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Power-law correlations and orientational glass in random-field Heisenberg models

Ronald Fisch
Department of Physics, Washington University, St. Louis, Missouri 63130
(Received 28 July 1997

Monte Carlo simulations have been used to study a discretized Heisenberg ferrofdgnat a random
field on simple cubic lattices. The spin variable on each site is chosen from fid @[directions. The random
field has infinite strength and a random direction on a fractiaf the sites of the lattice, and is zero on the
remaining sites. Fox=0 there are two phase transitions. At low temperature therd 14@ FM phase, and
at intermediate temperature there i§1d1] FM phase. Fox>0 there is an intermediate phase between the
paramagnet and the ferromagnet, which is characterized kly & decay of two-spin correlations, but no true
FM order. The[111] FM phase becomes unstable at a small valug.dkt x=1/8 the[110] FM has disap-
peared, but the power-law correlated phase survi\&3163-1828)07001-5

[. INTRODUCTION orientational glasé,such as using dipolar exchange or qua-
drupolar exchange instead of the isotropic exchange chosen
Orientational glasses have been a subject of significartiere. In our present state of knowledge ignorancg it may
interest for over 15 years. An extended review of the experibe believed that this choice does not change the qualitative
ments has been given by Efdi, Knorr, and Loidl* and a  behavior of the orientational freezing transition. We will
companion review of the theories has been provided byomment on this point later.
Binder and Regef.More specialized reviews of electric di- The G term gives the interaction of the orientational order
pole glassesand the solid hydrogefisire also of interest. A with the point defects. In this work we will study the strong-
primary question, which has remained unresolved to theinning case of Fukuyama and L&& which G is taken to
present time, has been whether the orientational freezinge large and the density of defect sites,is taken to be
transition which is seen in the experiments represents a trusmall. In contrast to the one-dimensional case considered by
thermodynamic phase transition, with a definite critical tem-Fukuyama and Lee, the strong-pinning case becomes highly
peratureT .. The alternative point of view is that the freezing nontrivial in three dimensions whenis small compared to
should be explained as a kinetic effect, which occurs gradui —p., wherep, is the site percolation concentration.
ally, over a range of temperature. It is surely true that some It has been accepted for some time that, in the absence of
of the experiments should be explained as kinetic effectssome symmetry-breaking term such as the cubic term, a ran-
The question is whether a phase transition of this type iglom field which couples linearly to the order parameter will
possible in a three-dimensional system with realistic interacalways destroy the long-range symmetry-breaking order of a
tions. three-dimensional system which has a continuous symmetry.
It was argued by Michel,who performed a mean-field This result was first derived by Larkfhand a simpler ver-
calculation, that the proper model for studying the orientasion of the argument was later presented by Imry and®Ma.
tional glass is am=3 Heisenberg modelwheren is the  The absence of long-range order for systems with short-
number of spin componentsvith the addition of a cubic range interactions in the presence of random fields in less
symmetry-breaking term due to the single-ion anisotropy andhan four dimensions has been given a more rigorous basis in
a random-field term due to the alloy disorder. In this workthe work of Aizenman and Welf. The simple Imry-Ma
we will use a Hamiltonian of the form argument also makes the stronger claim that a weak random
field will cause the ferromagnetic correlation length to be
3 3 .. . . . T
e od finite at all temperatures in three dimensions. This has re-
Hre= _J% Zl S'S _KZ Zfl (S) cently been questioned for the case of ¥¥ model (i.e.,
: n=2) by Gingras and HusE,who argue that these calcula-
tions have not taken proper account of the effects of vortex

- GZ (Sr-ni —1), (1) loops. Gingras and Huse suggest that for weak random fields
' there may be a phase in which there is quasi-long-range or-
where the sites form a simple cubic lattice an¢ij) indi-  der (QLRO), and the two-point correlations have a power-

cates a sum over nearest neighbors. &hare spin indices, law decay as a function of distance. A recent Monte Carlo
eachn;, is an independently chosen random unit vector, andtalculation by the authdt has provided strong evidence in
thei’ sites are a randomly chosen subset of the lattice corfavor of this possibility.

taining a fractionx of the sites. Since the defect sites are The simple Imry-Ma argumehtassumes that the low-
assumed to be immobile, the random fields do not changenergy direction of the magnetizatidh in some domain is
with time. As the random fields only occur on a fractionf  determined by the average value of the random field over
the sites, Eq(l) is a diluted random-field Heisenberg model. that domain. While it is surely true that the=0 Fourier
There are several alternative choices of a Hamiltonian for acomponent of the random field is the most important single
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component in a model with ferromagnetic exchange, it is notions of the Heisenberg model. He also suggested that this
clear that its influence always outweighs the combined efmight be a useful way of studying the effects of random
fects of all of the other Fourier components. The Imry-Mafields on this model. There is one significant point which was
argument gives the correct lower critical dimensfbior the ot made in his work and which will be important here. The
existence of ferromagnetic order in the presence of a randoiscretization of the sphere chosen by Rapaport was the set
field. However, the situation in three dimensions is veryof 30 unit vectors defined by the centers of the edges of an
subtle. When we already know that tke=0 component of jcosahedron, which we will refer to as thg, model. In the

M is not dominant over the other small-wave number comwork presented here we will use the set of 12 unit vectors
ponents, it is no longer safe to assume thatkkkéd compo-  defined by the edge centers of a cube, which in the standard
nent of the random field is the only important component ofCartesian notation are called tf10] vectors. We will refer

the random field. Competition between different small-wave+o this as theD;, model (whereO stands for octahedrallin
number components of the random field may create multipleither case, with the simple Heisenberg exchange Hamil-

low-energy minima of the free energy. tonian
Based on renormalization-group calculations, it was
suggested by Mukamel and GrinstEithat it might be pos- 3
sible to induce a QLRO phase in a3 random-anisotropy H= —J<Z> 21 S'S), 2
ij) a=

system by adding a cubic crystalline anisotropy. This occurs

because a weak cubic anisotropy does not destabilize thghere eacl§ is now restricted to the discrete set, rather than
n=3 Heisenberg critical point in three dimensions, but itthe entire sphere, there are now two phase transitions. There
removes the Imry-Ma instability. This should apply to the js the n=3 Heisenberg critical point, which occurs at a
random-field case as well. Even in the presence of a weakjightly higher T, than in the ordinary Heisenberg model,
random field, we expect a ferromagnetic phase to exist at lowing, in addition, there is a first-order phase transition at a
temperatures, but there is no longer a stable renormalizationgyer T, at which the minimum free-energy directions of
group critical fixed point which describes the transition. p change.
Thus, as argued by Mukamel and Grinstein, either the phase The nature of the low-temperature transition can be un-
transition must become first order, or else there must bgerstood in a Landau mean-field treatment. We will discuss
some type of intermediate behavior between the ferromagn%eo12 case here, and Rapaport case is essentially simi-
and the paramagnéPM). In then=2 case it was fourld  |ar. Because we now have only a cubic symmetry of the
that both possibilities may occur, at different valuesxof  Hamijltonian rather than the full symmetry of the sphere, the
At our current level of understanding we have no reliable| ggay free-energy function&(T,M) should contain terms
analytical method of predicting whether the QLRO which proportional toS ,(M%)? for all (positive integer values of
has been found for the=2 case should also occur for larger | iy addition to the usual isotropic terms. Since we want to
values ?In. There was another suggestion, by Mayer anding the minimum of the free energy, it is sufficient to con-
Cowley,” that QLRO should occur fon=2, and also for gjger only the high-symmetry directioffd00], [110], and
n=3 when the cubic term is present. This argument yields @117),
line of fixed points with continuously varying critical expo- ~ The coefficient of the term of ordév? is proportional to
nents, rather than the zero-temperature fixed point ofGingrag(llz)l for [100], 2+8(1/4) for [110], and 6(2/3) for
and Husé! Both of these analyses seem to use the existenge 11]. Thel=1 term is, of course, isotropic, and the 2
of dislocation lines in an essential way. However, there is NQerm favors thg111] directions. Thus, just below the critical

direct evidence in the=2 Monte Carlo resultg that dislo-  point, where the thermal averag|) is small,(M) will be
cations are crucial. Based on the work of Med and  jjigned along111].

Young®® one should expect the existence of replica symme- aj| of the terms with|>2 favor the[110] directions.

try breaking in the QLRO phase. . Therefore, as we go to still loweF and(|M|) grows, we
We will find that adding a special type of weak cubic eyentually reach a point where it becomes favorable to rotate

anisotropy does allow us to find a QLRO phase, and we will; 15 4[1710] direction. Because there arg BL1] directions

study some of its properties. Because an orientational glasg,q 12[110] directions, and 12/8 is not an integer, the Lan-

typically exists in the presence of some crystalline latticey,, ryles determine that this transition must be first order.

potential, this result may be directly applicable to cases of i is natural to expect that the behavior of thg model

experimental interest. It should be noted that our model doeg,, ;14 be closer to the isotropic limit than that of tiy
not allow the existence of any lattice defects such as diSIO(j'scretization used here. This is surely true at m‘bsFozr

cation Iines or stacking faults, glthough these may be negd ample, it is likely that the reason Rapaport did not report
to explain some of the experimentally observed behaviory,e eyistence of the low-temperature transition is that in the
We will not conclusively answer here the. quest!on Ofl30 model it occurs at & . which is smaller than the mini-
whether t'he QLRO phase exists also fqr the 'SOVW ._mum used in his Monte Carlo simulations. However, be-
random-field model, but we will present indirect evidence iNcause the 12110] states are not a subset of the 30 icosahe-
favor of this. If it (_Jloes exist even in that case, its propertiesdral edge-center states, results for both @@ model and
should be essentially those that we find here. the | 3p model cannot be combined in a simple way to obtain
an extrapolation to the isotropic limit.

One might think at first that a similar intermediate-

Rapaport® has discussed the technical advantages of usemperature FM phase would occur for the discretization
ing a discretization of the sphere for Monte Carlo calcula-based on the edge centers of a tetrahedron. These six states,

Il. DISCRETIZED HEISENBERG MODELS
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however, are equivalent to the di00] vectors of a cube. [ R D DR DA
This model has only two phases, with a first-order phase 4 Op2
transition between the FM and PM phagés.

Our discretization of the spin variables using the 120]
vectors automatically builds a cubic anisotropy into the free 3
energy. Thus, since we are only trying to understand the
gualitative aspects of orientational ordering and not attempt-
ing a quantitative model of a particular experiment, we do
not need to keep thK term in the Hamiltonian. If we now
take the limitG— « with each of then;; chosen from the set
of [110] unit vectors, to simplify the calculation, Edql)
reduces in form to Eq2), with the dynamical restriction that
a fractionx of the spins(the ones on thé’ siteg point in
fixed random directions, parallel to the local random fields
on thei’ sites. 0

It is interesting to note that the stability of thi&11] phase
is of purely entropic origin. The energy always favors the
[110] alignment. A significant consequence of this is that the FIG. 1. Specific heat vs temperature for the pGrg model on
walls between differentl11] domains must be broad, rather Lx L x L simple cubic lattices. The large vertical arrow indicates a
than sharply defined. As a result, th&ll] FM phase is first-order phase transition.
easily destabilized by a random field.
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the unpinned spins. For large samples, typically two or three
random initial states were tested, and brief tests were made
of all of the 12 ordered states. Far=1/16 (or lesg, in a
Because all of thé&s are chosen from thgl110] set, Eq.  ground state essentially all of the unpinned spins are aligned
(2) has the helpful property that the energy of every state iglong one of thg110] directions. Thus, in these cases it is
an integral multiple of 1/2. Thus it becomes easy to write aeasy to equilibrate the system at low temperatures, by start-
Monte Carlo program to study E@2) which uses integer ing from an ordered state. This is not true for 1/8, how-
arithmetic to calculate energies. This, plus the fact that eachver.
spin has only 12 possible states, gives substantial improve- In the absence of any external field, random or uniform,
ments in performance over working with the general form ofthe rotation oM between different110] directions is a slow
Eqg. (1), for both memory size and speed. It is also be pos{process. Because all of these 12 directions are equivalent,
sible to use integer arithmetic@ is chosen to be an integer. however, there is no need for the Monte Carlo program to
When G is infinite, the random field is implemented by as- average over the minima in this case. In the presence of the
signing a fractiorx of the sites to be the’ sites. The spins random field the differenf110] ferromagnetic Gibbs states
on these sites are given rand¢ii0] directions and then left have different energies. If the system is started in a high-
fixed for the remainder of the calculation. energy[110] direction, it will eventually jump to a more
The Monte Carlo program used two linear congruentialfavorable direction(unlessT is so low that this does not
pseudorandom number generators. In order to avoid urRappen in the time availableln this, as in many other re-
wanted correlations, the random number generator used g&pects, the model behaves like the random-field Ising
select which sites would be assigned the random fields waodel®
different from the one used to assign the init&l A heat
bath methqd was used for flipping the spins, which at each IV. NUMERICAL RESULTS EOR Xx=0
step reassigned the value of a spin to one of the 12 allowed
states, weighted according to their Boltzmann factors and Specific heat data for the purex£0) O;, model with
independent of the prior state of the spin. L=32 andL =48, obtained by numerically differentiating
LxXLXL simple cubic lattices with periodic boundary the energy, are displayed in Fig. 1. The Heisenberg critical
conditions were used throughout. The valueslofused point occurs afl.;/J=1.453+0.001, which is less than 1%
ranged from 16 to 64. Away from arilj, the samples were above the value found for the standard isotropic Heisenberg
run for 10 240 Monte Carlo steps per sgMCS) at eachT,  model;*?° which is about 1.443080.0001. TheT, for the
with sampling after each 10 MCS. NearTa they were run isotropic model is known to greater precision because far
several times longer. The initial part of each data set wagnore computing resources have been used to calculate it. As
discarded for equilibration. Typically, two different random argued by Rapapotf, given equal resources one should be
field configurations with a giveh were studied for a given able to get more than equal precision for the discretized
x>0. This gives a rather crude estimate of the finite-sizenodel. Within the accuracy calculated here, the most effec-
dependence of the various thermodynamic properties. Unfoitive way of estimatingl . is to assume that the energyT,)
tunately, however, in the presence of the random field highis the same for both models. Our estimateTef for the O,
precision finite-size scaling is not a very effective tool, be-model is based o&(T.;) =0.994, as found in the isotropic
cause the sample-to-sample variations for a given size amodel**?°It is, however, necessary to consider thdepen-
large and not well behavéd: dence ofE. This method also works for the=2 case? and
Both random and ordered initial conditions were used forreflects the fact that the two-spin correlation function at the

IIl. MONTE CARLO CALCULATION
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FIG. 3. Finite-size scaling of the magnetization n&arfor the
pure O;, model onL XL XL simple cubic lattices. Thg axis is
scaled logarithmically.

Heisenberg critical point is virtually identical at all distances phase. Thé111] FM phase, which is stable at=0, should

in the discretized model and the isotropic model, evernysq extend to small positive values of As noted above,
though strict universality only demands that they be identical,q\ever, the domain walls in this phase are broad and have

at Iarge_ distancgs. The short-distance part of the two-spig |ow cost in free energy. Thus, thig11] FM is easily de-
correlation function, and thu&(T.), does depend on the giapilized by the random field. It is difficult to obtain mean-
lattice structure, even in a Bethe-Peierls mean-field treatyqsy| numerical results for very dilute random fields, due to

ment. . crossover effects® Therefore, thd111] FM-QLRO phase
The first-order transition from thgL11] FM phase to the  houndary was not observed directly, and its existence is
[110] FM phase is indicated in Fig. 2 by the vertical arrow. shown in Fig. 4 as a dotted line.

This transition occurs al;/J=1.0625-0.0075, where the  The QLRO-to-PM transition is second order for small
error bar indicates the approximate width of the region ofynq first order for largex, with a tricritical point somewhere

metastability, rather than a statistical error. Measured afatveernx=1/16 andx= 1/8. The shift inT. for the QLRO-
T/J3=1.0625, the latent heat at this transition is measured tQ,_pwm transition is linear irx for small x vcvith a slope of

be AQ=0.0561J for L=32, andAQ=0.0571J for L=48.
The observed increase &fQ asL increases confirms that d | Tx)
the transition is indeed first order. Because the specific heat dx| T.(0)
is substantially larger in thgl10] phase than in th¢111]
phase neaf ,, the largest contribution to the uncertainty in RO
AQ comes from the uncertainty if,.

The magnetization{|M(T)|) is shown in Fig. 2, for
L=24, 32, and 48. We see that the size dependence rapidly 15
becomes small beloW/J=1.40. The jump in|M| at the
first-order transition, again using data takermat1.0625, is
0.0277 forL =232 and 0.0286 fot. =48. The finite-size scal-
ing function for [M(T)| at the Heisenberg critical point is
displayed in Fig. 3. The values of the critical exponents used
for this figure are the usual field theory estimatder n=3.
Thus, if we determind . by the energy condition discussed 0.5
above, there are no free fitting parameters. The width of the
scaling region is slightly larger than that of anothes 3
modef? for which the cubic anisotropy is probably some-
what stronger.

FIG. 2. Magnetization vs temperature for the pGrg model on
LXL XL simple cubic lattices.
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V. NUMERICAL RESULTS FOR x>0

. . FIG. 4. Phase diagram of the dilute random-fi€lg, model on
In addition tox=0, Monte Carlo data were also obtained simple cubic lattices, showing the paramagnéBd/), ferromag-

atx= 1/32, 1/16, and 1/8 A Sem'quant|tat|ve pICtUI‘e of thenetic (FM)’ and quasi_|0ng_range Ord@LRO) phasesl The plot-
phase diagram obtained from these results is shown in Fig. 4ing symbols show estimates obtained from the Monte Carlo data.
The limit of stability of the[110] FM ground state is slightly The solid lines indicate first-order transitions, the dashed lines in-
less tharx=1/8. For the nonzero values &fused in these dicate second-order transitions, and there were no data taken on the
calculations, thd110] FM has a transition into the QLRO dotted line.
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This should be compared to the corresponding quantity for
the n=2 case, which & —3.42+0.14. x=1/16 is in the
linear regime forn=2 also) Having the shift inT.(x) in-
crease by about 10% as one goes fromrtke2 case to the
n=3 case is about what should be expected if the QLRO
phase survives for isotropic spin variables. If the existence of
the QLRO was actually dependent on the discretization, the
author would expect this shift to be substantially larger for
the O;, model than we have found it to be.

It is interesting to note that these numbers are about 3
times as large as the shifts T(x) which one obtains from
a simple quenched site dilutidh,although a naive mean-
field approximation predicts that the shift should be the same
in the two cases. It is also true in the site dilution case that
the size of the shift increases adncreases.

Our results indicate that the QLRO phase still occurs for
x=1/8 whenn= 3, while forn=2 it was found that the limit
of stability of the QLRO phase wisless tharx=1/8. This
is an indication that the stability of the QLRO phase in-
creases witm. On this basis, we might expect it to occur for
all n, and thus its existence would be independent of any
topological singularities. This encourages us to hope that it
might be possible to study the QLRO using some analytical
technique which uses i/as an expansion parameter. The
existence of such an expansion must, for now, be considered
mere speculation. It could certainly still be true that the
QLRO phase really is of topological origin, in which case it
should not exist fon>3.

It is difficult to study transitions which occur at loWw
using Monte Carlo calculations. TAe=0 end points of both
the[110] FM-QLRO boundary and the QLRO-PM boundary
in Fig. 4 are illustrated in schematic fashion. The author does
not mean to imply thaT.(x) is actually linear inx near the
T=0 end point in either case.

The evolution of the specific heat asis increased is
shown in Fig. 5. The data displayed were obtained by nu-
merically differentiating the calculated values of the energy
with respect toT. The specific heat was also computed by
calculating the fluctuations in the energy at fixed tempera-
ture, yielding similar but noisier results. We see that the data
for different samples with the same valueofagree fairly
well, although some differences are visible near the phase
transitions.

The sharp peaks which occur fa=0 (in Fig. 1) have
become rounded at=32, and they have moved to lowér
The QLRO-to-PM transition actually occurs slightly below
the T of the upper specific heat peak. Th&10] FM-to-
QLRO transition appears to be continuous, rather than first
order, and the specific heat increases as we approach this
transition from either direction. Going on to=1/16, all of
these trends are enhanced.x4t 1/8, the FM phase has dis-
appeared entirely. Due to the long relaxation times, for
x=1/8 it was not practical to equilibrate dn=64 lattice at
T/J<0.65. The small specific heat peak nd@ar 0.67 marks
the QLRO-to-PM transition, which is first order at this value
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FIG. 5. Specific heat vs temperature for the dilute random-field
0;, model onLXLXL simple cubic lattices(a) x=1/32, (b)
x=1/16, and(c) x=1/8.

of x. For x=1/32 andx=1/16, where this transition is sec- independent ol, except very close td.. In the QLRO
ond order, there is no clear signature of the transition obseryphase(|M|) decreases slowly ds increases, probably de-

able in the specific heat.

Looking at the dependence ¢M|) onx andL provides
additional insight. The data fox=1/32, 1/16, and 1/8 are
shown in Fig. 6. In thg110] FM phase,{|M|) is almost

caying as 1/In(). In the PM phase{|M|) decreases as
(L/&)~ %2 where¢ is the ferromagnetic correlation length. In
Fig. 6(c) we see that the data for largeand T between 0.70
and 1.45 seem to form a set of parallel lines on this semilog
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plot. This implies that remains constant over this range of
temperature fox=1/8. The saturation of in the PM phase
indicates that the QLRO-to-PM transition is first order at this

value ofx.

We can get valuable information by looking at the mag-
netic structure factor of samples of size=64. The structure
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FIG. 7. Angle-averaged magnetic structure factor for the dilute
random-fieldO,, model on 64 64X 64 simple cubic lattices, log-
log plot. Each data set shows averaged data from 2 states sampled
at 10 240 MCS intervalga) x=1/16,T=1.125, the line has a slope
of —2.87; (b) x=1/8, T=0.6875, the line has a slope &f3.00.
Note that the vertical scales differ {@) and (b).

factor is the spatial Fourier transform @#12), and it can be
measured by x-ray- and neutron-scattering experiments. Near
a critical point the small-wave number behavior of the struc-
ture factor of a random-field model is expected to have the

form

|<M(k))|2~(1/§2+|k|2)*(475/2'

(4)

The correlation lengtlf is infinite in the QLRO phas¢es-
FIG. 6. Magnetization vs temperature for the dilute random-fieldSentially by definitio. o
In three dimensions, Ed4) requires thatyp=1. To esti-
mate », we measure the slope of the structure factor on a
log-log plot. This is shown, averaged over angles, for two
L=64 lattices withx=1/16 atT=1.125, in Fig. Ta). The
slope of the best fit to the data at smi) is —2.87+0.05,
and so we find

7=1.13+0.05.

®)
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This is essentially the same as the result found for this quara good description of the diluted antiferromagnet in a mag-
tity in the n=2 case*? It is, well known that the value of an netic field systems which serve as the prototypical experi-
7 exponent is often insensitive to the valuemfand so one mental random-field Ising models. Therefore, the “metasta-

should not believe on these grounds that the values tfr  bility” which is seen in these experimental systéfhis
n=2 andn=3 are identical. The data fox=1/32 (not  Probably caused by the presence of a QLRO phase, at least

shown have a smaller value of the slope®t. This, how- those cases where the uniaxial anisotropy is weak.

ever, should not be interpreted as measuring the valug, of Since the QLRO phase exists for batk2 andn=3 in

because these data are taken in the crossover rédgiom three dimensions, and possibly for larger valuendilso,
pure system behavior, which has a slope-af.97 for the there cannot be any simple correspondence between the

random-field models and the purevector models in one
structure factor af .. . . .
Repeating the a(E)ove procedure for twe 64 with x=1/8 lower qutlal dimension. We do not yet know if the QLRO
lattices atT=0.6875, using cold start initial conditions, we phase exists fon>4,. and so we cannot say vvhether the
find the results shown in Fig.(B). This value ofT is slightly QLRO is properly attributed to topological excitations, as the

above the best estimate af. at this value ofx, and the Kosterlitz-Thouless phase in the pure model is.

As mentioned in the Introduction, many orientational
measured values ¢fM|) for these data are 0.2518 f&1 S
and 0.2880 forS2. Similar states, but with slightly higher glass systems have quadrupolar interactions, rather than the

vector interactions studied here. In cases where the parallel

energy and lower magnetization, were achieved using ra.nélignment of the quadrupoles is the low-energy one, such as

gﬁ;nwén;;';:);t::t_?;v'v \l;\é?wasv?gr ;Titmtk:lf sa;ut%t:tr?héasﬁ?;eﬁa%e diluted alkali-cyan_ide%pur model should apply, at least
h d the minimum’allowed value o3 to the extent that lattice defec_ts can b_e neglected: In th_ose
%isaif tﬂgvll/aalljzsauirr?s?de the QLRO phase and yields " cases where the low-energy alignment is the T configuration,
however, such as the solid hydrogérthjngs are more com-
1 ©6) plicated. Another interesting exper?mental system with a
107 = quadrupolar order parameter, for which our results should be
This is an independent confirmation of the first-order naturgelevant, is the isotropic-nematic transition of a liquid crystal
of the transition at this value of The latent heat is too small in silica gel*"?®
to measure accurately, being less than 0.01 J. The small la-
tent heat may be an indication that we are close to the tri- VIl. CONCLUSION

critical point. . : :
Althopugh no first-order behavior was seen along the In this work we have used Monte Carlo simulations to

QLRO-to-PM transition lin& for n=2, it probably exists stud_y theO,, yersior_l of the diluted random-field ferromag-
for x near the end point of the QLRO phase in that case alsd’€t In three dimensions. We haye found that there are two
The tricritical point on the QLRO-to-PM transition line is YPes of ordered phases, just as in the2 case. In addition
likely to have the same origin as the analogous tricriticalt© the anisotropy-stabilized ferromagnet, we find an interme-

- - - 73 .
point which occurs for the random-field Ising mod&l. diate phase displaying f|~° decay of two-spin correla-
tions. There is a tricritical point on the QLRO-to-PM transi-

tion line. When this transition is second order, the critical

_ _ _ exponentn—, which characterizes the magnetic structure fac-
What we have found is that, despite the weak destructiotior on the critical line, has a value which is indistinguishable

of the ferromagnetic long-range order caused by thg o its value in then=2 case. The exponeno, which is
Imry-Ma instability, there is actually a good correspondenceé,pseryed within the QLRO phase, is also the same as in the
in three dimensions between the behavior of the QLROy_5 cage. The results should be applicable to a variety of
to-PM transition inn=2 andn=3 random-field models and experimental systems.

the FM-to-PM transition in the random-field Ising model.
The author sees no reason why the QLRO phase should be-
come completely destabilized by a weak uniaxial anisotropy.
Therefore, it should be possible for a3 system with a The author is grateful to Michael Aizenman, Brooks Har-
weak uniaxial anisotropy and a random field to exhibit aris, Frances Hellman, David Huse, David Landau, and Phil
QLRO phase between its PM and FM phases. This is, in facfTaylor for helpful discussions during the course of this work.

VI. DISCUSSION
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