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Multiwell interparticle potentials are proposed as a mechanism for the occurrence of modulated phases. This
is examined through two models with double-well interactions. For these systems, the effective potential
method is reviewed and a certain process of calculation is emphasized. To characterize the modulated phases,
the winding numbemw, and the rotation numbée are redefined. The method to recover the chain of particles
and calculate the value @b is given. We find that the phase diagrams strongly relate to the period of the
external potentiaD. For each model, there is a threshold valu®inwhich equals to the distance between the
two minimum value points. Within different interval @f, the phase diagrams exhibit different behavior. The
periodicity of the phase diagram and the difference between modulated phases with th€) saimealso
discussed[S0163-182808)01805-7

I. INTRODUCTION scribe many results of the map to those of the model. The

Wh | h | FK-like models of this type have been extensively studied by
en a system possesses two or more length scales, bry2 CoppersmitH, Biham? and Hu and co-worker.

type of complicated phase transition, called commensurate- However, nonconvex interactions are very common in

incommensuratéCl) phase transition, can occur. Cl transi- o|iq state physics. The oscillating exchange interaction be-
tions have been observed in many real systems such as SORgen localized spins in a metal is perhaps the most famous
spin-density-wavéSDW) systems, e.g., cerium antimonide; example. Also, the magnetoelastic coupling leads to an ef-
charge-density-wave€CDW) systems, e.g., tetrathiofulvalene fective double-well interparticle interactidriMore generally,
tetracyano-p-quinodimethane  (TTF-TCNQ), and  and relevant to ferroelectricity, oscillatingnd hence non-
KoP(CN)4Bro33H,O (KCP), magnetic spirals and ab- convey interactions can be mediated through elastic strains
sorbed monolayersIn order to understand the modulated and other harmonic fieldsLittle and ZangwilP also intro-
structure of the ground states and the rules of ClI transition, duce a Frenkel-Kontorova-DevonshifeKD) model where
variety of phenomenological models have been proposed tas a function of a single parametgvhich is regarded as the
describe such systems. One of the simplest models of thigmperaturg the interparticle potential changes smoothly
type is the ground state of an infinite one-dimensional systerffom a quadratic single well to symmetric triple well and
of particles(or classical spinswith energy finally to a symmetric double well. Models describing sys-
tems of spins were studied by Banerjea and Tafland
Yokoi.'* Some universals have been found. Up to now, we
H=> [V(Uy)+W(U, - U], (1)  know very little about the modelsuch as atomic systems,
not the systems of spinsf this type with nonconvex inter-
particle interactions, though Griffiths and Chbu,
whereU, is the position of thenth particle in the chaifor ~ Marchand!® had made some attempts. In this paper, we de-
the angle between the spin vector at thh site and the vote to this kind of study through two two microscopic mod-
applied field. The most famous model of this type is perhapsels with double-well interactions.
the Frenkel-Kontorova(FK) model, which describes a chain ~ We present the results of our studies in eight sections. In
of atoms connected by harmonic springs in the presence of@ec. Il we introduce the two models and analyze the
sinusoidal external potential. The ground states of the FKfoundmental properties of the ground states that are universal
like models can be precisely determined using the gradierit the KF-like models. In Sec. Ill, we present a brief review
method when the interparticle interactions are convex. Be-of the effective potential method for these systems of par-
cause of the correspondences of the ground states and orbiisles (not the systems of spipsThe winding numbew and
of the two-dimensional area-preserving map, we can tranthe rotation numbef) are defined in this section. An impor-
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FIG. 1. The interparticle interaction potentials of the two mod-  FIG. 2. The curve of the external potenti4x) with K=1. The
els. The solid line denoted/(x) for model 1 and the dashed line dashed line corresponds to the caseAst0 and the solid line
denotesW(x) for model 2, wherey=0. corresponds to the case &f=0.1.

tant process in the numerical calculation is explained and
emphasized. In Sec. IV we discuss the periodicity of the
phase diagram and the difference between modulated phases
with the same rotation number. The method to recover the
chain of particles and calculate the winding numberis W(x)=— 3 (x—y)?+ 2 (x—y)* (model 2, (3
given in Sec. V. The phase diagram of model 1 is studied in

Sec. VI and the phase diagram of model 2 is studied in Sec.

VII. Section VIl is the summary and conclusion. From our respectively. The most significant difference between these
study, one can clearly find that there are many nonconveiwo models is the fact that the region of nonconvexity of
phase, where the numerator and the denominator have \&(x) is of finite width (x— y|<3~'?) in model 2, whereas
common divisor, and some multiphase points in thKe ) it is limited to the nonanalytic point=+y in model 1. The
spaces for the two models. curves of W(x) for the two models are shown in Fig. 1,
wherey=0, the solid line is for model 1 and the dashed line
is for model 2.W(x) has two equal minimum values that
locatex— y=* y;=*=0.5 for model 1, and it has two equal
The interparticle potential$ of the two models used in minimum values that locate— y= + y,= =1 for model 2.

W(x)=(x=y)?=|x—y (model D, 2

Il. ANALYSIS OF THE MODELS

this paper are The external potential used in this paper is
|
flK D 2 K(D2—A)A K(D/2-A)[  D\? D _ D A
2278 T2 28 X2 T oT
q 1K 2 b A D A
= —_— _ — S——
V(X) 5 X4, 2+ <X > (4)
< D A 2 K(D2—-A)A K(Dl2-A)( D 2 D A _D
(2%27%) T2 28 2] 27872

The curve ofV(x) is shown in Fig. 2, wher®=1; the solid the same as that with =2. This feature is very useful in the
line corresponds ta=0.1 and the dashed line correspondsunderstanding of Fig. 4 and Fig(cj.

to A=0. From Ref. 13 and the references therein we know that, for
Under the minimum-enthalpy conditibh W in Eq. (1)  Hamiltonians of the type given by Eql) having V(—x)
can be replaced bw* , whereW* (x) = min,W(x+mD), and = V(X), a nondegenerate ground state of even pe@iadust

m is a arbitary integer that satisfies a certain conditionnave the following structuréover one periogd
HenceW* is periodic in a certain direction and the period is
just that of the external potential. For model 1, the curve of {Ul={-Ug,—U

: . o . ; n Q: VYQ-11 -
W in the interval— 1<x— y=<0 is just identical to that in the
interval 0<x— y=<1, so the curve ofW* with D=1 is just —Ugp+1.Ugp+1s -+ - Ug-1,Ug} )
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with all U,#0, whereas a nondegenerate ground states of \+S(U,)=V(U,)+ min{W(U,,;—U,)+S(U,,1)}.
odd periodQ must have the form Ups1

(12)
U lt={-Ug,—Up_q, ... .U ,...,.Uo_1,U . .
{Un}={=VUq,~Uos (Q+1)/2 Q-1 Q}(G) Hence the total effective potentid#(U), due to all the

. ) neighboring patrticles, is given by
with all U,#0 except forUo.1),=0. That is to say, the
particles in the ground states distribute symmetrically with F(U)=R(U)+S(U)—-V(U), (12
respect to the origin point, and have no dislocation phenom- . . . .
enopn(i.e., Un_1>9L]Jn)poccur. This property can also Fl))e un- where V(U) is substracted to_awod being counted twice.
derstood in the following way: In the chain of particles de—Whlgn V(=U)=V(U), comparison of Eqs(8) and (11)
scribed by Eq(1), if the position of the (—1)th and the Y'¢'9S
position_of thenth particles are exchanged, then t_hg original S(U)=R(—-U) (13)
nth particle becomes then(-1)th one and the originaln(
—1)th one become theth one. Because all the particles in and hence, in this case, all the information is contained in
the chain are identical, the new chain of particles is just theR(U).
same as the old one. That is to say, no dislocation occurs. For a given value ol,, the value ofU,_; that mini-
This property is very useful in distinguishing the correct al-mizes the RHS of Eq(8) defines the one-dimensiondlD)
gorithm of calculating the effective potential from the wrong map,

one.
Un-1=p(Uy). (14
ll. REVIEW OF THE EFFECTIVE POTENTIAL Similarly, for a givenU,,, the value ofU,,, ; that minimizes
METHOD; THE WINDING NUMBER the RHS of Eq(11) defines the 1D map,
AND ROTATION NUMBER
Unr1=0o(Uy). (15

In order to continue our analysis, we give a brief review

X ) . Physically we expect that, after some initial transient behav-
of the effective potential methdtifor the kind of systems we y y P

ior, the orbits ofp and o will tend to an attractor that repre-

arems]tudi?]/m?k.} ¢ tem described by Ef).is in its ground sents the ground state. Hence, to generate the ground state,
agine that a system described by &0.1S In Its ground -, ¢ only need to iteratp or o once we have obtaineR(U)
state. If we displace a particle from its equilibrium position, or S(U)

then the surrounding paricles will change their positions to
minimize the total energy. This local deformation will, in
general, cost some energy and therefore, we can define
function, called theeffective potentialwhich will describe
this energy cost as a function of the particle’s position. At
site n, the effective potentiaR(U,,), due to the presence of
the particles <n, can be formally written as

We are usually unable to find an analytic solution to Eq.
(8) and need to rely on numerical solutions. Because the
effective potentialR(U), S(U), andF(U) have the same
period as that o¥/(U), we can calculate the valuesR{u,,),
S(uy,), F(u,), andV(u,), instead ofR(U,), S(U,), F(U,),
and V(U,), whereu, denote the displacement of theh
particle with respect to some reference position, here is a
regular one-dimensional lattice of equally spaced points. One
R(Uy=min! > [W(U;—U;_1)+V(U)—\]}, (7) way to proceed is to discretize the unit cell. We replace the
i<nlf=n continuous set of possible particles’ positions by a discrete

where\ is the (unknown ground-state energy per particle S€t ofG points uniformly spaced on an intervl, which is
and where the minimum must be taken over all particlesthe period of the external potentiak; = = (D/2)+i(D/G)
positionsU; with i <n. We can rewrite this equation by ex- Withi=1,2,... G. ChoosingR"(u)=V(u) as the trial func-
pressing the right-hand sidBHS) in terms ofR(U,,_,) and,  tion, the sequece of iterations,

in this manner, we obtain the following nonlinear eigenvalue

equation: RI*Y(u)= 3 [ReRI(u)+RI(u)]-C;j, (16)
A+R(Up)=V(Uy)+ min{W(U,—U,_1) +R(U,_p}. generally converges. The const&jtis chosen in order that
Up_y the minimum value oR'*(u) be zero. This sequece is it-
(8)  erated until
The RHS of Eq.(8) defines a nonlinear functional operator maXxReR/(u)— AN —RI(u)|<emaxR(u)|, (17
Re and Eq(8) can be rewritten simply as u u
AN+ R(U,)=ReR(U,). (9  where the approximate ground-state energy is given by
We can also write the _effective potentig(U,) due to the ) =min{Re Ri(u)} (18)
presence of the particlés>n as u

and the finalR/(u) is the approximate effective potential.

In the numerical calculation, the method to calculate the
ReR(u,) should be emphasized. According to Sec. I, no
and the associated eigenvalue equation is dislocation occurs in the ground states, so the coordinate of

S(Uy)=min! > [W(U;,;—U)+V(U)—A]} (10

i>nli=n
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the nth particle should be greater than that of time—(1)th
particle, i.e.,U,>U,_,. In the process of calculation,, ;
<u, means that, for a gived,=u,, the possible positions
of the (n—1)th particle should b&J, ;=u,_;—m,_;D,
wherem,,_; is a certainnon-negativeinteger. In this case,
W(U,—U,_1)=W*(u,—u,_4) should takeW(u,—(u,_1
—m,,_1D)), which is the minimum value oV(u,—u,_,),
W(u,—u,_¢1+D), W(u,—u,_1+2D),.... Us_1>U,
means that, for a gived ,=u,,, the possible positions of the
(n—1)th particle should b&,,_;=u,_;—m,_,D, wherem
is a certainpositive integer. In this caseW(U,—U,_;)
=W*(u,—Uu,_4) should take W(u,—(u,_;—m,_41D)),
which is the minimum value oWW(u,—u,_;+D), W(u,
—U,_,1+2D), W(u,—u,_4+3D), ... .

WhenW(x) is a convex function or a nonconvex multi-
well function with only one absolute minimum value, the
value of min{W(u,—u,_;+mD)} is unique, wherem is a
arbitarynon-negativenteger for the case af,>u,_;, and is
a arbitarypositiveinteger for the case af,_;>u,. There is
no degeneration in ground states no matter whedxe0 or
V>0. WhenW(x) is a multiwell potential function with
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FIG. 3. Examples of the variance &f(U) with A, whereD
=1, K=1, y=1.4, G=400, ande=1x10"°, and whereFUO,
FU1,FU2,FU3, andFU4 correspond to the cases®df0, 0.05,
0.1, 0.2, and 0.3, respectively.

IV. PERIODICITY OF THE PHASE DIAGRAM;
THE DIFFERENCE BETWEEN MODULATED PHASES
WITH THE SAME ROTATION NUMBER

more than one absolute minimum value, the value of

min{W(u,—u,_;+mD)} is not unique. WherV=0, for a
givenU,=u,, there would be more than one position for the

In order to study the periodicity of the phase diagrams for
the two models, we first consider that of the standard FK
model.

(n—1)th particle to occupy. In this case, the degeneration For the standard FK model, the winding numbeequals

ocCcurs.

To characterize the modulted phase more precisely, w
define two parameters as follows: First define the windingg

number

w=P/Q,

whereQ is the period of the ground state aRds the period

(Q+1)th particles. One can find that wh&d is a convex

function everywhere, this definition is equivalent to the tra-

ditional definition of the winding number. Next define the
rotation number

1 Q
Q== 0(u,_1—Uuy),

n=1

where Q is the period of the ground stateg=u,, and
O(x)=+1 (if x=0) and®(x)=0 (if x<0). In the follow-
ing sections, one can find that=() in some cases and

# () in other cases. The coorperation of the the two param

to the nature length of the harmonic springwhen the
gtrength of the external potential is zero. In this case, for a
iven y=y,€[0D], 0o=Q=P/Q=1y,/D, where we as-
sumeD is the period of the external potential. Whes=D

+ 750, 0=1+P/Q, andQ=P/Q. When the strength of the
external potential is greater than zero, we have the same
conclusion. If we only use the rotation numierto describe

the phases, the phase diagram is periodic and the period is

X just the same as that of the external potential. Because no
number of the external potential between the 1st and thg

egeneration occurs, the winding numhercan uniquely
characterize each tongue of the phase diagram.

For the present model (or model 3, when y=, (or
v=1v,), W(X) can take any one of the two equal minimum
values, andV* (x) is periodic in a certain direction. So if we
only use the rotation numbél to describe phases, the phase
diagram is also periodic, and the period is just the same as
that of the external potential. )=, and w=wy when
v= v, thenQ)=Qy andw=1+ wy wheny=D + y,. When
y<y1 (or y<1y,), W(x) cannot take its left minimum value,
so the phase diagram may be very different.

From the above analysis, one can easily find that modu-
lated phases with the same rotation number may have differ-
ent winding numbers, and thus may correspond to different

eters can present more information about the ground state@N@se structurefsee Fig. 4 for an examplelf W(x) is a

Figure 3 gives an example of varianceRd(fU) with A for
model 2, wherd=1,K=1, y=1.4, and wher&UOQO,FU1,
FU2,FU3,FUA4 correspond to the cases®df 0, 0.05, 0.1,
0.2, 0.3, respectively. In the five cases, the value§) adre
all just 2/5. It is clear from Fig. 3 thaA only affect the
boundary region of (U) whenA is small, but it affects the
whole region ofF(U) when it is large enough. Generally,
the value ofA may also affect the value @b. In the follow-
ing calculations, the value df is limited to be small enough
so that it only affects the boundary regionfefU) and does
not affect the positions of the particles in the ground state.

convex function everywhere, then=m+Q, wherem is a
appropriate non-negative integer.W(x) is nonconvex, the
relation betweerw and() is much more complex, although
there are rules to obey. The numerical results in Sec. VI and
Sec. VIl support our analysis and give examples.

V. METHOD FOR RECOVERING THE CHAIN
OF PARTICLES AND CALCULATING
THE WINDING NUMBER

When we use the effective potential method to study the
ground states, all thes, are contained in the intervals
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FIG. 4. Examples of the ground states for model 1, whére
denotes particle angi=0.5. (a) shows the ground stafel,}, where
D=2,K=2,y=1.2(or y=2.2), and) =5/7; (b) shows the recov-
ered chain of particles where= 1.2 andw=Q =5/7; (c) shows the
recovered chain of particles whege=2.2 andQ)=5/7, 0=7/7.

+---+my)D,Up=up—(Mg_1+Mg_o+---+my+mg)D,
whereup=Ug andw=P/Q=(Mg_;+Mg_,+---+my)/Q.
Figures 4a)—4(c) show examples of ground states for model
1, where the® denotes the particle. Figurda}l shows the
ground statdu,} whenD=2, K=2.0, y=1.2 (or y=2.2),
Q=5/7. All the particles in one period of the ground state
have been plotted in one well of the external potential, and
do not denote the real positions of the particles. Figite 4
shows the recovered chain from Fig(a4in one period
wherey=1.2, )= w=>5/7. Figure 4c) shows the recovered
chain from Fig. 4a) in one period wherey=2.2, ) =5/7,

and w=7/7. One can find that two different ground states
correspond to the same unrecovered chain; we have numeri-
cally proven that the energies of the two phases are unequal.

VI. THE PHASE DIAGRAMS OF MODEL 1

Figures %a)-5(e) show the examples of the phase dia-
grams of model 1 in the case & v,, where the external
potential period ardD =14, 24, 31, 4v1, 5v1, respec-
tively. Here, only the phases wilQ<5 are shown. The ro-
tation numbers ar€)=1/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 3/4,
4/5, 1/1, respectively. From Figs(@—5(b) it is clear that the
phase diagram with =0.5 orD=1 is similar in appearance
to that of the standard FK model, which is composed of
commensurate and incommensurate ground states in the
(K,y) parameter space. For any given rotation numfler
there is a corresponding commensurate aféanold’s
tongue in which () is a constant. Between any two tongues
there is a gap that contains incommensurate states as well as
higher-order commensurate states. But in fact the phase
structures may be greatly different from that of the standard
FK model. For the standard FK model, with the increasing of
v, the values ofQ) occur periodically and conform to the
structure of the Farey tree except for the cas®efl; the
values ofw increase monotonically. For model 1, with the
increasing ofy, the values of) occur periodically and con-
form to the structure of Farey tree except for the cas® of
=1, but the values ofv do not increase monotonically. In
Fig. 5a), from left to right, the winding numbers are
=2/1, 11/5, 3/4, 7/3, 12/5, 5/2, 13/5, 4/3, 9/4, 14/5, 4/1,
respectively. In Fig. &), from left to right, the winding
numbers arev=1/1, 6/5, 7/4, 3/3, 8/5, 3/2, 6/5, 3/3, 7/4, 8/5,
3/1, respectively. The period of the phase diagram for model
1 withD=0.5 orD=1 is just the same as that of the exter-
nal potential.

From Figs. %c)—5(e), one can find that, among the com-
mensurate tongues, the structure of the Farey tree occurs two
times within one period of the external potential. The frac-
tion numbers labeled in the figure are the value$§)obf the

[—D/2,D/2], which do not denote the real positions of the corresponding tongues. One also can find that in Fig®-—5
particles in the chain. We can recover the chain of particle®(e) the (K, y) parameter space is divided into two unequiva-
in the following way: Once we have obtained the effectivelent parts, which cover the regions Af, y;<y=<(D — y1);
potentialR(u), then in the process of calculating the groundand A,, (D—vy;)<vy=<(D+ vy,), respectively. The phase
state, more precisely, in the process of calculatingdiagrams in the two parts are both similar to that of the
ReR(u,), for a given U,=u,, we should record the standard FK model. In the leftmost region of uniform phase,
period number of the external potential, assumed to bé&)=1/1 andw=0/1. In the other tongues of the left pad,

m,_,, which should be moved to the left from,_;
to obtain U,,_,. Thus for a ground state of)=P/Q,
assume that/g=ugq, thenUg_1=Ug_1—Mg_1D, Ug_»
=Ug-2—(Mg_1+mMg_,)D, ..., U;=u;—(Mg_1+mMg_,

=(). In the right part the phase diagram is identical to that in
the case ofy=vy,; andD =2y, but within the tongue with
Q=P/Q, the winding humbew=Q/Q.

WhenD = y; and 0< y=< y4, the phase diagram is just the
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FIG. 5. Phase diagrams of model (&), (b), (c), (d), and(e) correspond to the cases Bbf=0.5,D=1,D=1.5,D=2, andD=2.5,
respectively, where only the phases with the pef@d5 are shown. The fraction numbers labeled in the figures are the rotation numbers

of the corresponding tongues.

same as that of the case whBr=y,; and y;<y<2y, in Q=5 are shown, and where the valuesfare y,, 2vy,,
appearance, but where=1+ ) except for the left uniform 2.5y,, 4y,, 5v,, respectively. The phase diagram with
phase. In the region of the left uniform phages () =1/1. =y, is an example of the cases thx 2 y,, which is similar

to that of the standard FK model. Whersly<2, from left

to right, the rotation numbers af@=1/1, 1/5, 1/4, 1/3, 2/5,

VIl THE PHASE DIAGRAMS OF MODEL 2 1/2, 3/5, 2/3, 3/4, 4/5, 1/1, respectively. The corresponding
Figures §a)—6(e) give the examples of phase diagrams ofwinding numbers are=2/1, 9/5, 7/4, 5/3, 8/5, 3/2, 9/5, 4/3,

model 2 in the case of=y,, where only the phases with 5/4, 10/5, 1/1, respectively, whep=2, Q=1/1, o=4/1.
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FIG. 6. Phase diagrams of model 2, where only the phases with the figeddare shown. The fraction numbers labeled in the figures
are the rotation numbers of the corresponding tongi@s(b), (c), (d), and(e) correspond to the casesbf=1,D=2,D=2.5,D=4, and
D=5, respectively, where= v,; (f) and(g) correspond to the cases Bf=1 andD =2, respectively, where< v,.

The phase diagram witb =21y, is very different from multiphase point, around which we found the following
that of the standard FK model. In Figi§, most of the phase phasesQ=1/1, 3/4, 2/3, 1/2, 2/4, respectively. The corre-
space is occupied by the uniform phase and all the phaseponding winding numbers ate=1/1, 4/4, 3/3, 4/4, respec-
with Q>1 vanish wherK is greater than a threshold value tively. In the region of uniform phas€)=1/1, =1/1. Our
K¢, which is approximately 4.0. In the region limited by the numerical results show that in this region of the parameter
left dashed ellipses there is a typical multiphase pbint, an interesting phenomenon occurs. The winding number
around which we found the following phasd3=1/1, 1/4, =Q/Q whenQ=P/Q.

1/3, 1/2, 2/4, respectively. The corresponding winding num- In Figs. §c)—6(e), a more interesting phenomenon occurs.
bers arew=1/1, 4/4, 3/3, 2/2, 4/4, respectively. In the region The (K, y) parameter space is divided into two unequivalent
limited by the right dashed ellipses there is also a typicaparts. The phase diagram in the left part is similar to that in
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FIG. 6. (Continued.

the case ofy=1y, andD<2vy,, it covers the regioB;: v,  vex phase and multiphase points may appear. For the two
<y<D-—1,. In the leftmost regions of uniform phase in models, wheny=y; (for model 3 or y=y, (for model 2,

Fig. 6(c), Fig. 6(d), or Fig. 6e), w=0/1, andQ=1/1. Within ~ W(X) can take any one of the two equal minimum values, the
the other tongues in the left par,=. The phase diagram Phase diagram is periodic and the period is just the same as
in the right part is identical to that in the casepf y, and  that of the external potential. )=, and w=w, when

D = 21y,. Within a given tongue in the right part, the winding Y= Yo, thenQ2=Q, and w=1+w, when y=D + y,. For

number and the rotation number are just the same as those fiodel 1, when the period of the external potenbek27y,
the case ofD=27y,, it covers the regiorD — y,<y<D the phase diagram is similar to that of the standard FK model

4. Unlik | 1 the ph : in th jin appearance. The rotation numbers conform to the structure
ar;’zveg;é"feferr:}?ﬁe , the phase diagrams in the two part§of Farey tree except for the case Q&= 1, but the winding
. N : number do not increases montonically with the increasing of
Figures &)-6(g) give examples of phase diagrams when For model 2, when the period ofythe external oten%ial
< vy,. The interparticle interactiow/(x) cannot take its left Y ! X period. P
r¥1ini};r21um Valuo F')I'he ohase diagrams in Fig)r Fig. 60) D<2y,, the phase diagram is similar to that of the standard
T X i T FK model. WherD =21y,, the ph di i differ-
are not periodic. In Fig. @), all the phases witl@>1 dis- mode © Y2, (€ Pase clagram ’s Very cier

. . ent. All the phases witlQ>1 disappear whei is greater
appear wherK is greater than a certain threshold vaKig,  {han 3 threshold valu, , whereK_ is approximate 4.0. For

whereK. is approximately 10. In this region of the param- {he two models, iD is greater than the distance between the
etery, o=} except for the uniform phase. In the region of yyo minimum value points ofV(x), the (K,y) parameter
uniform phase,w=0=1/1 when G6<y<0.5; @=0/1 and  gpace is divided into two unequivalent parts which cover the
0 =1/1 when 0.5xy<1; w=2/1 andQ)=1/1 wheny=1. regions of A;:y;<y<D—7y; and A,:D— y;<y<D+ 1y,
There are obviously many multiphase points in this figurerespectively, for model 1 oB;:y,<y<D—1v, andB,:D
One locates on the top of the tongue Wil=1/2, the others  — y,<y<D + y,, respectively, for model 2. In the left part
locate on the top of tongues with>1/2, respectively. In the diagram is similar to that of the standard FK model, and
Fig. 6(g), all the phases withQ>1 disappear wherK in the right part the phase diagram is identical to that in the
>K,., whereK, is approximately 2.6. In this region of the case ofD=27y; or D=27y,. In the regionsA; and B, the
parametery, o=, except for the case of the uniform values of the winding number conform to the structure of the
phase. In the region of uniform phase=0/1, O=1/1. In  Farey tree. In the region&, and B,, the winging number
the region limited in the dashed line ellipse, we also find aw=Q/Q when the rotation numbeR = P/Q. When y<1y,

multiphase point and the phase with= w=2/4. for model 1 ory<<+y, for model 2,W(x) can not take its left
minimum value, the phase diagram may be greatly different.
VIIL. SUMMARY AND CONCLUSION The ground statéu,,u,, ... ,ug} obtained by using the ef-

fective potential method does not denote the real positions of

We study two models with double-well interparticle po- the particles in the chain. The method for recovering the
tentials. For the convenience of studying, we review the efchain of the particles and calculating the winding numdber
fective potential method for the systems of partidiest the is given.
systems of spins To characterize the modulated phases, we In conclusion, we emphasize that the new physics is that
redefine two parameters, the winding numhbeand the ro- the systems of particle@ot the spinsshould be character-
tation numbex), which are equivalent to the traditional defi- ized byU,,, but in the process of calculation, one needs to
nition of the winding number under some conditions. Therely onu,. The two parameters redefined in this paper are
cooperation of the two parameters can give more informatiomlso useful in the study on the modulated phases and the
about the modulated phases, so can more precisely determisudy on the phase diagram. The phase structures found in-
the structures of the ground states. Because the two modelsis paper are interesting. They contribute to a deeper under-
have the double-well interparticle interactions, the nonconstanding of the CI transitions and the FK-type models, espe-
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cially the periodicity of the phase structures in the€, {) The work of A. Xu, G. Wang, and S. Chen was sup-
parameter space. The mechanism for the occurrence @brted by the National Natural Science Foundation of
modulated phases and phase diagrams such as these n@@lyina and Science Foundation of China Academy
have potential applications in condensed-matter physics. of Engineering Physics, and that of B. Hu was supported in

The method used in this paper can be applied to varioupart by grants from the Hong Kong Baptist University
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