
,

PHYSICAL REVIEW B 15 JANUARY 1998-IIVOLUME 57, NUMBER 4
Theory of surface sum frequency generation spectroscopy

Jesu´s A. Maytorena
Facultad de Ciencias, Universidad Auto´noma del Estado de Morelos, Avenida Universidad 1001, 62210 Cuernavaca, Morelos

Bernardo S. Mendoza
Centro de Investigaciones en Optica, Apartado Postal 1-948, 37000 Leo´n, Guanajuato

W. Luis Mochán
Laboratorio de Cuernavaca, Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 48-3, 62251 Cuernavaca

Morelos
~Received 6 March 1997!

We develop simple models for the calculation of optical sum and difference frequency generation spectra at
the surface of isotropic centrosymmetric conductors and insulators. One of them consists of a semi-infinite free
electron gas with a continuously varying electronic density profile. The other consists of a continuous distri-
bution of polarizable entities that respond nonlinearly to the gradient of the field. We solve the Euler equations
for the former ignoring the pressure term. Assuming the response of each polarizable entity to be described by
that of a harmonic oscillator, we solve the second model incorporating multipolar contributions to the macro-
scopic surface and bulk polarization. For both models we obtain analytical expressions that produce the
nonlinear bulk and surface susceptibilities in terms of the bulk dielectric response of the system. We found an
electric-field-induced second-order magnetic moment whose contribution to the susceptibilities is as large as
that of the electric dipolar and quadrupolar moment. This contribution is absent in the particular case of second
harmonic generation and has not been discussed previously in the literature. By choosing the appropriate
dielectric functions we obtain the approximate nonlinear response and frequency conversion efficiency for
different systems.@S0163-1829~98!02803-3#
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I. INTRODUCTION

The electric-dipolar quadratic susceptibility is a third ra
tensor, and therefore it must be null within the bulk of a
centrosymmetric system. As second-order nonlinear p
cesses, dipolar sum and difference frequency genera
~SFG and DFG! from centrosymmetric systems are only a
lowed at an interface where inversion symmetry is brok
For this reason, a large portion of the light with frequen
v35v16v2 reflected from an interface illuminated wit
two monochromatic beams atv1 and v2 is surface origi-
nated, making SFG/DFG sensitive optical surface probes
this class of systems. Besides being nondestructive and
invasive, SFG/DFG has the added advantage of acces
surfaces such as buried interfaces, out of ultrahigh-vacu
conditions and within arbitrary transparent ambients.

The use of SFG as a surface probe was introduced
1987.1 Most SFG experiments have been directed towa
the observation of adsorbed overlayers whose vibratio
modes may be probed by tuning one of the fundame
frequencies in the infrared.2–10 In this case, the frequenc
resolution is comparable to that of IR linear reflectance sp
troscopy, but the relative sensitivity to the surface vs the b
is four to five orders of magnitude larger,11 as the surface
contribution to the linear reflectance is of the order of t
selvedge’s width divided by the wavelength. SFG has a
been used to explore surfaces such as electrolyte-m
interfaces.11 Although most of the attention has been ce
tered on the adsorbed molecules, the nonlinear respons
the substrate itself is also of interest.12 The surface electronic
570163-1829/98/57~4!/2569~11!/$15.00
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structure has also been explored by SFG in buried interfa
such as SiO2-Si,13 where its versatility was employed to elu
cidate the nature of a resonance detected with seco
harmonic generation~SHG!. Although SFG and SHG shar
many features as surface probes, SFG is more versatile
the propagation and polarization directions of each of
fundamental beams, as well as their frequencies, may be
dependently varied.

In spite of the experimental work done for ten years
surface SFG, a theoretical understanding of it is bar
emerging. It is only very recently that the angular depe
dence of SFG on isotropic surfaces has been investigate
terms of the independent components of the bulk and sur
nonlinear susceptibilities and their symmetry-originat
constraints.14 Only some of these components have been c
culated for jellium models.14 Some crystallinity effects have
also been incorporated, but only for the bulk of an anis
tropic electron gas model.15 The purpose of the present pap
is the development of approximate models that permit
calculation of all the components of the surface and b
second-order response tensors of arbitrary centrosymm
semi-infinite homogeneous conductors and insulators. Th
models constitute a natural extension of previous work16 on
second-harmonic generation.

As a first step we develop a simple model conductor t
consists of a semi-infinite isotropic electron gas with an eq
librium density profile that interpolates smoothly between
vacuum and bulk asymptotic values. We set up the Eu
hydrodynamic equation for this system ignoring the press
term but including a dissipative term and the nonlinearit
2569 © 1998 The American Physical Society



ce
th
su
e-
e
fo
is
si
th

ou

is
le
n
di
sl
alu
un
in
os
r

e
a
a

ca
a

ly
e
e
ra
ta
fo
le

r-
o

tri
u

ar
ia
pe
a

th

en

ilit
bi
ec
ar
n
n
ffi

th
e

G/

ged

he

ent
ith

that

r-
the

f
e-
e

2570 57MAYTORENA, MENDOZA, AND MOCHÁN
due to the convective time derivative and the Lorentz for
We solve it to obtain the nonlinear induced current at
surface and at the bulk of the conductor, and from the re
we identify the nonlinear susceptibility. Our analytical r
sults are similar to those of Ref. 14, but we obtain two ind
pendent bulk response functions; one of them canceled
tuitously in Ref. 14 but no longer null when dissipation
present. Furthermore, we obtained a new definite expres
for the response normal to the surface, although it has
flaws expected due to the lack of spatial dispersion in
model.17

A second model, applicable to dielectric surfaces, cons
of a homogeneous semi-infinite distribution of polarizab
entities that respond harmonically to the perturbing field a
field gradients. This distribution is characterized by the
poles’ number density, which interpolates continuou
across the surface from zero in vacuum to its constant v
at the bulk, and we assume the microscopic response f
tions of all dipoles to be the same. The origin of the nonl
earity in this case is the spatial variation of the field acr
each dipole. This variation gives a small contribution of o
der a/l in the bulk, wherea is the size of each polarizabl
entity andl is the optical wavelength. However, the norm
component of the electric field has a very rapid variation
the surface, in a scale much smaller thanl, thus yielding a
sizable surface nonlinear macroscopic polarization. We
culate the electric dipolar and quadrupolar, as well as a m
netic dipolar contribution to this polarization. Remarkab
the latter does not contribute to the polarization in the deg
erate case of second harmonic generation, and therefor
importance for the nonlinear response in the nondegene
case had not been recognized previously. Finally, we ob
analytical expressions which are exact within our model
the surface and bulk parameters in terms of the linear die
tric functionse(v1), e(v2), ande(v3).

We employ the results of Ref. 14 to derive explicit fo
mulas for the the SFG/DFG radiated efficiency in terms
all the non-null susceptibility components and the dielec
response of the system. We use these expressions to calc
the efficiency of a model solid made up of harmonic pol
izable entities. Furthermore, by substituting the appropr
dielectric response we can approximate the SFG/DFG s
tra of arbitrary systems. We illustrate this procedure by c
culating the efficiency of a Si crystal and we compare
results to experiment.

The paper is organized as follows: In Sec. II we pres
our models for conductors~II A ! and dielectrics~II B !, and
we solve them to obtain the surface and bulk susceptib
tensors. Using a suitable parametrization of the suscepti
ties we also obtain the radiation efficiency for SFG. In S
III, we evaluate the formulae obtained in Sec. II for a h
monic solid and for Si. In Sec. IV we present the conclusio
of the present work and finally in the Appendix we prese
some results required for the calculation of the SFG e
ciency.

II. THEORY

In this section we obtain analytical expressions for
surface and bulk nonlinear susceptibilities of simple mod
.
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for conductor and for dielectric materials, and for the SF
DFG radiation efficiency.

A. Jellium model of conductors

Consider a simple metal modeled by a classical char
fluid made of electrons of charge2e and massm, whose
equation of motion is given by Euler equation ignoring t
pressure term,

mnS ]

]t
1

1

t DuW 1mn~uW •¹!uW 52enEW 2
e

c
nuW 3BW , ~1!

wheren5n(rW,t) is the electronic density at pointrW and time
t, uW is the velocity field, andEW and BW are the electric and
magnetic field, respectively. We expand the time-depend
quantities as a superposition of monochromatic waves w
frequenciesv1, v2, 2v1, 2v2, andv16v2; we have

f ~rW,t !5 f 0~rW !1 f ~rW,v1!e2 iv1t1 f ~rW,v2!e2 iv2t

1 f ~rW,2v1!e2 i2v1t1 f ~rW,2v2!e2 i2v2t

1 f ~rW,v11v2!e2 i ~v11v2!t

1 f ~rW,v12v2!e2 i ~v12v2!t1•••1c.c., ~2!

where f stands for eithern, uW , EW , or BW , c.c. stands for the
complex conjugate of the previous terms, and we remark
in equilibrium only the densityn0(rW), is different from zero.
An alternative definition of the amplitudesf (rW,v) is through
f (rW,t)5•••1Ref (rW,v)e2 ivt1••• . Both definitions lead to
different results for nonlinear problems. Although the diffe
ence is trivial, i.e., some extra powers of 2 appear in
response functions, it has to be kept in mind.

Using expansion~2! in Eq. ~1!, we generate a series o
equations for thef variables that oscillate at the same fr
quency. In this way, the solution for the velocity field at th
fundamental frequenciesv i , with i 51,2, is given by

uW ~v i ![uW i52 i
e/m

V i
EW i , ~3!

to linear order in the field, whereV i5v i1 i /t, and
EW i[EW (v i). We define the polarizationJW5]PW /]t, so that

PW i[PW ~v i !52
JW i

iv i
, ~4!

whereJW i[JW (v i) is the induced current,

JW i52en0uW i , ~5!

from which we get the linear polarization

PW i52
e2/m

v iV i
n0EW i . ~6!
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57 2571THEORY OF SURFACE SUM FREQUENCY GENERATION . . .
Now, from the continuity equation and Eq.~3!, we obtain the
first-order induced density as

n~v i ![ni5
e/m

v iV i
¹•~n0EW i !. ~7!

Now we concentrate on the equation foruW 3[uW (v3), where
v35v11v2 corresponds to the SF response. From Eq.~1!
we get to second-order in the field

2 iV3uW 31~uW 1•¹!uW 21~uW 2•¹!uW 1

52
e

m
EW 31

ie

mF 1

v2
uW 13~¹3EW 2!1

1

v1
uW 23~¹3EW 1!G .

~8!

Substituting the linear velocity~3!, we can solve Eq.~8! for
uW 3 in terms of the electric field at the fundamental freque
cies. In this case the induced currentJW3 is given by

JW352en0uW 32en1uW 22en2uW 1 , ~9!

from which we finally obtain the SF~quadratic! polarization
as

PW 352
e2/m

v3V3
n0EW 32

e3/m2

v3V3
n0F 1

v1V1
~EW 1•¹!EW 2

1
1

v2V2
~EW 2•¹!EW 1G1

e3/m2

v1v2V1V2
F v1

v3
¹•~n0EW 2EW 1!

1
v2

v3
¹•~n0EW 1EW 2!G1

e3/m2

v3V3

n0

v1v2V1V2
$v1V2EW 1

3~¹3EW 2!1v2V1EW 23~¹3EW 1!%. ~10!

At this point we will concentrate only on the nonlinear r
sponse of the selvedge and we will consider the nonlin
bulk response later. The width of the selvedge can be sa
assumed to be much smaller than the wavelength. Hence
ignore retardation, i.e., we drop¹3EW i from Eq.~10!, and we
ignore the slow variation of the field along the surface. Sin
we are ignoring retardation we can identify the displacem
field Dz5Ez14pPz with the external field. Due to the ab
sence of an external field atv3, we may substituteE3z by the
depolarization field 24pP3z . We also write Eiz(z)
5Diz /e(v i ,z) where e(v i ,z) is the dielectric function
which we write as

e~v i ,z![e i~z!512
4pe2/m

v iV i
n~z!, ~11!

where i 51,2,3, andDiz is a slowly varying function ofz.
We ignore spatial dispersion effects, which are expecte
-

ar
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e
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be important close to the surface where the fieldEiz has its
most abrupt variations. Making use of the long-wavelen
approximation~LWA ! we assume that the displacement fie
Diz is constant across the surface region, and we solve
~10! for P3z to obtain

P3z~z!5
1

e3~z! F2
e3/m2

v3V3
n0~z!

3S 1

v1V1

1

e1~z!

]

]z

1

e2~z!
11↔2D

1
e3/m2

v1v2V1V2

]

]z
n0~z!

1

e1~z!

1

e2~z!GD1zD2z ,

~12!

where 1↔2 denotes the previous terms transposing the
dices 1 and 2. The SF polarization given above dependsz
throughn0(z) and its spatial derivative@see Eq.~11!# which
vanishes in both vacuum and bulk. Therefore,P3z is differ-
ent from zero only in the selvedge region. Following t
LWA, we characterize the polarization at the surface by
zeroth moment

PW 3[E
2`

`

dzPW 3~z!. ~13!

Substituting Eq. ~12! we obtain terms of the form
*dz f„n0(z)…dg„n0(z)…/dz wheref andg are simply rational
functions of the density profilen0(z). We divide the integra-
tion range into intervals so that in each of themn0 is mono-
tonic, and we can change the integration varia
z→n0 employing dz5dn0 /(dn0 /dz) and dg„n0(z)…/dz
5(dn0 /dz)(dg/dn0). It is easily seen thatdn0 /dz cancels
out from the integral so that we are left with integrals indn0
of rational functions ofn0. These integrals are now evaluate
from n0(z→2`)50 to n0(z→`)5nB , with nB the bulk
value of the density, and they can be performed analytic
for any profilen0(z) yielding

P3z5xzzz
s ~v1 ,v2!D1zD2z11↔2. ~14!

Notice that our definition ofxJs is explicitly symmetrized in
the frequenciesv1, v2. As x i jk

s (v1 ,v2)5x ik j
s (v2 ,v1), this

symmetrization is sometimes omitted,14 yielding twice our
surface susceptibility. It is convenient to write the resulti
surface susceptibilityxzzz

s in terms of phenomenological di
mensionless parametera(v1 ,v2)

xzzz
s ~v1 ,v2!5

21

64p2nBe

vp
4

v1v2V1V2

1

e1e2
a~v1 ,v2!,

~15!

from where we obtain
a~v1 ,v2!522
F S 1

v1V1
2

1

v2V2
D e1e21c.p.G1

1

v3V3
e1e2Fe2logS e3

e1
D1c.p.G

vp
4S 1

v1V1
2

1

v3V3
D S 1

v3V3
2

1

v2V2
D S 1

v2V2
2

1

v1V1
D , ~16!
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2572 57MAYTORENA, MENDOZA, AND MOCHÁN
where c.p. denotes a sum over cyclic permutations of
indices (1,2,3) ande i512vp

2/v iV i without an explicitz
dependence denotes the bulk dielectric function, w
vp5A4pe2nB /m, the bulk plasma frequency. We rema
that due to our neglect of spatial dispersion the result
nonlinear surface susceptibility~15! is independent of the
density profile n0(z) and depends only on its bulk valuenB .
Therefore, Eq.~15! yields an unambiguous well define
result18,17 even in the unrealistic extreme case of an disc
tinuous abrupt surface.

It can be easily verified that our expression~16! agrees
with the quantum-mechanical result19 in the high-frequency
limit a(v1→`,v2→`)5a(v1→`,v2)5a(v1 ,v2→`)
522 first derived for SHG. This limit is a test to whic
calculations ought to be subjected. However, the low f
quency limit of Eq.~16! diverges. This result is unrealistic
as more sophisticated models yield a finite value for
static limit of a.14,20The reason for this failure is our negle
of spatial dispersion within the present model. This omiss
is particularly important at the surface of conductors wh
the driving fields and the response of the system are per
dicular to the surface. On the other hand, the results obta
below for the other components of the surface susceptib
are indeed correct for the jellium model.

By considering the parallel component of the polarizatio
we now get

PW 3i~z!5
e3/m2

v1v2V1V2

v1

v3

]

]z

n0~z!

e2~z!
EW 1iD2z11↔2, ~17!

in a similar way as we obtained Eq.~12! from Eq.~10!. Here,
we have also ignored the first term of Eq.~10!, as the non-
retarded depolarization field parallel to the surface is n
Integrating this equation across the surface@Eq. ~13!# we
obtain

PW 3i5x iiz
s ~v1 ,v2!EW 1iD2z1x izi

s ~v1 ,v2!D1zEW 2i11↔2.
~18!

As with the perpendicular component of the SF polarizati
we parameterize the surface susceptibility as

x iiz
s ~v1 ,v2!5x izi

s ~v2 ,v1!

5
21

64p2nBe

vp
4

v1v2V1V2

1

e2

2v1

v3
b~v1 ,v2!,

~19a!

x iiz
s ~v2 ,v1!5x izi

s ~v1 ,v2!

5
21

64p2nBe

vp
4

v1v2V1V2

1

e1

2v2

v3
b~v2 ,v1!,

~19b!

in terms of the dimensionless parametersb(v1 ,v2) and
b(v2 ,v1), which are given by

b~v1 ,v2!5b~v2 ,v1!521 ~20!

in our particular model. Since our system is homogene
along the surface, the only component of the electric fi
that has a large gradient is that normal to the surface. Th
e
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,
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fore, if the driving field is parallel to the surface there is n
surface polarization and so,xzii

s 50. The other component
of the surface susceptibility are null14 due to the rotational
and in-plane inversion symmetry of the flat interface.

We remark that we have defined the different compone
of the surface susceptibility in terms of field componentsDiz
and Ei i which are continuous at abrupt surfaces and wh
are slowly varying across smooth interfaces.18,21,22 This al-
lows us to employ the LWA and makes it unnecessary
specify the position near the surface where the fields ar
be evaluated, therefore eliminating a source of confusion
the literature. We also remark that the surface susceptib
yields the self-consistent, total surface polarization, so tha
should not be further screened, i.e., it may be situated out
of the metal when employed in radiated field calculations

Now we turn our attention to the bulk nonlinear respon
We write14

EW i~rW !5EW ie
iqW i•rW, ~21!

where the bulk wave vectors of the fundamental norm
modes areqW i5(qW i i ,qiz) ( i 51,2), qW i i is determined by the
incident field, i.e.,qi i5(v i /c)sin(ui) with u i the angle of
incidence of thei th beam, andqiz solves the bulk dispersion
relation, i.e.,qiz

2 5(v i /c)2e i2qi i
2 . Substituting Eq.~21! into

Eq. ~10! we get, straightforwardly,

PW 3
B~rW !5 iei ~qW 11qW 2!•rW@D1qW 1~EW 1•EW 2!1D̄1~qW 1•EW 2!EW 111↔2#,

~22!

without neglecting retardation. It should be noted that
dropped the linear response to the SF field in Eq.~10! so that
PW 3

B is not the total bulk polarization, but only the source
the SF field within the bulk. The bulk response of an isot
pic media is characterized by the parametersDi and D̄ i ,14

given within our model by

Di5
nBe3

m2

V i

v3V1V2V3v i
, ~23!

and

D̄ i5
nBe3

m2

1

v1v2V1V2
S v i

v3
2

V i

V3
D . ~24!

It is important to remark that Petukhov14 has also developed
a hydrodynamic model and has obtained results similar to
present ones. However, he concluded thatD̄ i50 identically.
Here, we see that the vanishing ofD̄ i is not a generic result
but is a consequence of having neglected dissipation. T
can be easily verified by settingt5`, which implies
V i5v i , in Eq. ~24!.

B. Continuous dipolium model of dielectrics

In the present subsection we present a model for the n
linear response of dielectric materials, closely following th
developed previously16 for SHG.

We start by considering a single polarizable entity with
a dielectric material. We model the entity by an electron w
charge2e and massm at a distancexW from its equilibrium
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57 2573THEORY OF SURFACE SUM FREQUENCY GENERATION . . .
position, to which it is bound by a harmonic force with res
nant frequencyv0. In the presence a spatially varying ele
tromagnetic fieldEW (rW,t) andBW (rW,t) its classical equation o
motion is

mxẄ52eEW 2mv0
2xW2

m

t
xẆ2

e

c
xẆ3BW , ~25!

where we also added a dissipative term with correspond
lifetime t. We notice that, in this equation, the field has to
evaluated at the actual position of the electron,rW01xW , and
not simply at its equilibrium positionrW0. Therefore, assum
ing that the scale of variation of the polarizing electric fie
is not smaller than the expectation valuexW , we carry out a
Taylor expansion to first order as

EW ~rW01xW ,t !'EW ~rW0 ,t !1xW•¹EW ~rW0 ,t !1••• ~26!

and we make a similar expansion to zeroth-order for
magnetic interaction. Higher-order terms in these expans
would have no effect in the quadratic nonlinear respo
studied below. Thus, substituting Eq.~26! the equation of
motion ~25! becomes

mxẄ52eEW ~rW0 ,t !2mv0
2xW2

m

t
xẆ2exW•¹EW ~rW0 ,t !2

e

c
xẆ

3BW ~rW0 ,t !1•••. ~27!

This is similar to the equation of a forced harmonic oscil
tor: it has a driving term2eE and all the other terms ar
proportional to the displacementxW . However, the coefficients
of xW anddxW /dt in the last two terms are field dependent, an
therefore, time dependent, giving rise to a nonlinearity si
lar to that of a parametric, forced oscillator. Notice that, a
parently, there is a substantial difference in the source
nonlinearity of this and the previous model developed in S
II A. Here we made a Taylor expansion of the field arou
the equilibrium position of the charge; while there, we fo
lowed the motion of a charged fluid and used the nonlin
convective time derivative. This difference is analogous
that usually found in fluid dynamics, where the position o
fluid element may be described in terms of Eulerian or L
grangian coordinates.23

Now we assume that the driving fields are two monoch
matic waves with frequencyv1 and v2, and, since optica
fields are usually much smaller than atomic fields, we p
ceed to a perturbative solution of Eq.~27! by expanding its
solution in powers ofEW ,

xW~ t !5xW ~1!~ t !1xW ~2!~ t !1••• . ~28!

The lowest-order solution is a superposition of two mon
chromatic waves with amplitudesxW1

(1)[xW (1)(v1) and

xW2
(1)[xW (1)(v2) corresponding to each frequencyv1 andv2,

from which we find the induced electric dipole mome
pW i

(1)52exW i
(1)5a(v i)EW i , i 51,2, where the linear polariz

ability is
-

g

e
ns
e

-

,
i-
-
of
c.

r
o

-

-

-

-

a i[a~v i !5
e2/m

v0
22v i

22 iv i /t
. ~29!

The second-order equation,

mxẄ ~2!~ t !52mv0
2xW ~2!~ t !2

m

t
xẆ ~2!2exW ~1!~ t !•¹EW ~rW0 ,t !

2
e

c
xẆ ~1!~ t !3BW ~rW0 ,t !, ~30!

is linear inxW (2) and has a driving term that is quadratic inE
with five frequency components: a dc contribution, and fo
oscillatory terms at 2v1, 2v2, v12v2, andv11v2. They
correspond to optical rectification, second harmonic ofv1
andv2, difference frequency generation, and sum freque
generation, respectively. We look now for the SFG comp
nent ofxW (2), xW3

(2)[xW (2)(v3), which obeys

v3
2xW3

~2!5v0
2xW3

~2!2 i
v3

t
xW3

~2!1
e

m
~xW1

~1!
•¹EW 21xW2

~1!
•¹EW 1!

2
e

mS v1

v2
xW1

~1!3¹3EW 21
v2

v1
xW2

~1!3¹3EW 1D , ~31!

where we wrote each monochromatic component of the m
netic field in terms of the curl of the corresponding elect
field. The solution of Eq.~31! gives the induced nonlinear S
dipole momentpW 3

(2)52exW3
(2) as

pW 3
~2![pW ~2!~v3!

52
1

e
a3Fa1S EW 1•¹EW 22

v1

v2
EW 13~¹3EW 2! D

1a2S EW 2•¹EW 12
v2

v1
EW 23~¹3EW 1! D G . ~32!

Finally, there are two other moments of second order in
driving field that oscillate with frequencyv3; one is
the familiar electric quadrupole momentQJ (2)(v3)
52exW1

(1)xW2
(1)11↔2, which is simply given by

QJ 3
~2![QJ ~2!~v3!52

1

e
a1a2~EW 1EW 21EW 2EW 1!. ~33!

The other is the magnetic-dipole momentmW given by

mW 5
2e

2mc
xW3mxẆ . ~34!

We remark that this contribution has been ignored in seco
order optically related surface susceptibility calculation
The SF component turns out to be
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mW 3
~2![mW ~2!~v3!52

e

2c
@xW1

~1!3xẆ2
~1!1xW2

~1!3xẆ1
~1!#

5
i

2ce
a1a2@v2EW 13EW 21v1EW 23EW 1#

5
i

2ce
a1a2~v22v1!EW 13EW 2 .

~35!

We stress that this term is zero for the usual SHG~Ref. 24!
as well as for noncollinear SHG where there are two fun
mental beams at different angles of incidence. We also
mark that although this is a magnetic term, it is driven by
linear electric fields. An example of a magnetic effect
duced by an electric field is the reciprocal of the Farad
effect, i.e., the dc magnetization induced by a circularly p
larized electromagnetic wave.25 This effect is described by
Eq. ~35!, as can be simply verified by settingv252v1 and
EW 25EW 1* .

As in the case of linear response and of SHG,26 the non-
linear response functions of a harmonic oscillator which
have derived above classically, coincide with the cor
sponding expressions derived from a full quantu
mechanical calculation. As in the case of SHG and in an
ogy to Miller’s rule27–29 for the bulk nonlinear response o
noncentrosymmetric systems, we conjecture that the cor
tions to Eqs.~32! and~33! in centrosymmetric molecules tha
are not harmonic oscillators might turn out to be small a
with only a slow frequency dependence.

Now we consider a macroscopic semi-infinite syst
made up ofn polarizable entities per unit volume, and w
will allow n5n(z) to depend on position, changing rapidl
but continuously near the surfacez50 from its bulk value
n(z→`)5nB to its vacuum valuen(z→2`)50. Each en-
tity occupies a different position, which we will denote byrW

and we will assume thatrW is a continuous variable. Thus, i
the following, we will ignore effects derived from the micro
scopic crystalline structure of the system. We will also
sume the response of each entity to be independent ofrW, so
that we will also neglect effects such as those derived fro
surface induced modification to the electronic structu
Therefore, we will concentrate our attention only on the co
tribution of the spatial variation of the electromagnetic fie
on the sum frequency generation.

We begin by writing the macroscopic second order po
ization PW 3 as30

PW 3~z!5n~z!pW 3
~2!2 1

2 ¹•n~z!QJ 3
~2!1

ic

v3
¹3n~z!mW 3

~2! ,

~36!

where PW 3, pW 3
(2) , QJ 3

(2), and mW 3
(2) are continuously varying

functions ofrW.31 At this point we are interested only in th
nonlinear response of the selvedge; the bulk response wi
considered later. To get the selvedge response we ne
retardation and the slow spatial variations of the field as
fore, and approximate
-
e-
e
-
y
-

e
-
-
l-

c-

d

-

a
.
-

-

be
ect
e-

PW 35n~z!a3EW 32
n~z!

e
a3~a1EW 1•¹EW 21a2EW 2•¹EW 1!

1
1

2e
a1a2¹•n~z!~EW 1EW 21EW 2EW 1!

2
1

2e
a1a2S v22v1

v3
D¹3n~z!~EW 13EW 2!, ~37!

where the first term on the RHS is the linear response to
SF fieldEW 3[EW (v3), which we have added for consistenc
Again, we notice that the last term of Eq.~37! does not
contribute to SHG.

Now, following the same procedure that took us from E
~10! to Eq. ~14!, we solve Eq.~37! to get both the perpen
dicular and parallel components of the polarizationPW 3,
within the dipolium model for dielectrics. For the perpe
dicular component we get

P3z~z!5
1

ee3~z! F2n~z!a3

3S a1

1

e1~z!

]

]z

1

e2~z!
1a2

1

e2~z!

]

]z

1

e1~z! D
1a1a2

]

]z
n~z!

1

e1~z!

1

e2~z!GD1zD2z11↔2.

~38!

Substituting Eq. ~38! into Eq. ~13! we obtain
P3z5xzzz

s (v1 ,v2)D1zD2z11↔2, where in analogy to the
previous case, we now write the surface susceptibility
terms of a dimensionless parametera(v1 ,v2), through

xzzz
s ~v1 ,v2!52

a~v1 ,v2!

4nBe

e121

4pe1

e221

4pe2
, ~39!

where

a~v1 ,v2!522 F11
~12e3!e1e2@e2 log~e3 /e1!1 c.p.#

~e12e2!~e22e3!~e32e1! G .
~40!

The bulk dielectric function is now given bye i51
14pnBa i .

We follow a similar procedure for the parallel comp
nents of the polarizationPW 3. Starting from Eq.~37! we ob-
tain, in analogy to Eq.~38!,

PW 3i~z!5
1

2e
a1a2FEW 1i

]

]z

n~z!

e2~z!
D2

z1EW 2i
]

]z

n~z!

e1~z!
D1z

2S v22v1

v3
D S ]

]z

n~z!

e2~z!
D2zEW 1i

2
]

]z

n~z!

e1~z!
D1zEW 2i D , ~41!

which can be integrated, yielding
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PW 3i5E
2`

`

dzPW 3i~z!

5
1

2e
a1a2FnB

e2
S 12

v22v1

v3
DEW 1iD2z

1
nB

e1
S 11

v22v1

v3
DEW 2iD1zG

[x iiz
s ~v1 ,v2!EW 1iD2z1x izi~v1 ,v2!D1zEW 2i11↔2,

~42!

where the surface susceptibilities are

x iiz
s ~v1 ,v2!5x izi

s ~v2 ,v1!

5
21

4nBe

~e121!~e221!

~4p!2

1

e2

2v1

v3
b~v1 ,v2!,

~43a!

x iiz
s ~v2 ,v1!5x izi

s ~v1 ,v2!

5
21

4nBe

~e121!~e221!

~4p!2

1

e1

2v2

v3
b~v2 ,v1!,

~43b!

and

b~v1 ,v2!5b~v2 ,v1!521 ~44!

as for our model conductor. The other components of
surface susceptibility are null. The susceptibilities above
consistent with those previously obtained for SHG.16

We may compare the results obtained here for our n
linear dipolium model with those obtained in the previo
subsection for jellium, simply by substituting the Drude d
electric function~11! in Eqs.~39!, ~40!, and~43!. Both sets
of results agree, as could be expected, since our local jel
can be thought of as a harmonic dipolium with a null rest
ing force. Not only do the surface susceptibilities are
agreement, but also, the parametrization in terms ofa andb
employed here agrees with that used for jellium. This sho
the convenience of using our expressions~39! and ~43! for
parametrizing the surface response, as opposed to param
zations in terms of model-dependent parameters, such a
plasma frequency and the lifetime for jellium. Finally,
should be noted that the agreement between dipolium
jellium results would not have been obtained had we
glected the nonlinear magnetic contributionmW to the polar-
ization in Eq.~36!. This illustrates the need of incorporatin
the electric-driven magnetic-dipole moment in SFG calcu
tions.

Now we turn our attention to the bulk non-linear respon
for the dielectric case. We substitute Eqs.~32!, ~33!, and~35!
into Eq. ~36!, and we assume that the fundamental fie
propagate as plane waves~21! to obtain again Eq.~22!, but
now with the bulk parametersDi and D̄ i defined as
e
re

-

m
-

s

tri-
the

nd
-

-

e

s

Di5
1

nBe

~e321!

4p

~e121!

4p

~e221!

4p

4p

~e i21!

v1v2

v i
2

[
1

nBe

~e321!

4p

~e121!

4p
d idi ~45a!

D̄ i5
1

nBe F ~e121!

4p

~e221!

4p

v i

v3

2
~e321!

4p

~e121!

4p

~e221!

4p

4p

~e i21!

v3

v i
G

[
1

nBe

~e321!

4p

~e121!

4p
d̄ i d̄ i , ~45b!

where we have introduced the bulk parameters

d i5
e321

e i21

v1v2

v i
2

, ~46a!

d ī5
v i

v3
2

e321

e i21

v3

v i
, ~46b!

so that

d15d25 d̄15 d̄251, ~47!

with i 51,2. As before, it is straightforward to verify tha
when the Drude dielectric function is substituted in Eqs.~45!
our bulk parameters agree with those of jellium, Eqs.~23!
and ~24!.

III. RESULTS

In this section we present results for the nonlinear
sponse corresponding to two particular cases. The first
solid made out of identical harmonic polarizable entities w
a single resonance and the second is Si. Having obtained
surface and bulk susceptibilities for our two models of co
ductors and dielectrics, we proceed to obtain the efficienc
the SF radiation, defined by

Rabg5
I g

~out!~v3!

I a
~ in !~v1!I b

~ in !~v2!
, ~48!

where I g
(out)(v3) „I a,b

( in)(v1,2)… denotes the intensity of the
outgoing SF~ingoing fundamental! field at v3 (v1 ,v2) for
polarizationg (a,b). Notice that in the limitv1→v2 the
efficiency ~48! yields four times the SH efficiency.15 The
reason simply is that in that limit, the second harmonic p
larization is proportional to (E11E2)2, which has the term
2E1E2, while in SFG we pick only the termE1E2 ~without
writing explicitly the factor 2!!. In the Appendix we follow
Ref. 14 to obtain explicit formulas forRabg in the terms of
the surface and bulk parametersa, b, d, d̄ , d, and d̄ . We
restrict ourselves to theppp polarization combination, since
this is the most efficient among the different choices.

In Fig. 1 we plot the imaginary part ofa(v1 ,v2) vs the
normalized frequencyv1 /v0 and v2 /v0, for a harmonic
solid with parametersnB5mv0

2/(4pe2) and v0t520. We
notice that the plot is symmetric with respect to the int
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FIG. 1. Imaginary part ofa(v1 ,v2) vs v1 /v0 andv2 /v0, for a harmonic solid with resonance frequencyv0, and lifetime parameter
t520/v0.
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changev1↔v2, a property that is inherited from the sym
metry of the surface susceptibilityxzzz

s (v1 ,v2) @Eq. ~14! and
Eq. ~15!#. To understand the structure displayed in Fig. 1,
recall that the bulk dielectric function of such a solide(v)
displays a resonance atv0. In the region between the trans
verse (v0) and the longitudinal (vL5Av0

214pnBe2/m)
frequencies, the dielectric function becomes negative and
the logarithmic terms of Eq.~40! become large. Then, w
may expecta to have structure wheneverv1, v2, or v3 lie
within this region. Indeed, in Fig. 1 we see two wide ridg
that run parallel to thev1 and v2 axes, extending from
v25v0 (v15v0) up to vL5A2v0 and a valley that cuts
diagonally fromv11v25v3'v0 to vL . If we traverse Fig.
1 along the diagonalv15v2 we obtain the SH respons
aSH(v), which is identical to our previous result.16 The real
part of a has features in the same regions as the imagin
part, to which it is related by causality relations.

In Fig. 2 we plotRppp vsv1 /v0 andv2 /v0, for the same
harmonic system, and for collinear beams at an angle
incidenceu15u25u545°. We remark that the structure o
a is strongly suppressed by the Fresnel factors belowv0 and
is much smaller than that apparent abovev0. The features
that are present correspond to the regions betweenv0 and
vL where the material is opaque, and also betweenvL and
vc5AvL

2/cos2u2v0
2tan2u'1.73v0, where there is total in-

ternal reflection. There are features wheneverv1, v2, or v3
are in this region. The structure is enhanced where
ridges cross, and, in particular, the efficiency is maxim
where bothv1 andv2 are at resonance withv0. The plot of
Rppp is symmetric with respect to the diagonalv15v2, and
e

he

ry

of

o

the corresponding value forRppp(v15v2) is four times the
value ofRpp for SHG,16 as explained after Eq.~48!.

In Fig. 3 we show thep-polarized SF efficiencyRppp vs
v1 and v2 for two p-polarized beams that incide on a S
surface at anglesu1555°, andu2565°. This was obtained
from the formulas of the previous section by simply subs
tuting the experimentally obtained32 dielectric function of
bulk Si. As for the harmonic case, we find a similar structu
of ridges corresponding to constant values ofv1, v2, or v3
and peaks where these ridges cross each other. In this
these structures appear at the frequencies of the cri
points of the joint density of states of Si, E0, and E1.

In Fig. 4 we showRppp as a function of the sum fre
quencyv3 for a fixed value of one of the fundamentals,v1.
Notice that for frequenciesv3,v1 we are actually in the
DFG and not the SFG regime. However, we can apply
formulas by simply introducing negative frequencies and
ing the fact thata(2v)5a* (v). As expected, the curve
displays peaks wheneverv2 or v3 coincide with E0 or E1.
As v1 diminishes, these peaks overlap and enhance e
other. Actually, the peaks atv35E0 and E1 have been ob-
served by Daumet al.13 by SFG with\v152.33 eV, who
also observed the former peak with SHG.33–37Our prediction
is that the relative strength of the SFG peaks would be
tensified by choosing a lowerv1.

As shown in the Appendix, the SFG efficiency may
written asRabg}uA1B1Du2 whereA, B, andD are func-
tions of the frequencies and angles which characterize
contributions to the radiation from the surface polarizati
perpendicular to the surface, parallel to the surface, and
are
FIG. 2. SF efficiency (nBe/v0)2c3Rppp vs v1 /v0 and v2 /v0, for the same system as in Fig. 1. The angles of incidence
u15u2545°.
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FIG. 3. The vertical axis shows the SF efficiency 1020Rppp ~cm2/W! vs v1 and v2, for Si. The angles of incidence areu1555° and
u2565°.
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bulk contribution, respectively. In Fig. 5 we show the imag
nary parts of these three contributions as a function of
sum frequency for a fixed\v150.125 eV~Ref. 12! corre-
sponding to the solid line of Fig. 4. We see that the larg
contribution to the radiated energy comes from the surf
polarization normal to the surface. A similar conclusion
obtained from the real parts ofA, B, andD.

IV. CONCLUSIONS

We have solved the equations of motion for the electr
in semi-infinite homogeneous centrosymmetric system
ing into account the spatial variation of the electromagne
field, and we have been able to obtain analytic express
for the surface and bulk nonlinear susceptibilities that
scribe the process of sum frequency generation. We h
defined the surface susceptibilities as the response of
self-consistent total surface polarization to the slowly va
ing field components. This choice eliminates the usual am
guities in the position at which the surface fields are to
evaluated and in the choice of position and screening of
surface polarization layer when calculating the radiated fie
Furthermore, we have obtained expressions for the con
sion efficiency.

We obtained the susceptibilities for both, a system of f
electrons~jellium! and a system of polarizable harmonic e
tities ~dipolium! distributed with a number density that varie
rapidly but continuously across the surface. These res

FIG. 4. SF efficiencyRppp ~cm2/W! vs v3 for fixed
\v150.125 eV ~solid line!, \v151.17 eV ~dashed line!, and
\v152.33 eV ~dotted line!, for Si. The angles of incidence ar
u1555° andu2565°.
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were written in terms of the bulk linear dielectric function
the system and dimensionless parameters, and they are
pendent of the shape of the density profile. This fact allo
us to make quantitative calculations of the SFG spectra
arbitrary centrosymmetric systems by simply substituting
appropriate response function, without having to makead
hoc assumptions about the density profiles. The dipoliu
results agree with those for local jellium, but only if a nov
term is included in the former, namely, the electric-fiel
induced nonlinear magnetization. Its contribution to the p
larization vanishes in the degenerate case of SHG but i
nite for SFG. A comparison between our results for jelliu
and those previously obtained by Petukhov14 shows that
some components of the bulk susceptibility vanished for
itously in Ref. 14 and are not zero in general. We have c
culated the response and nonlinear efficiency of a harmo
solid and identified its main SFG spectral features in terms
the relevant frequencies of the system, i.e., the resonant,
gitudinal, and critical frequencies. We have also applied
results to Si, obtaining features that correspond to its crit
points E0 and E1, in qualitative agreement with experiment.13

We have shown that these features are intensified as on
the fundamental frequencies goes into the infrared, and
the main contribution to them comes from the surface po
ization normal to the surface. We did not present numer
results for local jellium, as it is known that spatial dispersi
is very important at conductor surfaces.

In conclusion, we have developed a model that perm

FIG. 5. Plot of the imaginary part of the factorsA ~solid line!, B
~dashed line!, andD ~dotted line! vs v3 for fixed \v150.125 eV,
corresponding to the SF efficiency given by the solid line of Fig.
See text for details.
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calculations of the SFG spectra of arbitrary isotropic c
trosymmetric systems. In our model, the surface contribu
to SFG arises only from the strong field gradient, that is,
account for the effect of a noncentrosymmetric environm
on centrosymmetric molecules. For these reason, the
surface characteristic that enters our model is the num
density. However, as we essentially integrated a gradien
obtain the total selvedge contributions, our results turn ou
be independent of the density profile, losing surface sens
ity. Nevertheless, there are other surface contributions, s
as those arising from the reduction in the symmetry of
wave functions themselves at the surface and from the
sible transitions to and from surface states,38,39that should be
incorporated in more sophisticated microscopic models
well as spatial dispersion, crystallinity, and local-fie
effects.40,26,41–44As sum frequency spectroscopy is rapid
becoming a very powerful probe for surface science, its
velopment requires a more profound theoretical compreh
sion. This paper represents a step towards this goal.
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APPENDIX: RADIATION EFFICIENCY

In this appendix we follow Ref. 14 to calculate the rad
ated SFG efficiencyRabg @Eq. ~48!#. It is convenient to first
rewrite the surface and bulk SF polarization in the para
etrized fashion,

P3z5
21

2nBeS e121

4p D S e221

4p Da~v1 ,v2!
D1z

e1

D2z

e2
, ~A1!

PW 3i5
21

2nBeS e121

4p D S e221

4p D S b~v1 ,v2!EW 1i
D2z

e2

2v1

v3

1b~v2 ,v1!EW 2i
D1z

e1

2v2

v3
D , ~A2!

and

PW 3
B5

1

nBe S e121

4p D S e221

4p D @d1d1qW 1~EW 1•EW 2!

1d2d2qW 2~EW 1•EW 2!1 d̄ 1 d̄1EW 1~qW 1•EW 2!

1 d̄ 2 d̄2EW 2~qW 2•EW 1!# iei ~qW 11qW 2!•rW. ~A3!

It is now a simple matter to substitute the polarization abo
into the expressions given in Sec. II of Ref. 14 to obtain

Rabg5
2p3v3

2

~nBe!2c3
uAabgr abgu2 ~no summation!,

~A4!

where
-
n
e
t
ly
er
to
to
v-
ch
e
s-

s

-
n-

e

-

e

Aabg5S e121

4p D S e221

4p DFa~v1!Fb~v2!Fg~v3!

cosu3
.

~A5!

Here, the first two indices denote the polarization (s or p) of
the incoming fundamental beams, and the last index co
sponds to the polarization of the outgoing SF beam, theF ’ s
are the corresponding Fresnel factors given below. The o
nonzero elements ofr abg arer ppp , r ssp, r pss, andr sps. The
former is given by

r ppp5A1B1D, ~A6!

with

A5sin u1 sin u2 sin u3 e3a~v1 ,v2!, ~A7!

B52S s1s3 sin u2 b~v1 ,v2!
2v1

v3

1s2s3 sin u1b~v2 ,v1!
2v2

v3
D , ~A8!

D52F ~d1d11d2d2!
v1v2

v3
2

V2

e8
1S e1

e8

v1
2

v3
2
d1d1

1
e2

e8

v2
2

v3
2
d2d2D V2~ d̄ 1 d̄11 d̄ 2 d̄2!

v1v2

v3
2

W2

e8
Gsin u3

12 g
W

e8
F ~d2d22d1d11 d̄ 2 d̄22 d̄ 1 d̄1!

v1v2

v3
2

V

2 d̄ 1 d̄1

v1
2

v3
2
e11 d̄ 2 d̄2

v2
2

v3
2
e2G , ~A9!

whereA, B, andD characterize the contributions to the r
diation from the surface polarization perpendicular to t
surface, parallel to the surface, and the bulk contributi
respectively. The other non-null terms ofr abg are

r ssp52F ~d1d11d2d2!
v1v2

v3
2

V

e8
1d1d1

v1
2

v3
2

e1

e8

1d2d2

v2
2

v3
2

e2

e8
Gsin u312 g~d2d22d1d1!

v1v2

v3
2

W

e8
,

~A10!

r pss5sin u1 b~v1 ,v2!
2v2

v3
12b

v2

v3
Wd̄ 2 d̄2 , ~A11!

and

r sps5sin u2 b~v2 ,v1!
2v1

v3
22b

v1

v3
Wd̄ 1 d̄1 . ~A12!

We notice that forssp there is no surface contribution sinc
xzii

s 50. The different terms in above expressions are

g5
e3~v1s11v2s2!/v32e8s3

e32e8
, ~A13!
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b5
~v1s11v2s2!/v32s3

e32e8
, ~A14!

e85
~v1 sin u11v2 sin u2!21~v1s11v2s2!2

v3
2

,

~A15!

si5Ae i2sin2 u i , ~A16!

V5s1s21sin u1 sin u2 , ~A17!
ys

-

L.

sh

e

w

an

-

Sc

c

,
,

W5s1 sin u22s2 sin u1 , ~A18!

and finally the Fresnel factors are

Fp~v i !5
2 cosu i

e i cosu i1si
, ~A19!

for p polarization, and

Fs~v i !5
2 cosu i

cosu i1si
, ~A20!

for s polarization.
in-
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