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Green’s-function methods are frequently used in the calculation of both the extended and the near-edge
structures observed in x-ray-absorption and electron-energy-loss spectroscopies. To date, calculations based
upon these methods have tended to be based upon a superposition of atomic potentials used to represent the
crystal potential, with no attempt to calculate the self-consistent electronic potential. Many features in the
near-edge region relate to charge redistribution and therefore are only approximately described by non-self-
consistent electronic potentials. In this paper we show that the layer Korringa-Kohn-Rostoker method can be
used in the same way as conventional Green’s-function theories for near-edge structure, with the added
advantage that the self-consistent ground-state charge is used. Spectra calculated in this manner, and compared
with those obtained from other Green’s-function methods, demonstrate that self-consistency is necessary to
show certain features such as molecular orbital splitting in, TiQtile). [S0163-182€08)10903-7

INTRODUCTION combinations of scattering events within a given coordina-
tion shell(intrashel) and scattering between different shells
Near-edge structuréNES), observed in x-ray-absorption (intershel) can be considered. Fujikawa, Matsuura, and
or electron-energy-loss spectroscopy of inner-shell ionizatiorcurod#> have also published a multiple-scattering theory
processes, can be sensitive to interatomic distances, local cohere no explicit path selection technique is used and pre-
ordination, and local electronic structure. The analysis ofsented results of calculations. Thie effective (FEFPH
near-edge structures can be particularly valuable as the exdhethod was developed as a direct extension of EXAFS
tation is specific to a given atomic species and can be locatheory and selects scattering paths according to a maximum
ized in a nanometer-sized region in scanning transmissiopath length cutoff, the number of scattering events, and the
electron microscopy. To understand the origins of variougstimated amplitude. Natodit al.”® have published a gener-
features it is necessary to calculate the observed fine stru@lization of the multiple-scattering theory that allows for
tures from a suitable theoretical model. This process is amultiple excitation channels. In all these theories, with the
essential first step before the fine structure can be used totable exception of the related, method for molecular
investigate problems of local structural and electronicclusters, a superposition of atomic potentials is 8setl no
changes for atoms in a different environment. The extendedttempt is made to calculate the ground-state charge density.
fine structure, which is much weaker than the NES, can bdhis might not be so important in the EXAFS region beyond
easily analyzed on the basis of the single-scattering extendekDO eV above the edge threshold, but it might lead to serious
x-ray-absorption fine-structuréEXAFS) theory! In this  errors in the near-edge region within the first 10-20 eV.
model the outgoing spherical wave representing the ejecteéiithough a multiple-scattering calculation, such as one per-
electron is partially reflected back from neighboring atomsformed by a XANES program? has been used to calculate
The resulting interference leads to sinusoidal oscillations irffeatures in a near-edge spectrum due to electronic transitions
the fine structure as a function of ejected electron wave vedo unoccupied antibonding orbitals in simple diatomic
tor. Mathematically, the process is best represented bgnolecules’ fully self-consistent calculations of the potential
Green’s functions for the partial waves of different angularare necessary to model the precise energies and shapes of the
momentum. The scattering by the atoms is then representespectral peaks in more complex systems.
by phase shifts. The model can be extended by allowing Near-edge structure can also be viewed as the appropriate
multiple scattering of the electron between the atoms. Thisingular-momentum-resolved unoccupied density of states at
idea forms the basis of many of the techniques for calculatthe excitation sité>!? For example, aK-shell excitation
ing near-edge structure, the differences being mainly in thgrobes the unoccupiga states and ah ,3 excitation probes
way that scattering paths are selected. In the x-ray-absorptiaimoccupieds and d states. Accordingly, the features in a
near-edge structuréKANES) method™ the neighboring at- spectrum can be interpreted using a appropriate electronic-
oms are assigned to shells around the excited atom. Variowructure calculation technique that can produce site-specific,
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angular-momentum-resolved, conduction-band densities aksolution in the scanning transmission electron microscope.
states. Those methods that rely on muffin-tin descriptions of In this paper we use MgO as a test case to compare near-
the atomic core region, such as the augmented plane-wawsige structure calculated using the LKKR method, XANES,
(APW) method® and the Korringa-Kohn-RostokgiKkKR) ~ and FEFF. It is particularly convenient because the spectro-
method™*15and derivatives such as the layer KKRKKR)  scopic fine structures can be easily understood on the basis
approach®!’ can give the desired result directly. For plane-0f @ simple physical model. We go on to show how the
wave pseudopotential methods the appropriate densities &<KR method can also give good agreement with the NES
states can be obtained by projection from the plane-wav@n the O K edge in rutile. This is particularly significant as
statest2 Whichever method is used, the ground-state chargi® first two peaks have been interpreted as transitions to
density is calculated self-consistently using density_unfllled molecular orbital states that might not be modeled

functional theory. Exchange and correlation are treated in th&0"€ctly by a simple superposition of atomic potentials. We
local-spin-density approximation. This contrasts with theaISO successiully apply _the LKKR method to the calculation
of near-edge structure in copper and show that the method

usual multiple-scattering methods used to interpret experi= i ;
mental spectra, in which no attempt is made to solve for £37 be used with confidence to explore changes due to alloy-

self-consistent charge density, although the latest schemes HB] and 'mpl*:c”ty Sﬁgregat'on. FIT1aIIIy, we ?:jscuss somﬁ of tr:le
incorporate  energy-dependent  exchange-correlatiofftations of such an approach. It would appear that the

potentials®® While in principle all of these cluster-based assumption of flat interstitial regions and the neglect of non-

methods can either be made self-consistent or use Segpherical contributions to the potential are more serious in

consistent potentials derived from other electronic-structur posely packed compounds than the neglect of core-hole ef-
methods, in practice overlapped atomic charge densities a gets.

used to construct the crystalline potential. The LKKR

method provides a convenient method for computing the THEORY

charge density and the near-edge structure spectra within the o, oxtensive description of the LKKR method has been

same methodology. It is important to remember that in ba”dpublished previousl¥®1 Here we review only those features

structure methods the wave function satisfies a Bloch condifhat are necessary to understand the relationship of LKKR to

tion appropriate for an infinite solid, while the usual Greens-function-based multiple-scattering theories of NES.
multiple-scattering models assume a cluster of atoms arounde aim to calculate the x-ray-absorption or electron-energy-

the excited atom. Possible core-hole effects are thereforgyqq gpectrum in the dipole approximation. The transition
readily incorporated into the multiple-scattering theories, but o for x-ray absorption is given in atomic units by
are more difficult to consider in most band-structure codes.

Actually, the Green’s-function-based KKR and LKKR codes
can handle the self-consistent embedding of an impurity in We(E)= —ZJ dr’J dr ¢z (r')A*(r")
an otherwise perfect host crystal.
The KKR method is based on the division of the crystal ImG ™ (r',r,E)A(r) ¢e(r), ()

into muffin tins within which spherical potentials are as-
sumed. Green’s-function expansions, as used in the cluster
multiple-scattering theories, are used to treat interatomic A(r)=iA(r)-V 2
multiple-scattering events. In the KKR method translational, _ L

symmetry is used and the appropriate Green’s functions aré the perturbation dug to the mmdenF x rays of angular fre-
Fourier transformed t& space. It is therefore a natural start- 9UeNcy® and magnetic vector potentil(r). In the above
ing point for comparing electronic-structure calculation tech-€xPressionsc is the speed of lightE the energy of the
niques and the multiple-scattering theories used in near-edgdected electrong that of ihe core electronp. the wave
structure analysis. The LKKR methtfd”is an outgrowth of unction o_f the core stat&; ™ the retarded_(_;reen’s function
theoretical work on low-energy electron diffraction of the excited electron, amdandr’ are position vectors. For
(LEED).?%%2 The material is first divided into layers. Mul- EELS theA(r) would be replaced by eX_M‘r)’ZS which
tiple scattering within the layers is solved with a partial-wavewould be 4a;2)é)rOX|mated byg-r under dipole scattering
basis, while multiple scattering between the layers is solve@onditions”*~ _ _

within a plane-wave basis. Using layer doubling and layer The Green's functior " (E) may be written as
stacking, the full infinite structure can be assembled in a

manner that only requires two-dimensional translational G+(E)=2 In}n|(E+ie—H)~

symmetry. The time to complete this calculation is propor- n

tional to the number of layers; thus for systems with a com-

plexity in the layer stacking sequence such as grain bound- :2 In)(n|(E+ie—E,)~, 3
aries, surfaces, and multilayer bulk materials are ideal n

structures for the LKKR method. The ability of the LKKR '\ harey js the electronic Hamiltonian arfa) represents an

method to handle grain boundary structures is importangyengiate off of eigenvalueE,. Using Dirac’s relation
given the interest in possible changes in electronic structure

arising from impurity segregation and the corresponding ef- 1
fects on the mechanical properties. Calculations can also — — =P =
. . . E—-E,+ie E-E,
help in the interpretation of electron-energy-loss spectros-
copy (EELS) measurements of these changes at high spatiathere P represents the principal part, we see that

here

—im8(E—E,), 4
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. is expanded as a Fourier series. This limitation might not be
IMG*™(E)=—m X, 8(E—E,)|n)(n| (5 so serious for our application as we are only concerned with
" the densities of states inside the muffin-tin spheres projected

and out by the spatially localized inner-shell wave function. The

scattering operator for layer(T;) is calculated using a two-
IMG*(r,r',E)=— 2 S(E—E)(r'[n)(n|r) dimensional form of KKR theory anq is expressed solely in
n terms of an angular-momentum basis set as
—199Bi _ oy —1 _
=7 > SE-E)u(r' ,E)y*(r.Ey) [T =) a8 = Crawrg. (1D

n

L andL’ refer to the angular momenta a@j . is the

=—mp(E)W(r',E))¢y*(r,Ep), (6)  two-dimensional lattice Fourier transform of the Bloch free-
space Green's function. The scattering from the individual
atoms is calculated from phase shifts evaluated at the muffin-
tin radii from the logarithmic derivative of the wave func-
p(E)=2 S(E-E,) (7)  tions in the usual manner.

: Scattering matrices representing transmission from left to
is the density of states at enerfly Substituting Eq(6) into  right, T*; right to left, T™; reflection on the left-hand
Eq. (1) yields side, T~ *; and reflection on the right-hand sid€; ~; can

now be constructed using LEED theory. A scattering opera-
W(E)=2mp(E)|M(E)|% (8  tor for a bulk crystal can be assembled by successively add-
ing layers to form the scattering matrices for a half space.
The effect of more distant layers becomes progressively
smaller and the process converges. The site diagonal scatter-
M(E)=f W*(r,E)A(r) ¢(r)dr (9)  ing path operator for an atom in layeneeded in the evalu-
ation of the Green’s function can be written as
for a transition from a core staig.(r) to the excited state

Y(r,E). Equationg7)—(9) show that Eq(1) is equivalent to
Fermi's golden rule with Planck’s constafit=1 (a.u.). In
the XANES prograrfi® the Green’s functior3) is evaluated _ _ .
by calculating the scattering matrices of a set of sphericavhereA describes the embedding of layein the host crys-
shells centered on the emitter. In the LKKR approach that i§al- The matrixA is found from the scattering matrices of the
the subject of this paper, it is considered as the sum of aleft (R™") and right R" ") half spaces that, once layeis
atomic contributiorG,, from a particular sitex and the con-  inserted, form the infinite crystal:
tributions from the other atoms in the solid, i'& L e .
A=(1+R*)(1-R *R*)(1+R H)—1. (13

where

M(E) is the matrix element given by

Taiai:fdk(rl—e—A)*l (12

. el
ajq;

— g aj ai\— 1/ _a a; a; aiy—1 a;

G=GHH (14 Gt ™) (1%) (A =t) (%) "1+ 19Go), The problem of an interface region embedded between two
(10 semi-infinite bulk crystals is treated in the same manner.

where we drop the superscript from the Green'’s function In the XANES method the region around the excited atom
for simplicity, t*i is the isolated atomic scattering operator,is divided into concentric shells. This is fairly straightfor-
and r*# is the scattering path operator that includes allward in simple high-symmetry materials, but the division
multiple-scattering events starting on siieand ending on  becomes less useful for low-symmetry or disordered sys-
site B in layeri. The atomic Green’s functio®“i is formed tems. Scattering operators are assembled for each shell and
from regular and irregular numerical solutions to the Sehrothen scattering between shells is evaluated using operators
dinger equation for that particular atom. The difference befor transmission across a shé¢ihward or outwargl and re-
tween XANES and LKKR is the way in which the scattering flection between shells. The boundary condition on the out-
path operator in Eq10) is evaluated. ermost shell requires that there is only an outgoing spherical

In a LKKR calculation, the material is first partitioned wave. Topologically this process is identical to that used for
into layers of atoms. For calculations involving surfaces orLKKR except that the planar geometry has been changed to
interfaces this division appears naturally from the problema spherical geometry.
For bulk materials any convenient planes can be taken, Inthe LKKR code self-consistency is achieved by calcu-
though the calculation will be most efficient if the planes arelating a new potential from the charge density. Exchange and
densely packed low-index planes with reasonable interplanarorrelation contributions are found using the local-spin-
spacings. Within the layers the atoms are represented hyensity approximation and the Coulomb potential from a so-
spherical muffin tins and Mattheiss’s metflod used to lution to the Poisson equation. The latter includes the long-
combine the atomic charges to give the initial potential. Thisrange Madelung term. The potential used as input to the next
initial potential is identical to that used in the XANES iteration is found using Broyden’s meth86which uses val-
theory. The interstitial potential between the muffin tins isues from many previous iterations. Iterations are continued
assumed to have a constant value, which is a limitation comdntil convergence is achieved.
pared to full potential methods such as the full-potential lin- The density of states is then evaluated using Gg. In
ear augmented plane-wave in which the interstitial potentiapractice the Green'’s function is evaluated at an energy offset
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FIG. 1. LKKR (solid ling), XANES (short-dashed line and FIG. 2. FEFF calculations for the MgO oxygédredge near-
FEFF (long-dashed lingcalculations for the MgO oxygeK-edge  edge structure with,,,,=12.0 A (solid line) andr ,,,=6 A (dashed
near-edge structure. line).

by a small imaginary paré to improve convergence. This is might be because FEFF does not adequately sum over many
equivalent to broadening the density of states by a Lorentzpaths whose individual contributions are quite small. To
ian of width 6 and can be used to simulate the effects ofdemonstrate this effect we show in Figya comparison be-
lifetime and instrumental broadening. In the calculations retween a FEFF calculation with a maximum path length,
ported here a width of 0.005 hartré@.0136 eV was used. of 6 A and another calculation wherg,, has been increased
The densities of states were multiplied by the square of mag 12 A. Increasing the maximum path length allows for
trix elements calculated from wave functions generated usinghore scatterings and narrows the peaks, which clearly shows
the Hartree-Slater potential of Herman and Skillffan or-  the importance of multiple intershell scattering. Multiple
der to produce appropriate spectfa. constructive interference in this case is acting to sharpen the
peaks as in a Fabry-Re interferometer.

Near-edge structure calculated using XANES, LKKR, and
FEFF for the MgK edge assuming no core hole are shown in

The near-edge structure on both the oxygen and magnd=ig. 3. The calculations are all in good agreement with each
sium K edges of MgO has been extensively studied. Thepther and experimental results. Note that all the peaks in the
oxygenK edge represents a good test case as the charact@xperiment are reproduced by the calculation, though the
istic three-peak structure shown in calculations of Fig. 1 hadirst two peaks labeledA and B have different relative
a simple physical explanatiofl. An oxygen atom is sur- heights. To investigate the magnitude of core-hole effects
rounded by a first coordination shell of magnesium atomsusing FEFF, calculations both with and without a core hole
The second coordination shell is oxygen and subsequent cére compared in Fig. 4. The core hole slightly shifts the
ordination shells alternate between magnesium and oxygegnergy of the high-energy peaks and redistributes intensity
A similar picture applies for magnesium, except of coursebetween peakd andB. Significantly it does not create new
that the first coordination shell is oxygen. Scattering from

RESULTS AND DISCUSSION

oxygen atoms dominates in MgO and to a good approxima- Intensity
tion scattering from magnesium can be neglected. The third (arb. units)
peak, peakC, is a single-scattering EXAFS peak from the 14

second coordination sheffirst oxygen shejl The second
peak labeled is probably a single-scattering EXAFS peak
from the fourth coordination shellsecond oxygen shell 10
though it is affected to some degree by double scattering
with the second coordination shell. The large pégkjust
after the threshold, arises from an intrashell triangular scat- 6
tering path in the second coordination shéifst oxygen

12 B

8_

shel). In Fig. 1 XANES, LKKR, and FEFF calculations for 4

the oxygerK edge are compared. In all cases the magnesium 2

muffin-tin radius was taken as 2.17 a.u. and the oxygen 0 o

muffin-tin radius was 1.8 a.u. All the main peaks have the 10 -5 0 5 10 15 20 25 30

same relative height and are in the same position. An extra
peakB2 appears in the LKKR calculation above the main
peak B. Presumably this arises from the longer effective FIG. 3. LKKR (solid line), XANES (short-dashed line and
scattering paths considered in the LKKR calculation. NoteFEFF (long-dashed ling calculations for the MgO magnesium
that the peaks are broader in the FEFF calculation. Thi&-edge near-edge structure.

Energy (eV)
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T Energy (eV)
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Energy (eV) FIG. 6. Tid density of statessolid line) in TiO, (rutile) com-

pared with the Qp density of statesdashed ling
FIG. 4. FEFF calculations for the MgO magnesiufredge

near-edge structure witfdashed ling and without(solid line) a LKKR calculation was based on th@01) layers and the
core hole.

muffin-tin radii were 1.9 a.u. for Ti and 1.7 a.u. for O. Not

o ] ] _only does the LKKR calculation reproduce thg, and e
peaks, merely emphasizing the first peak while suppressingeaks, but it also correctly shows the three-peak structure

the second. A similar calculation for the oxygéh edge petween 10 and 20 eV, which is best interpreted in a
showed that the core hole had a minimal effect. This is noh']ump'e_scattering framework. Earlier WdTaKShOWed that

surprising as core holes are expected to be more important gjs three-peak structure could be successfully simulated by
cation edges as shown in calculations for transition-metajne XANES program. The oxygeK edge in rutile is an
oxides3!

) . ) interesting case because many calculations have succeeded
The oxygerK edge in magnesium oxide represents a casg, producing either transitions to unfiled molecular

where the filled valence band is made up from @ states  orhjtals>32 or the extended fine structdfe but never con-
and all transitions are to empfy-like states in the conduc- vincingly both sets of features. The LKKR method, as a true
tion band. It would not be surprising if methods such asself-consistent electronic-structure code, will produce transi-
XANES and FEFF, which make no attempt to calculate thejons related to electronic structure. As it is also a Green's-
ground-state electronic structure, did not successfully prediGynction method identical to the conventional multiple-
the features of the near-edge structure. Near-edge featurggattering theories, it will have no problem with extended
that arise from transitions to empty states in a partially filledfine structures. The molecular-orbital splitting is also seen in
band may not be correctly modeled by a non-self-consisterﬁig_ 6, which shows the Til density of states.

multiple-scattering calculation that may successfully repro- The poronk edge from TiB is shown as another example

duce the higher-energy EXAFS peaks. The peaks at thgf near-edge structure in a titanium compound. JTiBhex-
threshold of the oxygeK edge from the rutile form of TiQ

T - ) agonal with the structure shown in Fig. 7. For the calculation
show transitions to the unfillegy ande, molecular orbitals.

] ! : a muffin-tin radius of 2.4 a.u. was assumed for Ti and 2.1
Figure 5 shows a comparison between a spectrum simulatedy;. for B with layers parallel t€0001). The near-edge struc-
using LKKR and our experimental EELS measurement. Theyre at the borolK edge is compared with experiment in Fig.

8, again with very good agreement.
Intensity As mentioned above, the LKKR method is based on the
(arb. units) muffin-tin approximation, which can be expected to cause
problems in materials with highly directional bonding such
as diamond or silicon. It is possible to calculate a band struc-
ture and total energy by filling the empty spaceg dt, 2 and
£,0,0 with empty spheres. It is also possible to use the space-

T T T T
0 5 10 15 20 25 30
Energy (eV) O Titanium
FIG. 5. LKKR calculation of the TiQ (rutile) oxygenK-edge @ Boron at 112

near-edge structurésolid line compared with the EELS experi-

ment(dashed ling FIG. 7. Structure of TiB.
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Intensity Intensity
(arb. units) (arb. units)
5 - 10000
44 8000
34 6000
27 4000
1 2000
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FIG. 8. LKKR calculation of the TiB boronK-edge near-edge FIG. 10. LKKR calculation of the Cil;-edge near-edge struc-
structure(solid line) compared with the EELS experimefttashed  ture (dashed linecompared with the EELS experimesolid line).
line).

densities of states observed in thg spectra from transition

filling atomic sphere approximation. In this case the intersti-Metals and these results will be reported elsewhere.

tial region is removed by expanding the muffin-tin spheres to
form overlapping space filling spheres. There is some simi- CONCLUSIONS
larity between the densities of states and the results of other Multiple-scattering Green’s-function theories can success-

calculations such as the linear augmented plane wave gy pe used to calculate near-edge structure at higher ener-
pseudopotential, but the agreement with eshell fine  gies above threshold than those features that would be inter-
structure in diamondFig. 9) is not as good as pseudo- preted as transitions to partially filled states. Even though a
atomic-orbital calculation®> A useful indicator of whether &  rg|atively small number of simple single-scattering and trian-
calculation will be successful is the ratio of the volume in theqjar double-scattering paths can be used to explain the po-
muffin tins, assuming that they are just touching along thesition of near-edge structure peaks, interference from mul-
bond directions, to the total volume in the unit cell. Without tipje intershell scattering can substantially narrow these
the introduction of empty spheres for MgO this is 0.756, forfeatyres.
rutile it is 0.33, for TiB, it is 0.566, and for silicon or dia-  Tq explain the details of the fine structure closer to thresh-
mond it is only 0.09. Inclusion of empty spheres can improveg|q, in cases involving transitions to molecular orbitals or
the packing fraction and the accuracy of the calculation propartially filled bands, it is absolutely essential to calculate the
vided high-symmetry sites suitable for placing empty spheregensities of states using a self-consistent potential. The
can be identified. The LKKR method would be expected to, kkR method provides a convenient Green’s-function
do well for closely packed metals where core-hole effects arghethod for calculating partial densities of states needed to
negligible due to screening. This is indeed the case and as terpret inner-shell fine structure. Since it is based on the
example we show as Fig. 10 a calculation for thelGledge  same Green’s-function expression as the multiple-scattering
compared with an experimental result. We have been extefiheories of near-edge structure, it will also reproduce the
sively using the LKKR method to calculate unoccupiéd extended fine structures 50—100 eV above an edge. In par-
ticular it is exceptionally well suited to problems encoun-

Intensity tered in high-spatial-resolution EELS where inner-shell spec-
(arb. units) troscopic fine structure is measured at boundaries and
10 interfaces. We have shown that the LKKR method success-
fully reproduces the fine structure in a number of materials,

8 including both insulators and metals. Results for the oxygen

K edge in rutile show that it can successfully simulate both
the transitions to molecular orbitals and the extended fine
structures.

The LKKR method is an electronic-structure technique
for bulk materials, surfaces, and interfaces. As such it does
not take account of core-hole effects, though in principle it
would be possible to perform a calculation in which the ex-
cited atom is treated separately in its own layer. The calcu-
lation would then resemble an interface calculation. The lack
of a self-consistent charge density is not intrinsic to the other
multiple-scattering theories. Such a feature could be incorpo-

FIG. 9. LKKR calculation of the carboi edge in diamond rated in the existing multiple-scattering codes with some ef-
(solid line) compared with the EELS experimefdtashed ling fort.

Energy (eV)
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The most serious restrictions to the application of LKKR packing fraction and the accuracy of the calculation could be
will be in loosely packed materials with highly directional improved.
bonds, which cannot easily be decomposed into atomic
spheres or muffin tins with a constant interstitial potential. ACKNOWLEDGMENTS
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