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Effects of partial coherence on the scattering of x rays by matter
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We discuss the scattering of x rays by matter using the Huygens-Fresnel method, i.e., in the kinematic
regime. We derive expressions for how the mutual coherence function~MCF! of the scattered radiation defined
across an exit aperture, arises from the MCF of the incident radiation across the entrance aperture and the
electron density distribution of the scatterer, and in particular calculate the intensity measured in a detector
placed behind the exit aperture as a function of the nominal wave vector transferq. We discuss the exact
relationship between this intensity function and the usual density-density correlation function of the scatterer,
and discuss the relationship between coherence and instrumental resolution effects in various regimes. The
Fraunhofer and Fresnel regimes are distinguished and the incoherent and coherent limits are discussed. We
illustrate the results with explicit calculations for~a! Bragg reflections from crystals and~b! scattering from
surfaces.@S0163-1829~98!06606-5#
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I. INTRODUCTION

With the advent of high-brilliance synchrotron x-ra
sources, it is now possible to obtain intense x-ray bea
possessing a high degree of coherence. Several experim
have been recently carried out demonstrating the coher
properties of such beams, such as Fraunhofer diffrac
patterns1–3 and the observation of speckle patterns,4,5 and
their fluctuations in time, or intensity fluctuation spectro
copy ~IFS!.6 However, most experiments are in practice c
ried out with radiation that is only partially coherent, and
quantitative understanding of the observed diffraction
speckle patterns depends on a proper theory for incorpo
ing the effects of partial coherence on the scattering.

There have been several discussions of the diffraction
partially coherent radiation bytwo-dimensionalapertures in
the optical literature,7 and the resulting formulation has bee
used to determine the mutual coherence function~MCF! of a
soft x-ray laser source.8 There have also been several me
surements, using interferometry, of the coherence funct
of partially coherentneutronbeams.9 Pusey10 has discussed
in connection with IFS for visible light, the statistical prop
erties of the light scattered by a fluctuating three-dimensio
system, in terms of the correlation function of the incide
light at the sample position, and in the far-field limit~i.e.,
neglecting detector resolution function effects!, and assum-
ing that the coherence length of the incident light inside
sample is much larger than correlation lengths within
sample.

Most treatments of the effects of finite beam divergen
energy spread, etc., use the resolution function folding p
cedure, i.e., the observed intensities are calculated in te
of a convolution of the actual scattering functionS(q) with
an instrumental resolution functionR̃(q).11–14The real space
570163-1829/98/57~5!/2740~19!/$15.00
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representation ofR̃(q), i.e., its Fourier transform, is relate
to the coherence volume so that coherence lengths and
lution widths are regarded as conjugate quantities. This tr
ment is valid only in the limit when~a! the sample sees
completelyincoherentsource~note that even radiation from
such a source may develop a finite degree of coherence a
sample position, if the latter is sufficiently far away from th
source! and ~b! we are in the far-field~Fraunhofer! diffrac-
tion regime. We note that the conditions for Fraunhofer d
fraction are much more stringent for x-rays than for light,
that unless the aperture distances from the sample are
large, we must use Fresnel rather than Fraunhofer diffrac
theory.15

In practice, beams of radiation falling on samples ha
encountered several optical elements on their way from
source, e.g., monochromators, mirrors, slits, etc., and thu
is often more useful to work in terms of the statistical pro
erties, i.e., the mutual coherence function of the radiati
across the last aperture before the sample and calculate
the MCF is propagated via the scattering across an outg
beam aperture and also the intensity in a detector behind
last aperture~see Fig. 1!. The only restriction we make is tha
the distancesL1 ,L2 from the sample to the incoming an
outgoing apertures are sufficiently large compared to
sample and aperture dimensions that only terms up tosecond
order need to be considered in the ratios of the latter to
former. Calculations for the scattering including second
der terms have been carried out by Durbin16 in connection
with diffraction of a curved wave front by a crystal. Ou
calculations are valid in both the Fraunhofer and Fresnel
gimes for diffraction, the conditions for which will be dis
cussed explicitly. We find that the result for the observ
intensity is in general more complicated than that given
the simple resolution-function folding procedure, except
2740 © 1998 The American Physical Society
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57 2741EFFECTS OF PARTIAL COHERENCE ON THE . . .
the limits referred to above, and we shall discuss these lim
and also what happens in the opposite limit of complete
herence. We shall also discuss the application to the par
lar cases of Bragg reflection from a crystal, and scatter
from a surface.

At this stage, it is worth recapitulating some well-know
results of x-ray scattering theory in the kinematic~i.e., Born
approximation!. Consider a system described in terms of
electron density function%~r ! placed in a perfectly mono
chromatic and collimated x-ray beam~single incident wave
vector k1!. The differential cross section for scattering
given by

ds

dV
5P1S e2

mc2D 2

S0~q!, ~1!

where (e2/mc2) is the Thompson scattering length of th
electron andP1 is the Lorentz factor:

q5k22k1 , ~2!

wherek2 is the outgoing wave vector, and

S0~q!5E E dr dr 8^%~r !%~r 8!&T exp$ iq•~r 82r !%,

~3!

where we have assumed that the measurement is done o
long enough period of timeT that we can make atime av-
erageof the correlation function inside the integral. We m
also write

S0~q!5^%̃~q!%̃* ~q!&T , ~4!

where

FIG. 1. Schematic view of the scattering geometry.L1 is the
distance between aperture A and the sampleS, andL2 the distance
between the sample and the outgoing aperture B. The labora
fixed coordinate system is given by (x,y,z), where (x,y) are along
the dimensions of aperture A andz is along the mean directionk̂1

of the incident radiation. The mean outgoing beam direction isk̂2 .
The coordinates (x8,y8,z8) with x8 alongx ~out-of-plane direction!,
z8 the direction perpendicular to the sample surface, andy8 the
surface in-plane direction define the more convenient surface-fi
system.
ts
-
u-
g

n

er a

%̃~q!5E dr %~r !exp~2 iq•r !. ~5!

The tilde is henceforth used to denote the Fourier transfo
of the corresponding function without the tilde. Note that w
havenot taken any statistical ensemble averages in the ab
equations, as is normally done, since we are considerin
particular realization of a sample in aperfectly coherent
beam. If the sample is nonergodic, i.e., has builtin static r

domness or disorder,^u%̃(q)u2&T will possess sharp and ran
dom fluctuations about some particular average functi
giving rise to the phenomenon of ‘‘speckle.’’ The width inq
space of such speckles will typically be of the orderp/D,
whereD is a typical sample dimension. They may be eith
distributed randomly~as in a sample with no spatial order
all! or clustered in regions of reciprocal space of widthp/ l ,
wherel is a typical size of an ordered region. If on the oth
hand, the system isergodic, with fluctuation time scales very
short compared to the total integrated counting timeT ~e.g.,
a normal liquid!, the time averageis equivalent to anen-

semble averageand we may replacêu%̃(q)u2&T by the usual

ensemble average symbol^u%̃(q)u2&. In this case, even for
completely coherent radiation, there is no speckle. Inste
what is observed is a smooth functionS(q) calculated in the
usual way by statistical mechanical methods.

For conventional scattering experiments, the diffuse sc
tering from disordered solids, rough surfaces, etc., does
usually exhibit speckle but also gives a smoothS(q), which
is in accordance with an ensemble average, notwithstan
the fact that the disorder in such systems is nonergo
There are two ways to understand this. The first is a ‘‘re
lution function’’ smearing of the speckle pattern in recipr
cal space. In this picture, Eq.~1! is foldedwith an instrumen-
tal resolution function as if a whole series of beams~with a
distribution of energies and incident and scattered directio!
independently~i.e., incoherently! scatter from the sample
thus giving for the observed intensity at nominal wave vec
transferq ~assuming unpolarized radiation!

I ~q!5P1S e2

mc2D 2E KS0~K !R̃~q2K !, ~6!

where R̃(K ) is the instrumental resolution or acceptanc
This smearing out of the speckles is equivalent to anaverage
over manyregionsof the sample, since by the convolutio
theorem and Eq.~3! ~dropping the average overT, i.e., we
assume for the moment systems which are static!

I ~q!5P1S e2

mc2D 2

~2p!3E E dr dr 8%~r !%~r 8!R~r 82r !

3exp$ iq•~r 82r !%, ~7!

whereR(r ) is the Fourier transform ofR̃(K ), which acts as
a cutoff function in real space, and we may consider it
defining a ‘‘coherence volume.’’ If this real-space cutoff
much smaller than the total sample volume, Eq.~7! is
equivalent to the Fourier transform of a correlation functi
of %(r )%(r 8) averaged~on length scales equal to this cutof!
over the entire sample.
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2742 57S. K. SINHA, M. TOLAN, AND A. GIBAUD
The second way to understand the smoothing is in te
of finite coherence volumesfor the radiation in the sample
Let us assume that these are centered at positionsRl through-
out the volume of the sample and are defined in terms
some ~three-dimensional! real-space cutoff functionP(r ).
The intensity Il of the scattering from the volume centered
Rl is given by

I l~q!5P1S e2

mc2D 2U E dr %~r !P~r2Rl !exp~2 iq•r !U2

,

~8!

and we must sum theseintensitiesover all such volumes
since they scatter incoherently from each other. Thus
obtain

I ~q!5P1S e2

mc2D 2

(
l

U E dr %~r !P~r2Rl !exp~2 iq•r !U2

.

~9!

Writing %~r ! and P(r ) in terms of their Fourier transforms
Eq. ~9! is equivalent to

I ~q!5P1S e2

mc2D 2E E dK dK 8%̃~K !%̃* ~K 8!P̃~q2K !

3 P̃* ~q2K 8!(
l

exp$ i ~K2K 8!•Rl%. ~10!

For a large enough set ofRl , the sum overl yields the
conditionK5K 8 and in this limit,

I ~q!5P1S e2

mc2D 2E dK %̃~K !%̃* ~K !P̃~q2K !P̃* ~q2K !,

~11!

which is identical to the form of Eq.~6! if uP̃(K )u2 is iden-
tified with the ‘‘resolution function’’R̃(K ). Thus in thisin-
coherentlimit ~the coherence volume is much smaller th
the sample volume! the conventional method of simply fold
ing the trueS0(q) with a resolution function in reciproca
space becomes correct, and the resultant scattering pro
a reasonable approximation to an ensemble average,
though the experiment has involved a single realization
the sample.~For this to be true, the range of density corre
tions within the sample must also be much smaller than
sample size.!

Equation~6! has been traditionally used by researchers
x-ray scattering to obtain statistically averagedS(q) func-
tions for the system studied by ‘‘unfolding’’ the resolutio
function or by fitting. However, most x-ray radiatio
~whether emitted from an incoherent source or not! possesses
a finite degree of coherence by the time it is incident on
sample and it is worth reanalyzing the expression for
observed intensity along the lines that researchers in op
have followed. As we shall see, when this is done, Eq.~7!
must be replaced by

I ~q!5P1S e2

mc2D 2E E dr dr 8%F~r !%F* ~r 8!R~r 8,r !

3exp$ iq•~r 82r !%, ~12!
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where%F(r ) is not the physical electron density but what w
term the Fresnel electron density which is%~r ! multiplied by
a ~complex! phase factor that depends on the directions
the incident and scattered beams, and the functionR(r 8,r )
doesnot depend only on the separation betweenr 8 andr . In
general this makes the interpretation of scattering exp
ments more complicated and we shall examine under w
limits this expression may be reduced to the simpler exp
sions conventionally used. However, the conditions for t
turn out to be more stringent for x rays than for visible ligh
For highly coherent beams,R(r 8,r ) contains slit diffraction
effects and%F(r ) contains finite sample diffraction effect
that may yield highly oscillating forms forI (q).

We proceed in the next section to evaluateI (q) in the
general case of a partially coherent incident beam, with fin
slits and detector apertures and finite distances to and f
the sample.

II. HUYGENS-FRESNEL THEORY FOR SCATTERING
OF PARTIALLY COHERENT RADIATION

We consider the setup illustrated schematically in Fig.
where the beam emerges from an aperture A~slit!, the plane
of which is normal to the mean direction of the beam and
line joining its center to the sample center a distanceL1
away, and is then transmitted through an aperture B norm
oriented to the average direction of the scattered beam
distanceL2 from the center of the sampleS, and finally
counted in a detector D behind aperture B. According to
standard Huygens-Fresnel principle,15 the statistical proper-
ties of the electric field at the aperture B and the intensity
the detector D can now be completely specified by know
the spatial and temporal behavior of the electric field acr
aperture A, and the electron density in the sample. We
glect for the moment time-dependent effects and assume
%~r ! is a static function. The resultant scattering will be a
fected by both coherence and resolution effects, in the se
discussed in Sec. I, but in general in a more complica
way. Let us consider each polarization component of
light separately, and let it be described in terms of a comp
~analytic! signal given by

Ua~s,t !5Aa~s,t !exp~2 i v̄t !, ~13!

whereUa(s,t) represents the analytical field for polarizatio
a at positions in the aperture A~measured relative to the
center of A!, v̄ is the average frequency of the radiation, a
the time dependence of the amplitudeAa(s,t) represents the
relatively slow variation~on time scales much larger tha
1/v̄! due to the nonmonochromaticity of the beam. We m
define a mutual coherence function~MCF! for the radiation
of polarizationa

Ga~s,s8,t!5^Aa~s,t !Aa* ~s8,t1t!&, ~14!

where the average represents a time average ont over many
phase fluctuations of the radiation~typically the latter have a
time scale 10215– 10216 seconds for x rays!. We may
write15,17–19

Ga~s,s8,t!5C~s!C* ~s8!g~s2s8!F~t!~ I a /A!, ~15!
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as a rather general form for the MCF, whereI a is the total
beam intensity through the aperture area A. We shall
simplicity neglect here the possible dependence of cohere
lengths and times on the polarization of the radiation,
though such explicit dependence may be easily incorpor
in the formalism below, by lettingC~s!, g(s2s8), andF(t)
explicitly depend on the suffixa. The form chosen for the
MCF in Eq.~15! is not the most general possible form, but
commonly used and is known as the generalized Sc
form.19,20 The functionC~s! is called the amplitude factor
and g(s2s8) is called the coherence factor. The latter
defined to be unity whens5s8. The intensity of radiation a
the positions in the slit is given by settings5s8, andt50 in
Eq. ~15!, i.e., it is C(s)C* (s). It should be borne in mind
that a uniform intensity does not necessarily imply th
C(s)51, since one may have a pure phase field wh
C(s)5exp$if(s)%. The form of Eq.~15! can also arise from
a superposition of a set of mutuallyincoherentwaves, each
described byC~s!, with an angular distribution of propaga
tion vectors given by the Fourier transform of the functi
g(x). If these are plane waves, thenC(s)51, but in general
C~s! can be used to represent curved wave fronts. It will
convenient to include the aperture cutoff function in our de
nition of C~s!. The exact form ofC~s! andg(x) will depend
on the nature and distance of the source of radiation fr
this aperture, and the optical elements in the beam prio
the slit ~mirrors, monochromators, etc.! and can be difficult
to calculate. We thus regard the form of the MCF across
incident aperture as empirical, ultimately obtainable from
periment. However, we introduce here the concept of coh
ence lengths which are implicitly contained in the MCF.
g(x) is approximated by a Gaussian form, i.e.,

g~x!5expS 2
1

2
x2/jx

2DexpS 2
1

2
y2/jy

2D , ~16!

then jx ,jy can be considered as the twotransverse coher-
ence lengths. The time autocorrelation functionF(t) decays
with a characteristic timet l and we may define alongitudi-
nal coherence lengthj l5ct l , c being the speed of light. In
fact we shall note here that sinceGa(s,s8,t) has to fulfill
Helmholz equations ins ands8 the ansatz given by Eq.~15!
restricts the time autocorrelation functionF(t) to a pure
exponential15,19

F~t!5F0exp~2t/t l !, ~17!

where we have to setF051 by definition. We now proceed
to the calculation of the MCF at the ‘‘outgoing beam’’ ape
ture B. In passing we note that this provides in principle
method for calculating how the coherence properties of
beam are affected by scattering from the sample~which may
itself be an optical element in the beam!. Finally, the scat-
tered count rate is obtained by integrating the intensity of
scattered field at any point on the detector D over the de
tor area, since field amplitudes at different points on the
tector cannot interfere. Here we would like to emphasize t
the final result of our calculations doesnot necessarily have
to obey the reciprocity theorem in the sense of a symm
with respect to an exchange of the incident aperture A
the detector. The reason for this is that we have on the
hand a~partially! coherent ‘‘source’’~aperture A! fully de-
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scribed by its MCF and on the other hand an incoher
detector. In this sense the detector is optically the recipro
of a completely incoherent source.

We assume in the following thatL1 and L2 are much
larger than the typical aperture dimensions of A and B. U
ing the Huygens-Fresnel principle, and assuming kinem
scattering~i.e., no multiple scattering from the sample!, the
amplitude at timet arriving at the pointu on the aperture B
~measured relative to its center!, after being scattered from
small volume element dr at a pointr ~relative to the sample
center! and originating from an elementds of area around
the points in the aperture A~measured relative to the cente
of A!, tracing the pathPP8P9 in Fig. 1 is given by~for
polarizationa!

Va~u,t !5MaS e2

mc2D i

l
%~r !dr AaS s,t2

P8P91PP8

c D
3

1

PP8

1

P8P9
expH 2 i v̄S t2

P8P91PP8

c D J ds,

~18!

whereMa is a polarization factor, and we have set the us
obliquity factorx(Q)'1, whereQ is the angle between th
actual path considered and the mean path for the inciden
scattered beams, sinceQ!1. Similarly the amplitude atu8
arising from a different pathQQ8Q9 in Fig. 1 is given by a
similar expression withPP8, P8P9 replaced by QQ8,
Q8Q9, respectively. Since two orthogonal polarizations a
always incoherent15,19we may obtain independent MCF’s fo
each polarization, yielding for the MCF at the aperture B

Ga~u,u8,t!5^Va~u,t !Va* ~u8,t1t!&

5Ma
2 S e2

mc2D 2 1

l2 E E dr dr 8E E ds ds8%~r !

3%~r 8!K AaS s,t2
P8P91PP8

c DAa* S s8,t1t

2
Q8Q91QQ8

c D L expH i
v̄

c
~P8P92Q8Q9

1PP82QQ8!J exp~ i v̄t!

3
1

PP8

1

P8P9

1

QQ8

1

Q8Q9
, ~19!

where^•••& denotes an average overt, i.e., over many phase
fluctuations of the incident radiation. Leta51 define the
polarization direction normal to the plane of scattering~i.e.,
the plane containingOO8O9 in Fig. 1!. Then M1

251. The
other polarization (a52) hasM2

25cos(2qs), whereqs is the
average scattering angle. The integrals overs,s8 are two-
dimensional~2D! integrals over the slit aperture A, and ov
r ,r 8 are 3D integrals over the sample volume. In this av
age, making an appropriate translation in time coordina
and defining a path difference

D l 5P8P92Q8Q91PP82QQ8, ~20!
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and using Eq.~14!, we may write

Ga~u,u8,t!5Ma
2 S e2

mc2D 2 1

l2 E E dr dr 8E E ds ds8%~r !

3%~r 8!Ga~s,s8,t1D l /c!exp~ i v̄D l /c!

3exp~ i v̄t!
1

PP8

1

P8P9

1

QQ8

1

Q8Q9
. ~21!

To second order ins,s8,u,u8,r ,r 8 it may be verified easily
that

D l 5~r 82r !•~ k̂22 k̂1!1
1

2L1
@~r2s!22~r 82s8!2

1~r 8• k̂1!22~r• k̂1!2#1
1

2L2
@~r2u!22~r 82u8!2

1~r 8• k̂2!22~r• k̂2!2#, ~22!

where k̂1 and k̂2 are unit vectors alongOO8 and O8O9,
respectively. Sincev̄/c5k0 , the magnitude of the mean in
cident wave vector, andk0( k̂22 k̂1)5q, the nominal wave
vector transfer, we may write

v̄

c
D l 5q•~r 82r !1

kL1

2

2
@s22s8222r•s12r 8•s81r',1

2

2r',182 #1
kL2

2

2
@u22u8222r•u12r 8•u81r',2

2

2r',282 #, ~23!
f
a
s

where we have defined

kL1
5Ak0 /L1, and kL2

5Ak0 /L2, ~24!

for notational convenience andr',1 and r',2 are the compo-
nents ofr perpendicular tok̂1 andk̂2 , respectively, and simi-
larly for r 8.

In the denominators of Eq.~21!, we may replacePP8,
P8P9, etc., byL1 , L2 , etc. IfGa(s,s8,t) given by Eq.~15! is
introduced andF(t) is replaced by its Fourier integral

F~t!5
1

2p E dDvF̃~Dv!exp~2 iDvt!, ~25!

we obtain

Ga~u,u8,t!5Ma
2 S e2

mc2D 2 1

2pl2

1

L1
2

1

L2
2

I a

A E E ds ds8

3E E dr dr 8E dDvC~s!C* ~s8!g~s2s8!

3F̃~Dv!exp$ i ~v̄2Dv!t%

3exp$ i ~v̄2Dv!D l /c%%~r !%~r 8!. ~26!

Let us write this as

Ga~u,u8,t!5Ma
2 S e2

mc2D 2 v̄

2pl2

1

L1
2

1

L2
2

I a

A
G8~u,u8,t!,

~27!

with
G8~u,u8,t!5E dV F̃@v̄~12V!#exp~ i v̄Vt!E E ds ds8C~s!C* ~s8!g~s2s8!E E dr dr 8exp$2 iV~q1kL1

2 s1kL2

2 u!•r%

3exp$ iV~q1KL1

2 s81kL2

2 u8!•r 8%expH i
V

2
kL1

2 ~s22s82!J expH i
V

2
kL2

2 ~u22u82!J
3%~r !expH i

V

2
~kL1

2 r',1
2 1kL2

2 r',2
2 !J %~r 8!expH 2 i

V

2
~kL1

2 r',182 1kL2

2 r',282 !J , ~28!
r
t to
g
e

tes
and
city

nd
en-
where we have used Eq.~23! and the definition

V512Dv/v̄511Dl/l. ~29!

Here Dl/l is the deviation from the monochromaticity o
the incoming radiation. If we now make the definition of
modified density%F(r ), throughout this paper referred to a
the Fresnel electron density, by

%F~r !5%~r !expH i
V

2
~kL1

2 r',1
2 1kL2

2 r',2
2 !J , ~30!

we note that ther and r 8 integrations in Eq.~28! may be
carried out yielding the Fourier transform of%F and %F* ,
respectively~see Sec. II B!.
A. Real space discussion

The Eqs.~27! and ~28! represent the central result of ou
paper. The only conditions that must pertain for this resul
be valid are~a! the kinematic approximation for scatterin
and ~b! the distancesL1 ,L2 must be much larger than th
aperture and sample dimensions.

It should be noted that the result given by Eq.~28! is still
symmetric with respect to the quantitiess, s8 andu,u8. Since
G8(u,u8,t) describes how the MCF of aperture A propaga
to the sample and then to aperture B, an exchange of A
B does not affect the net result thus satisfying the recipro
theorem.

If a detector is placed behind the outgoing aperture a
detectsall the radiation passing through, the measured int
sity will be given by
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I ~q!5(
a

E
B
du^uVa~u,t !u2& ~31!

5(
a

E
B
du Ga~u,u,t50! ~32!

5(
a

Ma
2 S e2

mc2D 2 v̄

2pl2

1

L1
2

1

L2
2

I a

A

3E
B
du G8~u,u,0!, ~33!

where the integral is taken over aperture B and we have u
Eq. ~27!. We now examine the form of*du G8(u,u,0). Let
us replace the variable of integrationV in Eq. ~28! by the
magnitude of the vectorQ, where

Q5Vq, ~34!

and we obtain

S~q!5E
B
du G8~u,u,0!5

q

kL2

4 E dQ

Q2 F̃@~q2Q!v̄/q#

3E
S
du8ŜQ~Q1u8!, ~35!

whereu85(Q/q)kL2

2 u and the integral overdu8 is over the

outgoing aperture dimensions scaled by (Q/q)kL2

2 , and

ŜQ~K !5E E dr dr 8%F~r !%F* ~r 8!RQ~r 8,r !

3exp$ iK•~r 82r !%, ~36!

where

RQ~r 8,r !5E E ds ds8C~s!C* ~s8!g~s2s8!

3expH i
Q

2q
kL1

2 ~s22s82!J
3expH i

Q

q
kL1

2 ~s8•r 82s•r !J . ~37!

In Eqs. ~36! and ~37! we have used the subscriptQ on the
functionsŜQ(K ) andRQ(r 8,r ) to indicate an additional para
metric dependence on the magnitude ofQ. By Eq. ~17!, we
have

F̃@~q2Q!v̄/q#5
j l /c

11~k0j l /q!2~q2Q!2 , ~38!

where we have defined the longitudinal coherence lengtj l
5ct l . Equation~35! then becomes

S~q!5
qj l

kL2

4 c
E dQ

Q2

1

11~k0j l /q!2~q2Q!2

3E
S
du8ŜQ~Q1u8!. ~39!
ed

Equation~39! has a simple interpretation. It is the functio
ŜQ(K ) folded with the resolution over the outgoing detect
slits, and the resultant function which depends parametric
on Q folded with the Lorentzian resolution function~for the
longitudinal coherence! centered atq. This would be identi-
cal to the conventional formalism ifŜQ(K ) were the conven-
tional functionS0(K ) folded with the angular resolution o
the incident beam. However,ŜQ(K ) defined by Eq.~36! has
a slightly more complicated form; namely,%(r ) is replaced
by the Fresnel density%F(r ) and RQ(r 8,r ) is not simply a
function of (r 82r ) as in Eq.~7!. We note furthermore from
Eq. ~39! that theeffectivelongitudinal coherence length for
particular experiment isj l multiplied by the factor (k0 /q),
thus magnifying this quantity considerably for experimen
whereq is small ~e.g., surface scattering experiments!. The
fact that one can work with fairly small longitudinal cohe
ence lengths in this regime is already well known.6,14

From now on for notational convenience, we shall om
the suffixQ at ŜQ(K ) andRQ(r 8,r ) and we always replace
(Q/q) again by the variableV as introduced before@see Eqs.
~29! and ~34!#. We note thatV51 (Q5q) meansDl/l
50, i.e., the case of a perfectly monochromatic beam.

We may also expressŜ(K ) directly in terms of the usua
electron density-density correlation function by inserting t
explicit form of the Fresnel density from Eq.~30! into Eq.
~36! and we get

Ŝ~K !5E E dr dr 8%~r !%~r 8!R1~r 8,r !exp$ iK•~r 82r !%,

~40!

where

R1~r 8,r !5Gs~r 8,r ,0!expH i
V

2
kL2

2 ~r',2
2 2r',282 !J , ~41!

and

Gs~r 8,r ,0!5E E ds ds8C~s!C* ~s8!g~s2s8!

3expH i
V

2
kL1

2 @~s2r',1!
22~s82r',18 !2#J .

~42!

We note thatGs(r 8,r ,0) defined by Eq.~42! is nothing else
but the transverse MCF of the incident radiation from ap
ture A at the sample position, apart from the usual longitu
dinal propagation phase factor exp$2ik1•(r 82r )%, as may
be verified by an analogous calculation to that in Eqs.~18!–
~28!. It is the spatial range of this MCF which determines t
range of spatial separation of points in the sample which
produce interference, i.e., the coherence volume, and
tempting to parametrize this MCF as a function ofr
2r 8)' as in Eq.~16! thus avoiding the calculation of Eq
~42!. However, we note that from Eq.~42! this function can-
not in general be written simply as a function of (r 82r ),
except in the so-called ‘‘incoherent limit’’ of aperture A t
be discussed below. Moreover, we believe that our formu
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tion in terms of the MCF across the incident aperture
maintains the symmetry between incident and scattered
diation and is to be preferred.

The properties of the transverse MCFGs(r 8,r ,0) deter-
mine what is seen in a scattering experiment, after integ
tion over the detector aperture and a radial integration o
the wave vector transfer with a ‘‘longitudinal resolutio
function’’ which is a Lorentzian of widthq/(k0j l). An ex-
pression forGs(r 8,r ,0), based on a Gaussian approximatio
is given in Appendix B.

Assuming an isotropic transverse coherence lengthj t
across aperture A, the transverse coherence lengthat the
samplejs and the transverse beam sizeat the sample ware
given by

js5F j t
2S 11

1

kL1

4 s4D 1
2

kL1

4 s2G1/2

~43!

and

w5s
js

j t
, ~44!

wheres is the lateral dimension of aperture A~assumed the
same in thex and y directions!. Thus, if j t!s, there are
many coherence volumes inside the illuminated sample
ume and we are in the incoherent limit, regardless of
distanceL1 , unlessjs becomes larger than the actual dime
sion of the samplel , in which case the beam is cohere
across the entire sample. In the case that (js / l );1
‘‘speckle’’ will be observed for a disordered sample pr
vided the lateral size of each detector elementwd satisfies
wd,lL2 /(2l ) and the distancea between structural ele
ments in the scatterer satisfiesa,(2p/q)(pj l /l).

The coherence lengths can also be used to estimate
range of separation between two points in the sample f
which the scattering can interfere. If these points are se
rated by a distanceDr , then the condition is that (Dr ) must
be less than either (js /sina) ~wherea is the angle between
Dr and the incident beam direction! or (k0j l /q0), whereq0
is the component ofq alongDr . We may now discuss unde
what conditionsI (q) takes the form of the conventional ex
pression as given by Eqs.~6! or ~7!, or where the more gen
eral expression must be used.

In the coherent limit, j t@s, and we may replaceg(s
2s8) by unity so that Eqs.~41! and ~42! yield

R1~r 8,r !5T* ~r 8!T~r !, ~45!

where

T~r !5expH i
V

2
~kL1

2 r',1
2 1kL2

2 r',2
2 !J E ds C~s!

3expS i
V

2
kL1

2 s2Dexp~2 iVkL1

2 s•r !. ~46!

Thus Ŝ(K ) is the Fourier transform of the correlation fun
tion @%eff(r )%eff* (r 8)# where

%eff~r !5%~r !T~r !. ~47!
a-

a-
er

,

l-
e
-

the
m
a-

The functionT(r ) incorporates incident aperture diffractio
effects. If

L1 ,L2@ l 2/l ~w. l ! ~48!

or

L1 ,L2@w2/l ~w, l !, ~49!

then we may neglect the Fresnel factor in the diffracti
from the sample. If in addition

L1@s2/l, ~50!

then T(r ).1 and %eff(r ).%(r ). We term this theFraun-
hofer limit. It would appear that for x rays, this limit can onl
be satisfied for very large values ofL1 ,L2 . However, if the
sample is not itself coherent~e.g., made up of microcrystal
lites!, l may be taken for some purposes as the grain size
any case, ifl .w, by Eq. ~49! it is the beam size at the
sampleand not the sample size which determines the con
tion for the Fraunhofer regime.

Also in this limit js5j t , unlesss is very small orL1 is
very large, so thatw.s. Thus, for a 10mm crystallite or
beam size at a wavelength ofl51 Å, the Fraunhofer regime
is attained ifL1 ,L2@1 m.

In the incoherent limit(j t!s), by Eq. ~43!

js5
1

&p

lL1

s
. ~51!

If in addition, we assume that

j t!js ~52!

then, settingV.1 in Eq. ~37! ~i.e., neglecting longitudinal
effects! we can neglect the Fresnel factor in Eq.~37! across
aperture A, and obtain

RQ~r 8,r !'E dsuC~s!u2 exp$ iVkL1

2 s•~r 82r !%, ~53!

which looks similar to the form of Eq.~7! provided%~r ! is
replaced by theFresnel density%F(r ). To consider when we
may neglect this difference, let us consider again the eff
tive size l of a coherently scattering region in a directio
transverse to the beam. We need to consider two cases

~a! l .js . In this case, the Fresnel factor for the incide
beam can be neglected if

kL1

2 l js!2p, ~54!

which by Eq.~51! reduces to

l /s!1. ~55!

For the scattered beam, the corresponding condition is

kL2

2 l js!2p ~56!

or, thus,

l /s!L2 /L1 . ~57!

Inequalities~55! and ~57! are the conditions for the Fraun
hofer regime to be attained in this case. The reason that
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~55! is independent ofL1 is that the decrease inkL1

2 is exactly

cancelled by the increase injs asL1 increases.
~b! l ,js ~this will happen ifL1 becomes large enough!.

In this case the Fraunhofer regime is attained when

kL1

2 l 2,kL2

2 l 2!2p, ~58!

which reduces to

L1 ,L2@ l 2/l, ~59!

conditions which are similar to the coherent case.

B. Reciprocal space treatment

It is often preferable to evaluate the expressions for
scattered intensities in reciprocal rather than real space
Fourier transforming Eq.~36! we may write Ŝ(K ) in the
reciprocal space form

Ŝ~K !5E E ds ds8C~s!C* ~s8!g~s2s8!expH i
V

2
kL1

2 ~s2

2s82!J %̃F~K1VkL1

2 s!%̃F* ~K1VkL1

2 s8!. ~60!

The arguments of the Fourier transform of the Fresnel d

sity %̃F(K ) represent the Cartesian components (Kx ,Ky ,Kz)
relative to the (x,y,z) axes shown in Fig. 1, where thez axis
is along the average incident beam direction. In scatte
experiments often sample-fixed coordinates are more ap
priate and a back transformation of the components has t
performed~see Sec. V!.

Again, in the~true! incoherent limit, this reduces to

Ŝ~K !5E dsuC~s!u2u%̃F~K1VkL1

2 s!u2, ~61!

i.e., u%̃F(K )u2 folded with the incident aperture resolutio
function, as discussed above. In this case no incident
diffraction effects are expected, while in the coherent lim
we get

Ŝ~K !5U E ds C~s!exp~ iVkL1

2 s2/2!%̃F~K1VkL1

2 s!U2

,

~62!

i.e., %̃F(K ) first folded with the incident aperture resolutio
~including Fresnel diffraction effects! and then modulus
squared. As we shall see, this can result in interference
tween different diffraction peaks which overlap in reciproc
space resulting in a complex diffraction pattern.

We may also manipulate Eq.~60! into a related form
which may be convenient for calculations. If we define
function

T~s,K !5C~s!exp~ iVkL1

2 s2/2!%̃F~K1VkL1

2 s!, ~63!

and its 2D Fourier transform with respect tos by T̃(P,K ),
and similarly that ofg(s) by g̃(P) then Eq.~60! may be
written as
e
y

n-

g
ro-
be

lit
t

e-
l

Ŝ~K !5E E ds ds8T~s,K !g~s2s8!T* ~s8,K !

54p2E dPuT̃~P,K !u2g̃~P!. ~64!

Consider the case where%~r ! represents a thin screen wit
apertures in it~in the beam direction!, such that%(r )50 in
the opaque regions and%(r )51 in the aperture regions@r

being confined to the (x,y) plane only, so%̃(qx ,qy ,qz) be-
comes independent ofqz#. Then Eq.~64! reduces to the for-
mulas given by Nugent17 and others8 for diffraction by par-
tially coherent radiation apart from the fact that Eq.~63!
contains the Fourier transform of the Fresnel density%F(r )
rather than that of the real~Fraunhofer! electron density%~r !.
For most applications we can takeC~s! simply to be the
aperture function~1 inside the aperture, 0 outside! and as-
sume a simple~e.g., Gaussian! functional form forg(s2s8)
in terms of which we can define our transverse cohere
lengths quantitatively@see Eq.~16!#.

We shall now use these results to calculate the form of
scattering for several simple cases under various conditi

III. FRESNEL DENSITY

The fact, that the scattered intensity is related to the F

rier transform of the Fresnel electron density%̃F(K ) rather
than being simply related to the Fourier transform of t
actual density, except in the Fraunhofer regime discus
above, is the main difference between our final result giv
by Eq. ~60! and the common treatment. Since

%F~r !5%~r !expH i
V

2
~kL1

2 r',1
2 1kL2

2 r',2
2 !J , ~65!

the Fresnel density depends on the monochromaticity
direction of the incoming and scattered x rays. Theref
%F(r ) is not an electron density in the common sense and

will now express%̃F(K ) in terms of the Fourier transform o

the real density%̃(K ) and aK -space functionF̃~K ! which is
unique for all further calculations. From Eq.~65! follows

%̃F~K !5%̃~K !* F̃~K !, ~66!

where the asterisk again denotes a convolution andF̃~K ! is
given by

F̃~K !5E dr exp~2 iK•r !expH i
V

2
~kL1

2 r',1
2 1kL2

2 r',2
2 !J .

~67!

For reasons of simplicity we restrict ourselves through
this paper to the case of in-plane scattering. Then the di
tions k̂1 andk̂2 are given in laboratory fixed coordinates wi
the z axis along the mean direction of the incoming bea
~see Fig. 1! by

k̂15~0,0,1!, ~68!

k̂25~0,sinF,cosF!, ~69!
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whereF denotes the angle between the mean direction
the incident and scattered radiation~often also called 2u!.
After a straightforward calculation the integral given by E
~67! yields

F̃~K !5C~V,F!expH 2
i

2V

Kx
2

kL1

2 1kL2

2 J expH 2
i

2V FKyz
2

kL1

2

1
Kz

2

kL2

2 sin2FG J , ~70!

where the prefactor is given by

C~V,F!5
2~ i 21!

kL1
kL2

~kL1

2 1kL2

2 !1/2 S p

V D 3/2 1

sinF
, ~71!

and the definition

Kyz5Ky1KzcotF ~72!

was used. In the following the subscriptyz always means
that they andz components of the respective vector~hereK !
have to be combined in the manner given by Eq.~72!. With
the explicit representation of the delta function

d~x!5 lim
e→0

11 i

A2pe
exp~2 ix2/e2!, ~73!

it is easy to prove that in the limitkL1
,kL2
→0 ~i.e.,

L1 ,L2→`!

F̃~K !→~2p!3d~K ! ~74!

holds, and we regain the usual result%̃F(K )5%̃(K ). In the
next sections we calculate the scattering for particular ca
~Bragg reflections, surfaces! using the result given by Eq
~60! and the expressions given by Eqs.~66! and ~70!.

IV. BRAGG REFLECTIONS

An interesting feature of Eq.~60! in the partially coherent
case is thatdifferentFourier components of the electron de
sity can interfere in reciprocal space if they are close eno
to overlap within the broadening due to the incident s
Consider for example diffraction from a perfect infinite cry
tal in the kinematic limit. We have

%̃`~K !5Va
21(

G
%̃~G!d~K2G!, ~75!

whereG represent the reciprocal vectors of the crystal latt
and Va is the volume of the unit cell. For a single isolate
Bragg-reflection this would lead to an apparent parad

since by Eqs.~66! and~70!, u%̃F(K )u2 would beindependent
of (K2G) resulting in no peak in the scattering. Howeve
an infinite crystal violates our assumptions of the sam
dimensions being much smaller thanL1 ,L2 . A real crystal is
finite with dimensionsl x ,l y ,l z!L1 ,L2 . Alternatively the
beam size at the crystal is finite. We denote byl the smaller
of the two lengths in what follows, and we always use t
term ‘‘sample size’’ bearing in mind that this may be on
of

.

es

h
.

e

x,

,
e

e

the smaller beam size, too. The Fourier transform of the

tual electron density%̃(K ) may be written as

%̃~K !5%̃`~K !* T̃~K !, ~76!

with a reciprocal space truncation function21,22

T̃~K !5E
l x ,l y ,l z

dr exp~ iK•r !. ~77!

The shape of the crystal enters into the resultant formulas
the borders of the (x,y,z) integral. If a sharp cut rectangula
crystal is assumed this would lead to oscillatory Fresnel

tegrals in the final expression for%̃F(K ). However, it is
more realistic to assume that the sample edges are smoo
out and do not give rise to additional oscillations. Therefo
we choose a Gaussian in real space,

T~r !5exp~2r 2p2/ l 2!, ~78!

with the corresponding Fourier transform

T̃~K !5~2pD2!23/2 exp~2K2/D2!, ~79!

as the truncation function, where we assumed for simplic
l x5 l y5 l z5 l , i.e., that the sample is isotropic, andD
52p/ l . Note that this is the 3D equivalent of the famo
Warren approximation for finite 2D crystals.23

Then the Fresnel density may be calculated by a dou

convolution from the density%̃`(K ) of an infinite periodic
crystal given by Eq.~75!:

%̃F~K !5%̃`~K !* T̃~K !* F̃~K !. ~80!

Alternatively we may calculate%̃F(K ) by a single Fourier
transform after a complete real space treatment. This wa
explicitly shown in Appendix A. Finally, we obtain the resu

%̃F~K !5C1~V,F!Va
21(

G
%̃~G!

3expH 2
i

2V

12 i ex
2

11ex
4

~dKx!
2

kL1

2 1kL2

2 J
3exp5 2

i

2VkL1

2

(
n50

3

f n~dK !e2n

(
m50

2

gme4m 6 . ~81!

The quantitiesex ande are defined by

e5S 1

2V D 1/2 D

kL1

,

and

ex5S 1

2V D 1/2 D

~kL1

2 1kL2

2 !1/2, ~82!

and the prefactorC1(V,F) is given by
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C1~V,F!5
C~V,F!

~11 i ex
2!1/2@11 i ~x1sin22F!e22xe4#1/2,

~83!

where we introduced

x5
kL1

2

kL2

2

1

sin2F
~84!

for notational convenience. Note that in the case of a la
crystal, D→0, we haveC1(V,F)→C(V,F). The f n(dK )
andgm terms in the second exponential are

f 0~dK !5~dKyz!
21x~dKz!

2, ~85!

f 1~dK !52 i $~dKyz!
21~xdKz1dKyzcotF!2%, ~86!

f 2~dK !5x$x~dKy!21~dKz2dKycotF!2%, ~87!

f 3~dK !52 ix2$~dKy!21~dKz!
2%, ~88!

g051, ~89!

g15~x1sin22F!222x, ~90!

g25x2. ~91!

HeredK5K2G denotes the deviation ofK from a recipro-
cal lattice pointG, anddKyz is given in terms of the com
ponentsdKy anddKz according to Eq.~72!.

Equation~81! is the exact result for the Fresnel density
the case of Bragg reflections from finite crystals. From w
has been said previously, we do not need to discuss expli
the Fraunhofer limit which would simply yieldŜ(K ) propor-
tional to the Fourier transform of the electron density b
cause then we havee,ex@1 ~i.e., lkL1,2

!2p!, and Eq.~81!

reduces to~only then52,3 andm52 terms are kept!

%̃F~K !5
l 3

~2p!3/2Va
(
G

%̃~G!expH 2
l 2~dK !2

4p2 J , ~92!

which is the usual%̃(K ) of a finite crystal.
Another approximation is to take theextreme Fresne

limit defined by

kL1,2

2 w2@2p

or

e,ex!1. ~93!

Since most scattering experiments deal with wavelength
l;1 Å, distancesL1 ,L2;1 m, and sample sizes ofl
;1 mm we get~with V;1!

e,ex;S p

V

lL1,2

l 2 D 1/2

'0.02!1, ~94!

and this approximation is well satisfied. Keeping only ter

up toe2, ex
2 in the exponentials and inserting%̃F(K ) into Eq.

~60! yields the result@C1(V,F)'C(V,F)#
e

t
tly

-

of

s

Ŝ~K !5Va
22 (

G,G8
%̃~G!%̃* ~G8!F̃~dK !F̃* ~dK 8!

3E E ds ds8C~s!C* ~s8!g~s2s8!

3expH i
V

2

kL1

2 kL2

2

kL1

2 1kL2

2 ~sx
22sx8

2!J
3expH i

kL1

2

kL1

2 1kL2

2 ~dKx8sx82dKxsx!J
3exp$ i ~dKyz8 sy82dKyzsy!%P̃@~dK /V!1kL1

2 s#

3P̃@~dK 8/V!1kL1

2 s8#, ~95!

whereF̃~K ! is given by Eq.~70!. In Eq. ~95! the following
notation is used:

dK5K2G5~dKx ,dKy ,dKz!, ~96!

dK 85K2G85~dKx8 ,dKy8 ,dKz8!, ~97!

dKyz5dKy1dKzcotF, ~98!

dKyz8 5dKy81dKz8cotF. ~99!

The functionP̃@Kx ,Ky ,Kz# defines the shape of the Brag
reflections in reciprocal space which is caused by the fin
size of the sample. It is given by

P̃@Kx ,Ky ,Kz#5expH 2
1

4

Kx
2D2

~kL1

2 1kL2

2 !2J expH 2
1

4

D2

kL1

4 @Kyz
2

1~KyzcotF1x~F!Kz!
2#J . ~100!

We get as a result a series of GaussiansP̃@Kx ,Ky ,Kz# in
reciprocal space of width; lkL1,2

2 /p which have to be folded

with the detector and longitudinal resolution according to E
~39!. We may neglectGÞG8 terms if uG2G8u.p21( l 2

1s0
2)1/2kL1,2

2 wheres0 denotes the slit width. It is interestin

to note that in this limit, i.e., in the limit ofe,ex!1, the
width of the peaks in reciprocal space getssmaller with l .
However, asl→0 we violate the conditione,ex!1 for the
extreme Fresnel case and pass to the Fraunhofer limit g
by Eq. ~92! where we see that the widths of the peaksin-
creaseas l gets smaller which is the more familiar situatio

We will now explicitly discuss the incoherent and cohe
ent limits of Eq.~95! in the next two subsections.

A. Incoherent limit

In the incoherent limitg(s2s8) is only appreciable fors
's8, i.e., jx , jy are much smaller than all apertur
dimensions.24 If the limit G'G8 is assumed in Eq.~95! and
new variabless25s2s8 and s15s1s8 are introduced, the
two s, s8 integrations can be separated, and one may ea
verify the result



c

th
c

re
id

dt
-

o-

av
in

o

re
ne

ct
ncel

r
e
rier
e of

ed
ed
e
ing

ne

are

a

-

l

2750 57S. K. SINHA, M. TOLAN, AND A. GIBAUD
Ŝ~K !'Va
22(

G
u%̃~G!u2g̃F kL1

2

kL1

2 1kL2

2 dKx ,dKyzG
3

1

kL1

4 UCF 1

VkL1

2 ~dKx ,dKy!GU2

3~P̃@dK /V#!2, ~101!

whereg̃(Kx ,Kyz) denotes the Fourier transform with respe
to sx ,sy of the coherence factorg(s) and C~s! is the real
space aperture function as explained in Sec. II. Thus in
incoherent limit we regain the result of single Bragg refle

tions with intensity proportional tou%̃(G)u2. The shape of
the peaks is determined by three factors:~i! The Fourier
transform of the coherence functiong(s). This has a width in
reciprocal space which is;1/j t , wherej t is a typical trans-
verse coherence length at the incident aperture.~ii ! The real
space functionC~s! yielding the direct shape of the apertu
as shape of the respective Bragg reflections. This has a w
in dK which is ;1/js , wherejs is given by Eq.~43!. ~iii !
The reciprocal space functionP̃@Kx ,Ky ,Kz# which takes the
finite size of the sample into account. This also has a wi
in dK which is ;1/js if the sample and slit sizes are com
parable. Note that ifj t!js the functiong̃(Kx ,Kyz) may be
replaced by a constant in Eq.~101! yielding the incoherent
limit as discussed in Sec. II A.

B. Coherent limit

The other interesting limit is that of a highly spatial c
herent beam (jx ,jy→`) impinging on the first aperture A
and being Bragg reflected by a single crystal. Then we h
g(s2s8)'1 and Eq.~95! may be completely separated
s, s8 anddK ,dK 8. Thus we obtain

Ŝ~K !5UVa
21(

G
%̃~G!F̃~dK !

1

kL1

4 C̃FF kL1

2

kL1

2 1kL2

2 dKx ,

3dKyzGPFF dKx

kL1

2 1kL2

2 ,
dKyz

kL1

2 ,
dKz

V GU2

, ~102!

wherePF@dKx ,dKy ,dKz# is the 2D Fourier transform with
respect to (x,y) of the function

PF@x,y,dKz#5P@x,y,dKz#expH i

V
@~kL1

2 1kL2

2 !x2

1kL1

2 y2#J , ~103!

with P@x,y,dKz# the 2D Fourier transform with respect t
the first two variables of the peak functionP̃@Kx ,Ky ,Kz#
defined in Eq.~100!. FurthermoreC̃F(Kx ,Kyz) represents
the Fourier transform of

CF~s!5C~s!expH i
V

2

kL1

2 kL2

2

kL1

2 1kL2

2 sx
2J , ~104!

i.e., C̃F(Kx ,Kyz) is the Fourier transform of the apertu
functionC(s) decorated by Fresnel terms in the out of pla
t

e
-

th

h

e

directionx. We would like to emphasize the surprising fa
that the Fresnel terms in the scattering plane exactly ca
in our calculations, i.e.,no quadraticsy terms occur in Eq.
~102!. Although the final result looks similar to a first orde
approximation insy , i.e., similar to the Fraunhofer case, th
result that every Bragg reflection is decorated by the Fou
transform of the aperture function is a direct consequenc
keeping allsecondorder terms~Fresnel limit! throughout the
calculations of Sec. II.

C. Examples

We will now present examples for the abovemention
results for Bragg reflections. All calculations were perform
using Eqs.~60! and ~81!. The successive foldings with th
detector resolution and the longitudinal coherence accord
to Eq. ~39! were not taken into account~i.e., we setK5q
andV51!. Furthermore we do not consider the out-of-pla
direction, i.e., we always assumeKx5Gx50. As aperture A
we assume a rectangular slit with widths in the y direction.
The parameters which are the same for all calculations
the x-ray wavelengthl51 Å, the slit widths550mm, the
location of the Brag reflectionG85(0,0,Gz8) and Gz8
52.18 Å21, and the sample sizel 51 mm. We always as-
sume symmetric configuration, i.e., we takeL15L2 .

Figures 2 and 3 show the intensity distribution around
Bragg reflection for different in-plane coherence lengthsj t
5jy5j along qz8 and qy8 , respectively. The sample
incident–exit aperture distance wasL1,251 m yielding e
50.02!1 ~extreme Fresnel limit!. From the top to the bot-
tom we havej55 mm!s ~incoherent limit butnot the true

FIG. 2. Intensity around a symmetric Bragg reflection atG
5(0,0,Gz) for different coherence lengthsj in the extreme Fresne
case. The intensity is calculated along the vertical directionqz8 .
The slit width wass550mm and from the bottom to the topj
decreases~j.s coherent limit,j;s, j,s intermediate cases,j
!s incoherent limit!.
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incoherent limit in the sense thatj t is not !js52 mm!, j
525mm,s, j550mm;s, and j5100mm.s ~coherent
limit !. One can see that in the incoherent limit we have
broad peak with width 1/j t'231025 Å 21 as already shown
analytically in Sec. IV A, whereas the peak is considera
more narrow when the coherence length is of the order of
aperture width. Then the Bragg reflection is decorated w
the Fourier transform of the incident aperture with most p
nounced modulations in the coherent limit.

Figures 4 and 5 demonstrate interference effects wh
may occur if two Bragg reflections are close together in
ciprocal space. The same parameter values as for Figs. 2

3 were used and we chose the same structure factors%̃(G)
for both reflections. In Fig. 4 even weak interferences
visible in the incoherent limit because we are in the extre
Fresnel regime. These interferences become more and
pronounced with increasing coherence lengthj. In Fig. 5 we
have calculated the intensity alongqz8 in the coherent limit
j@s as a function of the distance between both reflectio
One can see that the closer the peaks are, the more
nounced the interference effects become.

Figures 6 and 7 show the Bragg reflection in the coher
and incoherent limits as a function of the sample-incide
exit aperture distanceL1,2. We note that for very large dis
tances the oscillations from the aperture disappear and
the coherent and incoherent limit yield the same res
~Fraunhofer limit!. This is more clearly demonstrated in Fi
8 where the full width at half maximum~FWHM! of a Bragg
reflection as function ofL1,2 is plotted. It can be seen that th
FWHM remains constant in most of the extreme Fresnel
gime (e!1). In the incoherent~but not true incoherentj t
!js! limit ~open triangles! this value is 1/j t ~see Sec. IV A!
and in the coherent limit~open circles! this constant value is

FIG. 3. Intensity around a symmetric Bragg reflection atG
5(0,0,Gz) for different coherence lengthsj in the extreme Fresne
case. The intensity is calculated along the transverse directionqy8 .
The slit width wass550mm and from the bottom to the topj
decreases~j.s coherent limit,j;s, j,s intermediate cases,j
!s incoherent limit!.
a

y
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2p/s. From a certain lengthL1,2 the width of the Gaussian
given by P̃~dK ! in Eq. ~95! is smaller than that constan
value and the FWHM decreases linearly with increas
L1,2.

In the Fresnel (e;1) and Fraunhofer (e@1) regimes the
same FWHM is obtained regardless of whether we take
coherent or incoherent limit. This is a direct consequence
the fact that even an incoherent beam exhibits a certain
gree of coherence by the time the radiation reaches

FIG. 4. Interference of two Bragg reflections as function of t
transverse coherence lengthj in the extreme Fresnel case. The s
width wass550mm and from the bottom to the topj decreases
~j.s coherent limit,j;s, j,s intermediate cases,j!s incoher-
ent limit!. Note that the peaks do not overlap.

FIG. 5. Interference of two symmetrical Bragg reflections
function of their distanceGz2Gz8 in reciprocal space in the extrem
Fresnel case and for the coherent limitj@s.



s

en

fo
r t
t

so-
ec-
osi-

ust
ia-
the

ider
ing
is
se

f

he
e

e
n

e
n

limit
nel

2752 57S. K. SINHA, M. TOLAN, AND A. GIBAUD
sample~see discussion in Sec. II A!. For very large distance
L1,2 the FWHM remains constant at the value 2p/ l ~Fraun-
hofer case!.

We note from Fig. 8 that a usual scattering experim
always is performed in the extreme Fresnel limit andnot as
often anticipated in the Fraunhofer regime, which starts
the realistic parameter values which we have assumed fo
calculations, at distancesL1,2.104 m. But we must repea

FIG. 6. Bragg reflection atqz5Gz for different incident/exit
aperture-sample distanceL1,2 in the coherent limit ~coherence
lengthj@s slit width!. The curves shown are mainly in the extrem
Fresnel regime 0.01 m<L1,2<100 m and the Fraunhofer regio
L1,2>104 m.

FIG. 7. Bragg reflection atqz5Gz for different incident/exit
aperture-sample distanceL1,2 in the incoherent limit~coherence
lengthj@s slit width!. The curves shown are mainly in the extrem
Fresnel regime 0.01 m<L1,2<100 m and the Fraunhofer regio
L1,2>104 m.
t

r
he

that the examples in Figs. 2–8 do not include detector re
lution, longitudinal coherence effects, and possible imperf
tions which may destroy the coherence at the sample p
tion.

V. SURFACES

Specular and diffuse scattering from rough surfaces m
also be considered carefully when partially coherent rad
tion is involved, since the usual ensemble averages over
height fluctuations cannot be made right away. We cons
the geometry for one single rough surface making a graz
angle of incidencea to the incident beam. The exit angle
denoted byb5F2a throughout this paragraph. We choo
surface-fixed coordinates (x8,y8,z8) such thatx8 is in the
plane of the surface and parallel to the space fixed~incident
slit! x axis andz8 is normal to the average surface~see Fig.
1!. Relative to the axes (x8,y8,z8) the Fourier components o

the ideal electron density%̃`(K 8) are25

%̃`~Kx8 ,Ky8 ,Kz8!5 i
%̃0

Kz8
E E dx8dy8

3exp$2 iK z8h~x8,y8!%

3exp$2 i ~Kx8x81Ky8y8!%,

~105!

where %̃0 is the electron density of the medium under t
surface, andh(x8,y8) defines the surface contour. Here w
note that the description given by Eq.~105! already includes

FIG. 8. Full width at half maximum~FWHM! of a Bragg reflec-
tion as function of the incident/exit aperture-sample distanceL1,2.
The open circles are the values for the coherent limit (j@s)
whereas the open triangles give the results for the incoherent
(j!s). Note that both curves are almost identical in the Fres
and Fraunhofer regimes, i.e., fore.0.3.
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finite size effects in thez8 direction ~absorption!. Therefore
we only have to truncate%`(r 8) by a 2D Gaussian in thex8
andy8 directions:

TS~r 8!5exp$2~x821y82!p2/ l 82%, ~106!

in real space, with the Fourier transform

T̃S~K 8!5~A2pD8!22exp$2~Kx8
2

1Ky8
2

!/D82%d~Kz8!,
~107!

where we again assumed for simplicityl x5 l y5 l 8 and D8
52p/ l 8. The Fresnel density then may be calculated si
larly to the case of Bragg reflections via

%̃F~K 8!5%̃`~K 8!* T̃S~K 8!* F̃~K 8!, ~108!

where we note thatK 85(Kx8 ,Ky8 ,Kz8) is given insurface
fixedcoordinates andF̃(K 8) is given by Eq.~70!. The trans-
formation between the components ofK 8 and those ofK in
laboratory coordinates is given by

Kx85Kx , ~109!

Ky852Kysina1Kzcosa, ~110!

Kz852Kycosa2Kzsina. ~111!

A. Periodic surfaces

Since we now deal with the case of coherent radiation
do not want to apply statistical averages to describe the
face h(x8,y8) via correlation functions. Therefore we firs
calculate the case of a 2D strictly periodic surface, i.e.,
assume

h~x81dx8 ,y8!5h~x8,y81dy8!5h~x8,y8!, ~112!

which may be regarded as a particular ‘‘rough’’ surface w
a few enhanced Fourier coefficients.26,27 The exact result for
the Fresnel density in surface-fixed coordina
(Kx8 ,Ky8 ,Kz8) may then be calculated to be

%̃F~K 8!5%̃0C2~V,F! (
mx ,my

F̃~Kx8,mx
,Ky8,my

,Kz8!

3expH 2
ex8

2

2V~kL1

2 1kL2

2 !

Kx8,mx

2

11 i ex8
2J

3expH 2
e82

2VkL1

2

~xcKy8,my
1xscKz8!

2

11 ixce82 J
3~erf@g0~Ky8 ,Kz8!#dmx,0dmy,0

1H̃mx ,my
@Ky8 ,Kz8 ;h~x8,y8!# !, ~113!

whereex8 ande8 are given by

e85S 1

2V D 1/2 D8

kL1

,

and
i-

e
r-

e

s

ex85S 1

2V D 1/2 D8

~kL1

2 1kL2

2 !1/2, ~114!

the functionF̃~K ! is defined by Eq.~70!; x, xc , xs , andxsc
are given by

x5
1

sin2F

kL1

2

kL2

2 , ~115!

xc5
1

sin2F S kL1

2

kL2

2 cos2a1cos2b D , ~116!

xs5
1

sin2F S kL1

2

kL2

2 sin2a1sin2b D , ~117!

xsc5
1

sin2 F S kL1

2

kL2

2 sin a cosa2sin b cosb D ,

~118!

andC2(V,F) is defined via

C2~V,F!5
p/2

~11 i ex8
2!1/2~11 ixce82!1/2. ~119!

Since we have assumed a periodic surfaceh(x8,y8) with
periodicitiesdx8 anddy8 we may define the reciprocal spac
quantities~mx ,my are integers!

qmx
5mx

2p

dx8
,

and

qmy
5my

2p

dy8
, ~120!

andK 8-vector components relative toqmx
, qmy

Kx8,mx
5Kx82qmx

, ~121!

Ky8,my
5Ky82qmy

. ~122!

The argumentgmy
(Ky8 ,Kz8) of the error function in Eq.

~113! is given by

gmy
~Ky8 ,Kz8!5S 2

i

2VkL1

2 D 1/2

3
xscKy8,my

1~xs1 ixe82!Kz8

~11 ixce82!1/2~xs1 ixe82!1/2,

~123!

and H̃mx,my
@Ky8 ,Kz8 ;h(x8,y8)# are Fourier coefficients

which are directly related to the height functionh(x8,y8).
Their explicit expression is

H̃mx ,my
@Ky8 ,Kz8 ;h~x8,y8!#
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5
1

dx8dy8
E

0

dx8E
0

dy8
dx8dy8

2

Ap S E
gmy

gmy
1ĝh~x8,y8!

dt

3exp~2t2!D exp$2 i ~qmx
x81qmy

y8!%, ~124!

with

ĝ52S 2 iVkL1

2

2

11 ixce82

xs1 ixe82D 1/2

. ~125!

Equation~113! is the result for the Fresnel density of a p
riodic surface without any approximations. In gene
ugmy

(Ky8 ,Kz8)u;Kz8 /kL1
is a very large quantity and th

expansion

erf~z!'12
1

Apz
exp~2z2! ~126!

is always justified.28 Then Eq.~113! may be reduced to

%̃F~K 8!5%̃0C2~V,F!F̃~K 8!P̃1~K 8/V!dmx,0dmy,0

1 i %̃0~11 i ex8
2!21/2~ x̄xx /xsc!

1/2

3 (
mx ,my

F̃S~Kx8,mx
,Ky8,my

!

3expH 2
ex8

2

2V~kL1

2 1kL2

2 !

Kx8,mx

2

11 i ex8
2J

3expH 2
e82

2VkL1

2

x2x̄Ky8,my

2

xsxsc
J

3
h̃mx ,my

~e! ~Ky8,my
x̄1Kz8!

Ky8,my
x̄1Kz8

, ~127!

where we neglected terms of the order@kL1,2
h(x8,y8)#2

againstKz8h(x8,y8) in the exponentials and terms of th
order kL1,2

2 h(x8,y8) against Ky8 ,Kz8 in the denominator.

SincekL1,2

2 ;10210 Å 22 ~for l51 Å and L1,251 m! in the

x-ray regime this approximation is always well satisfied. F
thermore we introduced

x̄5
xsc

xs1 ixe82 , ~128!

for notational convenience, and

h̃mx ,my

~e! ~Kz8!5
1

dx8dy8
E

0

dx8E
0

dy8
dx8dy8

3exp$2 iK z8h~x8,y8!%exp$2 i ~qmx
x8

1qmy
y8!%. ~129!

The functionF̃S(Kx8 ,Ky8) is given by
l

-

F̃S~Kx8 ,Ky8!5CS~V,F!expH 2
iK x8

2

2V~kL1

2 1kL2

2 !J
3expH 2

iK y8
2

2VkL1

2

x

xs
J , ~130!

with

CS~V,F!5
2p i

~kL1

2 1kL2

2 !1/2

p

V

1

~kL1

2 sin2a1kL2

2 sin2b!1/2.

~131!

Furthermore the functionF̃(K 8) is given by Eq.~70! and
P̃1(K 8) is defined by

P̃1~K 8!5expH 2
ex8

2

2V~kL1

2 1kL2

2 !

Kx8
2

11 i ex8
2J

3expH 2
e82

2VkL1

2

~xcKy81xscKz8!
2

11 ixce82 J .

~132!

The result for%̃F(K 8) given by Eq.~127! consists of two
parts: ~i! a part which is only present formx5my50 and
describes the Bragg-Fresnel scattering around the~0,0,0! re-
flection and~ii ! the sum over (mx ,my) which describes the
pure surface scattering contribution. In the following we w
only discuss this surface part.

We will now again look at two limiting cases. First w
note that an expansion of Eq.~127! yields in the Fraunhofer
limit, i.e., in the limit e8,ex8@1(l 8kL1,2

→0)

%̃F~K 8!→
l 82

2p

i %̃0

Kz8
(

mx ,my

expH 2
l 82

4p2 ~Kx8,mx

2

1Ky8,my

2
!J h̃mx ,my

~e! ~Kz8!, ~133!

which is the usual%̃(K 8) for a periodic 2D structure offinite
size l 8 in the x8 andy8 directions, respectively.27

In the extreme Fresnel limite8,ex8!1 Eq. ~127! reduces
to

%̃F~K 8!5 i %̃0 (
mx ,my

F̃S~Kx8,mx
,Ky8,my

!P̃S~Kx8,mx
/V,

3Ky8,my
/V!

h̃mx ,my

~e! ~Ky8,my
xsc /xsKz91!

Ky8,my
xsc /xs1Kz8

,

~134!

whereP̃S(Kx8 ,Ky8) is given by

P̃S~Kx8 ,Ky8!5expH 2
1

4

D82Kx8
2

~kL1

2 1kL2

2 !2J
3expH 2

1

4

x2D82Ky8
2

xs
2kL1

4 J , ~135!
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and describes the shape of the 2D peaks at posit
(qmx

,qmy
) in reciprocal space. Since the functionsF̃S(K 8)

and P̃S(K 8) given by Eqs.~130! and ~135! are the 2D
equivalents toF̃(K 8) and P̃(K 8) defined by Eqs.~70! and
~100! in the case of 3D Bragg reflections, we do not have
discuss again the incoherent and coherent limits as don
Secs. IV A and IV B. However, we would like to emphasi
one point where the 3D and 2D cases differ significantly.
stated at the end of Sec. IV B we saw that the oscillat
quadratic terms insy in the final expression exactly cancel s
that we got in they direction the Fourier transform ofC(sy)
rather than that ofC(sy)exp$iVkL1

2 sy
2/2%. If we calculate the

sy-dependent part of the product F̃(K
1VkL1

2 s)exp$iVkL1

2 s2/2%. for surfaces@see Eqs.~60! and

~127!# we get

sy part;expH i
V

2

kL1

2 kL2

2 sin2b

kL1

2 sin2a1kL2

2 sin2b
sy

2J
3exp$~x/xs!Ky8sysina%. ~136!

The linear term insy alone would yield in the coherent limi
the Fourier transform of the aperture functionC(sy) as
shown in Sec. IV B. However, now thesy

2 terms do not van-
ish and the argument of the first exponential is of the or
kL1,2

2 sy
2;1 ~for L1,2;1 m, l51 Å, sy;10mm! and rather

rapid additional oscillations are expected in the case of
face scattering.

Figures 9 and 10 show calculations of transverse sc
alongqy8 for a periodic surface in the coherent and incoh
ent limits where we used Eqs.~60! and~127!. As parameters
l51 Å, L1,251 m, l 851 cm, a width of the incident aper
ture of s510mm, and qz850.1 Å21 were assumed. The

FIG. 9. The scattering from a periodic surface in the coher
limit j@s and for the extreme Fresnel case (e'0.002!1). Trans-
verse scans forqz850.1 Å21 alongqy8 are shown for lateral spac
ings d with 53104 Å<d<53106 Å.
ns

o
in

s
g

r

r-

ns
-

out-of-plane directionx8 was again not taken into accoun
~see Sec. IV C!. As periodic surface contourh(x8,y8) we
have chosen a rectangular shape with lateral spacingdy8
5d and equal width of the bars and grooves for whi
h̃mx ,my

(e) (Kz8) may be easily calculated:

h̃m
~e!~Kz8!

5H exp~2 iK z8h0/2!cos~Kz8h0/2! for m50,
0 for m evenÞ0,
2/~pm!exp~2 iK z8h0/2!sin~Kz8h0/2!

for m odd,

~137!

where we setmy5m and we omitmx . The height of the
stepped surface is denoted byh0 and was set toh05200 Å
in the calculations. Figure 9 shows transverse scans for
ferent lateral spacingsd in the coherent limit. From the bot
tom to the topd increases and it can be seen that interf
ences occur when the peaks start to overlap~see curves for
d553105 Å and d523106 Å !. The curve for d
553104 Å shows one single peak decorated by the apert
diffraction effects. For very larged ~d553106 Å, topmost
curve! the satellite peaks are very close and again one sin
peak is visible but weak rapid oscillations are still prese
throughout the wholeqy8 region.

Figure 10 shows the opposite limit, i.e., the incohere
case. Now all interference effects have vanished and o
~broad! peaks are visible.29,30 Note that for very larged(d
.13106 Å) only one peak is remaining since the satellit
are now too close and their intensity behaves as 1/m2 ~see
Eq. 137!.

t FIG. 10. The scattering from a periodic surface in the incoher
limit j!s. Again transverse scans forqz850.1 Å21 alongqy8 are
shown for lateral spacingsd with 53104 Å<d<53106 Å.
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B. Arbitrary surfaces

Finally we would like to discuss briefly the scatterin
from nonperiodic rough surfaces. Performing the limitdx8 ,

dy8→` in Eqs. ~127! and ~129! yields %̃F(K 8) for an arbi-
trary nonperiodic surface contourh(x8,y8). We get for the
surface part

%̃F~K 8!5 i %̃0~11 i ex8
2!21/2~ x̄xs /xsc!

1/2

3E E dK̃x8dK̃y8F̃S~K̃x8 ,K̃y8!

3expH 2
ex8

2

2V~kL1

2 1kL2

2 !

K̃x8
2

11 i ex8
2J

3expH 2
e82

2VkL1

2

x2x̄K̃y8
2

xsxsc
J

3
h̃~e!@Kx82K̃x8 ,Ky82K̃y8 ;K̃y8x̄1Kz8!

K̃y8x̄1Kz8

,

~138!

where

h̃~e!@K̃x8 ,K̃y8 ;Kz8#5
1

~2p!2 E E dx8dy8

3exp$2 iK z8h~x8,y9!%

3exp$2 i ~K̃x8x81K̃y8y8!%,

~139!

i.e., h̃(e)@K̃x8 ,K̃y8 ;Kz8# is the Fourier transform o
exp$2iKz8h(x8,y8)%. We note that in the Fraunhofer lim
l 8kL1,2

2 →0 the prefactors ofh̃(e) in Eq. ~138! tend to

→(2p)2d(K̃x8)d(K̃y8) thus regaining the usual result fo
surfaces that the diffuse scattering is proportional
h̃(e)@Kx8 ,Ky8 ;Kz8#/Kz8 ~‘‘truncation rod scattering’’ see
Refs. 21 and 25!. Furthermore, we see that in Eq.~138! the
combination (K̃y8x̃1Kz8) rather thanKz8 alone enters into
the last argument of the functionh̃(e). This means that a clea
separation of specular and diffuse scattering in general is
possible if the incident aperture is illuminated by partia
coherent radiation.

Finally we note that the results of this subsection may
easily generalized to truncation rod scattering of Bragg

flections if in Eq.~127! %̃0 is replaced by(G8%̃(G8) andK 8
is replaced bydK 85K 82G8 with G8 being the locations of
the Bragg reflections in reciprocal space given in surf
fixed coordinates~see also Sec. IV!. Recently, some system
atic studies of the speckle seen in surface scattering f
coherent x-ray beams have been carried out.31

VI. SUMMARY AND CONCLUSIONS

We have presented a general formulation~within the ki-
nematic approximation! for the x-ray scattering from a
sample characterized by an electron density distribution%~r !
o

ot

e
-

e

m

in terms of the mutual coherence function~MCF! of the ra-
diation across a specified incident aperture. We have
tained the MCF of the scattered radiation across an outgo
aperture and in particular an expression for the inten
measured in a detector placed behind the outgoing aper
The relationship between the so-called ‘‘resolution functi
folding’’ approach and the treatment in terms of coheren
lengths is made explicit, and various limiting regimes a
discussed, such as the Fraunhofer and Fresnel regimes
for each the coherent and incoherent limits. It is shown th
except in certain cases, the observed scattering as a fun

of q cannot be interpreted simply asu%̃(q)u2 folded with an
instrumental resolution function, and also that in certain
gimes, the combination of coherence and finite resolut
can cause scattering from different Fourier components
%~r ! to interfere in reciprocal space. The results are illu
trated by application to the simple cases of Bragg scatte
from perfectly periodic~but finite! crystals and scattering
from laterally structured surfaces, and by numerical calcu
tions. These results illustrate that x-ray scattering exp
ments must in general be interpreted quantitatively with c
tion, after first establishing which experimental regim
~Fraunhofer, Fresnel, extreme Fresnel! one is working in.
The generalization of these results to the case of inten
correlation spectroscopy or time-dependent scattering wil
presented in a forthcoming paper.
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APPENDIX A

In this appendix we show how to calculate%̃F(K ) in real
space with one additional standard Fourier transform. Afte
Fourier decomposition and truncation of the electron den
%`(r ) of an infinite crystal by a Gaussian, the Fresnel el
tron density given by Eq.~30! may be written as

%F~r !5(
G

%̃F~G!expH i
V

2
~kL1

2 r',1
2 1kL2

2 r',2
2 !J

3exp~ iG•r !exp~2r 2p2/ l 2!. ~A1!

We now can use the result that for a 3D function given b

F~r !5expS 2 (
i , j 51

3

Ai j xixj D , ~A2!

where theAi j are complex numbers, its Fourier transform
given by

F̃~K !5
p3/2

uDetÂu1/2
expH 2

1

4
(

i , j 51

3

~Ai j
21!KiK jJ . ~A3!
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If we considerF̃(K2G) instead ofF̃(K ) and a matrixÂ
defined by the arguments of the exponentials in Eq.~A1! we

easily may obtain Eq.~81! as a result for%̃F(K ) in the case
of Bragg reflections.

APPENDIX B

In this appendix we will explicitly calculate the MCF a
the sample position as given by

Gs~r 8,r ,0!5E E ds ds8C~s!C* ~s8!g~s2s8!

3expH i
V

2
kL1

2 @~s2r',1!
22~s82r',18 !2#J .

~B1!

If we assume Gaussians asg(s2s8) andC~s!, i.e.,

g~s2s8!5expH 2
~s2s8!2

2j t
2 J , ~B2!

C~s!5expH 2
s2

2s2J ~B3!
er
on
R

J.

ro

E.

L.

, D

oc

.
t-

ev

-

with j t being the~isotropic! transverse coherence length
aperture A with sizes in thex andy directions, respectively
then thes ands8 integrals may be easily evaluated yieldin
~with V[1!

Gs~r 8,r ,0!5S 2pj t

kL1

2 js
D 2

expH i
kL1

2

2
~r',1

2 2r',182 !S 12
j t

2

js
2D J

3expH 2
1

2js
2 F j t

2

s2 ~r',1
2 1r',182 !

1ur',12r',18 u2G J , ~B4!

where the definition

js
25j t

2
~11j t

2/s2!21j t
4kL1

4 21

j t
4kL1

4 ~B5!

was used. Eq.~B4! is the explicit representation of the MC
at the sample position in Gaussian approximation and
~B5! is equivalent to Eq.~43! which defines the coherenc
length at the sample position.
s-

ct.

J.

a-

s

ev.

J.
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