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Power-law correlations and orientational glass in random-field Heisenberg models

Ronald Fisch
Department of Physics, Washington University, St. Louis, Missouri 63130

~Received 28 July 1997!

Monte Carlo simulations have been used to study a discretized Heisenberg ferromagnet~FM! in a random
field on simple cubic lattices. The spin variable on each site is chosen from the 12@110# directions. The random
field has infinite strength and a random direction on a fractionx of the sites of the lattice, and is zero on the
remaining sites. Forx50 there are two phase transitions. At low temperature there is a@110# FM phase, and
at intermediate temperature there is a@111# FM phase. Forx.0 there is an intermediate phase between the
paramagnet and the ferromagnet, which is characterized by auku23 decay of two-spin correlations, but no true
FM order. The@111# FM phase becomes unstable at a small value ofx. At x51/8 the@110# FM has disap-
peared, but the power-law correlated phase survives.@S0163-1829~98!07001-5#
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I. INTRODUCTION

Orientational glasses have been a subject of signific
interest for over 15 years. An extended review of the exp
ments has been given by Ho¨chli, Knorr, and Loidl,1 and a
companion review of the theories has been provided
Binder and Reger.2 More specialized reviews of electric d
pole glasses3 and the solid hydrogens4 are also of interest. A
primary question, which has remained unresolved to
present time, has been whether the orientational free
transition which is seen in the experiments represents a
thermodynamic phase transition, with a definite critical te
peratureTc . The alternative point of view is that the freezin
should be explained as a kinetic effect, which occurs gra
ally, over a range of temperature. It is surely true that so
of the experiments should be explained as kinetic effe
The question is whether a phase transition of this type
possible in a three-dimensional system with realistic inter
tions.

It was argued by Michel,5 who performed a mean-field
calculation, that the proper model for studying the orien
tional glass is ann53 Heisenberg model~where n is the
number of spin components! with the addition of a cubic
symmetry-breaking term due to the single-ion anisotropy
a random-field term due to the alloy disorder. In this wo
we will use a Hamiltonian of the form

HRF52J(̂
i j &

(
a51

3

Si
aSj

a2K(
i

(
a51

3

~Si
a!4

2G(
i 8

~Si 8•ni 821!, ~1!

where the sitesi form a simple cubic lattice and̂i j & indi-
cates a sum over nearest neighbors. Thea are spin indices,
eachni 8 is an independently chosen random unit vector, a
the i 8 sites are a randomly chosen subset of the lattice c
taining a fractionx of the sites. Since the defect sites a
assumed to be immobile, the random fields do not cha
with time. As the random fields only occur on a fractionx of
the sites, Eq.~1! is a diluted random-field Heisenberg mode
There are several alternative choices of a Hamiltonian fo
570163-1829/98/57~1!/269~8!/$15.00
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orientational glass,2 such as using dipolar exchange or qu
drupolar exchange instead of the isotropic exchange cho
here. In our present state of knowledge~or ignorance!, it may
be believed that this choice does not change the qualita
behavior of the orientational freezing transition. We w
comment on this point later.

TheG term gives the interaction of the orientational ord
with the point defects. In this work we will study the stron
pinning case of Fukuyama and Lee,6 in which G is taken to
be large and the density of defect sites,x, is taken to be
small. In contrast to the one-dimensional case considere
Fukuyama and Lee, the strong-pinning case becomes hi
nontrivial in three dimensions whenx is small compared to
12pc , wherepc is the site percolation concentration.7

It has been accepted for some time that, in the absenc
some symmetry-breaking term such as the cubic term, a
dom field which couples linearly to the order parameter w
always destroy the long-range symmetry-breaking order o
three-dimensional system which has a continuous symme
This result was first derived by Larkin,8 and a simpler ver-
sion of the argument was later presented by Imry and M9

The absence of long-range order for systems with sh
range interactions in the presence of random fields in
than four dimensions has been given a more rigorous bas
the work of Aizenman and Wehr.10 The simple Imry-Ma
argument9 also makes the stronger claim that a weak rand
field will cause the ferromagnetic correlation length to
finite at all temperatures in three dimensions. This has
cently been questioned for the case of theXY model ~i.e.,
n52) by Gingras and Huse,11 who argue that these calcula
tions have not taken proper account of the effects of vor
loops. Gingras and Huse suggest that for weak random fi
there may be a phase in which there is quasi-long-range
der ~QLRO!, and the two-point correlations have a powe
law decay as a function of distance. A recent Monte Ca
calculation by the author12 has provided strong evidence i
favor of this possibility.

The simple Imry-Ma argument9 assumes that the low
energy direction of the magnetizationM in some domain is
determined by the average value of the random field o
that domain. While it is surely true that thek50 Fourier
component of the random field is the most important sin
269 © 1998 The American Physical Society
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270 57RONALD FISCH
component in a model with ferromagnetic exchange, it is
clear that its influence always outweighs the combined
fects of all of the other Fourier components. The Imry-M
argument gives the correct lower critical dimension10 for the
existence of ferromagnetic order in the presence of a ran
field. However, the situation in three dimensions is ve
subtle. When we already know that thek50 component of
M is not dominant over the other small-wave number co
ponents, it is no longer safe to assume that thek50 compo-
nent of the random field is the only important component
the random field. Competition between different small-wa
number components of the random field may create mult
low-energy minima of the free energy.

Based on renormalization-group calculations, it w
suggested by Mukamel and Grinstein13 that it might be pos-
sible to induce a QLRO phase in ann53 random-anisotropy
system by adding a cubic crystalline anisotropy. This occ
because a weak cubic anisotropy does not destabilize
n53 Heisenberg critical point in three dimensions, but
removes the Imry-Ma instability. This should apply to th
random-field case as well. Even in the presence of a w
random field, we expect a ferromagnetic phase to exist at
temperatures, but there is no longer a stable renormaliza
group critical fixed point which describes the transitio
Thus, as argued by Mukamel and Grinstein, either the ph
transition must become first order, or else there must
some type of intermediate behavior between the ferroma
and the paramagnet~PM!. In the n52 case it was found12

that both possibilities may occur, at different values ofx.
At our current level of understanding we have no relia

analytical method of predicting whether the QLRO whi
has been found for then52 case should also occur for larg
values ofn. There was another suggestion, by Mayer a
Cowley,14 that QLRO should occur forn52, and also for
n53 when the cubic term is present. This argument yield
line of fixed points with continuously varying critical expo
nents, rather than the zero-temperature fixed point of Ging
and Huse.11 Both of these analyses seem to use the existe
of dislocation lines in an essential way. However, there is
direct evidence in then52 Monte Carlo results12 that dislo-
cations are crucial. Based on the work of Me´zard and
Young,15 one should expect the existence of replica symm
try breaking in the QLRO phase.

We will find that adding a special type of weak cub
anisotropy does allow us to find a QLRO phase, and we
study some of its properties. Because an orientational g
typically exists in the presence of some crystalline latt
potential, this result may be directly applicable to cases
experimental interest. It should be noted that our model d
not allow the existence of any lattice defects such as di
cation lines or stacking faults, although these may be nee
to explain some of the experimentally observed behav
We will not conclusively answer here the question
whether the QLRO phase exists also for the isotropicn53
random-field model, but we will present indirect evidence
favor of this. If it does exist even in that case, its propert
should be essentially those that we find here.

II. DISCRETIZED HEISENBERG MODELS

Rapaport16 has discussed the technical advantages of
ing a discretization of the sphere for Monte Carlo calcu
t
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tions of the Heisenberg model. He also suggested that
might be a useful way of studying the effects of rando
fields on this model. There is one significant point which w
not made in his work and which will be important here. T
discretization of the sphere chosen by Rapaport was the
of 30 unit vectors defined by the centers of the edges of
icosahedron, which we will refer to as theI30 model. In the
work presented here we will use the set of 12 unit vect
defined by the edge centers of a cube, which in the stand
Cartesian notation are called the@110# vectors. We will refer
to this as theO12 model~whereO stands for octahedral!. In
either case, with the simple Heisenberg exchange Ha
tonian

H52J(̂
i j &

(
a51

3

Si
aSj

a , ~2!

where eachSi is now restricted to the discrete set, rather th
the entire sphere, there are now two phase transitions. T
is the n53 Heisenberg critical point, which occurs at
slightly higher Tc than in the ordinary Heisenberg mode
and, in addition, there is a first-order phase transition a
lower Tc , at which the minimum free-energy directions
M change.

The nature of the low-temperature transition can be
derstood in a Landau mean-field treatment. We will disc
theO12 case here, and Rapaport’sI30 case is essentially simi
lar. Because we now have only a cubic symmetry of
Hamiltonian rather than the full symmetry of the sphere,
Landau free-energy functionalF(T,M ) should contain terms
proportional to(a(Ma)2l for all ~positive! integer values of
l , in addition to the usual isotropic terms. Since we want
find the minimum of the free energy, it is sufficient to co
sider only the high-symmetry directions@100#, @110#, and
@111#.

The coefficient of the term of orderM2l is proportional to
8(1/2)l for @100#, 218(1/4)l for @110#, and 6(2/3)l for
@111#. The l 51 term is, of course, isotropic, and thel 52
term favors the@111# directions. Thus, just below the critica
point, where the thermal average^uM u& is small,^M & will be
aligned along@111#.

All of the terms with l .2 favor the @110# directions.
Therefore, as we go to still lowerT and ^uM u& grows, we
eventually reach a point where it becomes favorable to ro
M to a @110# direction. Because there are 8@111# directions
and 12@110# directions, and 12/8 is not an integer, the La
dau rules determine that this transition must be first orde

It is natural to expect that the behavior of theI30 model
would be closer to the isotropic limit than that of theO12
discretization used here. This is surely true at mostT. For
example, it is likely that the reason Rapaport did not rep
the existence of the low-temperature transition is that in
I30 model it occurs at aTc which is smaller than the mini-
mum used in his Monte Carlo simulations. However, b
cause the 12@110# states are not a subset of the 30 icosa
dral edge-center states, results for both theO12 model and
the I30 model cannot be combined in a simple way to obta
an extrapolation to the isotropic limit.

One might think at first that a similar intermediat
temperature FM phase would occur for the discretizat
based on the edge centers of a tetrahedron. These six s
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57 271POWER-LAW CORRELATIONS AND ORIENTATIONAL . . .
however, are equivalent to the six@100# vectors of a cube.
This model has only two phases, with a first-order ph
transition between the FM and PM phases.17

Our discretization of the spin variables using the 12@110#
vectors automatically builds a cubic anisotropy into the f
energy. Thus, since we are only trying to understand
qualitative aspects of orientational ordering and not attem
ing a quantitative model of a particular experiment, we
not need to keep theK term in the Hamiltonian. If we now
take the limitG→` with each of theni 8 chosen from the se
of @110# unit vectors, to simplify the calculation, Eq.~1!
reduces in form to Eq.~2!, with the dynamical restriction tha
a fractionx of the spins~the ones on thei 8 sites! point in
fixed random directions, parallel to the local random fie
on thei 8 sites.

It is interesting to note that the stability of the@111# phase
is of purely entropic origin. The energy always favors t
@110# alignment. A significant consequence of this is that
walls between different@111# domains must be broad, rathe
than sharply defined. As a result, the@111# FM phase is
easily destabilized by a random field.

III. MONTE CARLO CALCULATION

Because all of theSi are chosen from the@110# set, Eq.
~2! has the helpful property that the energy of every stat
an integral multiple of 1/2. Thus it becomes easy to write
Monte Carlo program to study Eq.~2! which uses integer
arithmetic to calculate energies. This, plus the fact that e
spin has only 12 possible states, gives substantial impro
ments in performance over working with the general form
Eq. ~1!, for both memory size and speed. It is also be p
sible to use integer arithmetic ifG is chosen to be an intege
WhenG is infinite, the random field is implemented by a
signing a fractionx of the sites to be thei 8 sites. The spins
on these sites are given random@110# directions and then lef
fixed for the remainder of the calculation.

The Monte Carlo program used two linear congruen
pseudorandom number generators. In order to avoid
wanted correlations, the random number generator use
select which sites would be assigned the random fields
different from the one used to assign the initialSi . A heat
bath method was used for flipping the spins, which at e
step reassigned the value of a spin to one of the 12 allo
states, weighted according to their Boltzmann factors
independent of the prior state of the spin.

L3L3L simple cubic lattices with periodic boundar
conditions were used throughout. The values ofL used
ranged from 16 to 64. Away from anyTc the samples were
run for 10 240 Monte Carlo steps per spin~MCS! at eachT,
with sampling after each 10 MCS. Near aTc they were run
several times longer. The initial part of each data set w
discarded for equilibration. Typically, two different rando
field configurations with a givenL were studied for a given
x.0. This gives a rather crude estimate of the finite-s
dependence of the various thermodynamic properties. Un
tunately, however, in the presence of the random field hi
precision finite-size scaling is not a very effective tool, b
cause the sample-to-sample variations for a given size
large and not well behaved.12,18

Both random and ordered initial conditions were used
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the unpinned spins. For large samples, typically two or th
random initial states were tested, and brief tests were m
of all of the 12 ordered states. Forx51/16 ~or less!, in a
ground state essentially all of the unpinned spins are alig
along one of the@110# directions. Thus, in these cases it
easy to equilibrate the system at low temperatures, by s
ing from an ordered state. This is not true forx51/8, how-
ever.

In the absence of any external field, random or unifor
the rotation ofM between different@110# directions is a slow
process. Because all of these 12 directions are equiva
however, there is no need for the Monte Carlo program
average over the minima in this case. In the presence of
random field the different@110# ferromagnetic Gibbs state
have different energies. If the system is started in a hi
energy @110# direction, it will eventually jump to a more
favorable direction~unlessT is so low that this does no
happen in the time available!. In this, as in many other re
spects, the model behaves like the random-field Is
model.18

IV. NUMERICAL RESULTS FOR x50

Specific heat data for the pure (x50) O12 model with
L532 and L548, obtained by numerically differentiatin
the energy, are displayed in Fig. 1. The Heisenberg crit
point occurs atTc1 /J51.45360.001, which is less than 1%
above the value found for the standard isotropic Heisenb
model,19,20 which is about 1.443060.0001. TheTc for the
isotropic model is known to greater precision because
more computing resources have been used to calculate i
argued by Rapaport,16 given equal resources one should
able to get more than equal precision for the discretiz
model. Within the accuracy calculated here, the most eff
tive way of estimatingTc is to assume that the energyE(Tc)
is the same for both models. Our estimate ofTc1 for theO12
model is based onE(Tc1)50.994, as found in the isotropi
model.19,20It is, however, necessary to consider theL depen-
dence ofE. This method also works for then52 case,12 and
reflects the fact that the two-spin correlation function at

FIG. 1. Specific heat vs temperature for the pureO12 model on
L3L3L simple cubic lattices. The large vertical arrow indicates
first-order phase transition.
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272 57RONALD FISCH
Heisenberg critical point is virtually identical at all distanc
in the discretized model and the isotropic model, ev
though strict universality only demands that they be ident
at large distances. The short-distance part of the two-s
correlation function, and thusE(Tc), does depend on th
lattice structure, even in a Bethe-Peierls mean-field tre
ment.

The first-order transition from the@111# FM phase to the
@110# FM phase is indicated in Fig. 2 by the vertical arro
This transition occurs atTc2 /J51.062560.0075, where the
error bar indicates the approximate width of the region
metastability, rather than a statistical error. Measured
T/J51.0625, the latent heat at this transition is measure
be DQ50.0561J for L532, andDQ50.0571J for L548.
The observed increase ofDQ as L increases confirms tha
the transition is indeed first order. Because the specific h
is substantially larger in the@110# phase than in the@111#
phase nearTc2, the largest contribution to the uncertainty
DQ comes from the uncertainty inTc2.

The magnetization̂ uM (T)u& is shown in Fig. 2, for
L524, 32, and 48. We see that the size dependence rap
becomes small belowT/J51.40. The jump inuM u at the
first-order transition, again using data taken atT51.0625, is
0.0277 forL532 and 0.0286 forL548. The finite-size scal-
ing function for uM (T)u at the Heisenberg critical point i
displayed in Fig. 3. The values of the critical exponents u
for this figure are the usual field theory estimates21 for n53.
Thus, if we determineTc by the energy condition discusse
above, there are no free fitting parameters. The width of
scaling region is slightly larger than that of anothern53
model22 for which the cubic anisotropy is probably som
what stronger.

V. NUMERICAL RESULTS FOR x>0

In addition tox50, Monte Carlo data were also obtaine
at x51/32, 1/16, and 1/8. A semiquantitative picture of t
phase diagram obtained from these results is shown in Fi
The limit of stability of the@110# FM ground state is slightly
less thanx51/8. For the nonzero values ofx used in these
calculations, the@110# FM has a transition into the QLRO

FIG. 2. Magnetization vs temperature for the pureO12 model on
L3L3L simple cubic lattices.
n
l
in

t-

f
at
to

at

ly

d

e
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phase. The@111# FM phase, which is stable atx50, should
also extend to small positive values ofx. As noted above,
however, the domain walls in this phase are broad and h
a low cost in free energy. Thus, the@111# FM is easily de-
stabilized by the random field. It is difficult to obtain mea
ingful numerical results for very dilute random fields, due
crossover effects.23 Therefore, the@111# FM-QLRO phase
boundary was not observed directly, and its existence
shown in Fig. 4 as a dotted line.

The QLRO-to-PM transition is second order for smallx
and first order for largerx, with a tricritical point somewhere
betweenx51/16 andx51/8. The shift inTc for the QLRO-
to-PM transition is linear inx for small x, with a slope of

d

dxS Tc~x!

Tc~0! D523.7560.20. ~3!

FIG. 3. Finite-size scaling of the magnetization nearTc for the
pure O12 model onL3L3L simple cubic lattices. They axis is
scaled logarithmically.

FIG. 4. Phase diagram of the dilute random-fieldO12 model on
simple cubic lattices, showing the paramagnetic~PM!, ferromag-
netic ~FM!, and quasi-long-range order~QLRO! phases. The plot-
ting symbols show estimates obtained from the Monte Carlo d
The solid lines indicate first-order transitions, the dashed lines
dicate second-order transitions, and there were no data taken o
dotted line.
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57 273POWER-LAW CORRELATIONS AND ORIENTATIONAL . . .
This should be compared to the corresponding quantity
the n52 case, which is12 23.4260.14. (x51/16 is in the
linear regime forn52 also.! Having the shift inTc(x) in-
crease by about 10% as one goes from then52 case to the
n53 case is about what should be expected if the QL
phase survives for isotropic spin variables. If the existenc
the QLRO was actually dependent on the discretization,
author would expect this shift to be substantially larger
the O12 model than we have found it to be.

It is interesting to note that these numbers are abou
times as large as the shifts inTc(x) which one obtains from
a simple quenched site dilution,24 although a naive mean
field approximation predicts that the shift should be the sa
in the two cases. It is also true in the site dilution case t
the size of the shift increases asn increases.

Our results indicate that the QLRO phase still occurs
x51/8 whenn53, while forn52 it was found that the limit
of stability of the QLRO phase was12 less thanx51/8. This
is an indication that the stability of the QLRO phase
creases withn. On this basis, we might expect it to occur f
all n, and thus its existence would be independent of a
topological singularities. This encourages us to hope tha
might be possible to study the QLRO using some analyt
technique which uses 1/n as an expansion parameter. T
existence of such an expansion must, for now, be consid
mere speculation. It could certainly still be true that t
QLRO phase really is of topological origin, in which case
should not exist forn.3.

It is difficult to study transitions which occur at lowT
using Monte Carlo calculations. TheT50 end points of both
the @110# FM-QLRO boundary and the QLRO-PM bounda
in Fig. 4 are illustrated in schematic fashion. The author d
not mean to imply thatTc(x) is actually linear inx near the
T50 end point in either case.

The evolution of the specific heat asx is increased is
shown in Fig. 5. The data displayed were obtained by
merically differentiating the calculated values of the ene
with respect toT. The specific heat was also computed
calculating the fluctuations in the energy at fixed tempe
ture, yielding similar but noisier results. We see that the d
for different samples with the same value ofx agree fairly
well, although some differences are visible near the ph
transitions.

The sharp peaks which occur forx50 ~in Fig. 1! have
become rounded atx532, and they have moved to lowerT.
The QLRO-to-PM transition actually occurs slightly belo
the T of the upper specific heat peak. The@110# FM-to-
QLRO transition appears to be continuous, rather than
order, and the specific heat increases as we approach
transition from either direction. Going on tox51/16, all of
these trends are enhanced. Atx51/8, the FM phase has dis
appeared entirely. Due to the long relaxation times,
x51/8 it was not practical to equilibrate anL564 lattice at
T/J,0.65. The small specific heat peak nearT50.67 marks
the QLRO-to-PM transition, which is first order at this valu
of x. For x51/32 andx51/16, where this transition is sec
ond order, there is no clear signature of the transition obs
able in the specific heat.

Looking at the dependence of^uM u& on x andL provides
additional insight. The data forx51/32, 1/16, and 1/8 are
shown in Fig. 6. In the@110# FM phase,^uM u& is almost
r

of
e
r

3

e
t

r

y
it
l

ed

s

-
y

-
ta

se

st
his

r

v-
independent ofL, except very close toTc . In the QLRO
phase,̂ uM u& decreases slowly asL increases, probably de
caying as 1/ln(L). In the PM phase,̂ uM u& decreases as
(L/j)23/2, wherej is the ferromagnetic correlation length. I
Fig. 6~c! we see that the data for largeL andT between 0.70
and 1.45 seem to form a set of parallel lines on this sem

FIG. 5. Specific heat vs temperature for the dilute random-fi
O12 model on L3L3L simple cubic lattices.~a! x51/32, ~b!
x51/16, and~c! x51/8.



of

his

g

ear
c-

the

n a
wo

el

ute

pled
e

274 57RONALD FISCH
plot. This implies thatj remains constant over this range
temperature forx51/8. The saturation ofj in the PM phase
indicates that the QLRO-to-PM transition is first order at t
value ofx.

We can get valuable information by looking at the ma
netic structure factor of samples of sizeL564. The structure

FIG. 6. Magnetization vs temperature for the dilute random-fi
O12 model onL3L3L simple cubic lattices. They axis is scaled
logarithmically.~a! x51/32, ~b! x51/16, and~c! x51/8.
-

factor is the spatial Fourier transform of^M2&, and it can be
measured by x-ray- and neutron-scattering experiments. N
a critical point the small-wave number behavior of the stru
ture factor of a random-field model is expected to have
form

u^M ~k!&u2'~1/j21uku2!2~42 h̄ !/2. ~4!

The correlation lengthj is infinite in the QLRO phase~es-
sentially by definition!.

In three dimensions, Eq.~4! requires thath̄>1. To esti-
mate h̄ , we measure the slope of the structure factor o
log-log plot. This is shown, averaged over angles, for t
L564 lattices withx51/16 atT51.125, in Fig. 7~a!. The
slope of the best fit to the data at smalluku is 22.8760.05,
and so we find

h̄51.1360.05. ~5!

d

FIG. 7. Angle-averaged magnetic structure factor for the dil
random-fieldO12 model on 64364364 simple cubic lattices, log-
log plot. Each data set shows averaged data from 2 states sam
at 10 240 MCS intervals.~a! x51/16,T51.125, the line has a slop
of 22.87; ~b! x51/8, T50.6875, the line has a slope of23.00.
Note that the vertical scales differ in~a! and ~b!.
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This is essentially the same as the result found for this qu
tity in the n52 case.12 It is, well known that the value of an
h exponent is often insensitive to the value ofn, and so one
should not believe on these grounds that the values ofh̄ for
n52 and n53 are identical. The data forx51/32 ~not
shown! have a smaller value of the slope atTc . This, how-
ever, should not be interpreted as measuring the value oh̄ ,
because these data are taken in the crossover region23 from
pure system behavior, which has a slope of21.97 for the
structure factor atTc .

Repeating the above procedure for twoL564 with x51/8
lattices atT50.6875, using cold start initial conditions, w
find the results shown in Fig. 7~b!. This value ofT is slightly
above the best estimate ofTc at this value ofx, and the
measured values of̂uM u& for these data are 0.2518 forS1
and 0.2880 forS2. Similar states, but with slightly highe
energy and lower magnetization, were achieved using
dom initial states. We see that the structure factor ag
shows a power-law behavior at smalluku, but that the slope a
Tc has now assumed the minimum allowed value of23.
This is the value inside the QLRO phase and yields

h̄051. ~6!

This is an independent confirmation of the first-order nat
of the transition at this value ofx. The latent heat is too sma
to measure accurately, being less than 0.01 J. The sma
tent heat may be an indication that we are close to the
critical point.

Although no first-order behavior was seen along
QLRO-to-PM transition line12 for n52, it probably exists
for x near the end point of the QLRO phase in that case a
The tricritical point on the QLRO-to-PM transition line i
likely to have the same origin as the analogous tricriti
point which occurs for the random-field Ising model.25

VI. DISCUSSION

What we have found is that, despite the weak destruc
of the ferromagnetic long-range order caused by
Imry-Ma instability, there is actually a good corresponden
in three dimensions between the behavior of the QLR
to-PM transition inn52 andn53 random-field models and
the FM-to-PM transition in the random-field Ising mode
The author sees no reason why the QLRO phase should
come completely destabilized by a weak uniaxial anisotro
Therefore, it should be possible for ann53 system with a
weak uniaxial anisotropy and a random field to exhibit
QLRO phase between its PM and FM phases. This is, in f
n-

n-
in

e

la-
i-

e

o.

l

n
e
e
-

e-
y.

t,

a good description of the diluted antiferromagnet in a m
netic field systems which serve as the prototypical exp
mental random-field Ising models. Therefore, the ‘‘metas
bility’’ which is seen in these experimental systems26 is
probably caused by the presence of a QLRO phase, at
those cases where the uniaxial anisotropy is weak.

Since the QLRO phase exists for bothn52 andn53 in
three dimensions, and possibly for larger values ofn also,
there cannot be any simple correspondence between
random-field models and the puren-vector models in one
lower spatial dimension. We do not yet know if the QLR
phase exists forn>4, and so we cannot say whether th
QLRO is properly attributed to topological excitations, as t
Kosterlitz-Thouless phase in the pure model is.

As mentioned in the Introduction, many orientation
glass systems have quadrupolar interactions, rather than
vector interactions studied here. In cases where the par
alignment of the quadrupoles is the low-energy one, such
the diluted alkali-cyanides,1 our model should apply, at leas
to the extent that lattice defects can be neglected. In th
cases where the low-energy alignment is the T configurat
however, such as the solid hydrogens,4 things are more com-
plicated. Another interesting experimental system with
quadrupolar order parameter, for which our results should
relevant, is the isotropic-nematic transition of a liquid crys
in silica gel.27,28

VII. CONCLUSION

In this work we have used Monte Carlo simulations
study theO12 version of the diluted random-field ferromag
net in three dimensions. We have found that there are
types of ordered phases, just as in then52 case. In addition
to the anisotropy-stabilized ferromagnet, we find an interm
diate phase displaying auku23 decay of two-spin correla-
tions. There is a tricritical point on the QLRO-to-PM trans
tion line. When this transition is second order, the critic
exponenth̄ , which characterizes the magnetic structure fa
tor on the critical line, has a value which is indistinguishab
from its value in then52 case. The exponenth̄0, which is
observed within the QLRO phase, is also the same as in
n52 case. The results should be applicable to a variety
experimental systems.
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