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We develop simple models for the calculation of optical sum and difference frequency generation spectra at
the surface of isotropic centrosymmetric conductors and insulators. One of them consists of a semi-infinite free
electron gas with a continuously varying electronic density profile. The other consists of a continuous distri-
bution of polarizable entities that respond nonlinearly to the gradient of the field. We solve the Euler equations
for the former ignoring the pressure term. Assuming the response of each polarizable entity to be described by
that of a harmonic oscillator, we solve the second model incorporating multipolar contributions to the macro-
scopic surface and bulk polarization. For both models we obtain analytical expressions that produce the
nonlinear bulk and surface susceptibilities in terms of the bulk dielectric response of the system. We found an
electric-field-induced second-order magnetic moment whose contribution to the susceptibilities is as large as
that of the electric dipolar and quadrupolar moment. This contribution is absent in the particular case of second
harmonic generation and has not been discussed previously in the literature. By choosing the appropriate
dielectric functions we obtain the approximate nonlinear response and frequency conversion efficiency for
different systems[S0163-182¢08)02803-3

I. INTRODUCTION structure has also been explored by SFG in buried interfaces
such as Si@Si,'® where its versatility was employed to elu-
The electric-dipolar quadratic susceptibility is a third rankcidate the nature of a resonance detected with second-
tensor, and therefore it must be null within the bulk of anyharmonic generatiofSHG). Although SFG and SHG share
centrosymmetric system. As second-order nonlinear promany features as surface probes, SFG is more versatile, as
cesses, dipolar sum and difference frequency generatiaime propagation and polarization directions of each of the
(SFG and DF@ from centrosymmetric systems are only al- fundamental beams, as well as their frequencies, may be in-
lowed at an interface where inversion symmetry is brokendependently varied.
For this reason, a large portion of the light with frequency In spite of the experimental work done for ten years on
w3= w1+ w, reflected from an interface illuminated with surface SFG, a theoretical understanding of it is barely
two monochromatic beams at; and w, is surface origi- emerging. It is only very recently that the angular depen-
nated, making SFG/DFG sensitive optical surface probes fodlence of SFG on isotropic surfaces has been investigated in
this class of systems. Besides being nondestructive and noterms of the independent components of the bulk and surface
invasive, SFG/DFG has the added advantage of accessimgpnlinear susceptibilities and their symmetry-originated
surfaces such as buried interfaces, out of ultrahigh-vacuuronstraints* Only some of these components have been cal-
conditions and within arbitrary transparent ambients. culated for jellium modelé? Some crystallinity effects have
The use of SFG as a surface probe was introduced inlso been incorporated, but only for the bulk of an aniso-
19871 Most SFG experiments have been directed towardsropic electron gas modé?. The purpose of the present paper
the observation of adsorbed overlayers whose vibrationak the development of approximate models that permit the
modes may be probed by tuning one of the fundamentatalculation of all the components of the surface and bulk
frequencies in the infraredl? In this case, the frequency second-order response tensors of arbitrary centrosymmetric
resolution is comparable to that of IR linear reflectance specsemi-infinite homogeneous conductors and insulators. These
troscopy, but the relative sensitivity to the surface vs the bulkmodels constitute a natural extension of previous Woak
is four to five orders of magnitude largEras the surface second-harmonic generation.
contribution to the linear reflectance is of the order of the As a first step we develop a simple model conductor that
selvedge’s width divided by the wavelength. SFG has als@onsists of a semi-infinite isotropic electron gas with an equi-
been used to explore surfaces such as electrolyte-methbrium density profile that interpolates smoothly between its
interfaces'! Although most of the attention has been cen-vacuum and bulk asymptotic values. We set up the Euler
tered on the adsorbed molecules, the nonlinear response bydrodynamic equation for this system ignoring the pressure
the substrate itself is also of interééfThe surface electronic term but including a dissipative term and the nonlinearities
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due to the convective time derivative and the Lorentz forcefor conductor and for dielectric materials, and for the SFG/
We solve it to obtain the nonlinear induced current at theDFG radiation efficiency.

surface and at the bulk of the conductor, and from the result

we identify the nonlinear susceptibility. Our analytical re- A. Jellium model of conductors

sults are similar to those of Ref. 14, but we obtain two inde-

pendent bulk response functions; one of them canceled fOﬁ '(d:onsiéjer ? slim;.:[mle met?l rr?odeled bi; a classicalhcharged
tuitously in Ref. 14 but no longer null when dissipation is uid made of electrons of charge € and massm, whose

present. Furthermore, we obtained a new definite expressio%quatIon of motion is given by Euler equation ignoring the

for the response normal to the surface, although it has thBressure term,
flaws expected due to the lack of spatial dispersion in our
model?’

A second model, applicable to dielectric surfaces, consists
of a homogeneous semi-infinite distribution of polarizable R R
entities that respond harmonically to the perturbing field andvheren=n(r,t) is the electronic density at pointand time
field gradients. This distribution is characterized by the dit, y is the velocity field, ancE and B are the electric and
poles’ number density, which interpolates continuouslymagnetic field, respectively. We expand the time-dependent
across the surface from zero in vacuum to its constant Va|Uquantities as a Superposition of monochromatic waves with
at the bulk, and we assume the microscopic response fungrequenciesw;, w,, 2w, 2w,, andw; = w,; we have
tions of all dipoles to be the same. The origin of the nonlin-
earity in this case is the spatial variation of the field across
each dipole. This variation gives a small contribution of or-
dera/\ in the bulk, wherea is the size of each polarizable
entity and\ is the optical wavelength. However, the normal

mn

0 1\. - - . e . o
—+—=|ju+mn(u-V)u=—-enE--nuxB, (1)
o 7 (o

f(r ) =fo(r)+f(r,w)e t+f(r,w,)e 2t

+1(r 207)e 2914 £(r, 20,) e 1202t

component of the electric field has a very rapid variation at +f(r W+ wy)e (@1t et
the surface, in a scale much smaller tharthus yielding a
sizable surface nonlinear macroscopic polarization. We cal- +f(F,w1—w2)e‘i(ﬂ)1—w2)t+...+C.C_, 2

culate the electric dipolar and quadrupolar, as well as a mag-
netic dipolar contribution to this polarization. Remarkably, \vhere f stands for eithen. u. E. or B. c.c. stands for the

the latter does not contribute to the poIar!zation in the dege”,complex conjugate of the previous terms, and we remark that
erate case of second harmonic generation, and therefore its

importance for the nonlinear response in the nondegenera’[@ equmbrlu_m °”'¥ t_h_e densityio(r), _'S d|ﬁejent _from Z€10.

case had not been recognized previously. Finally, we obtaii alternative definition of the amplitudé¢r, ») is through

analytical expressions which are exact within our model forf(r,t)=---+Ref(r,w)e '“'+--- . Both definitions lead to

the surface and bulk parameters in terms of the linear dieledifferent results for nonlinear problems. Although the differ-

tric functionse(wy), e(w,), and e(ws). ence is trivial, i.e., some extra powers of 2 appear in the
We employ the results of Ref. 14 to derive explicit for- response functions, it has to be kept in mind.

mulas for the the SFG/DFG radiated efficiency in terms of ~Using expansion(2) in Eq. (1), we generate a series of

all the non-null susceptibility components and the dielectricequations for thef variables that oscillate at the same fre-

response of the system. We use these expressions to calculgteency. In this way, the solution for the velocity field at the

the efficiency of a model solid made up of harmonic polar-fundamental frequencies; , with i=1,2, is given by

izable entities. Furthermore, by substituting the appropriate

dielectric response we can approximate the SFG/DFG spec- . . e/m.

tra of arbitrary systems. We illustrate this procedure by cal- U(wj)=uj=—Ii FEi ) )

culating the efficiency of a Si crystal and we compare the !

results to expe':nment.. ] {o linear order in the field, where),=w;+i/7, and
The paper is organized as follows: In Sec. Il we present. - ) T

our models for conductor@l A) and dielectricg(ll B), and  Ei=E(w;). We define the polarizatiod=dP/dt, so that

we solve them to obtain the surface and bulk susceptibility

tensors. Using a suitable parametrization of the susceptibili- .. ji

ties we also obtain the radiation efficiency for SFG. In Sec. Pi=P(wi)=— ", (4)

lll, we evaluate the formulae obtained in Sec. Il for a har- '

monic solid and for Si. In Sec. IV we present the conclusions hered.=J(w) is the induced i

of the present work and finally in the Appendix we presentW ereJ;=J(w;) is the induced current,

some results required for the calculation of the SFG effi- R R

ciency. Ji=—enyu;, (5)

from which we get the linear polarization
Il. THEORY

e’/m .
NokE; . (6)

In this section we obtain analytical expressions for the p.=—
surface and bulk nonlinear susceptibilities of simple models wjdl
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Now, from the continuity equation and E@), we obtain the
first-order induced density as

e/m -
n(wi)Eni:mV'(noEi)' (7)

Now we concentrate on the equation @Eﬁ(wg), where
w3= w1+ w, corresponds to the SF response. From @&g.
we get to second-order in the field

—1Q3Uz+ (U V)Uy+(Uy- VU,

= eé+ie1 0, X (VXE +1*><V><|§
=~ Es Ew_zul( 2) w—luz( e

®)

Substituting the linear velocit{3), we can solve Eq(8) for

2571

be important close to the surface where the figjd has its
most abrupt variations. Making use of the long-wavelength
approximationLWA) we assume that the displacement field
D;, is constant across the surface region, and we solve Eq.
(10) for P3, to obtain

F’sz(z):L —ﬁno(z)
€3(2) w3(d3
X L ! i ! +1<—>2)
w1y €(2) 9, €(2)
+—e3/m2 in (z)i— D,,D
010,010, 9, 7 €1(2) ex(2)] T
12

where k-2 denotes the previous terms transposing the in-

Ug in terms of the electric field at the fundamental frequen-dices 1 and 2. The SF polarization given above depends on

cies. In this case the induced curré@tis given by

j3=—en0l]3—en162—en261, (9)

from which we finally obtain the SFquadrati¢ polarization
as

m Mo Q,E
+ w
(1)393 wlwzﬂlﬂz{ 1752

(1)2 N
+ —V.(ngE;E5)
w3

X (VX Ep) + wyE,X (VXE ). (10)

throughny(z) and its spatial derivativesee Eq(11)] which
vanishes in both vacuum and bulk. Therefdpg, is differ-

ent from zero only in the selvedge region. Following the
LWA, we characterize the polarization at the surface by its
zeroth moment

Py= f dzPs(2). (13
Substituting Eqg. (12) we obtain terms of the form
Jdzf(ng(2))dg(ng(z))/dz wheref andg are simply rational
functions of the density profilag(z). We divide the integra-
tion range into intervals so that in each of thegis mono-
tonic, and we can change the integration variable
z—ny employing dz=dny/(dny/dz) and dg(ng(z))/dz
=(dng/d2z)(dg/dng). It is easily seen thaiiny,/dz cancels
out from the integral so that we are left with integralgling

At this point we will concentrate only on the nonlinear re- of rational functions oh,. These integrals are now evaluated
sponse of the selvedge and we will consider the nonlineaff®M No(z——=)=0 {0 Ng(z—=)=ng, with ng the bulk

bulk response later. The width of the selvedge can be safel

lue of the density, and they can be performed analytically

assumed to be much smaller than the wavelength. Hence, WeF @ny profileng(z) yielding

ignore retardation, i.e., we drdpx E; from Eq.(10), and we

P3z:X§zz(w1xw2)DlzD22+1‘_>2- (14

ignore the slow variation of the field along the surface. Since o o o _ _
we are ignoring retardation we can identify the displacemenblotice that our definition of® is explicitly symmetrized in
field D,=E,+4mP, with the external field. Due to the ab- the frequencies);, w,. As xijx(w1,w;) = xij(w2,®;), this

sence of an external field at;, we may substitut&,, by the
depolarization field —47P3,. We also write E;,(2)
=D,/ e(w;j,z) where e(w;,z) is the dielectric function
which we write as

symmetrization is sometimes omitt&tlyielding twice our
surface susceptibility. It is convenient to write the resulting
surface susceptibility,,in terms of phenomenological di-
mensionless parametafw; ,w,)

(o D=e(2)=1— 2™ (11) s i % 1
v ' ;)i ’ Xezd 01,02) 64m2nge @102, €16, alos,ea),
wherei=1,2,3, andD;, is a slowly varying function ofz. (19
We ignore spatial dispersion effects, which are expected térom where we obtain
|
1 1 1 €3
(lel - wzﬂz) €,65+C.p.|+ melez e,log _1 +c.p. "

w4

a(wq,wy)=—2 ( 1 1
p

010, 0303

1 1 1 1 ’
0303 0]\ 000 @1y
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where c.p. denotes a sum over cyclic permutations of théore, if the driving field is parallel to the surface there is no
indices (1,2,3) anckizl—wglwiﬂi without an explicitz ~ surface polarization and sc@‘””:o. The other components
dependence denotes the bulk dielectric function, withof the surface susceptibility are ntfiidue to the rotational
wp= Jame®ng/m, the bulk plasma frequency. We remark and in-plane inversion symmetry of the flat interface.
that due to our neglect of spatial dispersion the resulting We remark that we have defined the different components
nonlinear surface susceptibilitfl5) is independent of the of the surface susceptibility in terms of field componedts
density profile g(z) and depends only on its bulk valog . and E;; which are continuous at abrupt surfaces and which
Therefore, Eq.(15) yields an unambiguous well defined are slowly varying across smooth interfac&é-?*This al-
result®” even in the unrealistic extreme case of an disconlows us to employ the LWA and makes it unnecessary to
tinuous abrupt surface. specify the position near the surface where the fields are to
It can be easily verified that our expressiti6) agrees be evaluated, therefore eliminating a source of confusion in
with the quantum-mechanical resdlin the high-frequency the literature. We also remark that the surface susceptibility
limit a(w;—%*,w,—*)=a(w;—*,w,)=alw;,w,—»)  Yields the self-consistent, total surface polarization, so that it
= —2 first derived for SHG. This limit is a test to which should not be further screened, i.e., it may be situated outside
calculations ought to be subjected. However, the low fre-of the metal when employed in radiated field calculations.
qguency limit of Eq.(16) diverges. This result is unrealistic, Now we turn our attention to the bulk nonlinear response.
as more sophisticated models yield a finite value for théNVe write**
static limit of a.>*?° The reason for this failure is our neglect o
of spatial dispersion within the present model. This omission Ei(r)=E; 9", (21
is particularly important at the surface of conductors Wher\/vhere the bulk wave vectors of the fundamental normal

the driving fields and the response of the system are perpen- - - o - .
dicular to the surface. On the other hand, the results obtaindd°des areq;=(q;|,q;z) (i=1,2), q; is determined by the

below for the other components of the surface susceptibilifncident field, i.e.,qjj=(w;/c)sin(4) with 6 the angle of
are indeed correct for the jellium model. incidence of theth beam, and;, solves the bulk dispersion

By considering the parallel component of the polarization relation, i.e.q%=(w _/C)Zfi—Qﬁ\- Substituting Eq(21) into
we now get Eq. (10) we get, straightforwardly,

3/ 2 3B\ il (01F ) TP A (B . FALD (0. . ENF
e’/m®  w; d No(2) - P3(r)=ie"™™92[D1q;(E;- E») +Da(dy- Ex) By +12],
EqDo,+12, a7 (22)

Pay(z)= w1001 w_3 iz €2(2)
in a similar way as we obtained E(.2) from Eq.(10). Here, ~ Without neglecting retardation. It should be noted that we
we have also ignored the first term of E40), as the non- dropped the linear response to the SF field in @q) so that
retarded depolarization field parallel to the surface is nuII.ISE is not the total bulk polarization, but only the source of
Integrating this equation across the surfaés. (13)] we the SF field within the bulk. The bulk response of an isotro-
obtain pic media is characterized by the parame®@ysand D, ,**

- s - s - given within our model by
P31 = X @1, 02) Eq) Doyt X[y (w1,@2) D1,Epp+ 12,

(18 nge® Q,
As with the perpendicular component of the SF polarization, i~ m? ©03Q:0,0:0; (23)
we parameterize the surface susceptibility as
and
X[ @1,02) = Xy ( @2, 01)
4 D— nBe3 1 /(,!)i Qi (24)
-1 12 i= —— =
= % - ﬂb(wl,wz), " m? 010,010 03 Qg
64m’nge w1020,0; € w3

It is important to remark that Petukhtihas also developed
(198 5 hydrodynamic model and has obtained results similar to the

present ones. However, he concluded E&to identically.
Here, we see that the vanishing Df is not a generic result,

-1 wh 1 2w, but is a consequence of having neglected dissipation. This

p

= — —b(w;y,wy), can be easily verified by setting=c, which implies
2 0.0 y y g=°, p

6477 nBe wle 12 61 (’)3 Qi:wi! in Eq(24)

Xfj @2, 01) = Xjy (@1, 07)

(19b
in terms of the dimensionless parametéxy;,w,) and B. Continuous dipolium model of dielectrics
b(wz,w1), which are given by In the present subsection we present a model for the non-
linear response of dielectric materials, closely following that
b(wy,wz) =b(wz,w1)=—1 (200 geveloped previousk for SHG.

in our particular model. Since our system is homogeneous \We start by considering a single polarizable entity within
along the surface, the only component of the electric field dielectric material. We model the entity by an electron with
that has a large gradient is that normal to the surface. Thereharge—e and massn at a distancex from its equilibrium



57 THEORY OF SURFACE SUM FREQUENCY GENERATIO. . . 2573

position, to which it is bound by a harmonic force with reso- e2/m
nant frequencyuo; I? the presence a spatially varying elec- ai=a(w)= 2_2—_/ (29
tromagnetic fieldE(r,t) andB(r,t) its classical equation of @o~ Wi —lwilT
motion is
The second-order equation,
= N - Mu e .
mx=—eE—mwgx— ?X—E XB, (25

mx@(t) = —mawix@(t)— T exV(t)-VE(ry,t)
where we also added a dissipative term with corresponding T
lifetime 7. We notice that, in this equation, the field has to be
evaluated at the actual position of the electrogt x, and

not simply at its equilibrium positiorﬁo. Therefore, assum-
ing that the scale of variation of the polarizing electric field s jinear inx® and has a driving term that is quadraticiin

is not smaller than the expectation valkiewe carry out a  with five frequency components: a dc contribution, and four

- §§<1>(t)><é(Fo,t), (30)

Taylor expansion to first order as oscillatory terms at @4, 2w,, w;— w,, andw,+ w,. They
correspond to optical rectification, second harmonicwgf
E(;OJF)Z,»[)%E((OJH;_ VE(FO,t)+ ... (26) and w,, difference frequency generation, and sum frequency

generation, respectively. We look now for the SFG compo-

and we make a similar expansion to zeroth-order for thenent ofx(?), xX¥’=x®(wj3), which obeys

magnetic interaction. Higher-order terms in these expansions

would have no effect in the quadratic nonlinear response © e

studied below. Thus, substituting E(R6) the equation of wg)ng):wg;gZ)_i_3)252)+_(;(ll),VEZJr;(Zl).VEl)
motion (25) becomes T m

€ @11 = | @24 2
. - o ML Lo e. — —| =X 'XVXE,+ —X5'XVXE;|, (31)
mx=—eE(rq,t) —mwgx— ?x—ex-VE(ro,t)—Ex m\ w; w3
XB(Fg,t)+--+. 2 where we wrote each monochromatic component of the mag-

netic field in terms of the curl of the corresponding electric
This is similar to the equation of a forced harmonic oscilla-field. The solution of Eq(31) gives the induced nonlinear SF
tor: it has a driving term—eE and all the other terms are dipole momenp$'=—ex? as
proportional to the displacemeﬁl However, the coefficients

of x anddx/dt in the last two terms are field dependent, and, 02 =p@ (@)
. o ) LT ps"=p“(w3
therefore, time dependent, giving rise to a nonlinearity simi-
lar to that of a parametric, forced oscillator. Notice that, ap- 1 - I -
parently, there is a substantial difference in the source of =~ g3 1| E1- VE,— w—2E1><(V><E2)

nonlinearity of this and the previous model developed in Sec.
Il A. Here we made a Taylor expansion of the field around
the equilibrium position of the charge; while there, we fol-

lowed the motion of a charged fluid and used the nonlinear
convective time derivative. This difference is analogous toFinaIIy, there are two other moments of second order in the

that usually found in fluid dynamics, where the position of adriving field that oscillate with frequencyws: one is

fluid element may be described in terms of Eulerian or La-h tamil | - q | =2)
grangian coordinates. the familiar electric quadrupole momentQ'</(ws3)

Now we assume that the driving fields are two monochro= —ex{"x5"+ 12, which is simply given by
matic waves with frequencw,; and w,, and, since optical
fields are usually much smaller than atomic fields, we pro- . . 1
ceed to a perturbative solution of E@7) by expanding its QP=Q@(wg)=— S ara,(EiE,+ELE ). (33
solution in powers oE,

- > wWo >
+a, EZ-VEl—w—ZEZX(VXEl) . (32
1

X(O)=XD()+ X2 () + -+ . (29) The other is the magnetic-dipole momentgiven by
The lowest-order solution is a superposition of two mono- . —e. -
chromatic waves with amplitudes<{V’=x®(w;) and M= kX mX (34)

xM=xB(w,) corresponding to each frequenay and w,,

from which we find the induced electric dipole moment\ye remark that this contribution has been ignored in second-
M= —exV=qa(w)E;, i=1,2, where the linear polariz- order optically related surface susceptibility calculations.

ability is The SF component turns out to be
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“(2)_ 7 (2) € o)y 2 2y 2D 3 - _n@ > g 2 ug
B3 =p (ws):—z—c[xl XXg X5 X X1 ] P3:n(z)a3E3—Ta3(alE1~VE2+a2E2-VE1)

1 s s s oo
i . - - o + —a,a,V-n(z)(E{E>+ ELE
=—ala2[w2E1XE2+le2XEl] 2e 172 ( )( 1=2 2 1)
2ce
1

i ) A - %alaz(
= fealaz(wz_wl)Elx E,.

Wy— W

VXn(z)(E;XEy), (37)

where the first term on the RHS is the linear response to the

SF fieldEs=E(w3), which we have added for consistency.

We stress that this term is zero for the usual S(Ref. 24 ~ Again, we notice that the last term of E(37) does not

as well as for noncollinear SHG where there are two fundacontribute to SHG.

mental beams at different angles of incidence. We also re- Now, following the same procedure that took us from Eq.

mark that although this is a magnetic term, it is driven by the(10) to Eq. (14), we solve Eq.(37) to get both the perpen-

linear electric fields. An example of a magnetic effect in-dicular and parallel components of the polarizatiég,

duced by an electric field is the reciprocal of the Faradaywithin the dipolium model for dielectrics. For the perpen-

effect, i.e., the dc magnetization induced by a circularly podicular component we get

larized electromagnetic wave.This effect is described by

Eq. (35), as can be simply verified by setting,= — w; and

EZZ EI ) sz(Z) =
As in the case of linear response and of SH@he non-

linear response functions of a harmonic oscillator which we

have derived above classically, coincide with the corre-

sponding expressions derived from a full quantum-

(39

—Nn(2)as

ee3(2)

1 o9 1 1

0 1
N Me®@ 5, 2@ ez 4 q(z))

a

mechanical calculation. As in the case of SHG and in anal- + i 1 D Dot 12
ogy to Miller's rule?’~2° for the bulk nonlinear response of N2y n(2) €1(2) ey(z)| 2T AT
noncentrosymmetric systems, we conjecture that the correc- (39)

tions to Eqs(32) and(33) in centrosymmetric molecules that
are not harmonic oscillators might turn out to be small andSubstituting Eq. (38) into Eq. (13 we obtain

with only a slow f_requency dependepce. Co Pa,= X34 @1,05)D1,D5,+1-2, where in analogy to the
Now we consider a macroscopic semi-infinite system . . AT
. " ) previous case, we now write the surface susceptibility in
made up ofn polarizable entities per unit volume, and we terms of a dimensionless parameti; ,w,), through
will allow n=n(z) to depend on position, changing rapidly, P L2 9
but continuously near the surfaze=0 from its bulk value
n(z—o)=ng to its vacuum value(z— —)=0. Each en- s —
. . . - . . > XZZZ(wlle) 4n e 4 4 ]
tity occupies a different position, which we will denote by B TEL ATE

and we will assume that is a continuous variable. Thus, in
the following, we will ignore effects derived from the micro-
scopic crystalline structure of the system. We will also as- 1 | e+
sume the response of each entity to be independent 6 a(w,,w,)=—2 |1+ (1~ es)ereal ey logles/ey) + C.p]
that we will also neglect effects such as those derived from a (61— €2)(€e2—€3)(e3—€1)
surface induced modification to the electronic structure.
Therefore, we will concentrate our attention only on the CON- o bulk dielectric functi . . bve. — 1
tribution of the spatial variation of the electromagnetic field u Ielectric function 1S now given - by

X +4mnga; .
on the sum frequency generation.

We begin by writing the macroscopic second order polar- We follow a sqnﬂgr Erocedure for the parallel compo-
ization B 2P nents of the polarizatio®;. Starting from Eq(37) we ob-
3

tain, in analogy to Eq(38),

a(wl,wz) €1 1 62_1

(39

where

(40

- - o ic -
Py(2)=n(2)p’ - 3 V-n(2)Q¥+ —Vxn(2)uf?, 5 A=~ pa| By LD e 9 D)
w3 . P3(2) 5 X192 Ey 7, €2) D3+ Ey 7 El(Z)Dlz
N N - R w2 wl dJ n(Z) >

where P3, p§?, Q¥, and u{?) are continuously varying —( o3 )((9— 2 D2,Ey)
functions ofr.3* At this point we are interested only in the ’
nonlinear response of the selvedge; the bulk response will be _ d n(z) D..E 41
considered later. To get the selvedge response we neglect (?_z e(z) 2| (41)

retardation and the slow spatial variations of the field as be-
fore, and approximate which can be integrated, yielding
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1 (e371) (e1-1) (e2—-1) 47 w0,
T nge 4w 47 47 (—1) 2

753“2 J_ dz |53H(Z)

1 ns( wz—w1>» 1 (e5-1) (-1
=, —|1— E,D _ 1 (e e~ 1)
2e 172 ¢, w3 U2 “hge 4n 2, Odi (459
n Wy~ W1\ >
+E_B(1+ =~ 1)52012 o L[ (el o
! s ""nge| 4w 47 w3
= Xjl(©1,92)EqD2z+ Xjz)(@1,02)DazEp + 12, (1) (em1) (1) 47 wg
(42) 4 A A7 (€—1) wi
where the surface susceptibilities are _ 1 (&7 (61_1)_—d_ (45b)
nge 4w 4 e
X[ @1,02) = Xy ( @2, 01) where we have introduced the bulk parameters
=1 (e1-1)(e2—1) 1 2wy e3—1 ww
= —  b(wy,w,), _63 102
4nBe (477)2 € W3 ( 1 2) 5| €i_1 w|2 ’ (466)
43
8 — o €—1w;
6= —— —, (46b)
S S w3 Gi_l w;j
X[ @2,@1) = X[z (01, 07)
so that

_ -1 (61_1)(62_1) 1 2(1)2b o
_4nBe (477)2 6_1(,0_3 (wz'wl)’ d1=d2=d1=d2=1, (47)

(43p  with i=1,2. As before, it is straightforward to verify that
when the Drude dielectric function is substituted in E4%)
and our bulk parameters agree with those of jellium, E@S)
and (24).
blwy,wz)=b(wz,01)=~1 (44 Ill. RESULTS
as for our model conductor. The other components of the In this section we present results for the nonlinear re-
surface susceptibility are null. The susceptibilities above ar€PONSe correspor?dmg'to two part'lcular cases. Thz'a'ﬁrst is a
consistent with those previously obtained for SHG. soll_d made out of identical harmonlc_polf_alrlzab!e entities with
We may compare the results obtained here for our non2 single resonance and the_ _s_econd is Si. Having obtained the
linear dipolium model with those obtained in the previousSurface and bulk susceptibilities for our two models of con-
subsection for jellium, simply by substituting the Drude di- ductors anq dilelectnqs, we proceed to obtain the efficiency of
electric function(11) in Egs.(39), (40), and(43). Both sets the SF radiation, defined by
of results agree, as could be expected, since our local jellium
can be thought of as a harmonic dipolium with a null restor-
ing force. Not only do the surface susceptibilities are in
agreement, but also, the parametrization in terma ahdb _
employed here agrees with that used for jellium. This showsvhere 1°“%(w3) (1{")(w; ) denotes the intensity of the
the convenience of using our expressidB8) and (43) for  outgoing SF(ingoing fundamentalfield at w3 (w4 ,w,) for
parametrizing the surface response, as opposed to parametblarizationy (a,8). Notice that in the limitw;— w, the
zations in terms of model-dependent parameters, such as teéficiency (48) yields four times the SH efficiencdy. The
plasma frequency and the lifetime for jellium. Finally, it reason simply is that in that limit, the second harmonic po-
should be noted that the agreement between dipolium anidrization is proportional toE;+ E,)2, which has the term
jellium results would not have been obtained had we ne2E,E,, while in SFG we pick only the terrk,E, (without
glected the nonlinear magnetic contributipnto the polar-  Writing explicitly the factor 2J. In the Appendix we follow
ization in Eq.(36). This illustrates the need of incorporating Ref. 14 to obtain explicit formulas fdR, s, in the terms of
the electric-driven magnetic-dipole moment in SFG calculathe surface and bulk parameteasb, 8, 8, d, andd. We

|(yout)(w3)

R o =— i
,B l
wy I(a'n)(wl)l(ﬁm)(wz)

(48)

tions. restrict ourselves to thppp polarization combination, since
Now we turn our attention to the bulk non-linear responsethis is the most efficient among the different choices.
for the dielectric case. We substitute E(®2), (33), and(35) In Fig. 1 we plot the imaginary part @&(w;,w») vs the

into Eq. (36), and we assume that the fundamental fieldsnormalized frequencyn;/w, and w,/w,, for a harmonic
propagate as plane wavéal) to obtain again Eq(22), but  solid with parametersiz=mw3/(47e?) and wor=20. We
now with the bulk paramete®; andD; defined as notice that the plot is symmetric with respect to the inter-
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2.0

1.0
wa fw,

2.0 0.0

FIG. 1. Imaginary part of(w1,w,) VS w1/wy andw,/wg, for a harmonic solid with resonance frequenay, and lifetime parameter
7= 20/wg.

changew; < w,, a property that is inherited from the sym- the corresponding value f&®,,,(w;= w,) is four times the
metry of the surface susceptibilif}, (w1, w,) [Eq.(14 and  value of R, for SHG® as explained after E448).
Eq. (19)]. To understand the structure displayed in Fig. 1, we |n Fig. 3 we show thep-polarized SF efficienciR,,pp VS
recall that the bulk dielectric function of such a soéfw) w, and w, for two p-polarized beams that incide on a Si
displays a resonance ag. In the region between the trans- g rface at angleg, =55°, and6,=65°. This was obtained
verse (o) and the longitudinal & = wy+4mnge*/m)  from the formulas of the previous section by simply substi-
frequencies, t_he dielectric function becomes negative and thgiting the experimentally obtain&ldielectric function of
the logarithmic terms of Eq(40) become large. Then, we pylk Si. As for the harmonic case, we find a similar structure
may expect to have structure whenever;, w,, or wg lie  of rigges corresponding to constant valuessgf w,, or ws
within this region. Indeed, in Fig. 1 we see two wide ridgesang peaks where these ridges cross each other. In this case,
that run parallel to thew, and w, axes, extending from these structures appear at the frequencies of the critical
wp=wy (w1= o) UP 10 @ =2wy and a valley that cuts points of the joint density of states of SigEand E.
diagonally fromw; + w,= wz~wq to w_. If we traverse Fig. In Fig. 4 we showR,,, as a function of the sum fre-
1 along the diagonal;=w, we obtain the SH response quencyw, for a fixed value of one of the fundamentads,.
agi(w), which is identical to our previous restftThe real  Notice that for frequenciess<w; we are actually in the
part of a has features in the same regions as the |mag|narD|:G and not the SFG regime. However, we can app|y our
part, to which it is related by causality relations. formulas by simply introducing negative frequencies and us-
In Fig. 2 we plotR,,,, VS w1/ wg andw,/ wy, for the same  ing the fact thate(— w) = a* (w). As expected, the curve
harmonic system, and for collinear beams at an angle Oﬁisplays peaks whenever, or ws coincide with E or E;.
incidenced,; = 6,= 6=45°. We remark that the structure of As , diminishes, these peaks overlap and enhance each
a is strongly suppressed by the Fresnel factors belgwand  gther. Actually, the peaks at;=E, and § have been ob-
is much smaller than that apparent abawg The features gerved by Daurret al*® by SFG withfw,=2.33 eV, who
that are present correspond to the regions betwegand  aiso observed the former peak with SEG3 Our prediction
w_ Where the material is opaque, and also betweerand s that the relative strength of the SFG peaks would be in-
w.= \Jw{/coso—witart6~1.73w,, where there is total in- tensified by choosing a lowes,.
ternal reflection. There are features whenewer w,, or ws As shown in the Appendix, the SFG efficiency may be
are in this region. The structure is enhanced where twavritten asRaﬁym|A+B+D|2 where A, B, andD are func-
ridges cross, and, in particular, the efficiency is maximumtions of the frequencies and angles which characterize the
where bothw,; andw, are at resonance witlh,. The plot of  contributions to the radiation from the surface polarization
Rppp is symmetric with respect to the diagonaj=w,, and  perpendicular to the surface, parallel to the surface, and the

(TLBG/WO)%SRPPP

1

wyfw,

FIG. 2. SF efficiency r(lBe/wo)Zc3Rppp VS w1/wy and w,/wy, for the same system as in Fig. 1. The angles of incidence are
0]_: 02:450.
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100

102R ,,, (em?/W)

2.5
hawy (eV) ’ 0.5

FIG. 3. The vertical axis shows the SF efficiency’’R,,, (cm?/W) vs ; and w,, for Si. The angles of incidence asy=55° and
0,=65°.

bulk contribution, respectively. In Fig. 5 we show the imagi- were written in terms of the bulk linear dielectric function of
nary parts of these three contributions as a function of th¢he system and dimensionless parameters, and they are inde-
sum frequency for a fixed w;=0.125 eV (Ref. 129 corre- pendent of the shape of the density profile. This fact allows
sponding to the solid line of Fig. 4. We see that the largestis to make quantitative calculations of the SFG spectra of
contribution to the radiated energy comes from the surfacarbitrary centrosymmetric systems by simply substituting the
polarization normal to the surface. A similar conclusion isappropriate response function, without having to makke

obtained from the real parts of, B, andD. hoc assumptions about the density profiles. The dipolium
results agree with those for local jellium, but only if a novel
V. CONCLUSIONS term is included in the former, namely, the electric-field-

induced nonlinear magnetization. Its contribution to the po-

We have solved the equations of motion for the electronsarization vanishes in the degenerate case of SHG but is fi-
in semi-infinite homogeneous centrosymmetric system taknjte for SFG. A comparison between our results for jellium
ing into account the spatial variation of the electromagneticand those previously obtained by PetukHoghows that
field, and we have been able to obtain analytic expressionsome components of the bulk susceptibility vanished fortu-
for the surface and bulk nonlinear susceptibilities that deitously in Ref. 14 and are not zero in general. We have cal-
scribe the process of sum frequency generation. We havgulated the response and nonlinear efficiency of a harmonic
defined the surface susceptibilities as the response of thglid and identified its main SFG spectral features in terms of
self-consistent total surface polarization to the slowly vary-the relevant frequencies of the system, i.e., the resonant, lon-
ing field components. This choice eliminates the usual ambigitudinal, and critical frequencies. We have also applied our
guities in the position at which the surface fields are to beesults to Si, obtaining features that correspond to its critical
evaluated and in the choice of position and screening of thgoints £, and E, in qualitative agreement with experimént.
surface polarization layer when calculating the radiated fieldywe have shown that these features are intensified as one of
Furthermore, we have obtained expressions for the convethe fundamental frequencies goes into the infrared, and that
sion efficiency. the main contribution to them comes from the surface polar-

We obtained the susceptibilities for both, a system of freqzation normal to the surface. We did not present numerical
electrons(jellium) and a system of polarizable harmonic en- results for local jellium, as it is known that spatial dispersion
tities (dipolium) distributed with a number density that varies jg very important at conductor surfaces.
rapldly but Continuously across the surface. These results In conclusion, we have deve|0ped a model that permits

60 T T T T T T T T T T T T T T
200 |
— 50 .
g [ §
o 40 8
g n <200 |
= 5
30+ 2
2 2
g 20 .E 600
C‘é 1)
— 10 - ©
0 1 -1000 1 1 L 1 1 [l 1
1 9 1 2 3 4 5 6 7 8 9
hw;«; (GV)
FIG. 4. SF efficiency Rypp (cm?/W) vs wz; for fixed FIG. 5. Plot of the imaginary part of the factars(solid line), B

hw,=0.125 eV (solid line), Aw,;=1.17 eV (dashed ling and (dashed ling andD (dotted ling vs w4 for fixed i w;=0.125 eV,
hw,=2.33 eV (dotted ling, for Si. The angles of incidence are corresponding to the SF efficiency given by the solid line of Fig. 4.
6,=55° andf,=65°. See text for details.
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calculation; of the SFG spectra of arbitrary isotropic_: cen- (61_1)(62_1)Fa(w1)FB(w2)F7(w3)
trosymmetric systems. In our model, the surface contribution Aagy= 4 4 .

. . - . T T COS 05
to SFG arises only from the strong field gradient, that is, we (A5)
account for the effect of a noncentrosymmetric environment
on centrosymmetric molecules. For these reason, the onlgere, the first two indices denote the polarizatisro( p) of
surface characteristic that enters our model is the numbdhe incoming fundamental beams, and the last index corre-
density. However, as we essentially integrated a gradient t8Ponds to the polarization of the outgoing SF beam Rfe
obtain the total selvedge contributions, our results turn out tére the corresponding Fresnel factors given below. The only
be independent of the density profile, losing surface sensitivdoOnzero elements of,z, arer ,,,, ssps Mpss, @anNdrsps. The
ity. Nevertheless, there are other surface contributions, sudiermer is given by
as those arising from the reduction in the symmetry of the
wave functions themselves at the surface and from the pos-
sible transitions to and from surface staté®’that should be  with
incorporated in more sophisticated microscopic models, as
well as spatial dispersion, crystallinity, and local-field A=sin 6y sin 0, sin 63 eza(w;,wy), (AT)
effects?02641-44 A5 sum frequency spectroscopy is rapidly
becoming a very powerful probe for surface science, its de-
velopment requires a more profound theoretical comprehen-
sion. This paper represents a step towards this goal.

Mppp=A+B+D, (AB)

. 20
B=— S$1S3 SIn 02 b((l)l,wz)_
w3

2w
+ 5253 Sin Hlb(wz,wl)—z) y (A8)
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APPENDIX: RADIATION EFFICIENCY
W —_ ——— W3
In this appendix we follow Ref. 14 to calculate the radi- +2y—| (60— 6101+ 6,dp— 61dy)———V
ated SFG efficienciR, 5, [Eq. (48)]. It is convenient to first € “3
rewrite the surface and bulk SF polarization in the param- w2 2
etrized fashion, —6.d;— e+ 8,d— l (A9)
3 ‘1’3
_lla-1l)/e-1 Dy, D2, where A, B, andD characterize the contributions to the ra-
P3Z a(wlva) ’ (Al) .. . . .
2nge| 4w 4m €1 diation from the surface polarization perpendicular to the
surface, parallel to the surface, and the bulk contribution,
- -1 /el—l e—1 . Dy, 2w respectively. The other non-null terms iof;,, are
PaI= 50| “4m )( 4 b(“’l""Z)El“_w_3 2
wWiWo wq 1
D1, 2w, Fssp=2| (61d1+ 6,d2)— +61d1— 2
+b((1)2,(01)E2H__ ’ (Az) (D3 6 3
w3
d (1)2 E (1)1(1)2 W
an + 52d2 2 S|n 63+2 ’y(52d2 51 1) ;,
3
> 1 61_1 62_1 > > N
e )(?)mdml(afz) (A10)
R N N [ N N A 2(1)2 wo _—
+ 52d2q2(E1' E2)+ (Sld 1E1(Q1' Ez) r‘pSS: sin 01 b(wlle)w_3+ZBw_3W52d2! (All)
+8,d,E,(qy-Ey)Jiel Gt @) T, (A3)  and
It is now a simple matter to substitute the polarization above ) 2wq w, —
into the expressions given in Sec. Il of Ref. 14 to obtain I'sps=Sin 6, b(erwl)w_g_Z,Bw_g\N‘sldl- (Al12)
2302 We notice that folsspthere is no surface contribution since
aﬂy:(ne—)z|Aaﬂy aﬁyl (no summatioh, X§””=0. The different terms in above expressions are
B
(A4) e3(w1S;+ wyrSy)/ wz—€'s
Y= 3(w1S;+ wySy) w3 37 (A13)

!

where €3— €
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_ (w151+ wZSZ)/w3_S3 AL4 W= Sy sin 02_52 sin 01, (A18)
B €3— €’ ' (A1) and finally the Fresnel factors are
in 6,4+ w, SN 0)2+ (015, + wS,)? F (o) = ——220 (A19)
e,z(wl SIn 01+ wy SIN 22) (01S1+ @5S;) , plwi)= € cosO,+s,
“3 f larization, and
(A15) or p po ,
2 cos 6
5= \/e,—Sir? 6, (A16) Fs(0)= cosprs (A20)
I |
V=s5;S,+Ssin 6; sin 6,, (Al17)  for s polarization.
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