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Order parameter and magnetic field of a vortex line pinned at a point defect:
Ginzburg-Landau theory
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Recent theoretical work has derived the correct form of the Ginzburg-Landau differential equations, for the
superconducting order parameter and vector potential, in the presence of a small defect. Here, these equations
are applied to the case of a single vortex line pinned on such a defect. We develop the coupled set of partial
differential equations, and show how to derive analytic solutions for the order parameter and magnetic field
perturbations in the region of space near the defect. Certain properties of the unperturbed vortex solution are
needed to totally specify our result; these are evaluated numerically, and compared with those deduced from
Clem’s approximate solutionS0163-18208)02305-4

l. INTRODUCTION the perturbations—the simplicity of the result f6B(R) is
somewhat remarkable. Equatiof5)—(27) contain our main

A vortex line in a type-Il superconductor induces spatialresults. In Sec. IV we discuss the results, and estimate the
variations of the order parametei(R) and magnetic field magnitude of the perturbation effects. In the Appendix we
B(R). These quantities can be studied, for temperaturesalculate, numerically, the GL solutions for vortices in the
close toT, (the superconducting transition temperajued  absence of impurities.
on length scales greater thdp (the zero temperature corre-
lation length, by using the Ginzburg-Landa{GL) theory. Il. GL EQUATIONS
When a single small defect or impurity is present, the vortex
line can lower its free energy by positioning its core at the
impurity site; this effect is known as vortex pinning. For simplicity, in this paper we consider a superconductor

Recent work by Thunebeld and otherd* has shown with a spin singlet, isotropidi.e., k-independent energy
how to correctly include into the GL framework a localized gap. The GL free energy, in terms of the complex order
impurity potential which is not necessarily weak. The pin-parameterp(R) and vector potentiah(R), is given, in the
ning energy > and pinning potentialhave already been cal- absence of the impurity, by
culated in several situations; such quantities are the principle 1
mgre@ent; of macroscopic pinning theories. However, .the qure:f d3R[§K|’Dn|2+a|n|2+,8|77|4
impurity will also influence the superconductor in other in-
teresting ways, which can be observed experimentally, using 1
microscopic probes. For instance, both the order parameter + —(VrXA)?
7n(R) and magnetic field(R) are altered near the impurity. 8w
These perturbations therefore provide important insight intHere, D= Vg + 2ieA/#ic is the gauge-invariant derivative,
the nature of pinning. From a theoretical perspective, theind the local magnetic field is given B=VgxA. The
calculation of the perturbations in(R) and B(R) consti-  coefficientsK, «, and 8 can be evaluated by using the mi-

tutes a nontrivial application of the Thuneberg theory. croscopic theory of a superconducting Fermi liquid. The re-
In this work, we investigate the changes of the order pasylts are

rameterédn(R) and magnetic fieldB(R) due to the impu-
rity, when a vortex core is placed on a defect. Near the defect 7§(3)N(o)ﬁ2vg

A. General formulation

, ()

these quantities can be calculated analytically. Away from 7 2
: : 24( kg T,)

the defect,67(R) decays exponentially over the correlation Blc

length scaleé(T) while 6B(R) decays exponentially over _

the penetration length scaldT). a=N(0)(T—T)/Te, €

The paper is organized as follows. In Sec. Il we review
the appropriate GL theory, and set up the general equations ~ TZ(3)N(0) @
for our problem. These equationf®l) and(22), are the main B 16( WkBTc)Z,

results of this section. They are a pair of coupled, linear,

partial differential equations for the impurity-induced WhereN(0) is the density of states at the Fermi surface, and

changes in the order parameter and vector potential. vZ represents the Fermi surface average of the square of the
In Sec. lll we consider in particular the spatial region Fermi velocity. Note thaK can be more generally repre-

close to the impurity, wheré»n(R) and 6B(R) are largest. sented as a tensd{;; . However, we have considered here

In this region we are able to derive explicit expressions forthe isotropic cas;; =Kdj; .
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It is convenient at this point to rescale our variables insolution proportional tar. Consistent with this linearization

order to simplify the following equations. We will measure procedure, the right-hand side of E40) involves only the

lengths in terms of(T) [with £€2(T)=K/2|«|], and will nor-  unperturbed termgy(r) andag(r).

malize the order parameter in terms of its bulk vaiygT) In the presence of the impurity, tlidimensionlessMax-

(with 7;§=|a|/2/3) for a uniform superconductor. Thus we well equation also picks up an additional terdy);:

define the following dimensionless quantities:

VrXVrXa=47T(J1+J2), (12)
r=R/&(T), 5
Y(r)= (1) 5(T) ®) le®K*® .
70 5(T), 1= ey VOV UT DY), (13
a(r)=2e&(T)A(r)/hc, (7)
D=V, +ia(r)=&T)D (tS) J |7eueK (oD ¥ — 15 Dotho) 8%(r)
=V, = , - - r).
2 76 ke T P2 (T) B %oDo o — ¥o Dotbo
b(r)=V,xa=2e&(T)B(r)/%c. 9 (14)
When an impurity is located at=0, the (dimensionless  Equation(12) should also be linearized ifiys(r) and sa(r),
GL equation acquires an extra tefrf: with J; evaluated to first order in these quantities abd
evaluated usingy(r) andag(r).
oh?vi For a giver| ¢o(r),ao(r)], Egs.(10) and(12) constitute a
y—|y>p+D pair of linear, coupled, differential equations 8¢ and sa.

5
576(kBTC) (Dl For an application of these equations in a simpler context,
X[Doto(r)|;—0]-[Dod3(r)]. (10)  see Ref. 7.

To understand this equation, several points should be borne
in mind.

(1) The effect of an impurity on the normal state quasi- We now specialize, and apply Eq4.0) and (12) to the
particles can be represented by a potenti@,k’) for scat-  case of a single vortex line which is centered on an impurity
tering fromk to k’ on the Fermi surface. For simplicity, we at the origin.yy(r) anday(r) then represent the solutions of

, N the 0=0 GL equations, with a single vortex at the origin.
take the potential to be afwave form, so thabt (k,k’)=v.

. ; . ) ) These unperturbed vortex solutions are well stufié8ome
The impurity paramete, which appears in the right-hand agpects of the computations are discussed in the Appendix.
side of Eq.(10), is defined a3

The following gauge choice is most convenient:

B. Application to a single vortex line

2 2.2 .
_ _NOmv” 11 bo(r)=Tfo(p)e %, 15
1+N%(0) 72?2
The quasiparticle scattering cross section is then proportional a(r)=2ao(p) ¢, (16)

2 ~4.6 “ ” o H H

to_ olKg . In th2e present theory,® a “small” impurity im- where we have used polar coordinatpsd#,z) and taken the
plies thata/k <§0 Thus, the small parameter for the eX- \,qrtex line to be along the axis® At large p, we have
pansions which follow becomas/kZ&5. However, there is fo(p)— 1, while in the limitp—0, we have
no restriction on the magnitude of Note that we consider
here a general Fermi surface, subject only to the symmetry lim{fo(p)=vp, ao(p)=rp}. (17)
constraint;; =K g;; . For ans-wave order parameter and for p—0
a Fermi surface with at least orthorhombic symmetry,
Thuneberg has shown how to go beyond the assumption that and 7 are constants which depend qihande thngQh
the impurity potential satisfies v(k,k’)=v.2 With the2 szzbzurgZ Landau  parameter x“=A"(T)/&(T)
Thuneberg’s generalization, EQLO) remains valid, provided =7 C“B/Ame°K”. (y and 7 should be determined numeri-
that Eq.(11) is generalized appropriately. cally, as described in the Appendix. _

(2) To derive the GL equatioi10), we coarse grain a According to Egs.(10) and (12), the |mpur|ty perturba-
more microscopic theo§and so lose information on length tiONS 10 4(r) andao(r) take on the following form:
scales shorter thago=nhvg/kgT.. At the GL level, the

small impurity appears as &function driving term. syp(r)=t1(p.2)e”"?, (18)
(3) Equation(10) should be expanded to first order in our A
small parameterr/kﬁgg. This amounts to the following lin- sa(r)=ay(p,z) ¢. (19

earization procedure. We writg(r) = io(r) + du(r), a(r) ] )
—ay(r)+da(r), and Dy=V,+ia,, where yo(r) andag(r)  Thus, the order parameter magnitude will dependzoas

solve Eq.(10) in the absence of the impurit§.e., with o  Well asp. Further, we find

=0). We then expand the left-hand side of EfQ) to first ; v

order in 8¢ and da, and set this first order piece equal to the __ ﬂA Lo

right-hand sidesys and éa then represent the parts of the GL ob(r) =V, x sa= p (p a1)z (20
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So, the magnetic field in the presence of the impurity will yaﬁzv,zz pe—iqs

now have g component, in addition to a perturbecom- Sy(r)= , (25
w comp P 2304m(kaTo) *6%(T)]al (p?+2)%

ponent.
Using the preceding definitiord5), (16), (18), and(19), s 22
we arrive at the following pair of coupled, linear, differential Sb(r) = Yy oh v
equations forf;(p,z) anda;(p,2): 23041 (kgT)3¢5(T)| | 2
a2f1+ Loty 9t 1)2f " zpp . (22°+p?)z 26
— —_—— a —_—— y
(?ZZ p t?p (7p2 0 1 (p2+ Z2)3/2 (p2+ Z2)3/2
1 2 ﬁZ 2 “
_2a1f0 aO_ _)+f1_3f3f1 5a(r): Yo vF P¢ . 27)
P 2304m (ks To)%6%(T)|a|i? (p?+2%)"
yoh?vie?

X—iy)-V,8%(r), (21) IV. DISCUSSION
~ 576k To T al ’

Equations(25)—(27) are the main results of this paper.
#a, 1 da, a; a; 1 , They reflect the changes in the order parameter, magnetic
I +———:_2 f0a1+2fofl ao_—

field, and vector potential due to the impurity. We now dis-
972 P ap ﬁpz p2 K

cuss important points concerning these equations.
(22 (1) The results hold for distances from the impurity
greater thargy, but less tharg(T). Close enough td ., this
range of validity can be reasonably large, Sing€r)
~&E(T.—T)/T:] Y2 Furthermore, any anomalies which
appear in Eqs(25—(27) asp,z—0 are not physical, since
these solutions are not valid at short distances.
(2) The magnitude of the order parameter near the vortex
re actually increases from its unperturbed value, when the
purity is taken into account. This is consistent with the
idea that scattering from nonmagnetic impurities lowers the
free energy cost of gradients of the order paramefEne
lll. SOLUTION CLOSE TO THE IMPURITY situation is analogous to the case of a finite concentration of

) ) impurities, where the GL coefficier is reduced from its
The rather formidable set of equations fbf(p,z) and impurity-free value.

a,(p,z) simplifies greatly, at distances much closer to the
impurity than&(T); in our rescaled variables, this means that
the results of this section are meant to cover the regin
+72<1. Recalling thaf o(p) anday(p) both vanish linearly
asp—0, the proper short distance versions of Eg4) and
(22) become

Note that the magnitudes 6f anda, are determined by the
S-function driving term in Eq(21), particularly through the
impurity parameteroc. We also note that since the unper-
turbed vortex line has a vanishing current density at the im
purity site, the explicit impurity term(14) in Maxwell's
equation is zero. Thus, the changes in the magnetic field arg,
due solely to the changes in the order parameter caused lﬂ;ﬁ
the impurity.

currents are also enhanced near the defect site, causirzg the
component ob(r) to increase. We may estimate the largest
deviation of the magnetic field from its unperturbed value,
6Bmax- TO do this, we estimatéb at a distancé&, from the
impurity. Note that in real units,B=H.(T)b, where
Heo(T)=7%c/2e£%(T). If we take 42 and o to be of order
A L1 10t 7t fy one, we finally get
ap? P ap 97 p?
8B 2(kgTo)® (Te T)

Hc2 2E2 Tc

(28)

'yﬂ'hzvgei‘z’ SRRt
B 576(kgT¢)3E%(T)| | (x=1y)- Vr5%(n), 23 It should be possible to test both the magnitude and tempera-

ture dependence of this prediction using a suitable micro-
) ) scopic probe?
o loa, da, a2y (4) In spite of the local perturbations to the magnetic field,

+———=—— . " o o3
ap? P Ip 972 p? P fl (24 impurities do not affect the quantization of vorticity; the net

flux associated with a pinned vortex remaig in the z

One advantage of the formulation we have chosen is theﬁlrectlon However, the vortex field lines, which are parallel
the equations become decoupled in the following sense: wi z for the unperturbed vortex, now acquire a npvzom-
can now solve Eq(23) independently forf;, and then use ponent near the defect. The perturbation to the magnetic field
this result in Eq.(24) to find a;. Remarkably enough, when is largest inside a radiug, of the defec{see Eq(28)]. At a
the analytic form forf,(p,z) is inserted into Eq(24), a  distance of orde&(T) from the vortex core, the perturbation
simple, analytic solution fom;(p,z) may also be found, field lines begin to close on themselves. Full screening of
leading to a simple solution fasb(r). The following results  6B(r) occurs at distances of ord&(T). Note that neither
are obtained: the screening obB(r), nor the decay ob(r) over length
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scale&(T), can emerge from Eq$23) and(24), since those
apply only very near the impurity.
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APPENDIX: DETERMINATION OF vy AND 7

In Sec. IV of this paper, an estimate was made for the
magnitude ofsB, near the defect site, for which it was found
that 5B 2. In general, many quantities calculated near the 0.50 L ' 107
vortex core depend sensitively on the parameter
=dfo/dpl,_0, regardless of the presence of a perturbing de- K
fect. To the best of our knowledge, there exists in the litera-
ture no ge_neral calculation of this importanF qugntity, nor Ofthree curves defined in Eq.(17), as a function of the Ginzburg-
the quantityr=dag/dp|, . Such a calculation is tlherefore_ andau parametek. Exact numerical solutions of EqéA1) and
presented here. The results are found to agree quite well wi 2) are given as solid lines. Approximate solutions, due to Clem,

FIG. 1. Results are shown far (bottom two curvesand 7 (top

the approximate solution of_CIeH- _ o are shown as dashed lines; these descrilvery accurately for all
Using dimensionless variables, the equations satisfied by Tpe largex asymptotic form of Clem’s resultz=(Iny2«
fo(p) anday(p) become — ve)/2«2, is shown as a dotted line, and is accurate in the range
k=5.
d?f, 1dfy 1\2 5
d_p2 + o dp ag— 0 fotfo—fo=0, (A1)  scheme, only the second GL equati@®) is solved. This is

accomplished by using the variational fory=p/(p?

+ £2)12 which permits an exact solution fap. The GL free

energy is then constructed for the vortex line, and mini-
=0, (A2) mized, in terms of the variational parametgr. Clem’s

model thus improves and regularizes the London vortex so-
while the boundary conditions, appropriate for a vortex cordution, by introducing a vortex core. Indeed, the results for
located atp=0, are fy(p)=a¢(p)p=0 when p—0, and the quantityr (which emerges from the conventional London
fo(p)=ag(p)p=1 when p—o. Equations(Al) and (A2) theory only throughad hocregularization are quite impres-
cannot be solved exactly, in the general case. We thereforgve; Fig. 1 shows Clem’s approximate, transcendental solu-
solve the equations numerically, for fixed values«ofTo  tion for 7, as well as its large- asymptotic behavior:r

d2a0+1dao ag 1
dp? p dp p?  K?

1
a—_
° p

characterize our results, we show the resultingdepen- = (In\2x— yg)/2«2, where yg=0.577 is Euler's constant.
dences ofy and r in Fig. 1, with x>1/\/2 for a type-ll  Although the model is not designed to provide accurate in-
superconductor. formation in the vicinity of £(T), we may still use it to

The results of Fig. 1 reflect an exact treatment of thecalculatey as shown in Fig. 1. It is interesting that the out-
vortex, within the GL description. An approximate, but ana-come has the correct qualitative behavior, but is slightly too
lytic, treatment has also been provided by CfEnin this large.
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