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Effects of partial coherence on the scattering of x rays by matter
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We discuss the scattering of x rays by matter using the Huygens-Fresnel method, i.e., in the kinematic
regime. We derive expressions for how the mutual coherence fun@®tiGi) of the scattered radiation defined
across an exit aperture, arises from the MCF of the incident radiation across the entrance aperture and the
electron density distribution of the scatterer, and in particular calculate the intensity measured in a detector
placed behind the exit aperture as a function of the nominal wave vector trapsfée discuss the exact
relationship between this intensity function and the usual density-density correlation function of the scatterer,
and discuss the relationship between coherence and instrumental resolution effects in various regimes. The
Fraunhofer and Fresnel regimes are distinguished and the incoherent and coherent limits are discussed. We
illustrate the results with explicit calculations féa Bragg reflections from crystals arid) scattering from
surfaces[S0163-18208)06606-3

l. INTRODUCTION representation oﬁ(q), i.e., its Fourier transform, is related
to the coherence volume so that coherence lengths and reso-
With the advent of high-brilliance synchrotron x-ray |ution widths are regarded as conjugate quantities. This treat-
sources, it is now possible to obtain intense x-ray beamgent is valid only in the limit wher(a) the sample sees a
possessing a high degree of coherence. Several experimeismpletelyincoherentsource(note that even radiation from
have been recently carried out demonstrating the coherenggich a source may develop a finite degree of coherence at the
properties of such beams, such as Fraunhofer diffractiogample position, if the latter is sufficiently far away from the
pattern$ and the observation of speckle pattetisand  source and (b) we are in the far-fieldFraunhofer diffrac-
their fluctuations in time, or intensity fluctuation spectros-tion regime. We note that the conditions for Fraunhofer dif-
copy (IFS).° However, most experiments are in practice car-fraction are much more stringent for x-rays than for light, so
ried out with radiation that is only partially coherent, and athat unless the aperture distances from the sample are very
quantitative understanding of the observed diffraction onarge, we must use Fresnel rather than Fraunhofer diffraction
speckle patterns depends on a proper theory for incorporatheory®®
ing the effects of partial coherence on the scattering. In practice, beams of radiation falling on samples have
There have been several discussions of the diffraction oéncountered several optical elements on their way from the
partially coherent radiation bywo-dimensionabpertures in  source, e.g., monochromators, mirrors, slits, etc., and thus it
the optical literaturé,and the resulting formulation has been is often more useful to work in terms of the statistical prop-
used to determine the mutual coherence functMd@F) of a  erties, i.e., the mutual coherence function of the radiation,
soft x-ray laser sourcéThere have also been several mea-across the last aperture before the sample and calculate how
surements, using interferometry, of the coherence functionthe MCF is propagated via the scattering across an outgoing
of partially coherenheutronbeams’ Pusey® has discussed, beam aperture and also the intensity in a detector behind this
in connection with IFS for visible light, the statistical prop- |ast aperturésee Fig. 1. The only restriction we make is that
erties of the light scattered by a fluctuating three-dimensionahe distanced ;,L, from the sample to the incoming and
system, in terms of the correlation function of the inCidentoutgoing apertures are sufficiently large compared to the
light at the sample position, and in the far-field linite.,  sample and aperture dimensions that only terms getond
neglecting detector resolution function effectand assum-  order need to be considered in the ratios of the latter to the
ing that the coherence length of the incident light inside th&ormer. Calculations for the scattering including second or-
sample is much larger than correlation lengths within theder terms have been carried out by Dufbim connection
sample. with diffraction of a curved wave front by a crystal. Our
Most treatments of the effects of finite beam divergencecalculations are valid in both the Fraunhofer and Fresnel re-
energy spread, etc., use the resolution function folding progimes for diffraction, the conditions for which will be dis-
cedure, i.e., the observed intensities are calculated in termgussed explicitly. We find that the result for the observed
of a convolution of the actual scattering functi8q) with  intensity is in general more complicated than that given by
an instrumental resolution functid®(q).'!~**The real space the simple resolution-function folding procedure, except in
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E<q>=J dr o(r)exp—iq-r). (5)

The tilde is henceforth used to denote the Fourier transform
of the corresponding function without the tilde. Note that we
havenottaken any statistical ensemble averages in the above
equations, as is normally done, since we are considering a
particular realization of a sample in @erfectly coherent
beam. If the sample is nonergodic, i.e., has builtin static ran-

domness or disordef|o(q)|?)+ will possess sharp and ran-

dom fluctuations about some particular average function,

giving rise to the phenomenon of “speckle.” The widthdn

space of such speckles will typically be of the ordeD,

, whereD is a typical sample dimension. They may be either

[ , distributed randomlyas in a sample with no spatial order at
Y

all) or clustered in regions of reciprocal space of widtH,
wherel is a typical size of an ordered region. If on the other

FIG. 1. Schematic view of the scattering geometry.is the ~ and, the system irgodic with fluctuation time scales very
distance between aperture A and the sansplandL, the distance ~ ShOrt compared to the total integrated counting timee.g.,
between the sample and the outgoing aperture B. The laborato Normal liquid, the time averagas~eqU|vaIent to aren-
fixed coordinate system is given by,{,z), where &,y) are along  semble averagand we may replacg o(q)|?)+ by the usual

the dimensions of aperture A azds along the mean directioky ensemble average symb@E(q)|2>. In this case. even for

of the incident radiation. The mean outgoing beam directidtyis  completely coherent radiation, there is no speckle. Instead,
The coordinatesx(’,y’,z') with x” alongx (out-of-plane direction \yhat js observed is a smooth functigtq) calculated in the

z' the direction perpendicular to the sample surface, ahdhe usual way by statistical mechanical methods

surface in-plane direction define the more convenient surface-fixed For conventional scattering experiments t'he diffuse scat-
system. tering from disordered solids, rough surfaces, etc., does not
glsually exhibit speckle but also gives a smo8flq), which

the limits referred to above, and we shall discuss these IimitIS in accordance with an ensemble averade. notwithstandin
and also what happens in the opposite limit of complete co: g€, 9

. o . _the fact that the disorder in such systems is nonergodic.
herence. We shall also dls_cuss the application to the part!cufhere are two ways to understand this. The first is a “reso-
lar cases of Bragg reflection from a crystal, and scatterin )

Yution function” smearing of the speckle pattern in recipro-
from a surface. cal space. In this picture, E() is foldedwith an instrumen-
At this stage, it is worth recapitulating some well-known pace. P '

results of x-ray scattering theory in the kinemdjiie., Born tal resolution function as if a whole series of beafwith a

approximation. Consider a system described in terms of an_dlstr|but|on of energies and incident and scattered directions

. ) . independently(i.e., incoherently scatter from the sample,
electron density functiorp(r) placed in a perfectly mono- - ) ! .
. . : o thus giving for the observed intensity at nominal wave vector
chromatic and collimated x-ray beafsingle incident wave

vector k;). The differential cross section for scattering is transferq (assuming unpolarized radiation

given by 2

2
I(q)=ﬂ(%) [ ksR@-K).  ®

2

do e? \?
m—Pl(W So(a), (1) B
5 ] ) where R(K) is the instrumental resolution or acceptance.
where €?/mc”) is the Thompson scattering length of the This smearing out of the speckles is equivalent taeerage
electron andP, is the Lorentz factor: over manyregionsof the sample, since by the convolution
—ko—k @) theorem and Eq(3) (dropping the average ovdr, i.e., we
q=Kam K, assume for the moment systems which are static

wherek, is the outgoing wave vector, and
2

2
= 1 3 ! ! I __
So(q)=ffdr dr'(e(r)a(r)r explig (r' =)}, I(q) Pl(mcz) (2m) ffdr dr'e(rje(r)R(r'=r)

®) xexp{ig-(r'—r)}, (7)

where we have assumed that the measurement is done overﬁ R(r) is the Fourier t ’ R(K hich act
long enough period of tim& that we can make &me av- whereR(r) is the Fourier transform dR(K), which acts as

erageof the correlation function inside the integral. We may & C_Ut_Off f“QCt'On in real space,”and we may consider it as
also write defining a “coherence volume.” If this real-space cutoff is

much smaller than the total sample volume, E@) is
e equivalent to the Fourier transform of a correlation function
So(a)=(e(@e*(@)r, @ of o(r)o(r’) averagedon length scales equal to this cutoff
where over the entire sample.
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The second way to understand the smoothing is in term#heregg(r) is notthe physical electron density but what we
of finite coherence volume®r the radiation in the sample. term the Fresnel electron density whichoig) multiplied by
Let us assume that these are centered at posiBptitgough- a (complexX phase factor that depends on the directions of
out the volume of the sample and are defined in terms ofhe incident and scattered beams, and the fund®(r,r)
some (three-dimensionalreal-space cutoff functiorP(r). doesnot depend only on the separation betweérmandr. In
Theintensity | of the scattering from the volume centered atgeneral this makes the interpretation of scattering experi-
R, is given by ments more complicated and we shall examine under what
- limits this expression may be reduced to the simpler expres-
e
(q)= Pl( W)
8 For highly coherent beam®&(r’,r) contains slit diffraction
effects andog(r) contains finite sample diffraction effects
obtain general case of a partially coherent incident beam, with finite
2 slits and detector apertures and finite distances to and from

2 sions conventionally used. However, the conditions for this
and we must sum thesatensitiesover all such volumes, - may yield highly oscillating forms for(q).
the sample.

f dr o(r)P(r—R))exp(—iqg-r)

' turn out to be more stringent for x rays than for visible light.
since they scatter incoherently from each other. Thus we We proceed in the next section to evaluate) in the

2\2
e .
l(q)=P1(W) > U dr e(r)P(r—R)exp—igq-r)| .
|
©) Il. HUYGENS-FRESNEL THEORY FOR SCATTERING
Writing o(r) andP(r) in terms of their Fourier transforms, OF PARTIALLY COHERENT RADIATION
Eq. (9) is equivalent to

We consider the setup illustrated schematically in Fig. 1,
e? \2 L _ where the beam emerges from an aperturel#), the plane
1(q)= Pl(?) f f dK dK'e(K)e*(K")P(q—K) of which is normal to the mean direction of the beam and the
m line joining its center to the sample center a distahge
_ away, and is then transmitted through an aperture B normally
XP*(q—K')>, expli(K—=K'")-R}}. (100  oriented to the average direction of the scattered beam at a
! distancelL, from the center of the sampl8, and finally
counted in a detector D behind aperture B. According to the
standard Huygens-Fresnel principfethe statistical proper-
ties of the electric field at the aperture B and the intensity in
2\2 o _ _ the detector D can now be completely specified by knowing
I(q)= P1<—C2) f dK o(K)e*(K)P(q—K)P*(g—K), the spatial and temporal behavior of the electric field across
m (11) aperture A, and the electron density in the sample. We ne-
glect for the moment time-dependent effects and assume that

which is identical to the form of Eq6) if |P(K)|? is iden-  @(F) is a static function. The resultant scattering will be af-
tified with the “resolution function”ﬁ(K). Thus in thisin- fected by both coherence and resolution effects, in the sense

coherentlimit (the coherence volume is much smaller thandiscussed in Sec. 1, but in general in a more complicated
the sample volumethe conventional method of simply fold- way. Let us consider gach polar!zatlo_n component of the
ing the trueS,(q) with a resolution function in reciprocal 9ht separately, and let it be described in terms of a complex
space becomes correct, and the resultant scattering providédalytio signal given by

a reasonable approximation to an ensemble average, even o

though the experiment has involved a single realization of Uu(st)=Aq(stexp —iwl), (13

the sample(For this to be true, the range of density correla-

tions within the sample must also be much smaller than th(gvhereuw(s,t) represents the analytical field for polarization
sample size a at positions in the aperture Ameasured relative to the

Equation(6) has been traditionally used by researchers irCeNter of A, « is the average frequency of the radiation, and

X-ray scattering to obtain statistically averag8g) func- the t_ime dependen_ce_ of the gmplitu@lg(s,t) represents the
tions for the system studied by “unfolding” the resolution relatively slow variation(on time _sqales much larger than
function or by fitting. However, most x-ray radiation /@) due to the nonmonochromaticity of the beam. We may
(whether emitted from an incoherent source ol poissesses define a mL_JtuaI coherence functigdCF) for the radiation

a finite degree of coherence by the time it is incident on thé’ Polarizationa

sample and it is worth reanalyzing the expression for the

For a large enough set d®, the sum ovei yields the
conditionK=K"' and in this limit,

observed intensity along the lines that researchers in optics I (s8,7)=(A(sDAL(S t+71)), (14
have followed. As we shall see, when this is done, &Q. _
must be replaced by where the average represents a time averageower many

phase fluctuations of the radiatigtypically the latter have a
time scale 10'°-10 1% seconds for x rays We may

e2 2
=Py m—c2> ”df dr' @ (r)eE(r)R(r' 1) write!S7-19

xXexgiq- (r'—r)}, 12 Iy(ss', 7)=W(s)¥*(s)g(s—s)F(7)(I,/A), (19
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as a rather general form for the MCF, whergis the total scribed by its MCF and on the other hand an incoherent
beam intensity through the aperture area A. We shall fodetector. In this sense the detector is optically the reciprocal
simplicity neglect here the possible dependence of coherencd# a completely incoherent source.

lengths and times on the polarization of the radiation, al- We assume in the following thdt; and L, are much
though such explicit dependence may be easily incorporateldrger than the typical aperture dimensions of A and B. Us-
in the formalism below, by letting/(s), g(s—s'), andF(7) ing the Huygens-Fresnel principle, and assuming kinematic
explicitly depend on the suffix. The form chosen for the scattering(i.e., no multiple scattering from the sampl¢he
MCF in Eq.(15) is not the most general possible form, but is amplitude at timd arriving at the poinu on the aperture B
commonly used and is known as the generalized Schellmeasured relative to its centeafter being scattered from a
form.192° The functionW(s) is called the amplitude factor, small volume elementrdat a pointr (relative to the sample
and g(s—¢s') is called the coherence factor. The latter iscentej and originating from an elements of area around
defined to be unity whes=s'. The intensity of radiation at the pointsin the aperture Ameasured relative to the center
the positionsin the slit is given by setting=s’, andr=0in  of A), tracing the pathPP’P” in Fig. 1 is given by(for

Eq. (15), i.e., it is ¥ (s)¥* (). It should be borne in mind polarizationa)
that a uniform intensity does not necessarily imply that

¥(s)=1, since one may have a pure phase field where

Y (s)=explig(s)}. The form of Eq.(15) can also arise from Vo(u,) =M,
a superposition of a set of mutualigcoherentwaves, each

described by¥(s), with an angular distribution of propaga- 1 1 . P'P"+PP’
tion vectors given by the Fourier transform of the function XW PP expl’ —|5<t— c )]ds,
g(x). If these are plane waves, th&df(s)=1, but in general
W(s) can be used to represent curved wave fronts. It will be
convenient to include the aperture cutoff function in our defi-

nition of W(s). The exact form of¥'(s) andg(x) will depend gty factor y(@)~1, where® is the angle between the

on the nature and distance of the source of radiation from,.y,a| path considered and the mean path for the incident or
this aperture, and the optical elements in the beam prior Q4 itared beams. sin€e<1. Similarly the amplitude ati’

the slit (mirrors, monochromators, efcand can be difficult arising from a dif;‘erent patQ’ Q" in Fig. 1 is given by a

to calculate. We thus regard the form of the MCF across thgjijar expression withPP’, P'P" replaced byQQ’
incident aperture as empirical, ultimately obtainable from €X'Q", respectively. Since tWo orthogonal polarizationé are

periment. However, we introduce here the concept of COheré1lways incoherent'®we may obtain independent MCF'’s for
ence lengths which are implicitly contained in the MCF. If

. . . . each polarization, yielding for the MCF at the aperture B
g(x) is approximated by a Gaussian form, i.e., pofarization, yielding pertu

e? )\ i
W) N o(r)dr Aa(s,t—

P'P"+PP’
C

(18

whereM , is a polarization factor, and we have set the usual

T (uu’,7)=(V (ut)Vi(u' t+ 7))

od L 2 1o
g(x)—exp( > X% & exp( > y2/§y), (16)

e \?1
. = i(—cz) —szdr dr’fjdsds’e(r)
then ¢, ,§, can be considered as the twansverse coher- m A
ence lengthsThe time autocorrelation functida(7) decays P'P"+ PP
with a characteristic time; and we may define bongitudi- X g(r’)<Aa( st— —) Afl S t+ 7
nal coherence lengtlfy=cr, ¢ being the speed of light. In
fact we shall note here that sindg,(s,s’,7) has to fulfill Q'Q"+QQ’

Helmholz equations i ands’ the ansatz given by E¢15)
restricts the time autocorrelation functidh(7) to a pure

(.U— ! n ! ”n
c ) expllg(PP—QQ

exponentia®*® .
+ PP'—QQ')]quin)
F(r)=Fqexp —7/7), (17)
where we have to sét;=1 by definition. We now proceed % 1 1 1 1 (19
to the calculation of the MCF at the “outgoing beam” aper- PP' P’P" QQ" Q'Q"’

ture B. In passing we note that this provides in principle a )

method for calculating how the coherence properties of thavhere(:-) denotes an average overi.e., over many phase
beam are affected by scattering from the santpleich may fluctqathns of thg incident radiation. Let=1 defme. the
itself be an optical element in the beanFinally, the scat- polarization direction normal to the plane of sc;atter(ng.,
tered count rate is obtained by integrating the intensity of théhe plane containin@ 0’0" in Fig. 1). ThenM{=1. The
scattered field at any point on the detector D over the dete@ther polarization ¢=2) hasM 3= cos(29), whereds is the

tor area, since field amplitudes at different points on the deaverage scattering angle. The integrals osgt are two-
tector cannot interfere. Here we would like to emphasize thadimensional2D) integrals over the slit aperture A, and over
the final result of our calculations doest necessarily have r,r’ are 3D integrals over the sample volume. In this aver-
to obey the reciprocity theorem in the sense of a symmetrge, making an appropriate translation in time coordinates
with respect to an exchange of the incident aperture A anénd defining a path difference

the detector. The reason for this is that we have on the one

hand a(partially) coherent “source”(aperture A fully de- Al=P'P"-Q'Q"+PP' —-QQ’, (20
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and using Eq(14), we may write where we have defined
e’ \2 1 = =
ra(u,u',r):M§<m—Cz) Fffdr dr’Jstds’g(r) ki, =vVko/Ly, and ki, =vko/L, (24)

) . for notational convenience and ; andr, , are the compo-
Xe(r)lu(ss,7+Al/c)expiwAl/c) nents ofr perpendicular t&,; andk,, respectively, and simi-
1 1 1 1 larly for r’.

Y=Y - (21 In the denominators of Eq21), we may replacePP’,
PPTPPTQQ Q'Q P'P”, etc., byL,, L,, etc. IfI" ,(s,s',7) given by Eq.(15) is
To second order irs,s’,u,u’,r,r’ it may be verified easily introduced and~(r) is replaced by its Fourier integral
that

XexpioT)

.. 1 F(T)zifdAwE(Aw)exq—iAm), (25)
Alz(r’—r)-(kz—kl)+z[(r—s)z—(r’—s’)z 2m
1

we obtain
( 1)2 (r kl)2]+ [(r_u)z (r ) ) ez 2 1 1 I
F (U,UI,T) M ( ) A 21272~ ffdsds
. . @ m&| 2m\2 L2 L2
+ (1" kg)2=(r-kz)?], (22 "
where I21 and 122 are unit vectors along@O’ and O'0O”, xf f dr dr'f dAw¥(s)¥*(s')g(s—s')
respectively. Since/c=Kk,, the magnitude of the mean in-
cident wave vector, anblp(k,—k;)=0d, the nominal wave XE(Aw)eXp{i(w_—Aw)T}
vector transfer, we may write o
, xexpli(w—Aw)Al/cto(r)o(r'). (26)
o k
w L . .
< Al=qg-(r'—r+ 71 [P—g2-2r-st2r'-8 +r2 Let us write this as
5 I )M(ez)zw_lllr( )
L LJduu’, 7 uu’, 7
214+ =2 [u—u'2-2r-ut2r -u' +r2, mc?) 2w\ L% LS
2 | (27)

—r%], 23 with

F’(u,u’,T)zf dQ E[Wl—ﬂ)]exqimr)J J dsds’W(s)‘P*(s’)g(s—s’)f f dr dr’exp{—iQ(q+kEls+kfzu)-r}
. 2 2 -Q 2 -Q 2
Xexp(iQ(q+KE s +kEu') r'lexp i > kLl(sz—s’z) exp i - kLz(uz—u’z)

Q
xg(r)exp{i > (kflrf’ﬁkfzriz)]g(r’)exp{ —i 5 (kg ri4+ki } (28)

where we have used E23) and the definition A. Real space discussion

_ The Egs.(27) and(28) represent the central result of our
Q=1-Aw/o=1+ANN. (29 paper. The only conditions that must pertain for this result to
. . . be valid are(a) the kinematic approximation for scattering
Here_:A)\/)\_ IS the_ d_ewatlon from the mO”OChrom?t_'C'W of and (b) the distanced ;,L, must be much larger than the
the incoming radiation. If we now make the definition of a aperture and sample dimensions.
modified densityo(r), thrloughout this paper referred to as |t should be noted that the result given by E2@) is still
the Fresnel electron densityoy symmetric with respect to the quantitiess’ andu,u’. Since

I'’"(u,u’, 7) describes how the MCF of aperture A propagates

. Q to the sample and then to aperture B, an exchange of A and
_ o2 2 2.2 )
er(r)= Q(r)exp[l 2 (kLlrJ"l—'— k'—er’2 ' (30 B does not affect the net result thus satisfying the reciprocity
theorem.
we note that the andr’ integrations in Eq(28) may be If a detector is placed behind the outgoing aperture and
carried out yielding the Fourier transform of- and ¢¢ , detectsall the radiation passing through, the measured inten-

respectively(see Sec. Il B sity will be given by
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@=3 [ duivawoP) (31)
22 fdu I' ,(u,u,7=0) (32
a B
2 \2 -_—
~ .| e o 111,
A e R T T
xj du I'’(u,u,0), (33

2745

Equation(39) has a simple interpretation. It is the function
So(K) folded with the resolution over the outgoing detector
slits, and the resultant function which depends parametrically
on Q folded with the Lorentzian resolution functidfor the
longitudinal coherengecentered afj. This would be identi-
cal to the conventional formalism 8,(K) were the conven-
tional functionSy(K) folded with the angular resolution of
the incident beam. Howeve$,(K) defined by Eq(36) has

a slightly more complicated form; namelg(r) is replaced
by the Fresnel densitgg(r) andRq(r’,r) is not simply a
function of (' —r) as in Eq.(7). We note furthermore from
Eq. (39) that theeffectivelongitudinal coherence length for a

where the integral is taken over aperture B and we have useRfrticular experiment ig; multiplied by the factor Ko/q),

Eq. (27). We now examine the form ofdu I'’'(u,u,0). Let
us replace the variable of integratidh in Eq. (28) by the
magnitude of the vectd®, where

Q=Quq, (34

and we obtain

S(q)= fdur(uum—iﬁj 5(3 Fl(q-Q)arq]

XLdu’SQ(Q+u’), (39

Whereu’z(Q/q)kfzu and the integral ovedu’ is over the
outgoing aperture dimensions scaled IQI/Q)kZZ, and

éQ<K>=f f dr dr’ @e(n)@E(r ) Rg(r'.1)

xXexpliK-(r'—=r)}, (36)
where
(r’,r)=f f dsds'¥(s)¥*(s')g(s—¢s')
><exp{i % kfl(SZ—s'Z)]
Xexp{i %kfl(s"r’—s-r)}. (37)

In Egs.(36) and (37) we have used the subscriQt on the

functionsSp(K) andRq(r’,r) to indicate an additional para-

metric dependence on the magnitudeQfBy Eq. (17), we
have

& lc
1+ (ko /9)*(q—Q)*’

Fl(q-Q)alq]= (39)

where we have defined the longitudinal coherence leggth

Equation(35) then becomes

qglf Q 1
c ) Q% 1+(ko&/9)%(q—Q)?

=CT.

S(q)=

xfsdu’SQ(QvLu’). (39

thus magnifying this quantity considerably for experiments
whereq is small(e.g., surface scattering experimentEhe
fact that one can work with fairly small longitudinal coher-
ence lengths in this regime is already well knoWA.

From now on for notational convenience, we shall omit
the suffixQ at So(K) andRg(r’,r) and we always replace
(Q/q) again by the variabl€ as introduced beforiesee Egs.
(29) and (34)]. We note thatQ=1 (Q=q) meansA\/\
=0, i.e., the case of a perfectly monochromatic beam.

We may also expresS(K) directly in terms of the usual
electron density-density correlation function by inserting the
explicit form of the Fresnel density from E¢B0) into Eq.
(36) and we get

=f f dr dr'o(r)e(r")Ry(r’,r)exglikK-(r'—r)},
(40)

where

/ / QL 12
Ry(r',r)=Tg(r’,r,0)ex |§kL2(rl’2—rL2 , (41

and
r (r’,r,O):f f dsds'W(s)¥*(s')g(s—¢s')

xex;){i (2—1 kfl[(s— I’L'l)Z_(s/ —riyl)Z]}.
(42)

We note thafl"y(r’,r,0) defined by Eq(42) is nothing else
but the transverse MCF of the incident radiation from aper-
ture A at the sample positigrapart from the usual longitu-
dinal propagation phase factor €xjk,-(r’'—r)}, as may

be verified by an analogous calculation to that in EG8)—

(28). It is the spatial range of this MCF which determines the
range of spatial separation of points in the sample which can
produce interference, i.e., the coherence volume, and it is
tempting to parametrize this MCF as a function af (
—r"), as in Eq.(16) thus avoiding the calculation of Eqg.
(42). However, we note that from E¢42) this function can-

not in general be written simply as a function aof ),
except in the so-called “incoherent limit” of aperture A to
be discussed below. Moreover, we believe that our formula-
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tion in terms of the MCF across the incident aperture AThe functionT(r) incorporates incident aperture diffraction
maintains the symmetry between incident and scattered raffects. If
diation and is to be preferred.
The properties of the transverse MQK(r’,r,0) deter- Ly, =12 (w>1) (48)
mine what is seen in a scattering experiment, after integras,
tion over the detector aperture and a radial integration over
the wave vector transfer with a “longitudinal resolution Ly, Lo>w2/n (w<l), (49)
function” which is a Lorentzian of widthg/(ky&;). An ex- . _ )
pression fod"(r’,r,0), based on a Gaussian approximation,then we may negle_ct the_ _Fresnel factor in the diffraction
is given in Appendix B. from the sample. If in addition
Assuming an isotropic transverse coherence len§th
across aperture A, the transverse coherence leaftthe
sampleés and the transverse beam siiethe sample vare  then T(r)=1 and px(r)=0(r). We term this theFraun-
given by hofer limit It would appear that for x rays, this limit can only
be satisfied for very large values bf,L,. However, if the
sample is not itself cohereié.g., made up of microcrystal-
lites), | may be taken for some purposes as the grain size. In
any case, ifl>w, by Eq. (49) it is the beam size at the
and sampleand not the sample size which determines the condi-
tion for the Fraunhofer regime.
& Also in this limit £,= &, unlesso is very small orL is
w=o 2 (44)  very large, so thatv=c. Thus, for a 10um crystallite or
! beam size at a wavelength &1 A, the Fraunhofer regime
whereo is the lateral dimension of aperture (Assumed the is attained ifL,,L,>1 m.

Ly>a?/\, (50)

1 2 1/2
I aa| Tia 2
Ly

o 43)

fs:{gtz

same in thex andy directions. Thus, if £{,<o, there are In the incoherent limit(§; <o), by Eq.(43)

many coherence volumes inside the illuminated sample vol-

ume and we are in the incoherent limit, regardless of the 1AL

distancel ;, unlessé, becomes larger than the actual dimen- é—E o (51)
sion of the samplé, in which case the beam is coherent

across the entire sample. In the case thgg/l)~1  If in addition, we assume that

“speckle” will be observed for a disordered sample pro-

vided the lateral size of each detector elemeptsatisfies §r<és (52)
Wg<AL,/(2l) and the distance between structural ele- then, settingd=1 in Eq. (37 (i.e., neglecting longitudinal
ments in the scatterer satisfias<(27/q)(7¢ /\). effect9 we can neglect the Fresnel factor in E§7) across

The coherence lengths can also be used to estimate th@erture A, and obtain
range of separation between two points in the sample from
which the scattering can interfere. If these points are sepa- , ) ,
rated by a distancar, then the condition is thatA(r) must Ro(r",r)~ J dsW(s)|* expi Okt s (' =)}, (83)
be less than eitheré(/sin @) (wherea is the angle between
Ar and the incident beam directipor (ko&,/q,), whereqg
is the component aff alongAr. We may now discuss under
what conditiond (q) takes the form of the conventional ex-
pression as given by Eq&) or (7), or where the more gen-
eral expression must be used.

In the coherent limit &3>0, and we may replacg(s

which looks similar to the form of Eq.7) providedo(r) is
replaced by thé&resnel density(r). To consider when we
may neglect this difference, let us consider again the effec-
tive sizel of a coherently scattering region in a direction
transverse to the beam. We need to consider two cases:
(@ I>¢&;. In this case, the Fresnel factor for the incident

—s') by unity so that Eqs(41) and(42) yield beam can be neglected if
2 <

Ry(r',r)=T*(r")T(r), (45) KL l6s=<2m, ®4

where which by Eq.(51) reduces to
[/o<1. (55
T(r)=exp[i > (kg 12tk rs ]f ds W(s) For the scattered beam, the corresponding condition is
) K? |&<2m (56)

xex;{i > kfls2 exp(—iQkElsr). (46) L2 ®s

or, thus,

Thus S(K) is the Fourier transform of the correlation func- lo<L,IL,. (57)

tion [@e(r) 05i(r")] where
Inequalities(55) and (57) are the conditions for the Fraun-
Ceii(r)=0(r)T(r). (47) hofer regime to be attained in this case. The reason that Eg.
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(55) is independent of ; is that the decrease kfl is exactly
cancelled by the increase § asL, increases.

(b) 1< & (this will happen ifL; becomes large enough
In this case the Fraunhofer regime is attained when :47Tzf dP[T(P,K)|ZG(P). (64)

é(K)=jfdsds’T(sK)g(s—s’)T*(s’,K)

21212 122
kL1I 'kLzI <2, (58) Consider the case whegr) represents a thin screen with

apertures in iin the beam direction such thato(r)=0 in

hich . . .
which reduces to the opaque regions angl(r)=1 in the aperture regions

Lq,Ly>12/N, (59 being confined to thex,y) plane only, sae(dy,qy,d,) be-

comes independent af,]. Then Eq.(64) reduces to the for-

conditions which are similar to the coherent case. mulas given by Nugeht and otherdfor diffraction by par-
tially coherent radiation apart from the fact that E§3)
B. Reciprocal space treatment contains the Fourier transform of the Fresnel dengityr)

rather than that of the reédFraunhofeyr electron density(r).

or most applications we can takB(s) simply to be the
erture function(1 inside the aperture, O outsijdend as-

sume a simplde.g., Gaussigrfunctional form forg(s—s')

in terms of which we can define our transverse coherence
lengths quantitativelysee Eq.(16)].

é(K)=f f ds ds'W(s)W* (s')g(s— s’)exp[i 9 kE (s? We §hall now use thgse results to calculate'the form gf the
2 scattering for several simple cases under various conditions.

It is often preferable to evaluate the expressions for th
scattered intensities in reciprocal rather than real space. Bg
Fourier transforming Eq(36) we may write S(K) in the
reciprocal space form

—3’2)]EF(K+Qkfls)5’E(K+QkflS’)- (60) lIl. FRESNEL DENSITY

The fact, that the scattered intensity is related to the Fou-
The arguments of the Fourier transform of the Fresnel den-, y

rier transform of the Fresnel electron dens@y(K) rather
S'tyQF(K) represent the CarteS|a_n cqmponerh(§ Ky K Z_) than being simply related to the Fourier transform of the
relative to the X,y,z) axes shown in Fig. 1, where tlzeaxis

) e L ._actual density, except in the Fraunhofer regime discussed
is along the average incident beam direction. In scatterinq, e s the main difference between our final result given

experiments often sample-fixed coordinates are more apprey, Eq.(60) and the common treatment. Since
priate and a back transformation of the components has to bey

performed(see Sec. ¥

Again, in the(true) incoherent limit, this reduces to or(r)= (r)exp{ (k2 rf,ﬁ kfzri,z) , (65)
AS(K)ZJ dS|W(S)|2|EF(K+QkE 92, (61) th_e F_resnel dengity de_pends on the monochromaticity and
1 direction of the incoming and scattered x rays. Therefore

. ~ ) . o _og(r) isnotan electron density in the common sense and we
i.e., |or(K)|* folded with the incident aperture resolution

functlon as discussed above. In this case no incident sI‘f\’III now expresng(K) in terms of the Fourier transform of
diffraction effects are expected, while in the coherent limitthe real density (K) and aK -space functioF(K) which is

we get unique for all further calculations. From E(5) follows
) ~ ~ -
S(K)=U ds W (9)exp(i Ok $/2) 2r(K+ QK2 ) er(i)=e (K )k, s
(62) where the asterisk again denotes a convolution &) is

_ given by
i.e., 0e(K) first folded with the incident aperture resolution
including Fresnel diffraction effectsand then modulus
équared.gAs we shall see, this can ):result in interference be—f(K):J dr exp(—iK- r)expl’ 5 (K rf]1+ ke rL 2|
tween different diffraction peaks which overlap in reciprocal (67)
space resulting in a complex diffraction pattern.

We may also manipulate E60) into a related form For reasons of simplicity we restrict ourselves throughout
which may be convenient for calculations. If we define athis paper to the case of in-plane scattering. Then the direc-
function tionsk; andk2 are given in laboratory fixed coordinates with

the z axis along the mean direction of the incoming beam

T(sK)=W(s)exp(i Ok? s/2)or(K+Qk? 9), (63  (see Fig- 1by

and its 2D Fourier transform with respect sdoy ?(P,K), k;=(0,0,1), (68)
and similarly that ofg(s) by g(P) then Eq.(60) may be .
written as k,=(0,sin®,cosb), (69
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where® denotes the angle between the mean directions ahe smaller beam size, too. The Fourier transform of the ac-

the incident and scattered radiati¢often also called 8.  ta) electron densitg (K) may be written as
After a straightforward calculation the integral given by Eq.

(67) yields

0(K)=0.(K)*T(K), (76)
~ i K3 i [KJ, with a reciprocal space truncation functiér?
f(K)—C(Q,d))exp[—mm]exp{—m k_El
K2 HTJ(K)=J’ dr exp(iK-r). (77)
Lolylg
rerlif (70 -
L,S! The shape of the crystal enters into the resultant formulas via

the borders of thex,y,z) integral. If a sharp cut rectangular

h h f is gi ; ; X .
where the prefactor is given by crystal is assumed this would lead to oscillatory Fresnel in-

2(i—1) 812 tegrals in the final expression fare(K). However, it is
COP) = @k a) smp P more realistic to assume that the sample edges are smoothed
LKL, (KL TR, A - o
L out and do not give rise to additional oscillations. Therefore
and the definition we choose a Gaussian in real space,

Kyz=K,+K,cotd (72) T(r)=exp( —r?w?/1%), (78)

was used. In the following the subscripz always means With the corresponding Fourier transform
that they andz components of the respective vectbereK) _ o ap .
have to be combined in the manner given by E&®). With T(K)=(2mA%) > exp( — KA, (79

the explicit representation of the delta function as the truncation function, where we assumed for simplicity

14i L=1y=1,=I, i.e., that the sample is isotropic, ani
5(x)= lim ! exp(—ix% €?), (73)  =2m/l. Note that this is the 3D equivalent of the famous
c.0 \27e Warren approximation for finite 2D crystal3.

Then the Fresnel density may be calculated by a double

convolution from the densitféw(K) of an infinite periodic
crystal given by Eq(75):

it is easy to prove that in the IimikLl,kL2—>0 (i.e.,
Ly,Lo—)

FK)—(2m)38(K 74 ~ ~ -~
(K)=(2m)a(K) 74 Or(K) =0 (K)* TIK)* F(K). (80)
holds, and we regain the usual res@h(K)='é(K). In the
next sections we calculate the scattering for particular cas
(Bragg reflections, surfacesising the result given by Eq.
(60) and the expressions given by E§86) and (70).

lternatively we may calculat@F(K) by a single Fourier
ransform after a complete real space treatment. This way is
explicitly shown in Appendix A. Finally, we obtain the result

IV. BRAGG REFLECTIONS EF(K)=C1(Q,<D)V;12 2(G)

An interesting feature of Eq60) in the partially coherent ) s )
case is thatlifferentFourier components of the electron den- < expl — i 1-ie (8Ky)
sity can interfere in reciprocal space if they are close enough 20 1+ e;‘ kf + kf
to overlap within the broadening due to the incident slit. ! z

Consider for example diffraction from a perfect infinite crys- 3 o
tal in the kinematic limit. We have | ngo fa(oK)e
X ex 20K 5 (81
0.(K)=V;'X 0(G)3(K-G), (75) b2 gme”
-
whereG represent the reciprocal vectors of the crystal latticEThe quantitiese, and € are defined by
andV, is the volume of the unit cell. For a single isolated
Bragg-reflection this would lead to an apparent paradox, (1 )1’2 A
since by Egs(66) and(70), | (K)|? would beindependent “~120 ke,
of (K—G) resulting in no peak in the scattering. However,
an infinite crystal violates our assumptions of the sampleéand
dimensions being much smaller thiap,L,. A real crystal is "
finite with dimensionsl,,l,,l,<L,,L,. Alternatively the o 1 A 82
beam size at the crystal is finite. We denotel lifze smaller 120 (kEl+ kEz)” '

of the two lengths in what follows, and we always use the
term “sample size” bearing in mind that this may be only and the prefacto€,((),®) is given by
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Cy(Q, @)= S8 S(K)=V,2 3 0(G)e*(G")F(SK)F*(K')
BT (i) 1+ i (x+sinT2d) €2 xet M iyt
(83
where we introduced Xf f dsds'W(s)¥*(s')g(s—s)
K, N o KK,
X—Eﬁ—m ( ) X ex |§m(sx—sx)
2 1 2
for notational convenience. Note that in the case of a large kf
crystal,A—0, we haveC,(Q,®)—C(Q,P). The f,(K) Xexp i 2—12 (0K s, — SK,Sy)
andg,, terms in the second exponential are kL1+kL2
fo( 8K) = (8K 02+ x(5K,)2, (85) xexpli(SK,8)— 5Ky} PL(SKIQ) +kE 5]
F1(8K)= —i{(8K,p) 2+ (x K+ 5K, coth)2},  (86) XPL(SK'IQ)+KE §'], (95)

f,(8K) = x{x(K,)2+ (5K, — 6K, coth)?},  (87) where F(K) is given by Eq.(70). In Eqg. (95) the following
y Y notation is used:

fa(8K)=—ix2{(8K )2+ (5K ,)2, (88) SK=K—G=(8K,,K,,5K,), (96)
go=1, (89 SK'=K—G'= (8K, 5K} ,oK}), (97)
g1=(x+sin 2®)?=2y, (%0 8K y,= OK,+ 5K cotd, (98)
9= x°. 6D 8K,,= 8K + 5K jcotd. (99

Here 6K =K — G denotes the deviation ¢f from a recipro- _

cal lattice pointG, and 6K, is given in terms of the com- The functionP[K, K, ,K,] defines the shape of the Bragg

ponentsoK, and 6K, according to Eq(72). reflections in reciprocal space which is caused by the finite
Equation(81) is the exact result for the Fresnel density in size of the sample. It is given by

the case of Bragg reflections from finite crystals. From what

has been said previously, we do not need to discuss explicitly~ 1 KiA2 1 A? )

the Fraunhofer limit which would simply yiel§(K) propor- Ky K]=exp — 7 K +Kk2)? exp{ T4k [Kz

tional to the Fourier transform of the electron density be- oo !

cause then we have e,>1 (i.e., Ik,_12<27r), and Eq.(81) 5
reduces tdonly then=2,3 andm=2 terms are kept +(KyLLoth + x(P)K)] . (100
Bk |33 > E(G)exp{ B |2(5K2)2] (929 We get as a result a series of Gaussia{le,Ky,KZ] in
(2m)¥V, G A reciprocal space of Widthlkflzlq-r which have to be folded

with the detector and Iongitudinal resolution according to Eq.
(39). We may neglectG#G’ terms if |G—G'|>n (12
+55) % wheres, denotes the slit width. It is interesting
to note that in this limit, i.e., in the limit ok, e, <1, the

which is the usuaE(K) of afinite crystal.
Another approximation is to take thextreme Fresnel
limit defined by

kf W2 271 width of the peaks in reciprocal space getsallerwith |.
L2 However, ad —0 we violate the conditiore,e,<<1 for the
or extreme Fresnel case and pass to the Fraunhofer limit given
by Eqg. (92) where we see that the widths of the peaks
€,6,<1. (93)  creaseasl| gets smaller which is the more familiar situation.

We will now explicitly discuss the incoherent and coher-

Since most scattering experiments deal with wavelengths of . i its of Eq.(95) in the next two subsections

A~1A, distancesL,,L,~1m, and sample sizes of
~1 mm we get(with Q~1) o
A. Incoherent limit
In the incoherent limig(s—s') is only appreciable fos
~s', ie., &, & are much smaller than all aperture
) o o ) dimensiong? If the limit G=G' is assumed in Eq95) and
and this approximation is well satisfied. Keeping only termspayw variabless =s—s' ands" =s+¢s' are introduced, the
up to €2, ei in the exponentials and insertig-(K) into Eq.  two s, s’ integrations can be separated, and one may easily
(60) yields the resulfC,(Q,®)~C(Q,P)] verify the result

T )\Ll,Z 1/2
ee|g 2| ~002<1, (94)



2750 S. K. SINHA, M. TOLAN, AND A. GIBAUD 57

kz
k

10 e

- 4

S(K)~V*X [2(6)g kz 5Ky, 8Ky

|- -
2 L 1

1
XS |

(6K, 0Ky)

ke
X (P{6K/Q])2, (101)

whereg (K ,Ky,) denotes the Fourier transform with respect
to s,,s, of the coherence factgg(s) and W(s) is the real
space aperture function as explained in Sec. Il. Thus in the
incoherent limit we regain the result of single Bragg reflec-

tions with intensity proportional tde(G)|2. The shape of
the peaks is determined by three factofig: The Fourier l
transform of the coherence functigfs). This has a width in o 1 4

reciprocal space which is 1/, whereé, is a typical trans- ,
verse coherence length at the incident apertiireThe real WWWW €5
space functionV(s) yielding the direct shape of the aperture - g
as shape of the respective Bragg reflections. This has a width S S T
in K which is ~1/§s, whereg; is given by Eq.(43). (iii) 9,~C, [107R7"] ’

The reciprocal space functio? K, K, ,K,] which takes the c

finite size of the sample into account. This also has a width

in K which is ~1/¢; if the sample and slit sizes are com-  FIG. 2. Intensity around a symmetric Bragg reflectionGat
parable. Note that i, <&, the functiong(K ,Ky,) may be =(0,0G,) for different coherence lengthisin the extreme Fresnel
replaced by a constant in E(LOY) yielding the incoherent case. The intensity is calculated along the vertical directipn

T

S<S;

M .

Intensity [arb. units]
N
T -

,%

L —

limit as discussed in Sec. Il A. The slit width wass=50uum and from the bottom to the tog
decreasesé>s coherent limit,é~s, £€<s intermediate cases
B. Coherent limit <s incoherent limij.

The other interesting limit is that of a highly spatial co-
herent beam &, ,&,— ) impinging on the first aperture A
and being Bragg reflected by a single crystal. Then we hav
g(s—s')~1 and Eq.(95 may be completely separated in
s, s and 8K,8K’. Thus we obtain

directionx. We would like to emphasize the surprising fact
ghat the Fresnel terms in the scattering plane exactly cancel
In our calculations, i.e.no quadratics, terms occur in Eq.
(102. Although the final result looks similar to a first order
approximation ins, i.e., similar to the Fraunhofer case, the
k result that every Bragg reflection is decorated by the Fourier
——— 5Ky, transform of the aperture function is a direct consequence of

k keeping allsecondorder termgFresnel limi} throughout the

calculations of Sec. Il.

S(K)=

~ o~ 1 ~
Vo' e(G)F(IK) 17 Ve @
G Ly

Ky Ky, 8K,
ki +ki," ki, T Q

X 8Ky, | Pe . (102

C. Examples

wherePe[ 5K, , 6K, , 6K, ] is the 2D Fourier transform with We will now present examples for the abovementioned
respect to X,y) of the function results for Bragg reflections. All calculations were performed
using Egs.(60) and (81). The successive foldings with the

I 2 2 detector resolution and the longitudinal coherence according
PF[X’y'5KZ]=P[X’V’5KZ]eXp[§ [(kL1+kLz)X2 to Eq. (39 were not taken into accouriite., we setKk=q
andQ=1). Furthermore we do not consider the out-of-plane
K2 yz]] (103 direction, i.e., we always assurkg=G,=0. As aperture A
! ' we assume a rectangular slit with widdtin they direction.

, , . The parameters which are the same for all calculations are
with P[x,y,6K,] the 2D Fourier transform with respect to the x-ray wavelength =1 A, the slit widths=50 xm, the

the. first .two variables of the peak functigf K, K, ,K,] location of the Brag reflectionG’=(0,0G,) and G,
defined in Eq.(100. FurthermoreWg(K,,K,,) represents —31g8A-1 and the sample size=1 mm. We always as-
the Fourier transform of sume symmetric configuration, i.e., we take=L,.
22 Figures 2 and 3 show the intensity distribution around a
_ ) Bragg reflection for different in-plane coherence lengghs
\I,F(S)_‘P(S)GXD{' 2 k2 k? S"J’ (109 =¢,=¢ along g, and gy, respectively. The sample-
incident—exit aperture distance was ,=1m yielding e
ie., ‘PF(KX,K ,) is the Fourier transform of the aperture =0.02<1 (extreme Fresnel limjit From the top to the bot-
function W (s) decorated by Fresnel terms in the out of planetom we havet{=5 um<s (incoherent limit butnot the true
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FIG. 3. Intensity around a symmetric Bragg reflectionGat FIG. 4. Interference of two Bragg reflections as function of the

=(0,0G,) for different coherence lengthsin the extreme Fresnel transverse coherence lengilin the extreme Fresnel case. The slit
case. The intensity is calculated along the transverse diregfion ~ width wass=50 um and from the bottom to the top decreases
The slit width wass=50um and from the bottom to the top  (£>s coherent limit,§~s, {¢<s intermediate caseg<s incoher-
decrease$é>s coherent limit,£~s, ¢<s intermediate caseg ~ ent limit). Note that the peaks do not overlap.

<s incoherent limij.

27/s. From a certain length, , the width of the Gaussian
incoherent limit in the sense thdt is not <&,=2um), &  given by P(5K) in Eg. (95 is smaller than that constant
=25um<s, £é=50um~s, and £&=100um>s (coherent Vvalue and the FWHM decreases linearly with increasing
limit). One can see that in the incoherent limit we have d ;.
broad peak with width Z~2x10"° A~ as already shown In the Fresnel é~1) and Fraunhofer¢>1) regimes the
analytically in Sec. IV A, whereas the peak is considerablysame FWHM is obtained regardless of whether we take the
more narrow when the coherence length is of the order of theoherent or incoherent limit. This is a direct consequence of
aperture width. Then the Bragg reflection is decorated wittihe fact that even an incoherent beam exhibits a certain de-
the Fourier transform of the incident aperture with most pro-gree of coherence by the time the radiation reaches the
nounced modulations in the coherent limit.

Figures 4 and 5 demonstrate interference effects which 25 . ———
may occur if two Bragg reflections are close together in re- "
ciprocal space. The same parameter values as for Figs. 2 and I

3 were used and we chose the same structure fagt@®

for both reflections. In Fig. 4 even weak interferences are
visible in the incoherent limit because we are in the extreme
Fresnel regime. These interferences become more and more
pronounced with increasing coherence lengitm Fig. 5 we

have calculated the intensity alolg in the coherent limit
&>s as a function of the distance between both reflections.
One can see that the closer the peaks are, the more pro-
nounced the interference effects become.

Figures 6 and 7 show the Bragg reflection in the coherent
and incoherent limits as a function of the sample-incident—
exit aperture distancke; ,. We note that for very large dis-
tances the oscillations from the aperture disappear and both
the coherent and incoherent limit yield the same result i 0.05x10- %1
(Fraunhofer limij. This is more clearly demonstrated in Fig. 1
8 where the full width at half maximurtFWHM) of a Bragg e
reflection as function of , , is plotted. It can be seen that the 0,~G, [107%87"]

FWHM remains constant in most of the extreme Fresnel re- °

gime (e<1). In the incoherentbut not true incoherent;, FIG. 5. Interference of two symmetrical Bragg reflections as
<¢) limit (open trianglesthis value is 1£; (see Sec. IV A  function of their distanc&,— G, in reciprocal space in the extreme
and in the coherent limitopen circleg this constant value is  Fresnel case and for the coherent ligit s.

AT R TR SRS RS S S

Intensity [arb. units]

05x107*A" |

0.2x107*R8 ™"
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FIG. 6. Bragg reflection at|,=G, for different incident/exit log(L, ,/m)

aperture-sample distancke; , in the coherent limit(coherence
length¢> s slit width). The curves shown are mainly in the extreme  FIG. 8. Full width at half maximuniFWHM) of a Bragg reflec-
Fresnel regime 0.01mL;,<100m and the Fraunhofer region tjon as function of the incident/exit aperture-sample distdngce
L;,=>10"m. The open circles are the values for the coherent lingit§)
whereas the open triangles give the results for the incoherent limit

sample(see discussion in Sec. I)AFor very large distances (¢<s). Note that both curves are almost identical in the Fresnel
L,,the FWHM remains constant at the value/2 (Fraun-  and Fraunhofer regimes, i.e., fer-0.3.
hofer casg

We note from Fig. 8 that a usual scattering experimenthat the examples in Figs. 2—8 do not include detector reso-
always is performed in the extreme Fresnel limit amdas  |ution, longitudinal coherence effects, and possible imperfec-

often anticipated in the Fraunhofer regime, which starts fotjons which may destroy the coherence at the sample posi-
the realistic parameter values which we have assumed for then.

calculations, at distancds, ,> 10* m. But we must repeat

S R B e o S V. SURFACES
351
. £<<s 4 Specular and diffuse scattering from rough surfaces must
" - ] also be considered carefully when partially coherent radia-
i L.2=0.01m tion is involved, since the usual ensemble averages over the
30 /\ . height fluctuations cannot be made right away. We consider
Li2=0-Tm the geometry for one single rough surface making a grazing
z i 1 angle of incidencer to the incident beam. The exit angle is
S 8 Lo=1m denoted byB=® — a throughout this paragraph. We choose
£ 2 ] surface-fixed coordinatesx(,y’,z’) such thatx’ is in the
> I , plane of the surface and parallel to the space fiiecident
2 E Lra=m . slit) x axis andz’ is normal to the average surfateee Fig.
ﬁ 0 N 1). Relative to the axex(,y’,z’) the Fourier components of
L1,2=10m . the ideal electron densitg..(K') are®
| ~ Qo -
15 Lamsom . 1otm | 0Ky, Kyr ,Kyr) =i K, f f dx'dy
A AR R X —iK., URVZ
-10-05 00 05 1.0 1.5 2.0 exp — Kz h(x",y")}
q,~G, [107°&™"] xexp —i(Kox"+Kyy')},
FIG. 7. Bragg reflection atj,=G, for different incident/exit (109

aperture-sample distande; , in the incoherent limit(coherence

length&s>s slit width). The curves shown are mainly in the extreme where g, is the electron density of the medium under the
Fresnel regime 0.01®L,,<100m and the Fraunhofer region surface, anch(x’,y’) defines the surface contour. Here we
L, =>10' m. note that the description given by E4Q.05 already includes
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finite size effects in the’ direction (absorption. Therefore ) 1 \v2 A’
we only have to truncate..(r’) by a 2D Gaussian in the’ “~|\20] W@ i)™ (114
andy’ directions: L Tl
To(r)=exp{— (x'2+y'2) 7212}, (106 ;hri Ecgﬂogyf(K) is defined by Eq(70); x, xc» Xs,» andxsc
in real space, with the Fourier transform 2
_ 1 L,
To(K')=(N2mA") " 2exp{ — (K2, + K2 )/A 3 8(K,0), X= Sifd i (119
(107 2
where we again assumed for simplicity=1,=I" and A’ 1 kfl
=2m/l". The Fresnel density then may be calculated simi- X~ 5D | 1 coSa+cosB |, (119
larly to the case of Bragg reflections via L2
~ ~ ~ ~ 2
! — ! ! ! 1 kL
0r(KN=0u(K)*T(K)*FK"), (108 N sin2a+sin2/8) | 117
where we note thaK' = (K, K/ ,K,/) is given insurface Lo
fixedcoordinates andr(K") is given by Eq(70). The trans- 2
formation between the componentskf and those oK in 1 k,_l i ,
laboratory coordinates is given by Xse™Sie & | k2. Sina Cosa—sin Cosp |,
2
K=Ky, (109 (118
andC,(Q,®) is defined via
Ky =—Ksina+K,cosr, (110
2
K= —Kycosr—Ksina. (111 (0. @)= (1+ie) Y 1+ix.e D)V (19

Since we have assumed a periodic surfaég’,y’) with

periodicitiesd,, andd,, we may define the reciprocal space
Since we now deal with the case of coherent radiation wejuantities(m, ,m, are integers

do not want to apply statistical averages to describe the sur-

A. Periodic surfaces

face h(x’,y") via correlation functions. Therefore we first 2w
calculate the case of a 2D strictly periodic surface, i.e., we Am, = M d_x’
assume

and

h(x"+d,,y")=h(x",y"+d,)=h(x",y"), (112 )
ar

which may be regarded as a particular “rough” surface with Qm, =My 4= (120
a few enhanced Fourier coefficief<’ The exact result for y

the Fresnel density in surface-fixed coordinatesandK’-vector components relative t, , gn,

(Ky Ky ,K,) may then be calculated to be o

Kx’,mszx’_qua (121
2r(K)=00Co(2,®) X F(Kyr m Kyrm K1)
MMy Ky m =Ky —Um,. (122
2 y y
o 6),(2 Kx’,mx The argumentymy(Ky/ ,K,) of the error function in Eq.
P T 2008 417 1Hie)? (113 is given by
€'? (XcKy’,my+XscKz’)2 v (Kyr K )_(_ i . )1/2
— m. !y z')— -5
TP T2k T Iixee? v 207,
H 12
x(erfl yo(Kyr Kz1)18m, 00m 0 " Xsdyrm F(xstixe Ky
_ (1+iXCErZ)1/2(XS+iX672)1/2’
+Hm m [Kyr Ko sh(x YD), (113 123
wheree, ande’ are given by and H,, . [Ky K, :h(x',y’)] are Fourier coefficients
X,y y
1 \Y2 A" which are directly related to the height functituix’,y’).
€ :(m) k—Ll Their explicit expression is

and Hin, m [Ky/ Ko sh(x )]
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1,2
dx/d y S x" Py’ S ] Zﬂ(kfl_{_kfz)
[ ' ' iK2,
><exp(—t2))exp{—l(qux TOm Y )} (124 Kexpl — - X | 130
ZQKLl Xs
with with
—i0k? 11iy.2\ Y o . L
A 1 Xc€ C (Q’(I)) _ m - | |
" ( 2 xotixe? (125 ° CRTAR (kElSmZaJrkflenzﬁ)l/(z
131)

Equation(113) is the result for the Fresnel density of a pe-
riodic surface without any approximations. In generalFurthermore the functioF(K ) is given by Eq.(70) and

| ¥m, (Kyr K1) | ~Ky Tk is a very large quantity and the P1(K") is defined by

expansion N 2 K2,
Pl(K’)=exp‘— . X ]

1 20(kE +ki) L+ie?
erf(z)~1— — exp(— %) (126
\/;Z < expl — €'’ (XcKy’+XscKz’)2
is always justified® Then Eq.(113 may be reduced to 20ki 1+ixee' '

-~ - - (132
2r(K")=00Co(Q, @) AK")Po(K'/Q) bm, 06m, 0

The result foros(K') given by Eq.(127) consists of two

+igo(1+ie®) Y xxu/ xs0 M2 parts: (i) a part which is only present fan,=m,=0 and
describes the Bragg-Fresnel scattering around @0 re-
% 2 7 (K ) flection and(ii) the sum over iy, ,m,) which describes the
mom, SUXTme TRy m pure surface scattering contribution. In the following we will

) only discuss this surface part.
e'? KX/,mX We will now again look at two limiting cases. First we
Xexpy — o

kzx+k2 ) 1tie? note that an expansion of E@L27) yields in the Fraunhofer
L L X mit i H St ’
1 2 limit, i.e., in the limit ’,e,>1(I"k_ —0)

12 Z—KZ,
XeX - € 2 X X Y 'my —~ IQO |I2
ZQkLl XsXsc ee(K") —>EK—Z’m - ex _F( -
he Ky mx +Ky)
Xy Ty 2 ~(e)
X +K§m ) (D, (K2, 133
Ky/’myX'F KZ’ ' (127) y ,my)] mx,my( z ) ( )

where we neg'ected terms of the Ord[d(leh(X’,y’)]z which is the USUa'E(K’) for a pel’iOdiC 2D structure dfnite

againstK,h(x’,y’) in the exponentials and terms of the S'Zfl r:n the x an('j:y d|r(|a(|:_t|o'n’s, r’esgeétlvelfg d
order k2 h(x’,y’) againstK, K, in the denominator. n the extreme Fresnel limi’, e, < g.(127) reduces

Slncek2 ’~1O*1°A 2 (for An=1A andL,,=1m) in the
X-ray reg|me this approximation is always well satisfied. Fur-

thermore we introduced er(K ):'Qomxzmy }-S(KX"mx’KY”my)PS(KX’lmx/Q’
he
== (129 Ky 1) e St Xee Xl
Xstlxe yh.my Ky’,mstc/Xs+ K,/
for notational convenience, and (134
- 1 dyr [dyr whereﬁS(Kx/ ,Ky) is given by
9 K= g | | deay
Xy dxrdy/ 0 0 _ 1 A’ZKZ,
Ky Ky)= -
X exp{ —iK#h(x',y")}exp{ =i (g X’ P Ky) eXp{ 4 (kfl+kfz)2]
+0m Y )}- (129 1 3?0722,
_ xXexpy — Z —2k4— ) (135)
The functionFg(K: ,K,.) is given by Xs®Ly
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T L— T T T T T T

| g<<s
30 M
| d=2x10°R
20 -
- d=5x10°8 1

Intensity [arb. units]
Intensity [arb. units]

d=2x10°R

0 T Y T S T Y S TR N N
-0.5 0.0 0.5

g, [107A7"]

FIG. 9. The scattering from a periodic surface in the coherent FIG. 10. The scattering from a periodic surface in the incoherent
limit £&>s and for the extreme Fresnel case~<(0.002<1). Trans-  limit ¢<s. Again transverse scans fqp,=0.1 A~1 along q, are
verse scans foq,,=0.1 A~! alongq,, are shown for lateral spac- shown for lateral spacings with 5x10* A<d<5x10° A.
ingsd with 5x10* A<d<5x10° A.

and describes .the shape of the 2D peakst at p?sition((%su; eogpélgnlevdol:r e;gopr)bé ric\)/\(lj?c? sl?r?;nc en %totnetzm(;?g,?c\?vzum
(Am,Am ) In reciprocal space. Since the functiofg(K')  ave chosen a rectangular shape with lateral spading
and Pg(K') given by Egs.(130) and (135 are the 2D =d and equal width of the bars and grooves for which
equivalents taF(K') and P(K") defined by Eqs(70) and Fﬁﬁ) n (K,) may be easily calculated:

(100 in the case of 3D Bragg reflections, we do not haveto *" ¥

discuss again the incoherent and coherent limits as done in

Secs. IV A and IV B. However, we would like to emphasize ~
one point where the 3D and 2D cases differ significantly. Ashm (Kz7)

stated a}t the end qf Sec.. IVB we saw that the oscillating exp(—iK ,ho/2)cog K, ho/2)
quadratic terms iis, in the final expression exactly cancel so

that we got in they direction the Fourier transform oF (s,) =
rather than that o (s,)expiQkf s/2}. If we calculate the

s,-dependent part of the product }(K
+Qk{ 9expiQif $72}. for surfaces[see Egs.(60) and (137)

(127)] we get

for m=0,
0 for m even#0,

2/(7rm)exp —iK , hg/2)sin(K, hy/2)

for m odd,

where we sem,=m and we omitm,. The height of the

o K kisitB , stepped surface is denoted by and was set tdo=200 A
Sy part-exp | 5 17— o o S8 Sy in the calculations. Figure 9 shows transverse scans for dif-
! L2 ferent lateral spacingd in the coherent limit. From the bot-
X exp{(x/xs)Kyrsysina}. (136  tom to the topd increases and it can be seen that interfer-

ences occur when the peaks start to ovefle curves for

The linear term irs, alone would yield in the coherent limit d=5x10° A and d=2x10° A). The curve for d
the Fourier transform of the aperture functioh(s,) as =5x 10* A shows one single peak decorated by the aperture
shown in Sec. IV B. However, now tre terms do not van-  diffraction effects. For very largd (d=5x10° A, topmost
ish and the argument of the first exponential is of the ordeturve the satellite peaks are very close and again one single
kflzs§~1 (for Lyo~1m, A=1A4, sy,~10um) and rather peak is visible but weak rapid oscillations are still present
rapid additional oscillations are expected in the case of suthroughout the wholej,, region.
face scattering. Figure 10 shows the opposite limit, i.e., the incoherent

Figures 9 and 10 show calculations of transverse scansase. Now all interference effects have vanished and only
alongq, for a periodic surface in the coherent and incoher-(broad peaks are visiblé*° Note that for very larged(d
ent limits where we used Eq&0) and(127). As parameters >1Xx10° A) only one peak is remaining since the satellites
A=1A, L;,=1m,|’=1cm, a width of the incident aper- are now too close and their intensity behaves as’ Isee
ture of s=10um, andq,=0.1 A~! were assumed. The Eq. 137.
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B. Arbitrary surfaces in terms of the mutual coherence functitMCF) of the ra-
Finally we would like to discuss briefly the scattering diation across a specified incident aperture. We have ob-
from nonperiodic rough surfaces. Performing the linhjt , tained the MCF of the scattered radiation across an outgoing

aperture and in particular an expression for the intensity
measured in a detector placed behind the outgoing aperture.
The relationship between the so-called “resolution function
folding” approach and the treatment in terms of coherence
lengths is made explicit, and various limiting regimes are

dy,—c0 in Egs.(127) and (129 yieIdsEF(K’) for an arbi-
trary nonperiodic surface contotn(x’,y’). We get for the
surface part

2K =igo(1+i€2) Y xxs/ xs0) V2 discussed, such as the Fraunhofer and Fresnel regimes, and
for each the coherent and incoherent limits. It is shown that,
Xf f dKo.dK., F (R K ) except in certain cases, the observed scattering as a function
' S ! . . ~ .
g g of g cannot be interpreted simply &g(q)|? folded with an
' ~, instrumental resolution function, and also that in certain re-
<expl — K gimes, the combination of coherence and finite resolution
29(k51+ kEz) 1+iel? can cause scattering from different Fourier components of

o(r) to interfere in reciprocal space. The results are illus-
p{ €2 XZX_RZ/] trated by application to the simple cases of Bragg scattering
X ex

from perfectly periodic(but finite) crystals and scattering
from laterally structured surfaces, and by numerical calcula-
_ _ L tions. These results illustrate that x-ray scattering experi-
h[K, — K, Ky =Ky ;Kyrﬁ- K,) ments must in general be interpreted quantitatively with cau-
X ' tion, after first establishing which experimental regime

ZQkEl XsXsc

Kyx Kz (Fraunhofer, Fresnel, extreme Fregnehe is working in.
(138 The generalization of these results to the case of intensity
correlation spectroscopy or time-dependent scattering will be
where . .
presented in a forthcoming paper.
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—>(27-r)25(Kx,)5(Ky/) thus regaining the usual result for
surfaces that the diffuse scattering is proportional to
h[K,: Ky ;K. 1/K, (“truncation rod scattering” see In this appendix we show how to calculag(K) in real
Refs. 21 and 2b Furthermore, we see that in E(.38) the  space with one additional standard Fourier transform. After a
combination Ky Y+K,/) rather thanK,, alone enters into Fourier decomposition and truncation of the electron density
the last argument of the functiér®. This means that a clear ©.(r) of an infinite crystal by a Gaussian, the Fresnel elec-
separation of specular and diffuse scattering in general is néton density given by Eq30) may be written as
possible if the incident aperture is illuminated by partially 0
coherent radiation. R e : 2 2

Finally we note that the results of this subsection may be QF(r)_% QF(G)eXp{' 2 (KL, ro ot kLer)]
easily generalized to truncation rod scattering of Bragg re-

~ ~ H _r2.2/12
flections if in EQ.(127) o is replaced by= ¢ 0(G’) andK’ X expiG-rexp(—r=a/1%). (A1)

is replaced byK' =K' —G’ with G’ being the locations of \we now can use the result that for a 3D function given by
the Bragg reflections in reciprocal space given in surface

fixed coordinategsee also Sec. IV Recently, some system- p(
F(r)=ex

APPENDIX A

atic studies of the speckle seen in surface scattering from
coherent x-ray beams have been carried®but.

21 A xj), (A2)

where theA;; are complex numbers, its Fourier transform is

VI. SUMMARY AND CONCLUSIONS given by
We have presented a general formulat{@ithin the ki- a2 3
. - ; - ~ T 1
nematic approximation for the x-ray scattering from a F(K)=——=—exp —— > (Ai_-l)Kin (A3)
sample characterized by an electron density distribugi@n |DetA |12 4i7=1 Y
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If we considerE(K—G) instead ofE(K) and a matrixA  with & being_ the_(isot_ropio transverse c_oherence Ierjgth at
defined by the arguments of the exponentials in@d) we  aperture A with sizer in thex andy directions, respectively,

easily may obtain Eq@81) as a result fop(K) in the case thgn thes ands’ integrals may be easily evaluated yielding
of Bragg reflections. (with Q=1)

27y 2 . kEl 2 2 gtz

——| expi 5 (ri ;—=rPl1-—

kngs 2 ' ' s

<ol - oo | &
exp —
2&5

APPENDIX B
L(r',r,0)=

In this appendix we will explicitly calculate the MCF at
the sample position as given by

t 2 12
— (r{ 4%

g
Fs(r’,r,O)zffdsds’\lf(s)‘lf*(s’)g(s—s’)
+r =] gl ], (B4)
Xexp[i 9 k2 [(s—r, 1)2—(s' —r! )2]]-
2 h i e where the definition
G (1+ 40?2+ &G —1
If we assume Gaussians gés—s') and¥(s), i.e., 2_ 42 ! thhy B5
£=& T (B5)
N2 t ™ML
(s-5) p| X } (B2) 1
s—s')=exp — ,
J 2§ was used. EqB4) is the explicit representation of the MCF

at the sample position in Gaussian approximation and Eq.
W (s)=exp — $ (B3) (B5) is equivalent to Eq(43) which defines the coherence
202 length at the sample position.
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