:2. The sharp peak of the cubic DOS is alsdut somewhat inconvenient E(f).
split into two, one above and one below the Fermi energy. In Fig. 6 we show the contour plot of(e, 5). The global
The density of states at the Fermi levdl,er), is reduced by maximum ofy(e, ), occurs at €=0, 6=0) indicating that
25% to below 400 states/Hartree. These large splittings arde cubic phase is indeed favored by the electronic excita-
indicative of a strong electron-phonon coupling between thdions. We also point out thag is a rapidly varying function
I';, optical phonon and states at the Fermi level, which isof the sublattice distortio, and a slowly varying function
probably also responsible for the relatively high superconof the tetragonal shear. This is completely consistent with
ducting T, of this compound. the results of Sec. Il B where it is found thatcauses large

We conclude that the instability of cubic N8n is caused changes in the band structure at the Fermi level, whidees
by a simultaneous presence of two factors: flat degenerateot.
bands at the Fermi level and unusually large shifts in their Figure 7 shows the relaxed free energy of tetragonal dis-
energies upon the phonon distortion Iof, symmetry. It is  tortion AF (e, T) at four different temperatures. Each
hard to single out one particular region of the Brillouin zoneAF (€, T) curve is obtained by relaxing the cell-internal
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Tetragonal deformation at T>0 As the temperature is lowered, the free-energy curve in
‘ Fig. 7 becomes flatter arounrd=0, corresponding to a soft-
] ening shear elastic constadt(T), and already af =316 K
T=633K there are two distinct minima iAF (e, T). The spontane-
] ous energy lowering at=0 due to the sublattice distortiah
(represented by open circles on the-316 K curve in Fig.
7) is very small at this temperature, indicating only a weak
instability of the opticall’;, phonon. In fact, the minima at

20

5 1 Nb3Sn

Free energy AF(e,T) [meV/cell]

e+ 0 developbeforethe cubic phase becomes unstable with
i respect to the sublattice distortion at fixeer0. Therefore,
A we find that the optical 1, phonon frequency does not tend
to zero asT approaches the cubic-to-tetragonal transition
'15_2 _'1 (') 1 2 point Ty, in good agreement with the experimental obser-

vation that this frequency softens when approaching the tran-
sition but never actually reaches zero, and stiffens again be-
w the transition point.

The predicted temperature dependence of physical quan-
es is illustrated in Fig. 8, showing the tetragonal strain
€o(T), elastic constan€’(T), zone-center opticdl';, pho-

coordinated to its equilibrium value, in the same fashion as non' frequencyrr, (T), and equilibrium free energies of the
for the AE,¢(€) curves in Fig. 3. The free energyF o(e,T) Cl_Jblc and te_tragonal phases. Our results demonstrate that
at T=632 K is non-negative and very harmonic, showingW!th decreasing temperature the crystal becomes. unstable
that at this temperature the cubic phase is completely stablith respect to a combination of the tetragonal straiand

with respect to all considered distortions. The temperaturgublattice distortiors. In what follows, we show the results
dependence of the elastic const@f{(T) is calculated from for c/a<1l corresponding te<0, although the cubic phase
the curvature of the free-energy curves of Fig. 7 at the equilS unstable with respect to>0 as well. . N

librium valueseo(T) (which are nonzero below the transition _ Figure 8a) shows that the cubia15 phase is stabilized at
point). It would be incorrect to calculate’ (T) by differen-  Tw~450 K, which is ten times larger than the experimen-
tiating the electronic free energy twice with respect to thetally observed transition temperatui&y®~40 K. The tran-

Tetragonal shear ¢ [units of 100(c/a-1)]

. 0
FIG. 7. The relaxed free energy as a function of the tetragonall
shear at four different temperatures. Empty circles are the Iimiting[iti
values ate=0 for sublattice distortions witl#>0 and §<0.

strain, sition is weakly first ordefsee the discussion of the behavior
of ¢(T) andC’'(T)]. Since the free energy has almost con-
52 tinuous derivative afT,,, we do not expect a significant
C'(M#+ 3 —F(e,6T)| , (120  latent heat production. The free-energy differelcg,d T)
Je 0 —FwdT) becomes smaller thakgT at 130 K, suggesting

. . ) that lattice vibrations should also influence the relative sta-
smce_cell-lnternal relaxations quld be com.plet.ely neglecteq)i”ty of both phases. At present we can only argue that the
by this treatment. Furthermore, it would give incorrect re-yiprational entropy should favor the high-symmetry cubic
sults for cubic NBSn. Indeed, Fig. 6 shows that varies  ,hage and therefore reduce the calculatgd The tetrago-
slowly W|th_ €, and Eq.(9) gives that t_heT=0_ deformation nality parameter(T), shown in Fig. 8), has a small dis-
energyAE is a non-negative harmonic function ef There-  coninuity atT,,, making this transition nearly second order.
fore, one would obtain an almostindependent elastic con-  gimjjar behavior is seen in the experimefitsFluctuations
stantC’(T), which would counter with the experimental fact || presumably increase the first-order character, since they

that C’ 6§8h0W5 a pronounced softening above thegnly delay the transition but do not change the underlying

transition?>® The correct procedure is to assume that theenergy surface.

sublattice distortions occur on a fast time scale and follow \ye next discuss the temperature-dependent elastic prop-

the strain adiabaticall?minimizing the free energy for each gtjes of NbSn. Figure &) demonstrates that the shear elas-

€. Then one can show that tic constantC’(T) shows a very pronounced softening as
T—Ty, approaches zero at, and then stiffens to a finite

(13) value asT—0 in the tetragonal phase. Furthermaé(T)
«|T—Ty| close toTy, which is a clear indication of the
occurrence of a first-order transitiérthis is a clear success

evaluated ate and 6 which minimize the free energy of the present calculation, since it describes the experimental

F(e,6,T). The calculated elastic constar€’'=3(C;;  observation¥ very well.

—Cqp) at T=632 K is 0.82 Mbar, which is close to the  Another quantity of interest is the temperature depen-

experimental room-temperature valse.7 Mbar. It is very  dence of the optical’;, phonon frequency:

surprising that such a dramatic change in the elastic constant

of the cubic phaséfrom C'<0 to C'=0.82 Mbaj can be

caused by electronic excitations due to a seemingly insignifi- 1 Fuo(T)

cant (on the electronic energy scaléeemperature increase VFlz(T): > ’

from T=0 K to T=632 K. .

FigeaTW
Fa,g(G,a,T)

1
C’(T)=§ Fecl€,8,T)— ,
0

ot (14
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V. DISCUSSION

Based on first-principles LDA total-energy and free-
energy calculations, we have ascribed the anomalous struc-
tural properties of NgSn to a low-temperature structural in-
stability of the cubicAl5 phase. The effects of the electronic
excitations on the structural stability and cubic-to-tetragonal
phase transition have been studied by using the fihite-
Fermi-Dirac distribution function, noninteracting electronic
entropy Eq.(3), and LDA T=0 exchange and correlation
energy functional. Phonon excitations and electron-phonon
interactions have been excluded from this simple picture,
although there is good reason to suspect that they should
play an important role in this system. In what follows we
discuss what are the successes and failures of this simple
approach, and what are the implications for more refined
theoretical treatments of the structural transitionsAibS
compounds.

Several qualitative features of the structural phase transi-
tion are reproduced correctly:

(i) The cubic phase is stable at elevated temperatures, and
spontaneously distorts tetragonally at low temperatures.

(ii) The transition develops negligible latent heat as well
as small discontinuity in the tetragonality parame¢€r),
which makes it appear as nearly second order.

(iii ) The elastic constar€’(T) tends to 0 ag — Ty, [in
fact, C’'(T)«T—Ty], and then stiffens rapidly a§—0. It
has a discontinuous derivative B, .

(iv) The frequency of the opticdl,, phonon decreases as
T—Ty, but never actually reaches zero. It stiffens again
below the transition temperature.

Taking into account the simplicity of the present model, it
is not surprising that the calculated transition temperature is
Tl=450 K, while experimentallyT,,~40 K. There are
several possible causes for this discrepancy. First, the
electron-phonon interaction has been completely neglected.
More refined treatments should attempt to include finite life-
time and nonadiabatic effects on the states at the Fermi sur-
face. Whether they would lead to an increase in the effective
temperature for the electrons at the Fermi level is an open
question which can only be settled by further studies. Sec-
ond, the experimental samples are known to contain a sub-
stantial fraction of crystal defects. It is difficult to predict
how these defects affect the behavior of #8im, although it
has been speculatetithat they would somewhat smear out
the sharp features in the electronic structure. And finally,

FIG. 8. The calculated temperature dependent physical prope@nNharmonic effects should also be important at low tempera-

ties of Nb;Sn.

whereM* =4M,, is the effective mass of the mode aagl
is the equilibrium lattice parameter. Due to the la@ele-
pendence ofy(e, d), it is expected thatlrlz(T) will show a

strong temperature dependence. Figufd) 8lustrates that

tures, since the calculated energy barrief at0 K between

the local minima atb<<0 and >0 whene=0 is only 4-5
meV/cell, which is of the same magnitude kgT,,. We
have demonstrated that these anharmonicities do not survive
at elevated temperatures where the electronic excitations sta-
bilize the cubic phase and tHe;, optical phonon is both
stable and harmonic. In conclusion, h&n exhibits a subtle
interplay between the vibrational and electronic excitations,

this is indeed the case. It is rewarding to see that the freand the present calculations strongly suggest that a complete
guency does not approach zero at the transition point, whictheory of the unusual properties 8fl5 compounds should
has been explained above in the discussion of Fig. 7. This igclude both.

also consistent with the conclusion of Miller and A%¢hat

it is impossible for the frequency of a Raman-active mode ACKNOWLEDGMENTS

(like vr ) to go to zero without first producing an elastic

instability of the crystal.
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