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of near-edge structure in x-ray-absorption and electron-energy-loss spectroscopy
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Green’s-function methods are frequently used in the calculation of both the extended and the near-edge
structures observed in x-ray-absorption and electron-energy-loss spectroscopies. To date, calculations based
upon these methods have tended to be based upon a superposition of atomic potentials used to represent the
crystal potential, with no attempt to calculate the self-consistent electronic potential. Many features in the
near-edge region relate to charge redistribution and therefore are only approximately described by non-self-
consistent electronic potentials. In this paper we show that the layer Korringa-Kohn-Rostoker method can be
used in the same way as conventional Green’s-function theories for near-edge structure, with the added
advantage that the self-consistent ground-state charge is used. Spectra calculated in this manner, and compared
with those obtained from other Green’s-function methods, demonstrate that self-consistency is necessary to
show certain features such as molecular orbital splitting in TiO2 ~rutile!. @S0163-1829~98!10903-7#
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INTRODUCTION

Near-edge structure~NES!, observed in x-ray-absorptio
or electron-energy-loss spectroscopy of inner-shell ioniza
processes, can be sensitive to interatomic distances, loca
ordination, and local electronic structure. The analysis
near-edge structures can be particularly valuable as the e
tation is specific to a given atomic species and can be lo
ized in a nanometer-sized region in scanning transmis
electron microscopy. To understand the origins of vario
features it is necessary to calculate the observed fine s
tures from a suitable theoretical model. This process is
essential first step before the fine structure can be use
investigate problems of local structural and electro
changes for atoms in a different environment. The exten
fine structure, which is much weaker than the NES, can
easily analyzed on the basis of the single-scattering exten
x-ray-absorption fine-structure~EXAFS! theory.1 In this
model the outgoing spherical wave representing the eje
electron is partially reflected back from neighboring atom
The resulting interference leads to sinusoidal oscillations
the fine structure as a function of ejected electron wave v
tor. Mathematically, the process is best represented
Green’s functions for the partial waves of different angu
momentum. The scattering by the atoms is then represe
by phase shifts. The model can be extended by allow
multiple scattering of the electron between the atoms. T
idea forms the basis of many of the techniques for calcu
ing near-edge structure, the differences being mainly in
way that scattering paths are selected. In the x-ray-absorp
near-edge structure~XANES! method2,3 the neighboring at-
oms are assigned to shells around the excited atom. Var
570163-1829/98/57~4!/2621~7!/$15.00
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combinations of scattering events within a given coordin
tion shell ~intrashell! and scattering between different she
~intershell! can be considered. Fujikawa, Matsuura, a
Kuroda4,5 have also published a multiple-scattering theo
where no explicit path selection technique is used and p
sented results of calculations. Thef effective ~FEFF!
method6 was developed as a direct extension of EXAF
theory and selects scattering paths according to a maxim
path length cutoff, the number of scattering events, and
estimated amplitude. Natoliet al.7,8 have published a gener
alization of the multiple-scattering theory that allows f
multiple excitation channels. In all these theories, with t
notable exception of the relatedXa method for molecular
clusters, a superposition of atomic potentials is used9 and no
attempt is made to calculate the ground-state charge den
This might not be so important in the EXAFS region beyo
100 eV above the edge threshold, but it might lead to seri
errors in the near-edge region within the first 10–20 e
Although a multiple-scattering calculation, such as one p
formed by a XANES program,2,3 has been used to calcula
features in a near-edge spectrum due to electronic transit
to unoccupied antibonding orbitals in simple diatom
molecules,10 fully self-consistent calculations of the potenti
are necessary to model the precise energies and shapes
spectral peaks in more complex systems.

Near-edge structure can also be viewed as the approp
angular-momentum-resolved unoccupied density of state
the excitation site.11,12 For example, aK-shell excitation
probes the unoccupiedp states and anL23 excitation probes
unoccupieds and d states. Accordingly, the features in
spectrum can be interpreted using a appropriate electro
structure calculation technique that can produce site-spec
2621 © 1998 The American Physical Society
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angular-momentum-resolved, conduction-band densities
states. Those methods that rely on muffin-tin description
the atomic core region, such as the augmented plane-w
~APW! method13 and the Korringa-Kohn-Rostoker~KKR!
method,14,15 and derivatives such as the layer KKR~LKKR !
approach,16,17 can give the desired result directly. For plan
wave pseudopotential methods the appropriate densitie
states can be obtained by projection from the plane-w
states.12 Whichever method is used, the ground-state cha
density is calculated self-consistently using dens
functional theory. Exchange and correlation are treated in
local-spin-density approximation. This contrasts with t
usual multiple-scattering methods used to interpret exp
mental spectra, in which no attempt is made to solve fo
self-consistent charge density, although the latest scheme
incorporate energy-dependent exchange-correla
potentials.18,19 While in principle all of these cluster-base
methods can either be made self-consistent or use
consistent potentials derived from other electronic-struct
methods, in practice overlapped atomic charge densities
used to construct the crystalline potential. The LKK
method provides a convenient method for computing
charge density and the near-edge structure spectra within
same methodology. It is important to remember that in ba
structure methods the wave function satisfies a Bloch co
tion appropriate for an infinite solid, while the usu
multiple-scattering models assume a cluster of atoms aro
the excited atom. Possible core-hole effects are there
readily incorporated into the multiple-scattering theories,
are more difficult to consider in most band-structure cod
Actually, the Green’s-function-based KKR and LKKR cod
can handle the self-consistent embedding of an impurity
an otherwise perfect host crystal.20

The KKR method is based on the division of the crys
into muffin tins within which spherical potentials are a
sumed. Green’s-function expansions, as used in the clu
multiple-scattering theories, are used to treat interato
multiple-scattering events. In the KKR method translatio
symmetry is used and the appropriate Green’s functions
Fourier transformed tok space. It is therefore a natural sta
ing point for comparing electronic-structure calculation tec
niques and the multiple-scattering theories used in near-e
structure analysis. The LKKR method16,17 is an outgrowth of
theoretical work on low-energy electron diffractio
~LEED!.21,22 The material is first divided into layers. Mul
tiple scattering within the layers is solved with a partial-wa
basis, while multiple scattering between the layers is sol
within a plane-wave basis. Using layer doubling and la
stacking, the full infinite structure can be assembled in
manner that only requires two-dimensional translatio
symmetry. The time to complete this calculation is prop
tional to the number of layers; thus for systems with a co
plexity in the layer stacking sequence such as grain bou
aries, surfaces, and multilayer bulk materials are id
structures for the LKKR method. The ability of the LKKR
method to handle grain boundary structures is import
given the interest in possible changes in electronic struc
arising from impurity segregation and the corresponding
fects on the mechanical properties. Calculations can
help in the interpretation of electron-energy-loss spectr
copy ~EELS! measurements of these changes at high sp
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resolution in the scanning transmission electron microsco
In this paper we use MgO as a test case to compare n

edge structure calculated using the LKKR method, XANE
and FEFF. It is particularly convenient because the spec
scopic fine structures can be easily understood on the b
of a simple physical model. We go on to show how t
LKKR method can also give good agreement with the N
on the O K edge in rutile. This is particularly significant a
the first two peaks have been interpreted as transition
unfilled molecular orbital states that might not be mode
correctly by a simple superposition of atomic potentials. W
also successfully apply the LKKR method to the calculati
of near-edge structure in copper and show that the met
can be used with confidence to explore changes due to a
ing and impurity segregation. Finally, we discuss some of
limitations of such an approach. It would appear that
assumption of flat interstitial regions and the neglect of n
spherical contributions to the potential are more serious
loosely packed compounds than the neglect of core-hole
fects.

THEORY

An extensive description of the LKKR method has be
published previously.16,17Here we review only those feature
that are necessary to understand the relationship of LKKR
Green’s-function-based multiple-scattering theories of NE
We aim to calculate the x-ray-absorption or electron-ener
loss spectrum in the dipole approximation. The transit
rate for x-ray absorption is given in atomic units by

Wc~E!522E dr8E dr fc* ~r 8!D* ~r 8!

ImG1~r 8,r ,E!D~r !fc~r !, ~1!

where

D~r !5 iA~r !•“ ~2!

is the perturbation due to the incident x rays of angular f
quencyv and magnetic vector potentialA(r ). In the above
expressionsc is the speed of light,E the energy of the
ejected electron,«c that of the core electron,fc the wave
function of the core state,G1 the retarded Green’s functio
of the excited electron, andr andr 8 are position vectors. Fo
EELS theD(r ) would be replaced by exp(iq•r ),23 which
would be approximated byq•r under dipole scattering
conditions.24–26

The Green’s functionG1(E) may be written as

G1~E!5(
n

un&^nu~E1 i«2H !2

5(
n

un&^nu~E1 i«2En!2, ~3!

whereH is the electronic Hamiltonian andun& represents an
eigenstate ofH of eigenvalueEn . Using Dirac’s relation

1

E2En1 i«
5PS 1

E2En
D2 ipd~E2En!, ~4!

where P represents the principal part, we see that
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ImG1~E!52p (
n

d~E2En!un&^nu ~5!

and

ImG1~r ,r 8,E!52p (
n

d~E2En!^r 8un&^nur &

52p (
n

d~E2En!c~r 8,En!c* ~r ,En!

52pr~E!C~r 8,En!c* ~r ,En!, ~6!

where

r~E!5(
n

d~E2En! ~7!

is the density of states at energyE. Substituting Eq.~6! into
Eq. ~1! yields

Wc~E!52pr~E!uM ~E!u2. ~8!

M (E) is the matrix element given by

M ~E!5E C* ~r ,E!D~r !fc~r !dr ~9!

for a transition from a core statefc(r ) to the excited state
c(r ,E). Equations~7!–~9! show that Eq.~1! is equivalent to
Fermi’s golden rule with Planck’s constant\51 (a.u.). In
the XANES program2,3 the Green’s function~3! is evaluated
by calculating the scattering matrices of a set of spher
shells centered on the emitter. In the LKKR approach tha
the subject of this paper, it is considered as the sum o
atomic contributionGa from a particular sitea and the con-
tributions from the other atoms in the solid, i.e.,16,17

G5Ga i1~11G0ta i !~ ta i !21~ta ia i2ta i !~ ta i !21~11ta iG0!,
~10!

where we drop the superscript1 from the Green’s function
for simplicity, ta i is the isolated atomic scattering operato
and ta ib i is the scattering path operator that includes
multiple-scattering events starting on sitea and ending on
siteb in layer i . The atomic Green’s functionGa i is formed
from regular and irregular numerical solutions to the Sch¨-
dinger equation for that particular atom. The difference
tween XANES and LKKR is the way in which the scatterin
path operator in Eq.~10! is evaluated.

In a LKKR calculation, the material is first partitione
into layers of atoms. For calculations involving surfaces
interfaces this division appears naturally from the proble
For bulk materials any convenient planes can be tak
though the calculation will be most efficient if the planes a
densely packed low-index planes with reasonable interpla
spacings. Within the layers the atoms are represented
spherical muffin tins and Mattheiss’s method9 is used to
combine the atomic charges to give the initial potential. T
initial potential is identical to that used in the XANE
theory. The interstitial potential between the muffin tins
assumed to have a constant value, which is a limitation c
pared to full potential methods such as the full-potential l
ear augmented plane-wave in which the interstitial poten
al
is
n
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is expanded as a Fourier series. This limitation might not
so serious for our application as we are only concerned w
the densities of states inside the muffin-tin spheres proje
out by the spatially localized inner-shell wave function. T
scattering operator for layeri (Ti) is calculated using a two
dimensional form of KKR theory and is expressed solely
terms of an angular-momentum basis set as

@Ti
21#

LL8

a ib i5~ ta i !21da ib i
dLL82GLa i L8b i

. ~11!

L and L8 refer to the angular momenta andGLa i L8b i
is the

two-dimensional lattice Fourier transform of the Bloch fre
space Green’s function. The scattering from the individ
atoms is calculated from phase shifts evaluated at the mu
tin radii from the logarithmic derivative of the wave func
tions in the usual manner.

Scattering matrices representing transmission from lef
right, T11; right to left, T22; reflection on the left-hand
side,T21; and reflection on the right-hand side,T12; can
now be constructed using LEED theory. A scattering ope
tor for a bulk crystal can be assembled by successively a
ing layers to form the scattering matrices for a half spa
The effect of more distant layers becomes progressiv
smaller and the process converges. The site diagonal sca
ing path operator for an atom in layeri needed in the evalu
ation of the Green’s function can be written as

ta ia i5E dk~ t212G2D!a ia i

21 , ~12!

whereD describes the embedding of layeri in the host crys-
tal. The matrixD is found from the scattering matrices of th
left (R21) and right (R12) half spaces that, once layeri is
inserted, form the infinite crystal:

D5~11R12!~12R21R12!~11R21!21. ~13!

The problem of an interface region embedded between
semi-infinite bulk crystals is treated in the same manner.

In the XANES method the region around the excited at
is divided into concentric shells. This is fairly straightfo
ward in simple high-symmetry materials, but the divisio
becomes less useful for low-symmetry or disordered s
tems. Scattering operators are assembled for each shel
then scattering between shells is evaluated using opera
for transmission across a shell~inward or outward! and re-
flection between shells. The boundary condition on the o
ermost shell requires that there is only an outgoing spher
wave. Topologically this process is identical to that used
LKKR except that the planar geometry has been change
a spherical geometry.

In the LKKR code self-consistency is achieved by calc
lating a new potential from the charge density. Exchange
correlation contributions are found using the local-sp
density approximation and the Coulomb potential from a
lution to the Poisson equation. The latter includes the lo
range Madelung term. The potential used as input to the n
iteration is found using Broyden’s method,27 which uses val-
ues from many previous iterations. Iterations are continu
until convergence is achieved.

The density of states is then evaluated using Eq.~5!. In
practice the Green’s function is evaluated at an energy of
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2624 57PETER REZ, JAMES M. MacLAREN, AND DILANO K. SALDIN
by a small imaginary partd to improve convergence. This i
equivalent to broadening the density of states by a Lore
ian of width d and can be used to simulate the effects
lifetime and instrumental broadening. In the calculations
ported here a width of 0.005 hartree~0.0136 eV! was used.
The densities of states were multiplied by the square of
trix elements calculated from wave functions generated us
the Hartree-Slater potential of Herman and Skillman28 in or-
der to produce appropriate spectra.29

RESULTS AND DISCUSSION

The near-edge structure on both the oxygen and ma
sium K edges of MgO has been extensively studied. T
oxygenK edge represents a good test case as the chara
istic three-peak structure shown in calculations of Fig. 1
a simple physical explanation.30 An oxygen atom is sur-
rounded by a first coordination shell of magnesium atom
The second coordination shell is oxygen and subsequen
ordination shells alternate between magnesium and oxy
A similar picture applies for magnesium, except of cou
that the first coordination shell is oxygen. Scattering fro
oxygen atoms dominates in MgO and to a good approxim
tion scattering from magnesium can be neglected. The t
peak, peakC, is a single-scattering EXAFS peak from th
second coordination shell~first oxygen shell!. The second
peak labeledB is probably a single-scattering EXAFS pea
from the fourth coordination shell~second oxygen shell!,
though it is affected to some degree by double scatte
with the second coordination shell. The large peakA, just
after the threshold, arises from an intrashell triangular s
tering path in the second coordination shell~first oxygen
shell!. In Fig. 1 XANES, LKKR, and FEFF calculations fo
the oxygenK edge are compared. In all cases the magnes
muffin-tin radius was taken as 2.17 a.u. and the oxyg
muffin-tin radius was 1.8 a.u. All the main peaks have
same relative height and are in the same position. An e
peakB2 appears in the LKKR calculation above the ma
peak B. Presumably this arises from the longer effecti
scattering paths considered in the LKKR calculation. N
that the peaks are broader in the FEFF calculation. T

FIG. 1. LKKR ~solid line!, XANES ~short-dashed line!, and
FEFF ~long-dashed line! calculations for the MgO oxygenK-edge
near-edge structure.
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might be because FEFF does not adequately sum over m
paths whose individual contributions are quite small.
demonstrate this effect we show in Fig. 2 a comparison be-
tween a FEFF calculation with a maximum path lengthr max
of 6 Å and another calculation wherer max has been increase
to 12 Å. Increasing the maximum path length allows f
more scatterings and narrows the peaks, which clearly sh
the importance of multiple intershell scattering. Multip
constructive interference in this case is acting to sharpen
peaks as in a Fabry-Pe´rot interferometer.

Near-edge structure calculated using XANES, LKKR, a
FEFF for the MgK edge assuming no core hole are shown
Fig. 3. The calculations are all in good agreement with e
other and experimental results. Note that all the peaks in
experiment are reproduced by the calculation, though
first two peaks labeledA and B have different relative
heights. To investigate the magnitude of core-hole effe
using FEFF, calculations both with and without a core h
are compared in Fig. 4. The core hole slightly shifts t
energy of the high-energy peaks and redistributes inten
between peaksA andB. Significantly it does not create new

FIG. 2. FEFF calculations for the MgO oxygenK-edge near-
edge structure withr max512.0 Å ~solid line! andr max56 Å ~dashed
line!.

FIG. 3. LKKR ~solid line!, XANES ~short-dashed line!, and
FEFF ~long-dashed line! calculations for the MgO magnesium
K-edge near-edge structure.



si

no
nt
et

as

-
a
th
di
tu
led
te
ro
th

at
h

t

ture
a

by

eded
ar

ue
si-
’s-

e-
ed

in

le

ion
2.1
-
g.

the
se

ch
uc-

ace-

-

57 2625APPLICATION OF THE LAYER KORRINGA-KOHN- . . .
peaks, merely emphasizing the first peak while suppres
the second. A similar calculation for the oxygenK edge
showed that the core hole had a minimal effect. This is
surprising as core holes are expected to be more importa
cation edges as shown in calculations for transition-m
oxides.31

The oxygenK edge in magnesium oxide represents a c
where the filled valence band is made up from O 2p states
and all transitions are to emptyp-like states in the conduc
tion band. It would not be surprising if methods such
XANES and FEFF, which make no attempt to calculate
ground-state electronic structure, did not successfully pre
the features of the near-edge structure. Near-edge fea
that arise from transitions to empty states in a partially fil
band may not be correctly modeled by a non-self-consis
multiple-scattering calculation that may successfully rep
duce the higher-energy EXAFS peaks. The peaks at
threshold of the oxygenK edge from the rutile form of TiO2
show transitions to the unfilledt2g andeg molecular orbitals.
Figure 5 shows a comparison between a spectrum simul
using LKKR and our experimental EELS measurement. T

FIG. 5. LKKR calculation of the TiO2 ~rutile! oxygenK-edge
near-edge structure~solid line! compared with the EELS experi
ment ~dashed line!.

FIG. 4. FEFF calculations for the MgO magnesiumK-edge
near-edge structure with~dashed line! and without ~solid line! a
core hole.
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LKKR calculation was based on the~001! layers and the
muffin-tin radii were 1.9 a.u. for Ti and 1.7 a.u. for O. No
only does the LKKR calculation reproduce thet2g and eg
peaks, but it also correctly shows the three-peak struc
between 10 and 20 eV, which is best interpreted in
multiple-scattering framework. Earlier work12 showed that
this three-peak structure could be successfully simulated
the XANES program. The oxygenK edge in rutile is an
interesting case because many calculations have succe
in producing either transitions to unfilled molecul
orbitals32,33 or the extended fine structure12,34 but never con-
vincingly both sets of features. The LKKR method, as a tr
self-consistent electronic-structure code, will produce tran
tions related to electronic structure. As it is also a Green
function method identical to the conventional multipl
scattering theories, it will have no problem with extend
fine structures. The molecular-orbital splitting is also seen
Fig. 6, which shows the Tid density of states.

The boronK edge from TiB2 is shown as another examp
of near-edge structure in a titanium compound. TiB2 is hex-
agonal with the structure shown in Fig. 7. For the calculat
a muffin-tin radius of 2.4 a.u. was assumed for Ti and
a.u. for B with layers parallel to~0001!. The near-edge struc
ture at the boronK edge is compared with experiment in Fi
8, again with very good agreement.

As mentioned above, the LKKR method is based on
muffin-tin approximation, which can be expected to cau
problems in materials with highly directional bonding su
as diamond or silicon. It is possible to calculate a band str
ture and total energy by filling the empty spaces at1

4 , 1
4 , 3

4 and
1
2 ,0,0 with empty spheres. It is also possible to use the sp

FIG. 6. Ti d density of states~solid line! in TiO2 ~rutile! com-
pared with the Op density of states~dashed line!.

FIG. 7. Structure of TiB2.
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2626 57PETER REZ, JAMES M. MacLAREN, AND DILANO K. SALDIN
filling atomic sphere approximation. In this case the inter
tial region is removed by expanding the muffin-tin spheres
form overlapping space filling spheres. There is some si
larity between the densities of states and the results of o
calculations such as the linear augmented plane wave
pseudopotential, but the agreement with theK-shell fine
structure in diamond~Fig. 9! is not as good as pseudo
atomic-orbital calculations.35 A useful indicator of whether a
calculation will be successful is the ratio of the volume in t
muffin tins, assuming that they are just touching along
bond directions, to the total volume in the unit cell. Witho
the introduction of empty spheres for MgO this is 0.756,
rutile it is 0.33, for TiB2 it is 0.566, and for silicon or dia-
mond it is only 0.09. Inclusion of empty spheres can impro
the packing fraction and the accuracy of the calculation p
vided high-symmetry sites suitable for placing empty sphe
can be identified. The LKKR method would be expected
do well for closely packed metals where core-hole effects
negligible due to screening. This is indeed the case and a
example we show as Fig. 10 a calculation for the CuL3 edge
compared with an experimental result. We have been ex
sively using the LKKR method to calculate unoccupiedd

FIG. 8. LKKR calculation of the TiB2 boronK-edge near-edge
structure~solid line! compared with the EELS experiment~dashed
line!.

FIG. 9. LKKR calculation of the carbonK edge in diamond
~solid line! compared with the EELS experiment~dashed line!.
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densities of states observed in theL23 spectra from transition
metals and these results will be reported elsewhere.

CONCLUSIONS

Multiple-scattering Green’s-function theories can succe
fully be used to calculate near-edge structure at higher e
gies above threshold than those features that would be in
preted as transitions to partially filled states. Even thoug
relatively small number of simple single-scattering and tria
gular double-scattering paths can be used to explain the
sition of near-edge structure peaks, interference from m
tiple intershell scattering can substantially narrow the
features.

To explain the details of the fine structure closer to thre
old, in cases involving transitions to molecular orbitals
partially filled bands, it is absolutely essential to calculate
densities of states using a self-consistent potential.
LKKR method provides a convenient Green’s-functio
method for calculating partial densities of states needed
interpret inner-shell fine structure. Since it is based on
same Green’s-function expression as the multiple-scatte
theories of near-edge structure, it will also reproduce
extended fine structures 50–100 eV above an edge. In
ticular it is exceptionally well suited to problems encou
tered in high-spatial-resolution EELS where inner-shell sp
troscopic fine structure is measured at boundaries
interfaces. We have shown that the LKKR method succe
fully reproduces the fine structure in a number of materia
including both insulators and metals. Results for the oxyg
K edge in rutile show that it can successfully simulate b
the transitions to molecular orbitals and the extended
structures.

The LKKR method is an electronic-structure techniq
for bulk materials, surfaces, and interfaces. As such it d
not take account of core-hole effects, though in principle
would be possible to perform a calculation in which the e
cited atom is treated separately in its own layer. The cal
lation would then resemble an interface calculation. The la
of a self-consistent charge density is not intrinsic to the ot
multiple-scattering theories. Such a feature could be incor
rated in the existing multiple-scattering codes with some
fort.

FIG. 10. LKKR calculation of the CuL3-edge near-edge struc
ture ~dashed line! compared with the EELS experiment~solid line!.
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The most serious restrictions to the application of LKK
will be in loosely packed materials with highly direction
bonds, which cannot easily be decomposed into ato
spheres or muffin tins with a constant interstitial potent
We feel that if the material is divided into muffin tins th
touch along the interatomic bonds, then the ratio of volu
in the muffin tins to the total cell volume is a useful indicat
of whether a LKKR calculation will successfully simula
near-edge structure. If high-symmetry sites suitable for p
ing empty spheres could be identified in the crystal, then
hy

ys

J

D.

ie

ry

er
ic
l.

e

c-
e

packing fraction and the accuracy of the calculation could
improved.
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