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Multiwell interparticle potentials are proposed as a mechanism for the occurrence of modulated phases. This
is examined through two models with double-well interactions. For these systems, the effective potential
method is reviewed and a certain process of calculation is emphasized. To characterize the modulated phases,
the winding numberv, and the rotation numberV are redefined. The method to recover the chain of particles
and calculate the value ofv is given. We find that the phase diagrams strongly relate to the period of the
external potentialD. For each model, there is a threshold value inD, which equals to the distance between the
two minimum value points. Within different interval ofD, the phase diagrams exhibit different behavior. The
periodicity of the phase diagram and the difference between modulated phases with the sameV are also
discussed.@S0163-1829~98!01805-0#
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I. INTRODUCTION

When a system possesses two or more length scale
type of complicated phase transition, called commensur
incommensurate~CI! phase transition, can occur. CI trans
tions have been observed in many real systems such as
spin-density-wave~SDW! systems, e.g., cerium antimonid
charge-density-wave~CDW! systems, e.g., tetrathiofulvalen
tetracyano-p-quinodimethane ~TTF-TCNQ!, and
K2Pt(CN)4Br0.303H2O ~KCP!, magnetic spirals and ab
sorbed monolayers.1 In order to understand the modulate
structure of the ground states and the rules of CI transitio
variety of phenomenological models have been propose
describe such systems. One of the simplest models of
type is the ground state of an infinite one-dimensional sys
of particles~or classical spins! with energy

H5( @V~Un!1W~Un112Un!#, ~1!

whereUn is the position of thenth particle in the chain~or
the angle between the spin vector at thenth site and the
applied field!. The most famous model of this type is perha
the Frenkel-Kontorova2 ~FK! model, which describes a chai
of atoms connected by harmonic springs in the presence
sinusoidal external potential. The ground states of the F
like models can be precisely determined using the grad
method3 when the interparticle interactions are convex. B
cause of the correspondences of the ground states and o
of the two-dimensional area-preserving map, we can tr
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scribe many results of the map to those of the model. T
FK-like models of this type have been extensively studied
Aubry,3 Coppersmith,4 Biham,5 and Hu and co-workers.6

However, nonconvex interactions are very common
solid state physics. The oscillating exchange interaction
tween localized spins in a metal is perhaps the most fam
example. Also, the magnetoelastic coupling leads to an
fective double-well interparticle interaction.7 More generally,
and relevant to ferroelectricity, oscillating~and hence non-
convex! interactions can be mediated through elastic stra
and other harmonic fields.8 Little and Zangwill9 also intro-
duce a Frenkel-Kontorova-Devonshire~FKD! model where
as a function of a single parameter~which is regarded as the
temperature!, the interparticle potential changes smooth
from a quadratic single well to symmetric triple well an
finally to a symmetric double well. Models describing sy
tems of spins were studied by Banerjea and Taylor10 and
Yokoi.11 Some universals have been found. Up to now,
know very little about the models~such as atomic systems
not the systems of spins! of this type with nonconvex inter-
particle interactions, though Griffiths and Chou,12

Marchand,13 had made some attempts. In this paper, we
vote to this kind of study through two two microscopic mo
els with double-well interactions.

We present the results of our studies in eight sections
Sec. II we introduce the two models and analyze
foundmental properties of the ground states that are unive
in the KF-like models. In Sec. III, we present a brief revie
of the effective potential method for these systems of p
ticles ~not the systems of spins!. The winding numberv and
the rotation numberV are defined in this section. An impor
2771 © 1998 The American Physical Society
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tant process in the numerical calculation is explained
emphasized. In Sec. IV we discuss the periodicity of
phase diagram and the difference between modulated ph
with the same rotation number. The method to recover
chain of particles and calculate the winding numberv is
given in Sec. V. The phase diagram of model 1 is studied
Sec. VI and the phase diagram of model 2 is studied in S
VII. Section VIII is the summary and conclusion. From o
study, one can clearly find that there are many noncon
phase, where the numerator and the denominator ha
common divisor, and some multiphase points in the (K,g)
spaces for the two models.

II. ANALYSIS OF THE MODELS

The interparticle potentials14 of the two models used in
this paper are

FIG. 1. The interparticle interaction potentials of the two mo
els. The solid line denotesW(x) for model 1 and the dashed lin
denotesW(x) for model 2, whereg50.
ds
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W~x!5~x2g!22ux2gu ~model 1!, ~2!

W~x!52 1
2 ~x2g!21 1

4 ~x2g!4 ~model 2!, ~3!

respectively. The most significant difference between th
two models is the fact that the region of nonconvexity
W(x) is of finite width (ux2gu,321/2) in model 2, whereas
it is limited to the nonanalytic pointx5g in model 1. The
curves ofW(x) for the two models are shown in Fig. 1
whereg50, the solid line is for model 1 and the dashed li
is for model 2.W(x) has two equal minimum values tha
locatex2g56g1560.5 for model 1, and it has two equa
minimum values that locatex2g56g2561 for model 2.
The external potential used in this paper is

- FIG. 2. The curve of the external potentialV(x) with K51. The
dashed line corresponds to the case ofD50 and the solid line
corresponds to the case ofD50.1.
V~x!55
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~4!
for
The curve ofV(x) is shown in Fig. 2, whereD51; the solid
line corresponds toD50.1 and the dashed line correspon
to D50.

Under the minimum-enthalpy condition12, W in Eq. ~1!
can be replaced byW* , whereW* (x)5minmW(x1mD), and
m is a arbitary integer that satisfies a certain conditi
HenceW* is periodic in a certain direction and the period
just that of the external potential. For model 1, the curve
W in the interval21<x2g<0 is just identical to that in the
interval 0<x2g<1, so the curve ofW* with D51 is just
.

f

the same as that withD52. This feature is very useful in the
understanding of Fig. 4 and Fig. 5~d!.

From Ref. 13 and the references therein we know that,
Hamiltonians of the type given by Eq.~1! having V(2x)
5V(x), a nondegenerate ground state of even periodQ must
have the following structure~over one period!:

$Un%5$2UQ ,2UQ21 , . . . ,

2UQ/211 ,UQ/211 , . . . ,UQ21 ,UQ% ~5!
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57 2773GROUND STATES OF ONE-DIMENSIONAL . . .
with all UnÞ0, whereas a nondegenerate ground state
odd periodQ must have the form

$Un%5$2UQ ,2UQ21 , . . . ,U ~Q11!/2 , . . . ,UQ21 ,UQ%
~6!

with all UnÞ0 except forU (Q11)/250. That is to say, the
particles in the ground states distribute symmetrically w
respect to the origin point, and have no dislocation pheno
enon~i.e., Un21.Un) occur. This property can also be un
derstood in the following way: In the chain of particles d
scribed by Eq.~1!, if the position of the (n21)th and the
position of thenth particles are exchanged, then the origin
nth particle becomes the (n21)th one and the original (n
21)th one become thenth one. Because all the particles
the chain are identical, the new chain of particles is just
same as the old one. That is to say, no dislocation occ
This property is very useful in distinguishing the correct
gorithm of calculating the effective potential from the wron
one.

III. REVIEW OF THE EFFECTIVE POTENTIAL
METHOD; THE WINDING NUMBER

AND ROTATION NUMBER

In order to continue our analysis, we give a brief revie
of the effective potential method12 for the kind of systems we
are studying.

Imagine that a system described by Eq.~1! is in its ground
state. If we displace a particle from its equilibrium positio
then the surrounding paricles will change their positions
minimize the total energy. This local deformation will,
general, cost some energy and therefore, we can defi
function, called theeffective potential, which will describe
this energy cost as a function of the particle’s position.
site n, the effective potentialR(Un), due to the presence o
the particlesi ,n, can be formally written as

R~Un![min
i ,n

H (
i<n

@W~Ui2Ui 21!1V~Ui !2l#J , ~7!

wherel is the ~unknown! ground-state energy per partic
and where the minimum must be taken over all particl
positionsUi with i ,n. We can rewrite this equation by ex
pressing the right-hand side~RHS! in terms ofR(Un21) and,
in this manner, we obtain the following nonlinear eigenva
equation:

l1R~Un!5V~Un!1 min
Un21

$W~Un2Un21!1R~Un21!%.

~8!

The RHS of Eq.~8! defines a nonlinear functional operat
Re and Eq.~8! can be rewritten simply as

l1R~Un!5Re R~Un!. ~9!

We can also write the effective potentialS(Un) due to the
presence of the particlesi .n as

S~Un![min
i .n

H (
i>n

@W~Ui 112Ui !1V~Ui !2l#J ~10!

and the associated eigenvalue equation is
of

-
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l1S~Un!5V~Un!1 min
Un11

$W~Un112Un!1S~Un11!%.

~11!

Hence the total effective potentialF(U), due to all the
neighboring particles, is given by

F~U !5R~U !1S~U !2V~U !, ~12!

where V(U) is substracted to aviod being counted twic
When V(2U)5V(U), comparison of Eqs.~8! and ~11!
yields

S~U !5R~2U ! ~13!

and hence, in this case, all the information is contained
R(U).

For a given value ofUn , the value ofUn21 that mini-
mizes the RHS of Eq.~8! defines the one-dimensional~1D!
map,

Un215r~Un!. ~14!

Similarly, for a givenUn , the value ofUn11 that minimizes
the RHS of Eq.~11! defines the 1D map,

Un115s~Un!. ~15!

Physically we expect that, after some initial transient beh
ior, the orbits ofr ands will tend to an attractor that repre
sents the ground state. Hence, to generate the ground s
we only need to iterater or s once we have obtainedR(U)
or S(U).

We are usually unable to find an analytic solution to E
~8! and need to rely on numerical solutions. Because
effective potentialsR(U), S(U), and F(U) have the same
period as that ofV(U), we can calculate the values ofR(un),
S(un), F(un), andV(un), instead ofR(Un), S(Un), F(Un),
and V(Un), where un denote the displacement of thenth
particle with respect to some reference position, here i
regular one-dimensional lattice of equally spaced points. O
way to proceed is to discretize the unit cell. We replace
continuous set of possible particles’ positions by a discr
set ofG points uniformly spaced on an intervalD, which is
the period of the external potential:ui52(D/2)1 i (D/G)
with i 51,2, . . . ,G. ChoosingR0(u)5V(u) as the trial func-
tion, the sequece of iterations,

Rj 11~u!5 1
2 @Re Rj~u!1Rj~u!#2Cj , ~16!

generally converges. The constantCj is chosen in order tha
the minimum value ofRj 11(u) be zero. This sequece is it
erated until

max
u

uRe Rj~u!2l j2Rj~u!u,emax
u

uRj~u!u, ~17!

where the approximate ground-state energy is given by

l j5min
u

$Re Rj~u!% ~18!

and the finalRj (u) is the approximate effective potential.
In the numerical calculation, the method to calculate

ReR(un) should be emphasized. According to Sec. II,
dislocation occurs in the ground states, so the coordinat
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the nth particle should be greater than that of the (n21)th
particle, i.e.,Un.Un21. In the process of calculation,un21
,un means that, for a givenUn5un , the possible positions
of the (n21)th particle should beUn215un212mn21D,
wheremn21 is a certainnon-negativeinteger. In this case
W(Un2Un21)5W* (un2un21) should takeW„un2(un21
2mn21D)…, which is the minimum value ofW(un2un21),
W(un2un211D), W(un2un2112D), . . . . un21.un
means that, for a givenUn5un , the possible positions of th
(n21)th particle should beUn215un212mn21D, wherem
is a certainpositive integer. In this case,W(Un2Un21)
5W* (un2un21) should take W„un2(un212mn21D)…,
which is the minimum value ofW(un2un211D), W(un
2un2112D), W(un2un2113D), . . . .

When W(x) is a convex function or a nonconvex mult
well function with only one absolute minimum value, th
value of minm$W(un2un211mD)% is unique, wherem is a
arbitarynon-negativeinteger for the case ofun.un21 and is
a arbitarypositiveinteger for the case ofun21.un . There is
no degeneration in ground states no matter whetherV[0 or
V.0. When W(x) is a multiwell potential function with
more than one absolute minimum value, the value
minm$W(un2un211mD)% is not unique. WhenV[0, for a
givenUn5un , there would be more than one position for t
(n21)th particle to occupy. In this case, the degenerat
occurs.

To characterize the modulted phase more precisely,
define two parameters as follows: First define the wind
number

v5P/Q,

whereQ is the period of the ground state andP is the period
number of the external potential between the 1st and
(Q11)th particles. One can find that whenW is a convex
function everywhere, this definition is equivalent to the t
ditional definition of the winding number. Next define th
rotation number

V5
1

Q(
n51

Q

Q~un212un!,

where Q is the period of the ground state,uQ5u0, and
Q(x)511 ~if x>0) andQ(x)50 ~if x,0). In the follow-
ing sections, one can find thatv5V in some cases andv
ÞV in other cases. The coorperation of the the two para
eters can present more information about the ground sta

Figure 3 gives an example of variance ofF(U) with D for
model 2, whereD51, K51, g51.4, and whereFU0, FU1,
FU2, FU3, FU4 correspond to the cases ofD50, 0.05, 0.1,
0.2, 0.3, respectively. In the five cases, the values ofV are
all just 2/5. It is clear from Fig. 3 thatD only affect the
boundary region ofF(U) whenD is small, but it affects the
whole region ofF(U) when it is large enough. Generally
the value ofD may also affect the value ofV. In the follow-
ing calculations, the value ofD is limited to be small enough
so that it only affects the boundary region ofF(U) and does
not affect the positions of the particles in the ground stat
f

n

e
g

e

-

-
s.

IV. PERIODICITY OF THE PHASE DIAGRAM;
THE DIFFERENCE BETWEEN MODULATED PHASES

WITH THE SAME ROTATION NUMBER

In order to study the periodicity of the phase diagrams
the two models, we first consider that of the standard
model.

For the standard FK model, the winding numberv equals
to the nature length of the harmonic springg when the
strength of the external potential is zero. In this case, fo
given g5g0P@0,D#, v5V5P/Q5g0 /D, where we as-
sumeD is the period of the external potential. Wheng5D
1g0 ,v511P/Q, andV5P/Q. When the strength of the
external potential is greater than zero, we have the sa
conclusion. If we only use the rotation numberV to describe
the phases, the phase diagram is periodic and the perio
just the same as that of the external potential. Because
degeneration occurs, the winding numberv can uniquely
characterize each tongue of the phase diagram.

For the present model 1~or model 2!, when g>g1 ~or
g>g2), W(x) can take any one of the two equal minimu
values, andW* (x) is periodic in a certain direction. So if we
only use the rotation numberV to describe phases, the pha
diagram is also periodic, and the period is just the same
that of the external potential. IfV5V0 and v5v0 when
g5g0, thenV5V0 andv511v0 wheng5D1g0. When
g,g1 ~or g,g2), W(x) cannot take its left minimum value
so the phase diagram may be very different.

From the above analysis, one can easily find that mo
lated phases with the same rotation number may have di
ent winding numbers, and thus may correspond to differ
phase structures@see Fig. 4 for an example#. If W(x) is a
convex function everywhere, thenv5m1V, wherem is a
appropriate non-negative integer. IfW(x) is nonconvex, the
relation betweenv andV is much more complex, althoug
there are rules to obey. The numerical results in Sec. VI
Sec. VII support our analysis and give examples.

V. METHOD FOR RECOVERING THE CHAIN
OF PARTICLES AND CALCULATING

THE WINDING NUMBER

When we use the effective potential method to study
ground states, all theun are contained in the interval

FIG. 3. Examples of the variance ofF(U) with D, whereD
51, K51, g51.4, G5400, ande5131025, and whereFU0,
FU1, FU2, FU3, andFU4 correspond to the cases ofD50, 0.05,
0.1, 0.2, and 0.3, respectively.



e
le
ve
nd
in

b

el

te
nd

es
eri-
ual.

a-
l

,

of
the

es
ell as
ase
ard
of

e

e

f

/1,

5,
del
r-

-
two
c-

a-

e
he
se,

t in

e

57 2775GROUND STATES OF ONE-DIMENSIONAL . . .
@2D/2,D/2#, which do not denote the real positions of th
particles in the chain. We can recover the chain of partic
in the following way: Once we have obtained the effecti
potentialR(u), then in the process of calculating the grou
state, more precisely, in the process of calculat
Re R(un), for a given Un5un , we should record the
period number of the external potential, assumed to
mn21, which should be moved to the left fromun21
to obtain Un21. Thus for a ground state ofV5P/Q,
assume thatUQ5uQ , then UQ215uQ212mQ21D, UQ22
5uQ222(mQ211mQ22)D, . . . , U15u12(mQ211mQ22

FIG. 4. Examples of the ground states for model 1, whereL
denotes particle andg>0.5. ~a! shows the ground state$un%, where
D52, K52, g51.2 ~or g52.2), andV55/7; ~b! shows the recov-
ered chain of particles whereg51.2 andv5V55/7; ~c! shows the
recovered chain of particles whereg52.2 andV55/7, v57/7.
s

g

e

1•••1m1)D,U05u02(mQ211mQ221•••1m11m0)D,
whereu05uQ andv5P/Q[(mQ211mQ221•••1m0)/Q.
Figures 4~a!–4~c! show examples of ground states for mod
1, where theL denotes the particle. Figure 4~a! shows the
ground state$un% whenD52, K52.0, g51.2 ~or g52.2),
V55/7. All the particles in one period of the ground sta
have been plotted in one well of the external potential, a
do not denote the real positions of the particles. Figure 4~b!
shows the recovered chain from Fig. 4~a! in one period
whereg51.2, V5v55/7. Figure 4~c! shows the recovered
chain from Fig. 4~a! in one period whereg52.2, V55/7,
and v57/7. One can find that two different ground stat
correspond to the same unrecovered chain; we have num
cally proven that the energies of the two phases are uneq

VI. THE PHASE DIAGRAMS OF MODEL 1

Figures 5~a!–5~e! show the examples of the phase di
grams of model 1 in the case ofg>g1, where the externa
potential period areD5g1, 2g1, 3g1, 4g1, 5g1, respec-
tively. Here, only the phases withQ<5 are shown. The ro-
tation numbers areV51/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 3/4
4/5, 1/1, respectively. From Figs. 5~a!–5~b! it is clear that the
phase diagram withD50.5 orD51 is similar in appearance
to that of the standard FK model, which is composed
commensurate and incommensurate ground states in
(K,g) parameter space. For any given rotation numberV,
there is a corresponding commensurate area~Arnold’s
tongue! in which V is a constant. Between any two tongu
there is a gap that contains incommensurate states as w
higher-order commensurate states. But in fact the ph
structures may be greatly different from that of the stand
FK model. For the standard FK model, with the increasing
g, the values ofV occur periodically and conform to th
structure of the Farey tree except for the case ofQ51; the
values ofv increase monotonically. For model 1, with th
increasing ofg, the values ofV occur periodically and con-
form to the structure of Farey tree except for the case oQ
51, but the values ofv do not increase monotonically. In
Fig. 5~a!, from left to right, the winding numbers arev
52/1, 11/5, 3/4, 7/3, 12/5, 5/2, 13/5, 4/3, 9/4, 14/5, 4
respectively. In Fig. 5~b!, from left to right, the winding
numbers arev51/1, 6/5, 7/4, 3/3, 8/5, 3/2, 6/5, 3/3, 7/4, 8/
3/1, respectively. The period of the phase diagram for mo
1 with D50.5 orD51 is just the same as that of the exte
nal potential.

From Figs. 5~c!–5~e!, one can find that, among the com
mensurate tongues, the structure of the Farey tree occurs
times within one period of the external potential. The fra
tion numbers labeled in the figure are the values ofV of the
corresponding tongues. One also can find that in Figs. 5~c!–
5~e! the (K,g) parameter space is divided into two unequiv
lent parts, which cover the regions ofA1, g1<g<(D2g1);
and A2, (D2g1)<g<(D1g1), respectively. The phas
diagrams in the two parts are both similar to that of t
standard FK model. In the leftmost region of uniform pha
V51/1 andv50/1. In the other tongues of the left part,v
5V. In the right part the phase diagram is identical to tha
the case ofg>g1 and D52g1, but within the tongue with
V5P/Q, the winding numberv5Q/Q.

WhenD5g1 and 0<g<g1, the phase diagram is just th
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FIG. 5. Phase diagrams of model 1.~a!, ~b!, ~c!, ~d!, and ~e! correspond to the cases ofD50.5, D51, D51.5, D52, andD52.5,
respectively, where only the phases with the periodQ<5 are shown. The fraction numbers labeled in the figures are the rotation num
of the corresponding tongues.
o
h

ing
,

same as that of the case whenD5g1 and g1<g<2g1 in
appearance, but wherev511V except for the left uniform
phase. In the region of the left uniform phase,v5V51/1.

VII. THE PHASE DIAGRAMS OF MODEL 2

Figures 6~a!–6~e! give the examples of phase diagrams
model 2 in the case ofg>g2, where only the phases wit
f

Q<5 are shown, and where the values ofD are g2, 2g2,
2.5g2, 4g2, 5g2, respectively. The phase diagram withD
5g2 is an example of the cases thatD,2g2, which is similar
to that of the standard FK model. When 1<g,2, from left
to right, the rotation numbers areV51/1, 1/5, 1/4, 1/3, 2/5,
1/2, 3/5, 2/3, 3/4, 4/5, 1/1, respectively. The correspond
winding numbers arev52/1, 9/5, 7/4, 5/3, 8/5, 3/2, 9/5, 4/3
5/4, 10/5, 1/1, respectively, wheng52, V51/1, v54/1.
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FIG. 6. Phase diagrams of model 2, where only the phases with the periodQ<5 are shown. The fraction numbers labeled in the figu
are the rotation numbers of the corresponding tongues.~a!, ~b!, ~c!, ~d!, and~e! correspond to the cases ofD51, D52, D52.5,D54, and
D55, respectively, whereg>g2; ~f! and ~g! correspond to the cases ofD51 andD52, respectively, whereg<g2.
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The phase diagram withD52g2 is very different from
that of the standard FK model. In Fig. 6~b!, most of the phase
space is occupied by the uniform phase and all the ph
with Q.1 vanish whenK is greater than a threshold valu
Kc , which is approximately 4.0. In the region limited by th
left dashed ellipses there is a typical multiphase poin13

around which we found the following phases:V51/1, 1/4,
1/3, 1/2, 2/4, respectively. The corresponding winding nu
bers arev51/1, 4/4, 3/3, 2/2, 4/4, respectively. In the regio
limited by the right dashed ellipses there is also a typi
es

-

l

multiphase point, around which we found the followin
phases:V51/1, 3/4, 2/3, 1/2, 2/4, respectively. The corr
sponding winding numbers arev51/1, 4/4, 3/3, 4/4, respec
tively. In the region of uniform phase,V51/1, v51/1. Our
numerical results show that in this region of the parameteg,
an interesting phenomenon occurs. The winding numbev
5Q/Q whenV5P/Q.

In Figs. 6~c!–6~e!, a more interesting phenomenon occu
The (K,g) parameter space is divided into two unequivale
parts. The phase diagram in the left part is similar to tha
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FIG. 6. ~Continued!.
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the case ofg>g2 andD,2g2, it covers the regionB1: g2
<g<D2g2. In the leftmost regions of uniform phase
Fig. 6~c!, Fig. 6~d!, or Fig. 6~e!, v50/1, andV51/1. Within
the other tongues in the left part,v5V. The phase diagram
in the right part is identical to that in the case ofg>g2 and
D52g2. Within a given tongue in the right part, the windin
number and the rotation number are just the same as tho
the case ofD52g2, it covers the regionD2g2<g<D
1g2. Unlike model 1, the phase diagrams in the two pa
are very different.

Figures 6~f!–6~g! give examples of phase diagrams wh
g,g2. The interparticle interactionW(x) cannot take its left
minimum value. The phase diagrams in Fig. 6~f! or Fig. 6~g!
are not periodic. In Fig. 6~f!, all the phases withQ.1 dis-
appear whenK is greater than a certain threshold valueKc ,
whereKc is approximately 10. In this region of the param
eterg, v5V except for the uniform phase. In the region
uniform phase,v5V51/1 when 0<g,0.5; v50/1 and
V51/1 when 0.5,g,1; v52/1 andV51/1 wheng51.
There are obviously many multiphase points in this figu
One locates on the top of the tongue withV51/2, the others
locate on the top of tongues withV.1/2, respectively. In
Fig. 6~g!, all the phases withQ.1 disappear whenK
.Kc , whereKc is approximately 2.6. In this region of th
parameterg, v5V, except for the case of the uniform
phase. In the region of uniform phase,v50/1, V51/1. In
the region limited in the dashed line ellipse, we also find
multiphase point and the phase withV5v52/4.

VIII. SUMMARY AND CONCLUSION

We study two models with double-well interparticle p
tentials. For the convenience of studying, we review the
fective potential method for the systems of particles~not the
systems of spins!. To characterize the modulated phases,
redefine two parameters, the winding numberv and the ro-
tation numberV, which are equivalent to the traditional defi
nition of the winding number under some conditions. T
cooperation of the two parameters can give more informa
about the modulated phases, so can more precisely deter
the structures of the ground states. Because the two mo
have the double-well interparticle interactions, the nonc
in

s

.

a

f-

e

n
ine
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vex phase and multiphase points may appear. For the
models, wheng>g1 ~for model 1! or g>g2 ~for model 2!,
W(x) can take any one of the two equal minimum values,
phase diagram is periodic and the period is just the sam
that of the external potential. IfV5V0 and v5v0 when
g5g0, then V5V0 and v511v0 when g5D1g0. For
model 1, when the period of the external potentialD<2g1
the phase diagram is similar to that of the standard FK mo
in appearance. The rotation numbers conform to the struc
of Farey tree except for the case ofQ51, but the winding
number do not increases montonically with the increasing
g. For model 2, when the period of the external poten
D,2g2, the phase diagram is similar to that of the stand
FK model. WhenD52g2, the phase diagram is very differ
ent. All the phases withQ.1 disappear whenK is greater
than a threshold valueKc , whereKc is approximate 4.0. For
the two models, ifD is greater than the distance between t
two minimum value points ofW(x), the (K,g) parameter
space is divided into two unequivalent parts which cover
regions ofA1 :g1<g<D2g1 and A2 :D2g1<g<D1g1,
respectively, for model 1 orB1 :g2<g<D2g2 and B2 :D
2g2<g<D1g2, respectively, for model 2. In the left par
the diagram is similar to that of the standard FK model, a
in the right part the phase diagram is identical to that in
case ofD52g1 or D52g2. In the regionsA1 and B1 the
values of the winding number conform to the structure of
Farey tree. In the regionsA2 and B2, the winging number
v5Q/Q when the rotation numberV5P/Q. Wheng,g1
for model 1 org,g2 for model 2,W(x) can not take its left
minimum value, the phase diagram may be greatly differe
The ground state$u1 ,u2 , . . . ,uQ% obtained by using the ef
fective potential method does not denote the real position
the particles in the chain. The method for recovering
chain of the particles and calculating the winding numberv
is given.

In conclusion, we emphasize that the new physics is t
the systems of particles~not the spins! should be character
ized byUn , but in the process of calculation, one needs
rely on un . The two parameters redefined in this paper
also useful in the study on the modulated phases and
study on the phase diagram. The phase structures foun
this paper are interesting. They contribute to a deeper un
standing of the CI transitions and the FK-type models, es
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cially the periodicity of the phase structures in the (K,g)
parameter space. The mechanism for the occurrence
modulated phases and phase diagrams such as these
have potential applications in condensed-matter physics.

The method used in this paper can be applied to vari
versions of the generalized FK model with convex and no
convex interparticle interactions.
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