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Calculation of photonic bands using vector cylindrical waves and reflectivity of light
for an array of dielectric rods

Kazuo Ohtaka,* Tsuyoshi Ueta, and Katsuki Amemiya
Department of Applied Physics, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan

~Received 19 August 1997!

For a periodic array of dielectric rods of circular cross section, the formulation is given for the band structure
of a photon and the reflectivity or transmittivity of light, using the vector cylindrical waves as the basis
function for expansion. As a key quantity assuring the fast convergence, the expression of the structure factor
is given for two- and three-dimensional arrays and for a lattice with a complex unit cell containing a number
of rods inside. In terms of the calculated band energies, we check the reliability of the widely used plane-wave
methods and estimate the error involved in them. Also, we present some numerical results for the band
structure and the transmittivity of light for parameters beyond the reach of the plane-wave approach.
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I. INTRODUCTION

Because of the accumulated knowledge of the basic p
erties of the photonic band,1,2 a stage of their application
seems to be beginning both theoretically a
technologically.3–7 Though most theoretical work is done u
ing the complete set of plane waves as basis functions,
experience for electrons reveals that the set of sphe
waves is much more powerful in leading to a faster conv
gence. It is true that their usefulness is restricted to array
spherical substances but the conclusions drawn somet
even analytically give us sufficient insight into the physics
more complicated photonic crystals, an array of rectang
rods, for example. Indeed, as shown in the series of wo
for the arrayed spheres of dielectrics,8–11 the calculated ei-
genvalues and eigenvectors of very high quality clarified
origin of the characteristic features of individual bands. T
strong confinement effect that gives rise to an enhanced l
field is one of the examples that convinces us of the e
tence of the similar effect irrespective of the shape and
of the arrayed dielectrics.

The need of the fast convergence is connected with
presence of the virtual bound states of photons confined
dielectric unit, i.e., the origin of the Mie resonance in t
light-matter interaction. In a periodic array of dielectrics, t
bound states of different units are coupled, as in a tig
binding band of electrons, to become a well-defined cohe
wave with massive dispersion relations. This mode is no
ing but a bosonic analogue of heavy fermions,8,12 and is
called in this paper and elsewhere heavy photon, as in
works cited above for the lattice of spheres. Their pecu
feature is that the confinement effect becomes more
more conspicuous with higher angular momentuml
(\51)—in the language of electrons. In the morpholog
dependent lasing in the cavity quantum electrodynam
~QED!,13 the gallery modes withl as large as 30 are indee
involved. If the perfect periodicity is somehow assured, th
will manifest themselves as high-energy heavy photons, n
coherent and free from a radiative lifetime effect. This is in
marked contrast to the case of electrons, where it is onl
570163-1829/98/57~4!/2550~19!/$15.00
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the energy range of thed or f state ~i.e., l 52 or 3), that
heavy fermions have so far been observed. We wish to h
a powerful algorithm to cover the heavy photons of such
high-energy region.

A good localization of impurity modes seems to be a
other reason for the need of fast convergence.14,15 In contrast
to the donor or acceptor levels of electrons, the high deg
of localization of the photonic analogues almost nullifies t
effective mass equation. The supercell method16,17 looks to
be a promising alternative. A unit cell thereof that contain
large number of dielectrics introduces a secular matrix w
dimensions orders of magnitude larger than the perfect
tem.

The purpose of this paper is to give such a formulation
a lattice formed by parallel dielectric rods of a circular cro
section. For two- and three-dimensional~3D! arrays of di-
electric spheres, the readers should refer to the works of
of the present authors.8–11 The attempts along this line fo
the array of rods are already found in the series of works
Nicorovici and co-workers.18–20 They are thus credited with
having first developed the cylindrical wave formalism. Th
concentrated on the multipolar expansion of the Green fu
tion and gave the algorithm for the structure factor, in t
terminology of the present paper, for 1D, 2D, and 3D pe
odic lattices. They applied it to the calculation of the pho
nic band for the arrays of perfectly conducting cylinders a
spheres. In these systems, the scalar wave treatment was
sible and no essential change except the boundary cond
was needed in the scalar Korringa-Kohn-Rostoker~KKR!
equation. We give in this paper the full vector KKR equ
tion. This equation is an extension to the cylindrical case
the vector KKR equation given for the array of spheres21

Also, the formalism for the transmission and the reflecti
coefficients, the response of photonic bands to an incid
optical probe, is also given.

In the formulation of the structure factor, there are a nu
ber of differences between the works of Nicorovici and c
workers and the present paper. The structure factor fo
monolayer of parallel cylinders was given by them in a ki
of recursion form for a set ofSl , defined in the text.18 In this
2550 © 1998 The American Physical Society
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paper we are giving a closed expression ofSl for eachl . The
structure factor of the monolayer is the most important
gredient to obtain the reflectivity or transmittivity of ligh
from a system of stacking planes of rods. We are giving a
the expression ofSl for an infinite 3D system having a num
ber of rods in a unit cell, with the future application to th
supercell method in mind. One important point is that t
algorithm for Sl of the 3D system of Nicorovici and co
workers does not rely upon the Ewald method in the latt
sums, in contrast to the conventional way.19,20 Thus a very
interesting and important problem remains to be examin
that is, whether their expression works better than the c
ventional one, in a very-high-frequency region as sta
above.

As in the case of arrayed spheres,8,21 the formulation for
the photonic bands ends in a set of formulas that are obta
through a simple transformation applied to the results
electrons. What matters in the formulation is to establish
completeness relation of the vector cylindrical waves and
use it just as the closure relation for electrons written
terms of bras and kets. In this sense the difference in
formalism is very small between electrons and photons.
show these points is the main reason for the detailed pre
tation of the formulation.

Our formulation will be applied numerically in two way
in this paper. First we examine the convergence of the b
energies obtained by the plane-wave calculations by com
ing them with the results of the present formulation. As S¨-
züer, Haus, and Inguva emphasized,22 correct band energie
of the plane-wave expansion must be obtained through
extrapolation procedure to the infinite number of the pla
waves used in the expansion. If we wish to omit this form
dable task, we have recourse to some other ways of esti
ing the errors due to the finite truncation. This is just wh
we are doing in this paper for several cases of different
electric constants and frequency ranges. Our conclusio
that to attain a high precision the dimension of the secu
matrix of the plane-wave calculation needs to be 50, so
times more than 100, times as large as that of the cylindri
wave formulation.

The second application concerns an ideal photonic cry
with finite thickness. We show how well the transmissi
and reflection of light is capable of reproducing the detai
features of the band structure. This second application
made for the parameters beyond the reach of the plane-w
calculations, using the numerical data calculated with err
less than 0.1% for about 80 bands of the system with la
dielectric constants.

In Sec. II, we examine the basic properties of the vec
cylindrical waves to establish the completeness relation
Sec. III, we give the formulation for the calculations of ba
structure and reflectivity of light. Numerical applications a
given in Secs. IV and V. We end the paper with a br
summary in Sec. VI. The detailed expression for the str
ture factors will be given in Appendixes A, B, and C. W
treat a 2D plane, an infinite 3D lattice, and a lattice of co
plex unit cells having a number of cylinders.

II. COMPLETENESS OF THE VECTOR SPHERICAL
WAVES

Generating the vector spherical waves from the sc
ones is well established and described in detail in vari
-
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sources, among them Stratton.23 For the solutions of the vec
tor Helmholtz equation for the electric field,

~D1q2!E~r !50, ~2.1!

the relevant scalar function in the cylindrical coordinatesr
5(r,u,z) is

c lkz
~r ;C!5Cl~lr!eil ueikzz, ~2.2!

with

l5~q22kz
2!1/2. ~2.3!

The indexl stands for thez component of the angular mo
mentum and the symbolC may beJ for the Bessel function
Jl , H for the Hankel functionHl

(1) of the first kind, orN for
the Neumann functionNl . We let l run over 2`, l ,`
with the relationC2 l(lr)5(21)lCl(lr). Throughout the
paper we take Iml.0 ~whenq2.kz

2 , q is understood to be
q1 id with q.0 andd501).

For an l , three vector cylindrical waves are construct
from c lkz

(r ). Two of them, theM andN fields of Stratton,

are transversefields in the sense that“•E(r )50. Let them
beel

M(r ) andel
N(r ), respectively. The third, theL-type field,

is longitudinal and denoted aseL(r ). The M wave is alter-
natively called the transverse electric field and theN the
transverse magnetic field~they are also called the magnet
and electric multipole fields, respectively!.24 TheL field dis-
appears finally in our problem but it is indispensable in s
ting up the closure relation, as shown below.

The concrete forms of the (r,u,z) components of
el

M(r ;C), etc., are

el
M~r ;C!5

1

lS 1

r

]

]u
,2

]

]r
,0Dc lkz

~r ;C!,

el
N~r ;C!5

1

lS ikz

q

]

]r
,
ikz

q

1

r

]

]u
,
l2

q Dc lkz
~r ;C!,

el
L~r ;C!5

1

lS ]

]r
,
1

r

]

]u
,ikzDc lkz

~r ;C!. ~2.4!

They are dimensionless by definition. The lack of thez com-
ponent discriminates theM field from theN and the genera-
tor of theL field is nothing but the gradient operator divide
by l.

The normalization integrals with respect to the angleu
turn out to be

E
0

2p

duel
L~r ;C!* •el 8

L
~r ;C!5pd l l 8@Cl 21

2 1Cl 11
2

12~kz /l!2Cl
2#,

E
0

2p

duel
M~r ;C!* •el 8

M
~r ;C!5pd l l 8@Cl 21

2 1Cl 11
2 #,

E
0

2p

duel
N~r ;C!* •el 8

N
~r ;C!5pd l l 8@~kz /q!2~Cl 21

2 1Cl 11
2 !

12~l/q!2Cl
2#. ~2.5!
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With respect to the angle integral they are not mutually
thogonal but

E
0

2p

duel
L~r ;C!* •el 8

M
~r ;C!5 ipd l l 8@Cl 21

2 2Cl 11
2 #,

E
0

2p

duel
L~r ;C!* •el 8

N
~r ;C!5 ipd l l 8~kz /q!

3@Cl 21
2 1Cl 11

2 22Cl
2#,

E
0

2p

duel
M~r ;C!* •el 8

N
~r ;C!5pd l l 8~kz /q!@Cl 21

2 2Cl 11
2 #.

~2.6!

The third relation causes the mixing between theM and N
partial waves in the case ofkzÞ0, to be discussed in Sec
III B. This is in a marked contrast to the scattering from
sphere,8 where theM andN fields decouple to lead to theM
andN phase shifts.

There are three important identities needed in the calc
of the vector cylindrical waves. One is related to the Car
sian components of their superpositions. The Cartesian c
ponents ofel

M(r ;J), etc. follow from Eq.~2.4!. Let E(r ) be a
superposition ofM andN waves overl with coefficientsa l

M

anda l
N ;

E~r ;C!5 (
l 52`

`

$el
M~r ;C!a l

M1el
N~r ;C!a l

N%. ~2.7!

This is a transverse field, because so areel
M and el

N . When
expanded in terms of the scalar function given by Eq.~2.2!,
its i th Cartesian component (i 5x,y,z) is expressed as

Ei~r ;C!5(
l l 8

$c lkz
~r ;C!@Pi

M# l l 8a l 8
M

1c lkz
~r ;C!@Pi

N# l l 8a l 8
N%.

~2.8!

This shows that to derive thei th component we have only t
changea l

b in E(r ) by ( l 8@Pi
b # l l 8a l 8

b for b5M ,N and to
superpose the scalar fields. When, in particular,E(r ;C)
5el

M(r ;C), only the matrixPi
M enters witha l 8

b
5d l 8 ldbM in

the above formula. The equivalence of Eq.~2.7! with Eq.
~2.8! is important in what follows. The matricesPi

b , whose
l l 8 matrix elements are denoted as@Pi

b # l l 8, are playing a
fundamental role in converting the scalar~Schrödinger!
equation to the vector~Maxwell! version. Their explicit
forms are quite simple in the cylindrical case, as compa
with the spherical case where the Clebsch-Gordan co
cients are involved:21

Px
M55

i

2
@1,1#, Py

M5
1

2
@1,21#, Pz

M5@0#,

Px
N5

ikz

2q
@21,1#, Py

N5
kz

2q
@21,21#, Pz

N5
l

q
@1#.

~2.9!

Herea of the notation@a,b# stands for the (l ,l 21) matrix
element andb the (l ,l 11) element, while the symbol@a#
-

s
-

m-

d
fi-

shows the diagonal element (l ,l ) (2`, l ,`). The other
matrix elements are zero identically.

The second important relation is

]

]xi
(

l
c lkz

~r ;C!j l5(
l l 8

c lkz
~r ;C!l@Qi # l l 8j l 8,

~2.10!

j l being an arbitrary coefficient independent ofxi . That is,
when operated on a superposition of the cylindrical wav
the derivative with respect toxi is equivalent to multiplying
l times the third matrixQi . They are defined by

Qx5 1
2 @21,1#, Qy5

i

2
@1,1#, Qz5

ikz

l
@1#, ~2.11!

in the notation of Eq.~2.9!.
The final and most important relation is the completen

~closure! relation established amongPi
M , Pi

N , andQi ~nine
matrices altogether!. The completeness is proved in the sam
way as the spherical case.21 Explicit matrix multiplication
using Eqs.~2.9! and ~2.11! actually leads to

F (
b 5M ,N

Pi
b ~Pj

b !†1
l2

q2
Qi~Qj !

†G
l l 8

5d l l 8d i j , ~2.12!

the left-hand side being the (l l 8) matrix element.
This is called the completeness relation because it

solves an arbitrary vector field into a linear superposition
the M , N, andL vector cylindrical waves. This is illustrate
by the following two examples.

The first example is resolving the plane wave of wa
vectork, transverse or longitudinal:

E~r !5E0exp~ ik•r !, ~2.13!

with E05(Ex
0 ,Ey

0 ,Ez
0). We rewrite the exponential in term

of the scalar cylindrical waves as follows:

ei ~kxx6kyy!5eik'rcos„u~k6!2u…5 (
l 52`

`

i lJl~k'r!e2 i l „u~k6!2u….

~2.14!

Here

k'5~kx
21ky

2!1/2 ~2.15!

and

eiu~k6!5
kx6 iky

k'

, ~2.16!

with u(k6) being the angle between the 2D vectork6

5(kx ,6ky) and thex axis ~the last form of the exponentia
is useful for complexky). The field component of Eq.~2.13!
is then rewritten as follows:

Ei~r !5(
l

i l j l~k'r!eil ueikzze2 i l u~k!Ei
0

5(
l l 8

(
j

c lkz
„r ;J~k'r!…d l l 8d i j i

l 8e2 i l 8u~k!Ej
0 .

~2.17!
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Substituting Eq.~2.12! for d l l 8d i j and using the equivalenc
between Eqs.~2.7! and ~2.8!, we find

E0eik•r5(
l

$el
M~r ;J„k'r!…a l

M1el
N
„r ;J~k'r!…a l

N

1el
L
„r ;J~k'r!…a l

L% ~2.18!

with the coefficients

a l
b5(

l 8
S (

j
@~Pj

b!†# l l 8Ej
0D i l 8e2 i l 8u~k! ~ for b5M ,N!

a l
L5(

l 8
S l2

k2(j
@~Qj

b!†# l l 8Ej
0D i l 8e2 i l 8u~k!. ~2.19!

In deriving theL contribution, we note that the third matri
Qi generates thei th component of theL wave, asPi

M andPi
N

generated those of theM and N waves, respectively. This
may be seen immediately from Eqs.~2.4! and~2.10! ~in this
sense,Qi may as well be denoted asPi

L). The explicit forms
of a l

b anda l
L given above are easily written down, since t

matrices Pi
b and Qi are simply given by Eqs.~2.9! and

~2.11!, respectively. For example, we find

a l
M5Im~eiu~k!E2

0 !i l 21e2 i l u~k! ~2.20!

with

E2
0 5Ex

02 iEy
0 . ~2.21!

Equation~2.18! shows that the plane-wave vector fiel
Eq. ~2.13!, is resolved into three cylindrical waves of variou
l . Any vector field, if it is expressed as a superposed ve
plane-waves overk, is thus reexpressed using the vector c
lindrical waves. This is the expansion theorem we are c
cerned with here. If, in particular, the fieldE(r ) is transverse,
the L field does not mix, because the expansion coeffici
a l

L of Eq. ~2.19! involves the matrix( jQjEj
0 @note that

(Qj )
†52Qj #, which is, by Eq.~2.10!, just the representation

of “•E(r )/l and hence vanishes.
The second example of the use of the closure rela

concerns the transformation of the quantity

S d i j 1
1

q2

]2

]xi]xj
D(

l
c lkz

~r ;C!j l ~2.22!

with a constant amplitudej l . The operator within the
bracket is replaced byQi and Qj via Eq. ~2.10!. The com-
pleteness relation Eq.~2.12! then leads to

Eq.~2.22!5(
l

c lkz
~r ;C!

3S (
b5M ,N

(
l 8 l 9

@Pi
b# l l 8@~Pj

b!†# l 8 l 9D j l 9.

~2.23!

Introducing the coefficienth l 8
b by
r
-
-

t

n

h l
b5(

l 8
@~Pj

b!†# l l 8j l 8, ~2.24!

we find

Eq. ~2.22!5(
l

$el
M~r ;C!h l

M1el
N~r ;C!h l

N%. ~2.25!

To summarize, the operator@d i j 1(1/q2)(]/]xi)(]/]xj )# in-
troduces the superposition of the transverse cylindr
waves. It is true that the three waves,eL,eM, andeN, are
apparently unwieldy because of the nonorthogonality
they do not cause any serious trouble in what follows. Thi
due mostly to the completeness relation given by Eq.~2.12!.

III. SCATTERING THEORY AND SECULAR EQUATION
FOR THE BAND STRUCTURE

Suppose a plane-wave lightE0(r ) of frequencyv is inci-
dent upon a parallel array of cylindrical rods. We take thez
axis in the direction of cylinder axis and specify the center
thenth rod by the 2D coordinatesxn5(xn ,yn). The 2D unit
cell of the lattice of rods is assumed to have only one cy
der. The dielectric constant and radius of the cylinder
taken to be«, anda, respectively. The array is assumed
be in free space. If it is embedded in a substance of dielec
constant«. , «, and v2 in what follows are replaced by
«, /«. andv2«. , respectively.

Since the system considered in the light transmission
finite in the thickness direction and we are adopting
layer-doubling method to deal with the problem, we fir
examine the light scattering from a monolayer of dielect
cylinders lying in thexz plane.

A. Scattering from a monolayer of arrayed dielectrics

The layer-doubling method is a method of treating a fin
system by repeating the monolayer scattering. Conside
monolayer of parallel rods with thex coordinate of thenth
rod at xn5nd, d being the spacing. One can show that t
scattering problem of the Maxwell field is reduced to t
following integral equation:25

Ei~r !5Ei
0~r !1(

j
E dr 8Gi j ~r ,r 8!V~r 8!Ej

,~r 8!,

~3.1!

with the ‘‘potential’’ given by

V~r !52q2@«~r !21# ~3.2!

with (c51)

q5v. ~3.3!

Here«(r ) is the dielectric constant at the positionr , so that

«~r !5H «, r inside the cylinders,

1 r outside.
~3.4!

Thus,V(r … works only inside the dielectrics in Eq.~3.1!. The
subscript, is intended to emphasize that field in the int
grand is an inside field. The GreenianGi j in Eq. ~3.1! is
defined by
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Gi j ~r ,r 8!5S d i j 1
1

q2

]2

]xi]xj
D G~r ,r 8!, ~3.5!

through the Green functionG of the scalar Helmholtz equa
tion. The operator in front ofG is already familiar from Eq.
~2.22!. To take account of the periodic array of scatterers
the x direction, it is convenient to introduce, in place ofG,
the Green functionGkx

for the Bloch wave with wave num

ber kx in the x direction:18

Gkx
~r ,r 8!52

1

4p(
n

eikxxn
exp~ iqur2r 82xnu!

ur2r 82xnu

5E dpz

2p
eipz~z2z8!@g~0!~r,r8!1g~1!~r,r8!#.

~3.6!

Herer5(r,z)5(r,u,z), r 85(r8,z8)5(r8,u8,z8), andkx is
equal to thex component of the incident wave vector, spe
fied below. In the Fourier decomposition of the second li
the Green’s functiong(0) is the contribution fromn50 of
the first line. It takes account of the singularity atr5r 8 of
the Green’s function. The remainingg(1), the contribution
from nÞ0, incorporates the effects of the other rods into
structure factorG, which we call the scalar structure factor.
holds that

g~0!~r,r8!52
i

4(l
Hl

~1!~lr.!Jl~lr,!eil ue2 i l u8,

g~1!~r,r8!52
i

4(l ,l 8
Jl~lr!eil uG l l 8~kx ,pz!Jl 8~lr8!e2 i l 8u8,

~3.7!

with

l5@q22pz
2#1/2, ~3.8!

wherer. (r,) is the larger~smaller! of r andr8. By way of
the structure factorG l l 8, g(1) depends onkx . Note that in the
integral overpz , G l l 8 involvespz throughl.

When thiskx-dependent Green’s function is used in E
~3.5!, the integral overr 8 of Eq. ~3.1! can be restricted to a
single cylinder, which is taken to be the one centered axn
50 @we call it ther ~reference! cylinder#.

For an incident light of wave numberq and wave vector
k, we set

E0~r !5E0ei ~kxx1kyy1kzz! ~3.9!

with k25q2. Thex componentkx is none other than the on
used in definingGkx

in the above. By symmetry thez depen-

dence of any field is described everywhere byeikzz. Thus by
the integrals overz8 in Eq. ~3.1! and overpz in Eq. ~3.6!, the
componentpz is eventually replaced everywhere bykz .

To solve Eq.~3.1!, we note that the field inside the rod
satisfies

~D1q2«,!Ej
,~r !50, ~3.10!

that is,
n

-
,

e

.

V~r !Ej
,~r !5~D1q2!Ej

,~r ! ~3.11!

for r inside ther cylinder. Using this in Eq.~3.1!, we can
apply the Green’s theorem in the integral ofr 8. Integrating
twice by parts leads then to the volume integral involving

~D81q2!G~r ,r 8! ~3.12!

plus the integral over the surface of ther cylinder. Since the
quantity of Eq.~3.12! is justd(r2r 8), the volume integral is
trivial. We thus obtain

05E0~r !1S 11
1

q2
““• D I kx

,~r ! ~3.13!

for r inside and

Ekx

.~r !5E0~r !1S 11
1

q2
““• D I kx

,~r ! ~3.14!

for r outside ther cylinder. Here

I kx

,~r !5E
r5a

dS8–$Gkx
~r ,r 8!“8E,~r 8!

2@“8Gkx
~r ,r 8!#E,~r 8!% ~3.15!

defines the surface integral. Once the inside fieldEkx

,(r ) is

determined from Eq.~3.13!, the outside one is given via Eq
~3.14!. The remaining task is thus to solve the former.

Let us set

l.5~q.
2 2kz

2!1/2,

l,5~q,
2 2kz

2!1/2, ~3.16!

with

q.
2 5q2,

q,
2 5q2«, ~3.17!

and denote the matricesPj
b asPj

b. andPj
b,, dependent upon

which of the (l. ,q.) and (l, ,q,) is used in the definition
of Eq. ~2.9!. In Eq. ~3.13! let us resolve the incident field
Ekx

0 (r ) into theM andN partial waves following Eq.~2.18!:

E0exp~ ik•r !5 (
b5M ,N

(
l

el
b
„r ;J~l.r!…a l

b0 ~3.18!

with a l
b0 given by Eq.~2.19!. The L wave does not appea

because of the transversality. The Cartesian componen
Eq. ~3.18! is

E0~r ! i5 (
b 5M ,N

(
l l 8

c lkz
„r ;J~l.r!…@Pi

b.# l l 8a l 8
b 0 .

~3.19!

For the unknown inside field, we assume the form

E,~r !5 (
b5M ,N

(
l

el
b
„r ;J~l,r!…a l

b,, ~3.20!

with the i th component written as
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Ei
,~r !5 (

b 5M ,N
(
l l 8

c lkz
„r ;J~l,r!…@Pi

b,# l l 8a l 8
b ,.

~3.21!

We put Eqs.~3.19! and ~3.21! into Eq. ~3.15!. The angle
integral of it is carried out using

E
0

2p

duei ~ l 2 l 8!u52pd l l 8. ~3.22!

The gradient operator introduces the factors

dl
,5z,Hl~z.!Jl8~z,!2z.Hl8~z.!Jl~z,!,

dl
.5z,Jl~z.!Jl8~z,!2z.Jl8~z.!Jl~z,!, ~3.23!

with z.5l.a andz,5l,a. The former appears in the in
tegral ofg(0) and the latter ing(1). The operator in front of
I kx

,(r ) may be treated using the completeness relation

done for the quantity of Eq.~2.22!. In this way, from Eq.
~3.13! we find

(
b85M ,N

(
j

$~Pj
b.!†~D,1GD.!Pj

b8,%ab8,52
2i

p
ab0,

~3.24!

whereG is the matrix formed byG l l 8(kx ,kz) and

D,5S � 0

dl
,

0 �

D ~3.25!

andD. with the symbol, changed by. and

ab05@ . . . ,a l 21
b0 ,a l

b0 ,a l 11
b0 , . . . # t,

ab,5@ . . . ,a l 21
b, ,a l

b,,a l 11
b, , . . . # t ~3.26!

define the column vectorsab0 and ab,. By solving Eq.
~3.24!, we can obtain the unknown coefficienta l

b, in terms
of the initial dataa l

b0 of the incident light. To rewrite Eq
~3.24! more compactly, we introduce the matricesDbb8

, and
Dbb8

. through the transformation

Dbb8
,~. !

5(
j

~Pj
b.!†D,~. !Pj

b8, ~3.27!

and

Gbb85(
j

~Pj
b.!†GPj

b8.. ~3.28!

Their rows and columns are labeled byl as in Eq.~3.25!.
Then Eq.~3.24! is written as

(
b85M ,N

~D,1GD.!bb8a
b8,52

2i

p
ab0 ~3.29!

with

~GD.!bb85 (
b95M ,N

Gbb9Db9b8
. . ~3.30!
as

To derive the right-hand side of Eq.~3.30!, we have inserted
the completeness relation Eq.~2.12! betweenG and D. on
the left-hand side. The contribution from the matricesQi of
the completeness relation is shown to vanish, leaving beh
only that fromPb(Pb)† and hence leading to Eq.~3.30!. The
same situation happened in the case of arrayed spheres
Ref. 25 for the proof of the vanishing of theQi contribution.

Equation~3.29! must be handled numerically.Gbb8 is a
function of the incident wave vectorskx andkz . It is worth
pointing out that the quantitiesD. and D,, or their matrix
elementsdl

. and dl
,, as well as the scalar structure fact

G l l 8 all appear without modification in the electron scatte
ing. The vector version of the Maxwell fields is hence o
tained simply by replacing them by those having the indic
bb8, which are obtained by the simple transformations us
Pi

b . This is a key point of the conversion from the scalar
the vector treatment.8 Since the indicesbb8 define the 2
32 blocks, MM , MN, NM, and NN, Eq. ~3.29! may be
treated as a matrix equation of dimension twice as large
that of electrons. Therefore the good convergence exp
enced in the electronic case promises the same situatio
arise in the photonic case.

Once Eq.~3.29! is solved, the inside field is given by Eq
~3.20!. The field outside the cylinders is obtained from E
~3.14!. Nearly the same calculation as above yields

Ekx

.~r !5Ekx

0 ~r !2
ip

2 (
bb8

(
l l 8

$el
b
„r ;H~l.r!…@Dbb8

.
# l l 8a l 8

b8,

1el
b
„r ;J~l.r!…@~GD.!bb8# l l 8a l 8

b8,%. ~3.31!

In terms of this formula, we may approach an arbitrary po
near the cylinder surface to obtain the near-field intensity

To obtain the reflectivity or transmittivity of inciden
light, the expression~3.31! of the scattered field expressed
terms of the spherical waves is not convenient. For this p
pose, the plane-wave amplitude of the scattered wave is
essary. Also, the plane-wave form of the scattered wav
important in the layer doubling method. To derive it, w
substitute the following plane-wave form of the Green
function in Eq.~3.14! @for E,(r 8) of Eq. ~3.15!, we use the
spherical-wave form#

g~0!~r,r8!1g~1!~r,r8!5(
h

2 i

2dgh
ei ~kx1h!~x2x8!1 ighuy2y8u.

~3.32!

Here, in terms of the reciprocal lattice vectorh in the x
direction,

gh5@q22~kx1h!22kz
2#1/2 ~3.33!

defines they component of the wave vector of the scatter
lights, y being the direction perpendicular to the plane of t
monolayer. By the diffraction, the scattered waves acqu
the wave vector

kh
65~kx1h,6gh ,kz! ~3.34!

of various h with the label1 and 2 for the propagating
directions1y and2y, respectively. When the channelh is
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open,gh is real, showing that thekh
6 waves are propagating

while they are evanescent for imaginarygh (Imgh.0).
Now for the purpose of using them in the layer-doubli

method, let us compile the scattering data from a monola
in the xz plane. We assume that the incident fieldE0(r )
impinges upon the layer from the sidey,0, i.e., ky.0 in
Eq. ~3.9!. We express the scattered light of the exterior of
monolayer as

Ei
.~r !5(

h
(
i 8

exp~ ikh
1

–r !@Th0
11# i i 8Ei 8

0 ~3.35!

for the wave with the wave vectorkh
1 and

Ei
.~r !5(

h
(
i 8

exp~ ikh
2

–r !@Rh0
21# i i 8Ei 8

0 ~3.36!

for the wave backscattered withkh
2 . The coefficientsT and

R are the amplitude transmission and reflection coefficie
The superscript of, e.g.,@Rh0

21# i i 8 emphasizes the process
light in the 1y direction being reflected back in the2y
direction. The subscripth0 specifies the reciprocal lattic
vectors of the wave vectors before and after the scattering
parallel with the notation for the scattered wave vector,
use the notationk0

1 for the incident wave vector in the fol
lowing formula. Then we find

@Th0
11# i i 85S 2

i

2dD 1

gh
yt~kh

1!ti i 8y* ~k0
1!1d i i 8dh0 ,

@Rh0
21# i i 85S 2

i

2dD 1

gh
yt~kh

2!ti i 8y* ~k0
1!. ~3.37!

The second term ofT is the contribution of the incident light
Herey(k) is the column vector labeled byl ,

y~k!5@ . . . ,ei ~ l 21!u~k!,eil u~k!,ei ~ l 11!u~k!, . . . # t

~3.38!

and

@ti j # l l 85 i 2 l 1 l 8F(
bb8

Pi
b.tbb8~Pj

b8.!†G
l l 8

, ~3.39!

where

tbb85
4

i
@D.~D,1GD.!21#bb8. ~3.40!

In addition to the transmission and reflection of the incid
wave, we need to consider in the layer-doubling scheme
scattering of the waves with wave vectorkh8

6 . Its scattering
data ofThh8

22 or Rhh8
12 are obtained from the above formu

simply changing the wave vector 0 toh8. For example,

@Rhh8
12

# i i 85S 2
i

2dD 1

gh
yt~kh

1!ti j y* ~kh8
2

!. ~3.41!

When the vectorkh8 is evanescent with imaginaryky , y(kh8)
is real. In this case we must set

y* ~kh
6!5y~kh

7! ~3.42!
er

e

s.

In
e

t
e

@see Eq.~2.16!#.
This completes the monolayer scattering. Note that

plane-wave amplitudes of the scattered waves have the f
expressed by the cylindrical waves. This should be so
order to make use of the first convergence. For numer
purpose there are two key points in programming these
mulas. One is the matrix algebra involving the transform
tion matricesPi

M and Pi
N and the other is to find out the

formula guaranteeing the fast convergence of the sc
structure factorG l l 8. The latter is provided by the metho
used in band calculation of electrons and is described in
pendix A. In the rest of this section we deal with the form

Simplifying the above formulae by using Eq.~2.9! is
straightforward. For an arbitrary matrixF5(Fll 8), it holds
that (u,v5.,,)

H(
j

~Pj
bu!†FPj

b8vJ
l l 8

5 1
2 ~Fl 11,l 8111Fl 21,l 821! ~bb8!5~MM !,

5
1

quqv
Fkz

2

2
~Fl 11,l 8111Fl 21,l 821!

1lulvFl ,l 8G ~bb8!5~NN!,

5
kz

2qu
~2Fl 11,l 8111Fl 21,l 821! ~bb8!5~MN!,

5
kz

2qv
~2Fl 11,l 8111Fl 21,l 821! ~bb8!5~NM!,

~3.43!

q. and q, being given by Eq.~3.17!. To obtain the block
matricesDMM

. , DMM
, , etc., defined by Eq.~3.27!, F is play-

ing the role of the diagonal matrixD., D,, etc. From Eq.
~3.43!, we then find

~DMM ! l l 85d l l 8
1
2 ~dl 111dl 21!,

~DMN! l l 85d l l 8

kz

2q,
~2dl 111dl 21!,

~DNM! l l 85d l l 8

kz

2q.
~2dl 111dl 21!,

~DNN! l l 85d l l 8F kz
2

2q.q,
~dl 111dl 21!1

l.l,

q.q,
dl G .

~3.44!

The subscripts, and . must be supplied on both sides
obtainD, andD., respectively. By Eq.~3.44!, they are thus
diagonal with respect tol , l 8, with the quantitiesdl

. anddl
,

given by Eq.~3.23!.
For the structure factorGbb8, it is shown by Eq.~A13!

that the scalar structure factorG l l 8 is the function ofl 2 l 8.
Using this property inF, we obtain

~GMM ! l l 85G l l 8,
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~GMN! l l 850,

~GNM! l l 850,

~GNN! l l 85G l l 8. ~3.45!

It is interesting to note that the mixing via the structure fac
between theM andN waves is absent and that the structu
factors for M and N are the same as the scalar structu
factor. The off-diagonal structure factorGNM describes how
much of theN wave is contained when theM -type wave,
scattered out of the rods other than ther cylinder, is seen
from ther cylinder. Since theM wave has vanishingz com-
ponent@Eq. ~2.4!#, it continues to be aM wave irrespective
of the observation point. This is the reason whyGMN
5GNM50.

B. t matrix and scattering from a single cylinder

Before going on to the layer-doubling method, we co
ment on the light scattering from a single cylinder26 and
introduce thet matrix.

The formulas given in Sec. III A for the monolayer o
scatterers cover the light scattering from a single dielec
rod, if we drop the terms involving the structure factorG. To
obtain the field expression outside the cylinder, we solve
~3.29! for ab8, and substitute it into Eq.~3.31!. Then we
find the outside field expressed in terms of the initial amp
tudeab0;

E.~r !5E0~r !2(
bb8

(
l l 8

el
b
„r ;H~l.r!…@ tbb8# l l 8a l 8

b80.

~3.46!

The second term describing the outgoing scattered w
has thet matrix defined by

tbb85 (
b95M ,N

D.
bb9@~D,!21#b9b8, ~3.47!

the second matrix being theb9b8 block of the inverse of the
entire 232 matrix. The matricesDbb8

. and Dbb8
, are both

diagonal with respect tol @Eq. ~3.44!# and so is thet matrix.
However, Eq.~3.44! also shows that, whenkzÞ0, the partial
waves (M ,l ) and (N,l ) mix due to the presence of the of
diagonal termsDMN

. andDMN
, . Therefore, in the description

of the light scattering from a cylinder we need in gene
four t matrices,tMM , tMN , etc. Setting

@Dbb8
.~, !

# l l 85d l l 8dbb8
.~, !

~ l !, ~3.48!

we find

@ tbb8# l l 85d l l 8F S dMM
. ~ l ! dMN

. ~ l !

dNM
. ~ l ! dNN

. ~ l !
D

3S dMM
, ~ l ! dMN

, ~ l !

dNM
, ~ l ! dNN

, ~ l !
D 21G

bb8

. ~3.49!

In the light scattering from a sphere, the (M ,l ) and (N,l )
partial waves do not mix,8,25 leading to the two phase shift
d l

M andd l
N . In the cylindrical case of nonzerokz , the two-
r

e

-

ic

q.

-

ve

l

phase shifts for anl are not obtained until after diagonalizin
the 232 matrix of Eq. ~3.49!. To put it another way, the
eigenphase shifts of the cylindrical case are neither purel
M nor of N, whenkzÞ0.

Introducing the two phase shifts reduces various formu
such as the total cross section of a single-cylinder scatte
to compact forms, but in using thet matrix for the scattering
from a collection of scatterers, the phase shifts are not v
useful concepts, because after the diagonalization of tht
matrix, the structure factorGbb8, diagonal with respect to
bb8, is no longer diagonal.

Using the definition@Eq. ~3.47!# of the t matrix, the for-
mulas for the monolayer scattering given in Sec. III A a
rewritten into more familiar forms. Equation~3.29!, for ex-
ample, is transformed to

(
b8b9

~ t21!bb8~ I1tG!b8b9a
b9,52

2i

p
ab0. ~3.50!

Using this, the quantityDbb8
. ab8, of Eq. ~3.31! transforms

into

Dbb8
. ab8,5@~ I1tG!21t#bb8a

b80, ~3.51!

I being the unit matrix (I )bb8,l l 85dbb8d l l 8. In this way all
the formulas of the monolayer scattering may be reexpres
in terms of thet matrix of the one-cylinder scattering and th
structure factor. The inverse matrix (I1tG)21, when ex-
panded as a power series with respect totG, implies that the
monolayer scattering is nothing but the infinite sequence
the scattering by individual cylinders followed by the prop
gation between the cylinders.

C. Layer-doubling method

It was shown9 that the iteration method of taking int
account the successive scatterings from the stacking la
breaks down in the frequency range of the heavy photo
The layer-doubling method, which treats the scattering
tween the two neighboring layers exactly, remedies th
Since the detailed description of it is found in the articles
low-energy electron diffraction~LEED! of Pendry27 and
Tong28 and the works on photonic bands of Pendry29 and of
Ohtaka and Tanabe,9 we are giving without derivation a se
ries of necessary formulas, after giving a brief review of
content.

Now let us consider a plane-wave light incident upon t
system composed of two parallel layersA andB ~the layerA
is aboveB). The waves outside the layers, propagating
evanescent, may be expressed by the plane waves with w
vectorkh

6 . Assume akh8
1 wave of unit amplitude propagatin

upwards between the two layers. When it passes thro
layerA, a set of transmitted waves of wave vectorskh

1 , with
varioush, come out with amplitudeThh8

11 . At the same time
layerA gives rise to the diffracted waves of wave vectorskh

2

back toB with amplitudesRhh8
21 . At layer B these reflected

waves are diffracted, each giving birth to a set of transmit
and reflected waves with the additional factorsT22 and
R12, respectively. The infinite repetition of this process o
curs and the transmission coefficient in the upward direct
for the combined system ofAB is obtained by the sum of the
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contributions of all turns. It is indeed incorporated by t
inverse matrix@ I2R12R21#21, where the indexh for the
wave vector andi for the polarization component label th
scattering matrices andI is the unit matrixI5(d i i 8dhh8). A
minor complication occurs due to the phase difference
tween the two layers, which is incorporated by redefining
scattering data with a phase factor. Once the scattering
for the combined two layers are obtained, they are use
construct the data for the combined four layers. Thenth run
gives the transmission and reflection coefficients for then

layers.
Setting as subscriptsA andB for the scattering matrice

of the two layers~we do not need them when the two a
identical!, the T and R matrices for the combined system
calledC, is obtained as

T̃C
115T̃B

11T̃A
111T̃B

11T̃B
11R̃A

12R̃B
21T̃A

11

1T̃B
11~R̃A

12R̃B
21!2T̃A

111•••

5T̃B
11@12R̃A

12R̃B
21#21T̃A

11 ,

T̃C
225T̃A

22@12R̃B
21R̃A

12#21T̃B
22 ,

R̃C
215R̃A

211T̃A
22R̃B

21~12R̃A
12R̃B

21!21T̃A
11 ,

R̃C
125R̃A

121T̃B
11R̃A

12~12R̃B
21R̃A

12!21T̃B
22 ,

~3.52!

with

T̃hh8
66

5expS 6 ikh
6

–

t

2DThh8
66expS 6 ikh8

6
–

t

2D ,

R̃hh8
67

5expS 6 ikh
6

–

t

2DRhh8
67expS 6 ikh8

7
–

t

2D . ~3.53!

Here the vectort5(tx ,ty) is equal torB2rA , rA and rB
being the 2D vector for the center positions of ther cylinders
of the two layers. Ther cylinder may be chosen to be an
one of the rods of each layer. Note that the phase factor
Eq. ~3.53! need to be added solely in the first run. In co
structing the data for four layers, for example, the data
tained in the first run are used as they are on the right-h
side of Eq.~3.52!.

D. Secular equation for the band structure

In Sec. III A we treated a single plane of arrayed ro
Band calculation is carried out for the infinite array of ro
but its formulation does not require any additional task.

If there is no incident wave, the right-hand side of E
~3.29! is zero:

(
b8

@D,1GD.#bb8a
b8,50. ~3.54!

Explicitly,
-
e
ta

to

in
-
-
d

.

.

F S DMM
, DMN

,

DNM
, DNN

, D 1S GMM 0

0 GNN
D S DMM

. DMN
.

DNM
. DNN

. D G
3S aM,

aN, D 50, ~3.55!

where we have used Eq.~3.45!. This equation determines th
normal modes of the monolayer of 2D wave vector (kx ,kz).
Thus the eigenvalues are given by the zeros of the sec
determinant formed from the coefficients~they are, however,
complex in the monolayer case because of the radia
damping, as in the Mie resonance of a single-sphere cas!:

detF S DMM
, DMN

,

DNM
, DNN

, D 1S GMM 0

0 GNN
D S DMM

. DMN
.

DNM
. DNN

. D G50.

~3.56!

The eigenvectorsab, determine the electric field of the
eigenmode through Eq.~3.20! in the inside region and the
outside field is determined through Eq.~3.31!, with the inci-
dent fieldEkx

0 (r ) dropped. Namely,

E,~r !5(
b

(
l

el
b
„r ;J~l,r!…a l

b8, ~3.57!

for r inside ther cylinder and

E.~r !52
ip

2 F (
b,b8

(
l ,l 8

el
b
„r ;H~l.r!…@Dbb8

.
# l l 8a l

b8,

1 (
b,b8

(
l ,l 8

el
b
„r ;J~l.r!…@~GD.!bb8# l l 8a l 8

b8,G
~3.58!

for r outside.
So far we have considered a monolayer system. To ob

the secular equation for an infinite 3D array of cylinders,
note that, as shown at the end of Sec. III B, Eq.~3.56! is
equivalent to the equation det@ I1tG#50 with the 232
block matricesG @Eq. ~3.28!# andt @Eq. ~3.47!# for the struc-
ture factor and thet matrix, respectively. We also mentione
that the inverse matrix@11tG#21, whose poles are given b
the zeros of Eq.~3.56!, describes a sequence of scattering
the lattice of cylinders. The combination of thet matrix with
the structure factor is a general form of the scattering, va
for any collection of ~nonoverlapping! scatterers, not re-
stricted to the scattering from a monolayer.25 How the scat-
terers are distributed is completely determined by the str
ture factor. See, e.g., Eq.~28! of Felbacq and Maystre for the
light scattering from a group of cylinders30 and Eq.~2.13! of
Ohtaka and Inoue for a group of spheres.31 Thus an infinite
3D array of cylinders is treated by quite the same equati
as appeared in the monolayer scattering, if only we take
count of the change of lattice in the structure factor.

The scalar structure factorG(k) l l 8 is now dependent upon
the 3D wave vectork of the Bloch wave. From it, the con
version to the vector version is carried out through Eq.~3.28!
and we find, just as in Eq.~3.45!, that GMM(k) andGNN(k)
are both equal to the scalar structure factor. The conclus
is thus that the set of Eqs.~3.55!–~3.58! are all valid for the
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band calculation of an infinite 3D system, if we use an a
propriate scalar structure factor.

The remaining task is to give the expression ofG l l 8 for
the array of the cylindrical rods. For 3D lattices of atoms
spheres, the expressions are given by Kambe32 and Ham and
Segall33 and have been widely used in electronic ban
structure calculations and photonic bands.8 In the present
problem the array of the parallel rods introduces a 1D p
odicity of spacingd in the monolayer case and a 2D perio
icity in the band calculation. Although the modification
straightforward, still, a lot of calculations are necessary
arrive at the final results. Thus the list of them seems us
and we give it in Appendixes B and C.

IV. CONVERGENCE OF PLANE-WAVE EXPANSION

In this section we examine the convergence of the pla
wave method of band calculation. This topic is examin
extensively by Haus and collaborators by seeing how
plane-wave results change with increasing number of pl
waves.22,34 As these authors emphasized, a comparison w
the exact band energies is essential, because the conver
was found to be very slow.

There are two plane-wave calculation methods wid
employed in the literature. Let us call themE andH methods
following Haus and co-workers. TheE method is used to
solve Maxwell’s equation,

“3“3En,k~r !2v2«~r !En,k~r !50, ~4.1!

using the plane-wave form of the Bloch wave of band ind
n and wave vectork,

En,k~r !5(
h

En,k~h!exp@ i ~k1h!•r #. ~4.2!

Here k5(kx ,ky ,kz) is a 3D wave vector andh is a 2D
reciprocal lattice vector in thexy plane, with thez direction
chosen parallel to the axis of rods. The secular equatio
the E method is35

detu@~k1h!2d i j 2~k1h! i~k1h! j #dhh82v2«hh8d i j u50,

~4.3!

with «hh8 the h2h8 Fourier component of«(r ) and i the
three Cartesian components (i 51,2,3). Since (h,i ) labels
the rows and columns of the matrix, the dimension of
secular matrix is 3N33N, N being the number of the recip
rocal lattice points considered.

The second is theH method for the magnetic field
Hn,k(r ), which satisfies Maxwell’s equation

“3$«21~r !“3Hn,k~r !%2v2Hn,k~r !50. ~4.4!

With the Bloch magnetic-field expanded in the same way
above, the secular equation is obtained as36

detu~k1h!•~k1h8!«hh8
21d i j 2~k1h! j«hh8

21
~k1h8! i

2v2dhh8d i j u50, ~4.5!

with «hh8
21 the Fourier component of«(r )21.

For concreteness we consider the square lattice of
with two basis vectors of the unit cell chosen in thex andy
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directions. For the special case of a wave vector of vanish
kz , which we are examining here, the bands are classi
into two groups. The one is composed of TE bands, hav
the eigenvectorEn,k(h) of Eq. ~4.2! in thexy plane for allh.
The eigenvectorHn,k(h) is pointed in thez direction. The
other is the TM group withEn,k(h) in the z direction and
Hn,k(h) in the xy plane.

We denote the bands of TE and TM characters by
symbols Exy and Ez, respectively, the subscriptxy or z
standing for the polarization direction ofEn,k(h). For the
Exy bands, theE method deals with a 2N32N matrix in the
secular equation, while theH method solves anN3N. For
theEz bands, the dimension is reversed in the two metho

Hereafter we examine the band energies fork5(0,ky,0),
i.e., for the wave vector along theG-X axis of the Brillouin
zone. The band energies of the cylindrical-wave expans
are obtained by solving Eq.~3.56!, with Eqs.~3.45!, ~A14!,
and~B1! taken into account. The calculation is made for t
three cases of«,52, «,54, and«,53.22. For the value of
3.2, see the comment given in Sec. V. These values are
sen arbitrarily as representatives of small, intermediate,
large dielectric constants. The radiusa of the rod is taken to
be 0.3 times the lattice constantd. For all the cases examine
below, the cylindrical-wave formalism is found to converg
when the partial waves ofl<6 are included. Thus the ban
energies thereof, referred to as exact band energies in w
follows, are obtained from the 26326 secular matrices
@Strictly speaking, theM and N blocks of Eq. ~3.56! de-
couple in the present case ofkz50, so that theExy band
energies are obtained from the 13313 M block and theEz
band energies from the 13313 N block.#

The band structure of the cylindrical-wave formalism
given for k5(0,ky,0) in Fig. 1 for the three values of«, .
The horizontal axis is the wave numberky normalized by
2p/d, with the Brillouin-zone boundary (X point! at ky
50.5. The quantityZ in the vertical axis is the dimensionles
frequency normalized by 2p/d (c51). In this scale, the dis-
persion relation of photons in free space isZ5ky . In ~d! the
band structure for«,53.22 of the regionZ.1 is shown to
give an image of how the band population becomes de
with increasingZ and «, . Several frequencies marked i
Fig. 1 are the exact values to be cited below.

Now let us see how the solutions of Eqs.~4.3! and ~4.5!
change with increasingN. Figure 2 shows the typical result
of theE andH methods,~a! for Exy and~b! for Ez bands of
the intermediate case of«,54 with ky50.3, whose exact
values are marked in Fig. 1~b!. The filled ~open! circles are
the results of theE (H) method with the straight line show
ing the exact value of Fig. 1~b!. The arrow marks the fre-
quency range of61% of the exact value.

In Fig. 2~a! we see that the values of the two metho
converge correctly to the exact value with increasingN,
though the convergence is very slow. Two things are to
noted: one is that the exact band energy is sandwiched by
E andH methods. This is a feature observed in all the ca
examined in the present work. Thus one can conclude
the exact band energies are generally estimated by the c
bined use ofE andH methods. The other is that the result
the H method is much worse than that of theE. This is
already remarked by the works of Haus and co-worker34
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FIG. 1. Band structure betweenG andX points@k5(0,ky,0)# for three values of dielectric constant«, ; ~a! for «,52, ~b! for «,54,
and ~c! and ~d! for «,510.24. The marked band energies atky50.3 are investigated in Figs. 2, 3, and 4 and referred to as exact
energies.
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Therefore, theH method, which treats theExy bands by the
scalar equation, does not profit. This second feature is
always the case, however, as shown by some exception
low.

In Fig. 2~b!, we plot the result of theE method. A remark-
ably good convergence is observed for theEz band. We
confirmed that this feature is generally the case. The con
sion is thus that, roughly speaking, a commonN assures for
Ez bands an accuracy of one more significant figure than
ot
be-

u-

r

Exy bands. Since theE method works already quite well, w
need not rely upon theH method forEz bands, which solves
a secular matrix twice as large. This is why theH-method
calculation is not made in Fig. 2~b!.

We hereafter confine ourselves to theExy bands. Let us
next see the dependence on the magnitude of«, . Figure 3
shows the convergence for the case of«,52, the arrows
marking in this case the range of60.1% of the exact band
energy. One of the exact values shown by the straight line
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marked in Fig. 1~a!. We see that in the case of the sm
dielectric constant of«,52, one can obtain withN51000
very good band energies lying within the error range
0.1%, in the whole range of 0,Z,1.5. It is remarkable tha
taking N5100 already assures band energies with the er
less than 1%. In part~b! the H method yields slightly bette
results than theE method. This is an exceptional case
stated above.

Figure 4 shows the case of the large dielectric constan
«,53.22. ~a! and ~b! show the band energies ofZ!1 and
~c! and~d! those ofZ.1. ~f! examines the band energy ve
near the zone boundary. The arrows show the error rang
61% above and below the exact band energy. By comp
ing with Figs. 2 and 3, we see that the larger the magnit
of «, is, the worse becomes the convergence. This featur
course reflects the enhanced localization of heavy pho
with increasing dielectric constant. We note that in order
obtain the precision with the error less than 1% in the ra
of 0,Z,1.5, we must setN51000 for the case«,.10.
The number 1000 should be compared with the number
stated above, of the dimension needed for the convergen
the cylindrical-wave calculation. We should say that it
hardly possible for the plane-wave methods to yield the p
cision of three decimal places for the case of«,.10, except
for the band energies ofZ!1. We also note that in~a! theH
method behaves much better than theE method. This case
provides another example, for claiming that in the plan
wave calculation we had better use both theE andH meth-
ods, because they work complementarily. In~e! we can con-
firm that the zone boundary has no special effect on
convergence.

FIG. 2. Band energies of theE andH methods vsN; the panel
~a! for the Exy band and~b! for the Ez bands, ofky50.3 and«,

54. In ~a! the filled ~open! circles show the result ofE method (H
method!. In ~b! only the result of theE method is shown. The
straight lines show the exact band energies of Fig. 1~b!, marked
there asExy~a! andEz~b!. The arrow shows the range of61% of
the exact value.
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To make a detailed comparison of some data with
band scheme in the frequency rangeZ.1, precision with an
error less than 0.1% is sometimes required. One of the
amples will be found in Sec. V, where we see the transm
tivity of light in relation to the band scheme. General
speaking, however, an error of 0.1% is too stringent. F
example, numerical searches for the possibility of a comp
band gap have usually been carried out with respect to
first or second gap.37 In these cases, a sufficiently reliab
conclusion may be deduced from the band calculation w
the errors on the order of, or even larger than, 1%. It
however, important to note that a finite truncation of t
plane-wave series fails to reproduce the precise profile of
dielectric function near the surface of rods. When we sp
about the field intensity set up near the surface of rods, th
fore, we must be very careful in applying the plane-wa
calculation even if it works satisfactorily as regards the ba
energies.

To summarize, as long as the bands of the wave ve
with kz50 and the dielectric rods with«,.2 are concerned
the E method assures the band scheme within the erro

FIG. 3. Convergence of the band energies of theE andH meth-
ods for«,52 andky50.3.~a!–~c! treat the bands of relatively high
frequency. The straight lines show the exact band energies.
exact value of~a! is shown in Fig. 1~a! asExy~a!. The arrow shows
the range of the relative error of 0.1% above and below the ex
value.
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FIG. 4. Convergence of theE andH methods for the case of«,510.24. The arrow shows the range of61% of each of the exact value
shown by the straight lines. The exact values in~a!–~d! are marked in Fig. 1~c! asExy~a!–Exy~d!, respectively.~e! examines the state nea
the X point.
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1% in the range 0,Z,1.5, if we takeN.100. In the case
of «,.10, we needN.1000 to obtain the same accuracy
the range of 0,Z,1.5, i.e., we must treat a 200032000
secular matrix in theE method. For the case of«,.2, the
numberN51000 of the plane waves assures very good
sults of the relative error of 0.1% throughout the frequen
rangeZ,1.5. Precision with an error of 0.1% is very hard
obtain in the plane-wave method in the case of«,.10, un-
lessZ is much less than 1.0. In the higher-frequency range
Z@1, the bands are more and more densely populate
inferred from Fig. 1~d!. The precision of three decimal place
of the band energies is crucial to arrive at a correct b
ordering, because the magnitude of the error depends
bands.

For the band calculation for the wave vectorkzÞ0, the
dimension of the matrices is three timesN in both E andH
methods, so that the case of a large dielectric constant is
time consuming. It is to be noted that even for such gen
k the dimension of the cylindrical-wave secular matrix is s
26326 for the bands withZ<1.5.

Finally, the general aspect of theH method being worse
than theE method results from the derivative involved in th
first “3 of Eq. ~4.4!, which operates on 1/«(r ), producing a
d function singularity on the surface of rods, where«(r ) has
-
y

f
as

d
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ry
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a step change. The Fourier transform in theH method is thus
more slowly convergent than theE method.

V. EXAMPLES OF BAND AND TRANSMITTIVITY
CALCULATIONS

We go on to present some of the numerical applications
our formalism. Since the band calculation involving a ve
largel and for the wave vectork with kzÞ0 is planned to be
given in the following papers, we restrict ourselves in th
paper to the case ofkz50 and to the modest magnitudes
the value of l , as examined in Sec. IV. As the band an
transmittivity calculations forkz50 are carried out and dis
cussed by many authors,1,2,38–42 our results will be given
without a detailed discussion. But we choose the topic t
needs the precision of data beyond the reach of the pla
wave method.

The system we examine here is the same as that of
IV. In the band calculation a square lattice of cylinders
«,53.22 is considered. The value 3.2 is twice the index
refraction of a polystyrene sphere in the visible range. T
cylinder axis is in thez direction and two basis vectors o
unit cell are in thex and y directions. When applying the
layer doubling method, they axis will be chosen to be the
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thickness direction of the stacking 2D planes of rods. W
take the radiusa of the cylinder to be 0.3d, d being the
square size. We show the results in terms of the dimens
less frequencyZ and wave numberk introduced in Sec. IV.

If we wish to obtain for«,53.22 the reliable data within
an error of 0.1%, the practical frequency range of theE
method ofN51000 must be limited to the rangeZ!1.0, as
shown in Sec. IV. Also, the transmittivity calculation by s
perposing the plane waves is limited to a small num
L.10 of the stacking planes.43 The cylindrical-wave results
given below are for the frequency range 0,Z,2.0 andL
532. Actually, we calculated transmittivity for the syste
with L5256, but the results do not differ very much fro
the result shown below except for the interference fringes
the cylindrical-wave calculation the convergence is assu
if we include u l u,7 for 0,Z,2.0. Also, in the layer-
doubling method, about 100 reciprocal lattice points
enough for the matricesR̃ or T̃, introduced in Eq.~3.50!.

Figure 5 shows the transmission coefficient of a pla
wave light polarized in thez direction. The horizontal axis
showsT(32), the transmittivityu@T00

11#zzu2 for L532, and
the vertical axis is the frequencyZ. In the region of stop
bands,T(32) is zero and the incident light is totally reflecte
at the entrance surface. To see the relation between the t
mittivity and the band structure, we superimpose in Fig
the results of Figs. 1~c! and 1~d!, as a function ofky shown in
the upper horizontal axis.~a! is for the region 0,Z,1.0 and
~b! for 1.0,Z,2.0. Due to the translational invariance in th
xz plane, the bands excited inside by the external light
normal incidence have a wave vector ofkx5kz50. So that
the relevant bands to consider here in relation to the tra
mittivity are only those ofk5(0,ky,0). The value ofky of
the excited wave may be determined by cutting the disp
sion curves by the horizontal line at the excitation frequen

The presence of several stop bands and the clear inte
ence fringes between them are the two striking feature
the transmittivity. Although theL dependence ofT(L) is
not given here, one of the interference fringes is suppres
markedly with increasingL and finally develops to a com
plete stop band. For the complete formation the lowest s
band needsL516, but mostlyL54 or 8 is already enough
The oscillation inZ between two neighboring stop band
becomes gradually rapid withL, reflecting the phase
exp(iLky), ky being the wave-vector component of the e
cited wave. AtL532, a detailed comparison of the positio
of the stop bands with the band scheme forL5` becomes
possible. In the range ofZ,1, where the band population i
relatively sparse, we can observe a clear correspondenc
tween the stop bands and band edges. The bands sandw
between the stop bands are those of heavy photons
small dispersion relation of the typeZ5a1bk2. The clear
interference fringes ofT(32) are obviously a proof for the
good coherence of the heavy photons, in spite of their fin
‘‘mass’’ a and very slow group velocity attributable to ve
smallb. In ~b!, the comparison betweenT(32) and the band
structure is rather difficult because of the enhanced den
of bands.

The transmittivity of thex-polarized light presents analo
gous features, though the position of the stop bands has n
ing to do with that of thez-polarized light shown in Fig. 5
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FIG. 5. Transmittivity of az-polarized light of normal incidence
as a function of frequency. The vertical axis shows the frequencZ
and the horizontal axis shows the transmittivity from the syst
composed of 32 stacking planes of rods. The solid curve shows
transmittivity as a function ofZ, in ~a! for the range of 0,Z,1.0
and in ~b! for 1.0,Z,2.0. The parameters area50.3d and «,

53.22. All the calculated photonic bands,Exy as well asEz, of
k5(0,ky,0) are superimposed by the dotted curves as function
ky ~upper horizontal axis!. They are reproduced from Figs. 1~c! and
1~d!.



-

g

th

ho
a
tr
ti

c
r
rm
a

f-
th

w
th
th

e
d
ch

e
n

fu
a

ic

nd
a
si
e

ive
o
u
e
ive
an
se
d
at
nc
tio
vi
a

ob
o

nl
ie
en
e

a

e

2564 57KAZUO OHTAKA, TSUYOSHI UETA, AND KATSUKI AMEMIYA
To examine the relation betweenT(32) and the band struc
ture in more detail in the frequency region 1.0,Z,2.0, we
give in Fig. 6 an enlarged figure for the features in the ran
1.4,Z,1.5, ~a! for the z-polarized and ~b! for the
x-polarized incident light. In the present case ofkz50, the
M and N waves are decoupled. The bands shown by
dotted curves in~a! are those of theNN block of the secular
equation, which are polarized in thez direction and those
from theMM in ~b! ~Fig. 5 involves all the bands!.

One notable feature is that there are optical inactive p
tonic bands. Within, e.g., the lowest stop bands of both p
els, we can see the presence of one band that leaves no
in the transmittivity. The origin is discussed group theore
cally by Stefanou, Karathanos, and Modinos,44 Robertson
et al.,45 and Sakoda.41 For the group theory of photoni
bands, see Ref. 10. We also note that the transmittivity p
sents a sharp change, wherever an optical-active band te
nates. This is the case not only at the edge of every stop b
but also within the range ofZ where the transmission coe
ficient is finite. See in Fig. 6 the good correspondence at
positions of the band terminations marked by the arro
Besides, the interference fringes reflect the curvature of
dispersion curve of an excited band in that the flatter it is,
shorter becomes the periodicity of the oscillation inZ. The
transmission of a light, therefore, monitors faithfully th
band structure. Finally, Fig. 6 shows that the data neede
have the accuracy of three decimal places to have su
good correspondence. Also, we have calculated the band
ergies of about 80 bands, to be compared to 10 or 15 ba
calculated in the plane-wave method in the literature.

In summary, cylindrical waves are indeed very power
in the numerical calculation. The results presented above
qualitatively quite similar to those of arrayed dielectr
spheres.8–11

VI. SUMMARY

In the present paper we give the formulation of the ba
structure and transmittivity calculations for the periodic arr
of dielectric cylinders using the cylindrical waves as ba
functions. We have emphasized the role of the completen
relation of the cylindrical waves, which enabled us to arr
at the electromagnetic version of the band calculation alm
straightforwardly. The fast convergence is assured by the
of the t matrix for the cylindrical partial waves and by th
Ewald method in calculating the structure factor. We g
the detailed expression for them both. Light transmission
reflection are treated by the layer-doubling method ba
upon the scattering data of the monolayer of dielectric ro

The formulation enables us to obtain very accurate d
We showed this in two ways: the check of the converge
of the plane-wave band calculations and the demonstra
of a very good correspondence between the transmitti
curve and band structure, both obtained by the cylindric
wave calculation.

Although we have not examined the eigenvectors
tained by the cylindrical-wave formulation, the experience
the arrayed spherical dielectrics show that they will certai
be of very high quality. This is one of the essential propert
required for the eigenvectors to yield an accurate field int
sity near and inside the cylinders. Since the step chang
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FIG. 6. Transmittivity in the narrow range of 1.4,Z,1.55, for
the z-polarized light in~a! andx-polarized light in~b!. The trans-
mittivity of the horizontal axis is shown by the solid curve as
function ofZ of the vertical axis. The bands superimposed in~a! by
the dotted curves are theEz bands obtained from theNN block of
Eq. ~3.56! and those in~b! are theExy bands obtained from the
MM block. At each position of the arrow, the transmittivity curv
has a clear trace of the band termination.
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the dielectric property at the surface of the rods gives rise
an unwieldy Gibbs phenomena in the plane-wave calc
tion, the cylindrical-wave formulation will be helpful in
many ways other than the convergence of the band calc
tion.
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APPENDIX A: STRUCTURE FACTOR
FOR THE MONOLAYER OF RODS

The essence of the Ewald method, which assures the
convergence of the lattice sum, is to divide the sum into t
parts, and the difficult sum over the remote lattice points
carried out in the reciprocal lattice space. The concep
explained in detail in the book by Born and Huang.46 The
formula listed below for the array of cylindrical rods a
simply the modifications of those derived by Kambe for t
spherical case.32

We start from the plane-wave expansion of the Gree
function of the monolayer case given by Eq.~3.32!:

g~0!~r,r8!1g~1!~r,r8!5(
h

2 i

2dgh
ei ~kx1h!~x2x8!1 ighuy2y8u

5(
h

1

2idS p

2

uy2y8u
gh

D 1/2

H21/2
~1!

3~ghuy2y8u!ei ~kx1h!~x2x8!,

~A1!

with r2r85(x2x8,y2y8). In the second line the definition
of the Hankel function of the first kind is used. We ta
Imgh.0, when (gh)2,0.

Using the integral transform for the Hankel function, w
can rewrite Eq.~A1! as

g~0!~r,r8!1g~1!~r,r8!

5
1

2idS p

2 D 1/2F (
h

gh
2.0

ei ~kx1h!X
1

p i S Eo

w

1E
w

2` D
3e1/2S gh

2t2
uYu2

t D t21/2dt1 (
h

gh
2,0

ei ~kx1h!X
1

p i

3S E
o

w

1E
w

` D e1/2S gh
2t2

uYu2

t D t21/2dtG , ~A2!

where

X5x2x8, Y5y2y8. ~A3!
to
a-

la-

r
s.

st
o
s
is

’s

The parameterw is an important one. It divides the integra
over 0,t,` into two at t5w. It may be chosen to be
arbitrary and provides a good numerical check in the se
that each ofS(k)(k51,2,3), defined below, depends critical
on w but the sum does not. When the two integrals ove
,t,w are combined, the integrand of the sum is seen p
odic as a function ofkx with periodicity 2p/d. This part is
thus resolved into a Fourier series. We find

g~0!1g~1!52
1

4pE1/w

` 1

u(n
expF2

1

2S uR1xnx̂u2u2
l.

2

u D
2 ikxxnGdu2

1

2pdS p

2 D 1/2F (
h

gh
2.0

ei ~kx1h!XE
w

2`

1 (
h

gh
2,0

ei ~kx1h!XE
w

`Ge1/2S gh
2t2

uYu2

t D t21/2dt

~A4!

with

R5~x,y! ~A5!

andxnx̂ the center of thenth rod on thex axis given by

xn5nd. ~A6!

On the other hand, the original definition of Eq.~3.6!
leads to

g~0!1g~1!5E dpxdpy

~2p!2

exp@ ip–~r2r8!#

l.
2 2px

22py
2

1( 8
n

eikxxnE dpxdpy

~2p!2

exp@ ip–~r2r82xn!#

l.
2 2px

22py
2

52
i

4
H0

~1!~l.ur2r8u!

1( 8
n

eikxxnE dpxdpy

~2p!2

exp@ ip–~r2r82xn!#

l.
2 2px

22py
2

52
i

4
H0

~1!~l.ur2r8u!2
i

4 (
l 52`

`

Jl~l.ur2r8u!

3eil u~r2r8!Sl . ~A7!

The constantSl of the second term is thus related to Green
function via

Sl5
4i

Jl~l.ur2r8u!
E du~r2r8!

2p Fg~0!1g~1!1
i

4
H0

~1!

3~l.ur2r8u!Ge2 i l u~r2r8!. ~A8!

SinceSl is independent ofr2r8, we may derive it by taking
the limit r2r8→0. The structure factorG l l 8(kx ,kz) is re-
lated toSl . Comparing Eq.~3.7! with the second term of Eq
~A7!, we find
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(
l

Jl~l.ur2r8u!eil u~r2r8!Sl

5(
l

(
l 8

Jl~l.r!eil u~r!G l l 8Jl 8~l.r8!e2 i l u~r8!.

~A9!

Here we use the following identity on the left-hand side:

Jl~l.ur2r8u!

5(
l 8 l 9

Jl 8~l.r!Jl 9~l.r8!eil 8u~r!e2 i l 9u~r8!d l ,l 82 l 9.

~A10!

We then arrive at

G l 1l 2
~kx ,kz!5Sl 12 l 2

. ~A11!

Calculation ofSl is due to Eq.~A8! with Eq. ~A4! substituted
for the Green’s function. The term of the sum over the
ciprocal lattice pointh yieldsSl

(1) , that of the real-space sum
with nÞ0 givesSl

(2) and the termn50 leads toSl
(3) :

Sl5Sl
~1!1Sl

~2!1Sl
~3! , ~A12!

or

G l l 85Sl 2 l 8
~1!

1Sl 2 l 8
~2!

1Sl 2 l 8
~3! . ~A13!

It then holds that

Sl
~1!52

i

dS 2

p D 1/2

i l l !(
h

(
l 850

@ l /2# S kx1h

l.
D l

3~21! l 8
1

~ l 22l 8!! l 8!
S kx1h

2 D 22l 8S 1

8D l 8

3S gh
2e2p i

2 D l 82~1/2!

GS 1

2
2 l 8,e2p i

Gh
2 v

2 D ,

~A14!

where@ l /2# is the Gauss symbol and the last function is t
incompleteg function, discussed later.Sl

(2) is defined by

Sl
~2!52~21! l

i

p ( 8
n

e2 ikxxnS l.xn

2 D lE
0

wl.
2 /2

3eu2 ~l.
2 xn

2/4u!u2 l 21du

5~21! l 11
i

p ( 8
n

eikxxnS l.xn

2 D l

I l ~A15!

with I l considered below. The remainingSl
(3) is

Sl
~3!5d l0F212

i

pH g1 ln
wl.

2

2
1 (

k51

`
1

k! S wl.
2

2 D k1

kJ G
~A16!

with the Euler constantg50.5772 . . . .
The incompleteg function
-

G~a,x!5E
x

`

e2tta21dt ~A17!

is obtained from the recursion relation

G~a,x!5
1

a
@G~a11,x!2xae2x# ~A18!

with the start

GS 1

2
,xD55

Ap22E
0

Ax
e2u2

du for x>0,

Ap12i E
0

A2x
e2u2

du for x,0,

~A19!

for which we have employed in the numerical application t
formula ~7.1.26! of Abramovitz and Stegun.47

The functionI l of Eq. ~A15! is defined by

I l5E
0

wl.
2 /2

eu2 ~l.
2 xn

2/4u!u2 l 21du. ~A20!

It satisfies

S l.xn

2 D 2

I l 115 l I l2I l 211S vl.
2

2 D 2 l

3expF vl.
2

2
2

l.
2 xn

2

4S vl.
2

2 D G . ~A21!

Introducing

p5l2xn
2/4,

q5wl2/2, ~A22!

we find

I 05 (
k50

`

~pk/k! !GS 2k,
p

qD ,

I 15 (
k50

`

~pk21/k! !GS 2k11,
p

qD . ~A23!

The incompleteg functions therein are obtained through th
recursion formula@Eq. ~A18!# with

G~0,z!5E1~z!,

G~1,z!5e2z. ~A24!

For E1(z) we have used the formulas~5.1.53! and
~5.1.56! of the book cited above.

If the parameterw is chosen to be large, the real-spa
sum over n of Sl

(2) @Eq. ~A15!# converges slowly. Con-
versely, ifw is small, the sum overh of S(1) @Eq. ~A14!# is
slowly convergent. The valuew/d2;1 was chosen in our
calculation, after checking that the sum ofS(1), S(2), andS(3)

remains constant irrespective of the choice ofw in the range
0.2,w/d2,10.
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Finally the symmetry relation exists between positive a
negativel . We find

S2 l5~21! lSl . ~A25!

This relation, when used in Eq.~A13!, reduces greatly the
numerical task.

APPENDIX B: STRUCTURE FACTOR FOR THE BAND
CALCULATION

The structure factor of the infinite array of rods is o
tained similarly. Let 2D vectorRn be the center of the rodn
in the xy plane, andh be a 2D reciprocal lattice vector fo
the lattice ofRn . The scalar structure factor is still given b
Eq. ~A13!. Of S(1), S(2), andS(3), S(3) is given by Eq.~A16!.
The others are simplified greatly. To summarize,

Sl
~1!54i l 11(

h

1

vc
F uk'1hu

l.
G l

ewl.
2 /2e2 i l u~k'1h!

3

expF2~k'1h!2
w

2 G
l.

2 2~k'1h!2
,

Sl
~2!52

i

p( 8
n

S l.uRnu
2 D l

exp~ ik'–Rn! e2 i l u~Rn!

3I l~xn
2→uRnu2!,

Sl
~3!5d l0F212

i

pH g1 ln
wl.

2

2
1 (

k51

`
1

k! S wl.
2

2 D k1

kJ G .

~B1!

In Sl
(2) , the argument ofxn

2 of I l @Eq. ~A20!# must be
changed touRnu2. The two angles in Eq.~B1! are defined by

u~k'1h!5tan21@~ky1hy!/~kx1hx!#,

u~Rn!5tan21@yn /xn#. ~B2!

The choice ofw/d2.1.0 was found practical.
The symmetry ofS(k) is found to be

S2 l
~k!52@Sl

~k!#* ~B3!

for k51,2.
Finally, there occurs a situation in the band calculati

wherel.
2 ,0. This can happen because, for a band energ

k with a positivel,
2 , Eqs.~3.16! and ~3.17! yield

l.
2 5~l,

2 1kz
2!/«,2kz

2 ~B4!

and the right-hand side can be negative for a large«, . In
this case,l. in Eq. ~B1! must be changed everywhere b
eip/2ul.u @in Eqs.~3.23!, too, this replacement is necessar#.
The logarithm ofS(3), for example, then becomes comple
with an imaginary part of1 ip. The symmetry in this situa
tion is (k51,2!,

S2 l
~k!52~21! l@Sl

~k!#* . ~B5!
d

,
of

APPENDIX C: STRUCTURE FACTOR FOR A COMPLEX
LATTICE OF RODS

The formulas for a complex lattice of parallel rods who
unit cell contain several dielectric rods are given here. In
secular equation given by Eq.~3.56!, the rows and columns
of the matrices are now labeledb, l , ands, with s specifying
the number of the rods in the unit cell. Letr s be the 2D
position of the center of thesth rod in thexy plane. Then

@D,~. !~ss8!# l l 85dl
,~. !~s!d l l 8dss8,

@G~ss8!# l l 85G l l 8~ss8!. ~C1!

For each pair (ss8), Eq. ~3.45! still holds. The quantity
dl

,(.)(s) is obtained from Eq.~3.23! by usinga and«, of
the sth rod. For the scalar structure factor, Eq.~A13! is
changed to

G l l 8~ss8!5Sl 2 l 8
~1!

~ss8!1Sl 2 l 8
~2!

~ss8!1Sl 2 l 8
~3!

~ss8!. ~C2!

The threeS(k)’s are obtained as

Sl
~1!~ss8!54i l 11(

h

1

vc
F uk'1hu

l.
G l

ewl.
2 /2e2 i l u~k'1h!

3

expF2~k'1h!2
w

2 G
l.

2 2~k'1h!2
exp@ i ~k'1h!•r ss8#,

Sl
~2!~ss8!52

i

p( 9
n

S l.uRn2r ss8u
2 D l

exp~ ik'–Rn!

3e2 i l u~Rn2rss8!I l~xn
2→uRn2r ss8u

2!,

Sl
~3!~ss8!5dss8d l ,0F212

i

pH g1 ln
wl.

2

2

1 (
k51

`
1

k! S wl.
2

2 D k1

kJ G , ~C3!

with

r ss85r s2r s8 ~C4!

and

( 9
n

5H (
nÞ0

for s5s8,

(
n5 all

for sÞs8.

~C5!

In S(2) the replacement of the argument inI l must be made
in Eq. ~A20!. The symmetry between the positive and neg
tive l turns out to be (k51,2!

S2 l
~k!~ss8!52@Sl

~k!~s8s!#* , ~C6!

whenl.
2 .0 and

S2 l
~k!~ss8!52~21! l@Sl

k~s8s!#* , ~C7!

whenl.
2 ,0.
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