
PHYSICAL REVIEW B 1 FEBRUARY 1998-IVOLUME 57, NUMBER 5
Order parameter and magnetic field of a vortex line pinned at a point defect:
Ginzburg-Landau theory

Mark Friesen and Paul Muzikar
Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396

~Received 9 September 1997!

Recent theoretical work has derived the correct form of the Ginzburg-Landau differential equations, for the
superconducting order parameter and vector potential, in the presence of a small defect. Here, these equations
are applied to the case of a single vortex line pinned on such a defect. We develop the coupled set of partial
differential equations, and show how to derive analytic solutions for the order parameter and magnetic field
perturbations in the region of space near the defect. Certain properties of the unperturbed vortex solution are
needed to totally specify our result; these are evaluated numerically, and compared with those deduced from
Clem’s approximate solution.@S0163-1829~98!02305-4#
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I. INTRODUCTION

A vortex line in a type-II superconductor induces spat
variations of the order parameterh(R) and magnetic field
B(R). These quantities can be studied, for temperatu
close toTc ~the superconducting transition temperature!, and
on length scales greater thanj0 ~the zero temperature corre
lation length!, by using the Ginzburg-Landau~GL! theory.
When a single small defect or impurity is present, the vor
line can lower its free energy by positioning its core at t
impurity site; this effect is known as vortex pinning.

Recent work by Thuneberg1,2 and others3,4 has shown
how to correctly include into the GL framework a localize
impurity potential which is not necessarily weak. The p
ning energy1–3 and pinning potential1 have already been ca
culated in several situations; such quantities are the princ
ingredients of macroscopic pinning theories. However,
impurity will also influence the superconductor in other i
teresting ways, which can be observed experimentally, u
microscopic probes. For instance, both the order param
h(R) and magnetic fieldB(R) are altered near the impurity
These perturbations therefore provide important insight i
the nature of pinning. From a theoretical perspective,
calculation of the perturbations inh(R) and B(R) consti-
tutes a nontrivial application of the Thuneberg theory.

In this work, we investigate the changes of the order
rameterdh(R) and magnetic fielddB(R) due to the impu-
rity, when a vortex core is placed on a defect. Near the de
these quantities can be calculated analytically. Away fr
the defect,dh(R) decays exponentially over the correlatio
length scalej(T) while dB(R) decays exponentially ove
the penetration length scalel(T).

The paper is organized as follows. In Sec. II we revi
the appropriate GL theory, and set up the general equat
for our problem. These equations,~21! and~22!, are the main
results of this section. They are a pair of coupled, line
partial differential equations for the impurity-induce
changes in the order parameter and vector potential.

In Sec. III we consider in particular the spatial regio
close to the impurity, wheredh(R) anddB(R) are largest.
In this region we are able to derive explicit expressions
570163-1829/98/57~5!/2709~4!/$15.00
l

s

x

-

le
e

g
ter

o
e

-

ct

ns

r,

r

the perturbations—the simplicity of the result fordB(R) is
somewhat remarkable. Equations~25!–~27! contain our main
results. In Sec. IV we discuss the results, and estimate
magnitude of the perturbation effects. In the Appendix
calculate, numerically, the GL solutions for vortices in t
absence of impurities.

II. GL EQUATIONS

A. General formulation

For simplicity, in this paper we consider a superconduc
with a spin singlet, isotropic~i.e., k̂-independent! energy
gap. The GL free energy, in terms of the complex ord
parameterh(R) and vector potentialA(R), is given, in the
absence of the impurity, by

Vpure5E d3RH 1

2
KuDhu21auhu21buhu4

1
1

8p
~¹R3A!2J , ~1!

Here, D5¹R12ieA/\c is the gauge-invariant derivative
and the local magnetic field is given byB5¹R3A. The
coefficientsK, a, andb can be evaluated by using the m
croscopic theory of a superconducting Fermi liquid. The
sults are

K5
7z~3!N~0!\2vF

2

24~pkBTc!
2

, ~2!

a5N~0!~T2Tc!/Tc , ~3!

b5
7z~3!N~0!

16~pkBTc!
2

, ~4!

whereN(0) is the density of states at the Fermi surface, a
vF

2 represents the Fermi surface average of the square o
Fermi velocity. Note thatK can be more generally repre
sented as a tensorKi j . However, we have considered he
the isotropic caseKi j 5Kd i j .
2709 © 1998 The American Physical Society
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It is convenient at this point to rescale our variables
order to simplify the following equations. We will measu
lengths in terms ofj(T) @with j2(T)5K/2uau#, and will nor-
malize the order parameter in terms of its bulk valuehb(T)
~with hb

25uau/2b) for a uniform superconductor. Thus w
define the following dimensionless quantities:

r5R/j~T!, ~5!

c~r !5h~r !/hb~T!, ~6!

a~r !52ej~T!A~r !/\c, ~7!

D5¹r1 ia~r !5j~T!D, ~8!

b~r !5¹r3a52ej2~T!B~r !/\c. ~9!

When an impurity is located atr50, the ~dimensionless!
GL equation acquires an extra term:1,4

c2ucu2c1D2c5
s\2vF

2

576~kBTc!
3j5~T!uau

3@D0c0~r !ur 50#•@D0d3~r !#. ~10!

To understand this equation, several points should be b
in mind.

~1! The effect of an impurity on the normal state qua
particles can be represented by a potentialv( k̂,k̂8) for scat-
tering from k̂ to k̂8 on the Fermi surface. For simplicity, w
take the potential to be ofs-wave form, so thatv( k̂,k̂8)5v.
The impurity parameters, which appears in the right-han
side of Eq.~10!, is defined as5

s5
N2~0!p2v2

11N2~0!p2v2
. ~11!

The quasiparticle scattering cross section is then proporti
to s/kF

2 . In the present theory,1–4,6 a ‘‘small’’ impurity im-
plies thats/kF

2!j0
2 . Thus, the small parameter for the e

pansions which follow becomess/kF
2j0

2 . However, there is
no restriction on the magnitude ofv. Note that we conside
here a general Fermi surface, subject only to the symm
constraintKi j 5Kd i j . For ans-wave order parameter and fo
a Fermi surface with at least orthorhombic symmet
Thuneberg has shown how to go beyond the assumption
the impurity potential satisfies v( k̂,k̂8)5v.2 With
Thuneberg’s generalization, Eq.~10! remains valid, provided
that Eq.~11! is generalized appropriately.

~2! To derive the GL equation~10!, we coarse grain a
more microscopic theory,6 and so lose information on lengt
scales shorter thanj05\vF /kBTc . At the GL level, the
small impurity appears as ad-function driving term.

~3! Equation~10! should be expanded to first order in o
small parameters/kF

2j0
2 . This amounts to the following lin-

earization procedure. We writec(r )5c0(r )1dc(r ), a(r )
5a0(r )1da(r ), and D05¹r1 ia0, wherec0(r ) and a0(r )
solve Eq.~10! in the absence of the impurity~i.e., with s
50). We then expand the left-hand side of Eq.~10! to first
order indc andda, and set this first order piece equal to t
right-hand side.dc andda then represent the parts of the G
ne

-

al

ry

,
at

solution proportional tos. Consistent with this linearization
procedure, the right-hand side of Eq.~10! involves only the
unperturbed termsc0(r ) anda0(r ).

In the presence of the impurity, the~dimensionless! Max-
well equation also picks up an additional term (J2):

¹r3¹r3a54p~J11J2!, ~12!

J152
ie2K2

2\2c2b
~cD* c* 2c* Dc!, ~13!

J25
ise2vF

2K

576~kBTc!
3c2j3~T!b

~c0D0* c0* 2c0* D0c0!d3~r !.

~14!

Equation~12! should also be linearized indc(r ) andda(r ),
with J1 evaluated to first order in these quantities andJ2
evaluated usingc0(r ) anda0(r ).

For a given@c0(r ),a0(r )#, Eqs.~10! and~12! constitute a
pair of linear, coupled, differential equations fordc andda.
For an application of these equations in a simpler conte
see Ref. 7.

B. Application to a single vortex line

We now specialize, and apply Eqs.~10! and ~12! to the
case of a single vortex line which is centered on an impu
at the origin.c0(r ) anda0(r ) then represent the solutions o
the s50 GL equations, with a single vortex at the origi
These unperturbed vortex solutions are well studied.8 ~Some
aspects of the computations are discussed in the Appen!
The following gauge choice is most convenient:

c0~r !5 f 0~r!e2 if, ~15!

a0~r !5a0~r!f̂, ~16!

where we have used polar coordinates (r,f,z) and taken the
vortex line to be along thez axis.9 At large r, we have
f 0(r)→1, while in the limitr→0, we have

lim
r→0

$ f 0~r!5gr, a0~r!5tr%. ~17!

g and t are constants which depend onb and K through
the Ginzburg-Landau parameter k25l2(T)/j2(T)
5\2c2b/4pe2K2. (g and t should be determined numer
cally, as described in the Appendix.!

According to Eqs.~10! and ~12!, the impurity perturba-
tions toc0(r ) anda0(r ) take on the following form:

dc~r !5 f 1~r,z!e2 if, ~18!

da~r !5a1~r,z!f̂. ~19!

Thus, the order parameter magnitude will depend onz as
well asr. Further, we find

db~r !5¹r3da52
]a1

]z
r̂1

1

r

]

]r
~ra1!ẑ. ~20!
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So, the magnetic field in the presence of the impurity w
now have ar̂ component, in addition to a perturbedẑ com-
ponent.

Using the preceding definitions~15!, ~16!, ~18!, and~19!,
we arrive at the following pair of coupled, linear, differenti
equations forf 1(r,z) anda1(r,z):

]2f 1

]z2
1

1

r

] f 1

]r
1

]2f 1

]r2
2S a02

1

r D 2

f 1

22a1f 0S a02
1

r D1 f 123 f 0
2f 1

5
gs\2vF

2eif

576~kBTc!
3j5~T!uau

~ x̂2 i ŷ!•¹rd
3~r !, ~21!

]2a1

]z2
1

1

r

]a1

]r
1

]2a1

]r2
2

a1

r2
5

1

k2H f 0
2a112 f 0f 1S a02

1

r D J .

~22!

Note that the magnitudes off 1 anda1 are determined by the
d-function driving term in Eq.~21!, particularly through the
impurity parameters. We also note that since the unpe
turbed vortex line has a vanishing current density at the
purity site, the explicit impurity term~14! in Maxwell’s
equation is zero. Thus, the changes in the magnetic field
due solely to the changes in the order parameter cause
the impurity.

III. SOLUTION CLOSE TO THE IMPURITY

The rather formidable set of equations forf 1(r,z) and
a1(r,z) simplifies greatly, at distances much closer to t
impurity thanj(T); in our rescaled variables, this means th
the results of this section are meant to cover the regionr2

1z2!1. Recalling thatf 0(r) anda0(r) both vanish linearly
asr→0, the proper short distance versions of Eqs.~21! and
~22! become

]2f 1

]r2
1

1

r

] f 1

]r
1

]2f 1

]z2
2

f 1

r2

5
gs\2vF

2eif

576~kBTc!
3j5~T!uau

~ x̂2 i ŷ!•¹rd
3~r …, ~23!

]2a1

]r2
1

1

r

]a1

]r
1

]2a1

]z2
2

a1

r2
52

2g

k2
f 1 . ~24!

One advantage of the formulation we have chosen is
the equations become decoupled in the following sense:
can now solve Eq.~23! independently forf 1, and then use
this result in Eq.~24! to find a1. Remarkably enough, whe
the analytic form for f 1(r,z) is inserted into Eq.~24!, a
simple, analytic solution fora1(r,z) may also be found,
leading to a simple solution fordb(r ). The following results
are obtained:
l

-

re
by

e
t

at
e

dc~r !5
gs\2vF

2

2304p~kBTc!
3j5~T!uau

re2 if

~r21z2!3/2
, ~25!

db~r !5
g2s\2vF

2

2304p~kBTc!
3j5~T!uauk2

3H zrr̂

~r21z2!3/2
1

~2z21r2!ẑ

~r21z2!3/2J , ~26!

da~r !5
g2s\2vF

2

2304p~kBTc!
3j5~T!uauk2

rf̂

~r21z2!1/2
. ~27!

IV. DISCUSSION

Equations~25!–~27! are the main results of this pape
They reflect the changes in the order parameter, magn
field, and vector potential due to the impurity. We now d
cuss important points concerning these equations.

~1! The results hold for distances from the impuri
greater thanj0, but less thanj(T). Close enough toTc , this
range of validity can be reasonably large, sincej(T)
;j0@(Tc2T)/Tc#

21/2. Furthermore, any anomalies whic
appear in Eqs.~25!–~27! as r,z→0 are not physical, since
these solutions are not valid at short distances.

~2! The magnitude of the order parameter near the vor
core actually increases from its unperturbed value, when
impurity is taken into account. This is consistent with t
idea that scattering from nonmagnetic impurities lowers
free energy cost of gradients of the order parameter.1 The
situation is analogous to the case of a finite concentration
impurities, where the GL coefficientK is reduced from its
impurity-free value.

~3! Associated with the increase inucu, circulating vortex
currents are also enhanced near the defect site, causingẑ
component ofb(r ) to increase. We may estimate the large
deviation of the magnetic field from its unperturbed valu
dBmax. To do this, we estimatedb at a distancej0 from the
impurity. Note that in real units,B5Hc2(T)b, where
Hc2(T)5\c/2ej2(T). If we take g2 and s to be of order
one, we finally get

dB

Hc2
.

2~kBTc!
2

k2EF
2

~Tc2T!

Tc
. ~28!

It should be possible to test both the magnitude and temp
ture dependence of this prediction using a suitable mic
scopic probe.10

~4! In spite of the local perturbations to the magnetic fie
impurities do not affect the quantization of vorticity; the n
flux associated with a pinned vortex remainsF0 in the ẑ
direction. However, the vortex field lines, which are paral
to ẑ for the unperturbed vortex, now acquire a newr̂ com-
ponent near the defect. The perturbation to the magnetic fi
is largest inside a radiusj0 of the defect@see Eq.~28!#. At a
distance of orderj(T) from the vortex core, the perturbatio
field lines begin to close on themselves. Full screening
dB(r ) occurs at distances of orderl(T). Note that neither
the screening ofdB(r ), nor the decay ofdc(r ) over length
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scalej(T), can emerge from Eqs.~23! and~24!, since those
apply only very near the impurity.
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APPENDIX: DETERMINATION OF g AND t

In Sec. IV of this paper, an estimate was made for
magnitude ofdB, near the defect site, for which it was foun
that dB}g2. In general, many quantities calculated near
vortex core depend sensitively on the parameterg
5] f 0 /]rur→0, regardless of the presence of a perturbing
fect. To the best of our knowledge, there exists in the lite
ture no general calculation of this important quantity, nor
the quantityt5]a0 /]rur→0. Such a calculation is therefor
presented here. The results are found to agree quite well
the approximate solution of Clem.11

Using dimensionless variables, the equations satisfied
f 0(r) anda0(r) become

d2f 0

dr2
1

1

r

d f0

dr
2S a02

1

r D 2

f 01 f 02 f 0
350, ~A1!

d2a0

dr2
1

1

r

da0

dr
2

a0

r2
2

1

k2
f 0

2S a02
1

r D50, ~A2!

while the boundary conditions, appropriate for a vortex c
located atr50, are f 0(r)5a0(r)r50 when r→0, and
f 0(r)5a0(r)r51 when r→`. Equations~A1! and ~A2!
cannot be solved exactly, in the general case. We there
solve the equations numerically, for fixed values ofk. To
characterize our results, we show the resultingk depen-
dences ofg and t in Fig. 1, with k.1/A2 for a type-II
superconductor.

The results of Fig. 1 reflect an exact treatment of
vortex, within the GL description. An approximate, but an
lytic, treatment has also been provided by Clem.11 In this
t.
-
st

e

e

-
-
f

ith

by

e

re

e
-

scheme, only the second GL equation~A2! is solved. This is
accomplished by using the variational formf 0.r/(r2

1jv
2)1/2, which permits an exact solution fora0. The GL free

energy is then constructed for the vortex line, and mi
mized, in terms of the variational parameterjv . Clem’s
model thus improves and regularizes the London vortex
lution, by introducing a vortex core. Indeed, the results
the quantityt ~which emerges from the conventional Londo
theory only throughad hocregularization! are quite impres-
sive; Fig. 1 shows Clem’s approximate, transcendental s
tion for t, as well as its large-k asymptotic behavior:t
.(lnA2k2gE)/2k2, where gE.0.577 is Euler’s constant
Although the model is not designed to provide accurate
formation in the vicinity of j(T), we may still use it to
calculateg as shown in Fig. 1. It is interesting that the ou
come has the correct qualitative behavior, but is slightly
large.

FIG. 1. Results are shown forg ~bottom two curves! andt ~top
three curves!, defined in Eq.~17!, as a function of the Ginzburg
Landau parameterk. Exact numerical solutions of Eqs.~A1! and
~A2! are given as solid lines. Approximate solutions, due to Cle
are shown as dashed lines; these describet very accurately for all
k. The large-k asymptotic form of Clem’s result,t.(lnA2k
2gE)/2k2, is shown as a dotted line, and is accurate in the ra
k*5.
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