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Calculation of photonic bands using vector cylindrical waves and reflectivity of light
for an array of dielectric rods

Kazuo Ohtakd, Tsuyoshi Ueta, and Katsuki Amemiya
Department of Applied Physics, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan
(Received 19 August 1997

For a periodic array of dielectric rods of circular cross section, the formulation is given for the band structure
of a photon and the reflectivity or transmittivity of light, using the vector cylindrical waves as the basis
function for expansion. As a key quantity assuring the fast convergence, the expression of the structure factor
is given for two- and three-dimensional arrays and for a lattice with a complex unit cell containing a number
of rods inside. In terms of the calculated band energies, we check the reliability of the widely used plane-wave
methods and estimate the error involved in them. Also, we present some numerical results for the band
structure and the transmittivity of light for parameters beyond the reach of the plane-wave approach.
[S0163-182698)05804-4

. INTRODUCTION the energy range of thd or f state(i.e., |=2 or 3), that

) heavy fermions have so far been observed. We wish to have

Because of the accumulated knowledge of the basic propy powerful algorithm to cover the heavy photons of such a
erties of the photonic bantf a stage of their application high-energy region.
seems to be beginning both theoretically and A good localization of impurity modes seems to be an-
technologically:™" Though most theoretical work is done us- other reason for the need of fast convergeMd&in contrast
ing the complete set of plane waves as basis functions, thg, the donor or acceptor levels of electrons, the high degree
experience for electrons reveals that the set of sphericgjf |ocalization of the photonic analogues almost nullifies the
waves is much more powerful in leading to a faster converaffective mass equation. The supercell metfidélooks to
gence. Itis true that their usefulness is restricted to arrays qfe a promising alternative. A unit cell thereof that contains a
spherical substances but the conclusions drawn sometimegge number of dielectrics introduces a secular matrix with
even analytically give us sufficient insight into the physics of gimensions orders of magnitude larger than the perfect sys-
more complicated photonic crystals, an array of rectangulaggy,
rods, for example. Indeed, as shown 1i” the series of works The purpose of this paper is to give such a formulation for
for the arrayed spheres of dielectrfs; the calculated ei- 4 jattice formed by parallel dielectric rods of a circular cross
genvalues and eigenvectors of very high quality clarified thesection. For two- and three-dimension@D) arrays of di-
origin of the characteristic features of individual bands. Theg|ectric spheres, the readers should refer to the works of one
strong confinement effect that gives rise to an enhanced locgk the present authofs* The attempts along this line for
field is one of the examples that convinces us of the existhe array of rods are already found in the series of works of
tence of the similar effect irrespective of the shape and siz@licorovici and co-workerd®-2° They are thus credited with
of the arrayed dielectrics. having first developed the cylindrical wave formalism. They

The need of the fast convergence is connected with theoncentrated on the multipolar expansion of the Green func-
presence of the virtual bound states of photons confined to #ion and gave the algorithm for the structure factor, in the
dielectric unit, i.e., the origin of the Mie resonance in theterminology of the present paper, for 1D, 2D, and 3D peri-
light-matter interaction. In a periodic array of dielectrics, theodic lattices. They applied it to the calculation of the photo-
bound states of different units are coupled, as in a tightnic band for the arrays of perfectly conducting cylinders and
binding band of electrons, to become a well-defined coherergpheres. In these systems, the scalar wave treatment was pos-
wave with massive dispersion relations. This mode is nothsible and no essential change except the boundary condition
ing but a bosonic analogue of heavy fermiéié,and is was needed in the scalar Korringa-Kohn-RostokéKR)
called in this paper and elsewhere heavy photon, as in thequation. We give in this paper the full vector KKR equa-
works cited above for the lattice of spheres. Their peculiation. This equation is an extension to the cylindrical case of
feature is that the confinement effect becomes more anthe vector KKR equation given for the array of sphetes.
more conspicuous with higher angular momentum Also, the formalism for the transmission and the reflection
(A=1)—in the language of electrons. In the morphology-coefficients, the response of photonic bands to an incident
dependent lasing in the cavity quantum electrodynamiceptical probe, is also given.
(QED),*® the gallery modes with as large as 30 are indeed  In the formulation of the structure factor, there are a num-
involved. If the perfect periodicity is somehow assured, theyber of differences between the works of Nicorovici and co-
will manifest themselves as high-energy heavy photons, nowvorkers and the present paper. The structure factor for a
coherent and free from a radiative lifetime effect. This is in amonolayer of parallel cylinders was given by them in a kind
marked contrast to the case of electrons, where it is only if recursion form for a set o , defined in the text® In this
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paper we are giving a closed expressiorsofor eachl. The  sources, among them Stratt6tFor the solutions of the vec-
structure factor of the monolayer is the most important in-tor Helmholtz equation for the electric field,

gredient to obtain the reflectivity or transmittivity of light

from a system of stacking planes of rods. We are giving also (A+9%E(r)=0, (2.9
the expression 0§, for an infinite 3D system having a num-
ber of rods in a unit cell, with the future application to the
supercell method in mind. One important point is that the
algorithm for §; of the 3D system of Nicorovic_i and co- Ui (1:C)=C, (A p)ell Pk, 2.2
workers does not rely upon the Ewald method in the lattice z

sums, in contrast to the conventional v@ﬁ)?.o Thus a very with

interesting and important problem remains to be examined,;

the relevant scalar function in the cylindrical coordinates
=(p,0,2) is

that is, whether their expression works better than the con- A=(g?—k3)V2 2.3
ventional one, in a very-high-frequency region as stated .
above. y-ng g y re9 The index| stands for the component of the angular mo-

As in the case of arrayed spheféd the formulation for mentum and the symb@ may beJ for the Bessel function
the photonic bands ends in a set of formulas that are obtaineli . H for the Hankel functiorH{*) of the first kind, orN for
through a simple transformation applied to the results fothe Neumann functioN,. We let| run over —oo<|<w
electrons. What matters in the formulation is to establish thavith the relationC_;(Ap)=(—1)'C,(Ap). Throughout the
completeness relation of the vector cylindrical waves and taper we take I>0 (wheng?>k3, g is understood to be
use it just as the closure relation for electr.ons writtgn iNg+i¢& with >0 and5=0+).
terms Of braS and ketS. In th|S sense the d|ﬁerence N the For an|' three vector Cy"ndrica' waves are Constructed

formalism is very small between electrons and photons. Tgrom 4, (r). Two of them, theM andN fields of Stratton,

show these points is the main reason for the detailed presen- . .
tation of thepformulation P aretransversefields in the sense thal - E(r)=0. Let them

Our formulation will be applied numerically in two ways P°€ flM(r,) apdq”(r), respectively. The third, the-type field,
in this paper. First we examine the convergence of the bant§ longitudinal and denoted ag (r). The M wave is alter-
energies obtained by the plane-wave calculations by compapatively called the transverse electric field and tdethe
ing them with the results of the present formulation. As So fransverse magnetic fieldhey are also called the magnetic
zler, Haus, and Inguva emphasiZ8dorrect band energies and electr_|c mul_t|pole fields, respec_tl\_/éa_ﬁfl T_heL field dl_s-
of the plane-wave expansion must be obtained through th@PPears finally in our prpblem but it is indispensable in set-
extrapolation procedure to the infinite number of the planding up the closure relation, as shown below.
waves used in the expansion. If we wish to omit this formi- _The concrete forms of the p(6,z) components of
dable task, we have recourse to some other ways of estimag (;C), etc., are
ing the errors due to the finite truncation. This is just what
we are doing in this paper for several cases of different di- M(r:C)= (
electric constants and frequency ranges. Our conclusion is
that to attain a high precision the dimension of the secular
matrix of the plane-wave calculation needs to be 50, some- N 1(ik, 9 ik, 1 9 \? _
times more than 100, times as large as that of the cylindrical- "N qgap'qpadq Y (1:C),
wave formulation.
The second application concerns an ideal photonic crystal L )
with finite thickness. We show how well the transmission €(r;C)= X(%'; %,lkz) i (1;C). (2.9
and reflection of light is capable of reproducing the detailed
features of the band structure. This second application i$hey are dimensionless by definition. The lack of theom-
made for the parameters beyond the reach of the plane-way®nent discriminates thigl field from theN and the genera-
calculations, using the numerical data calculated with errorgor of theL field is nothing but the gradient operator divided
less than 0.1% for about 80 bands of the system with largéy \.
dielectric constants. The normalization integrals with respect to the angle
In Sec. I, we examine the basic properties of the vectoturn out to be
cylindrical waves to establish the completeness relation. In
Sec. lll, we give the formulation for the calculations of band
structure and reflectivity of light. Numerical applications are
given in Secs. IV and V. We end the paper with a brief
summary in Sec. VI. The detailed expression for the struc- +2(k,/N)2CP],
ture factors will be given in Appendixes A, B, and C. We
treat a 2D plane, an infinite 3D lattice, and a lattice of com-
plex unit cells having a number of cylinders.

19 J

p 861_%10) l/l|kz(r;C),

2
f doe (r;C)* - €,(r;C)=m&y [CZ 1+ CE 4
0

2
[Tasetiricr - dliric)=ma e i,
0
Il. COMPLETENESS OF THE VECTOR SPHERICAL 20
WAVES f doe(r;C)* - €,(r;C)=ma,[(k/q)2(CZ 1+ CZ,,
0

Generating the vector spherical waves from the scalar 2
ones is well established and described in detail in various +2(Nq)°Ci]. (2.9
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With respect to the angle integral they are not mutually orshows the diagonal element,l) (—o<I<®). The other

thogonal but

2w
J dfe(r;C)* - &' (r;C)=im8, [CP,— CP 4],
0

2w
f db’e:‘(r;C)*-erf(r;C)ZiW5||f(kz/Q)
0

X[CP_,+Cf,1—2CF],

21
do€"(r;C)* - €\ (r;C) =78 (k/q)[CZ_,— CZ ,].
0

(2.6

The third relation causes the mixing between Meand N

partial waves in the case &+#0, to be discussed in Sec.

matrix elements are zero identically.
The second important relation is
J
KZ Ui (HCE=2 i (ONQi &,
! '
(2.10

¢, being an arbitrary coefficient independentxgf That is,
when operated on a superposition of the cylindrical waves,
the derivative with respect te is equivalent to multiplying
\ times the third matrixQ; . They are defined by

) [ ik,
szg[_l,l], Qyzi[lll]! QZ:T[]-]! (21])

in the notation of Eq(2.9).
The final and most important relation is the completeness

Il B. This is in a marked contrast to the scattering from a(closure relation established amor®”, P', andQ; (nine

spheré® where theM andN fields decouple to lead to thd
andN phase shifts.

matrices altogetheérThe completeness is proved in the same
way as the spherical caékExplicit matrix multiplication

There are three important identities needed in the calculugsing Eqs(2.9) and(2.11) actually leads to
of the vector cylindrical waves. One is related to the Carte-

sian components of their superpositions. The Cartesian com-

ponents ofe] (r;J), etc. follow from Eq.(2.4). Let E(r) be a
superposition oM andN waves ovet with c:oefﬁcientSOq'\’I
anda;

©

E(r;C)=|E {e€"(r;C) "+ €'(r;C)a}. (2.7

=—

This is a transverse field, because so gfeand €'. When
expanded in terms of the scalar function given by &32),
its ith Cartesian componeni<x,y,z) is expressed as

Ei(r;C)=2 {n(rOPY i+ e (1PN e}
I’
(2.8

This shows that to derive thi¢h component we have only to

changeaf in E(r) by =,[Pf], a} for B=M,N and to
superpose the scalar fields. When, in particuBafr;C)
=¢(r;C), only the matrixP!" enters witha/, = 8,84y in
the above formula. The equivalence of EQ.7) with Eq.
(2.9) is important in what follows. The matric@‘; , Wwhose

)\2
> PP SQuQ)T| =618y, (212
B=M,N o] "
the left-hand side being thél() matrix element.

This is called the completeness relation because it re-
solves an arbitrary vector field into a linear superposition of
theM, N, andL vector cylindrical waves. This is illustrated
by the following two examples.

The first example is resolving the plane wave of wave
vectork, transverse or longitudinal:

E(r)=E%xp(ik-r), (2.13

with E®= (ER ,EY,E3). We rewrite the exponential in terms
of the scalar cylindrical waves as follows:

o

i (kxkyy) — eiklpcos(a(ki)f ) 2 i'J|(kLp)ef” (e(ki)—e).

[I" matrix elements are denoted E\Biﬁ]“,, are playing a and

fundamental role in converting the scaléBchralingey

equation to the vecto(Maxwell) version. Their explicit
forms are quite simple in the cylindrical case, as compared k,
with the spherical case where the Clebsch-Gordan coeff

cients are involved*

Pl== i5[1.1], Py%[l,—u, P;'=[0],

NILLS: B N Kz L N_i
Py ——Zq[ 1,1], PV__Zq[ 1-1], P, =3 [1].
(2.9

Herea of the notation a,b] stands for thel(l —1) matrix
element and the (,I+1) element, while the symbdgla]

(2.14
Here

k, = (K;+k5)Y2 (2.19

gy o Tky. (2.16

With 6(k*) being the angle between the 2D vectof
=(ky,*k,) and thex axis (the last form of the exponential
is useful for complex,). The field component of Eq2.13)
is then rewritten as follows:

Ei(r)zzl i'j|(kLp)e”0eikzze_”0(k)Eio

= > ¢|kz(f;3(km))5u'5ijille_”10(k)E?-
T

(2.17
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Substituting Eq(2.12) for g, 6;; and using the equivalence

between Eqs(2.7) and (2.8), we find |2 [P &, (2.29
E% =3 {&"(r; (. p)al'+ €' (r:3(k, p)a we find

ek, p))al) (2.18 Eq.(222=2 {¢"(riC)n"+ €'(riC) 7'} (229

with the coefficients To summarize, the operatps;; +(1/q2)(a/axi)(a/¢9xj)] in-

troduces the superposition of the transverse cylindrical

oF 51, E0 | i1’ e-i"#00 waves. It is true that the three waves, €, ande", are
@ :; 2 LCPY) I Ej (for B=M,N) apparently unwieldy because of the nonorthogonality but
they do not cause any serious trouble in what follows. This is
) due mostly to the completeness relation given by @dL2).

:E )\_2 Byt EO A7 =il k) 21
> L(QP) TwEf|ite . (219
1\ KT Il. SCATTERING THEORY AND SECULAR EQUATION

. L . . FOR THE BAND STRUCTURE
In deriving theL contribution, we note that the third matrix

Q; generates thith component of thé wave, aPM andP Suppose a plane-wave lighf(r) of frequencyw is inci-
generated those of thil and N waves, respectlvely This dent upon a parallel array of cylindrical rods. We take zhe
may be seen immediately from Eq&.4) and(2.10 (in this axis in the direction of cylinder axis and specify the center of
senseQ; may as well be denoted &). The explicit forms ~ thenth rod by the 2D coordinates, = (x,,yn). The 2D unit
of af anda' given above are easily written down, since the C€ll Of the lattice of rods is assumed to have only one cylin-
matricesP? and Q, are simply given by Eqs(2.9 and der. The dielectric constant_and radius of the cylinder are
2.11) res;:)ectively For example, we find taken to bes . anda, respectively. The array is assumed to

' ' ' be in free space. If it is embedded in a substance of dielectric

aM=Im(e?EQ )il ~Tg=il k) (2.20 constants-., . and w? in what follows are replaced by
! - ' e-le- andw?e- , respectively.
with Since the system considered in the light transmission is
finite in the thickness direction and we are adopting the
E9=E2—iE8. (2.20) layer-doubling method to deal with the problem, we first

examine the light scattering from a monolayer of dielectric

Equation(2.18 shows that the plane-wave vector field, CYlinders lying in thexz plane.

Eq.(2.13, is resolved into three cylindrical waves of various _ _ _
|. Any vector field, if it is expressed as a superposed vector ~A. Scattering from a monolayer of arrayed dielectrics

plane-waves ovek, is thus reexpressed using the vector cy-  The layer-doubling method is a method of treating a finite
lindrical waves. This is the expansion theorem we are consystem by repeating the monolayer scattering. Consider a
cerned with here. If, in particular, the fiel(r) is transverse, monolayer of parallel rods with the coordinate of thenth
the L field does not mix, because the expansmn coefficientod atx,=nd, d being the spacing. One can show that the
ar of Eqg. (2.19 involves the matrixZ;Q;E{ [note that scattering problem of the Maxwell field is reduced to the
(QJ)T= —Qj], which'is, by Eq(2.10, just the representatlon following integral equatior?®
of V-E(r)/\ and hence vanishes.

The second example of the use of the closure relation
concerns the transformation of the quantity

Ei(r)=EXr+2> f dr' Gy (r.r )V(rHE;(r'),
J

3.1
<5ij+ 12 7 )2 i (riO)E (2.22  With the “potential” given by
q X; 0X;
V(r)=-qe(r)—1] (3.2
with a constant amplitudet,. The operator within the with (c=1)
bracket is replaced b®; and Q; via Eq. (2.10. The com- N
pleteness relation E¢2.12 then leads to q=o. 3.3

Heree(r) is the dielectric constant at the positionso that
Eq.(2.22=2 i (r;C)
! e~ rinside the cylinders,
s(n)= 1 r outside 34
> 2 (PP LPE)Y T | . '
B=MN Thus,V(r) works only inside the dielectrics in E(.1). The
(2.23  subscript< is intended to emphasize that field in the inte-
grand is an inside field. The Greeni&; in Eq. (3.1 is

Introducing the coefficien, by defined by
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9 V(NE; (N =(A+g*)E[(r) (3.11
for r inside ther cylinder. Using this in Eq(3.1), we can
apply the Green’s theorem in the integral réf Integrating
twice by parts leads then to the volume integral involving

G(r,r"), (3.5

1
Gii(”'):( 20t @ awax;
through the Green functio® of the scalar Helmholtz equa-
tion. The operator in front o6 is already familiar from Eq.
(2.22. To take account of the periodic array of scatterers in (A"+g%)G(r,r") (3.12
the x direction, it is convenient to introduce, in place @f
the Green functioerX for the Bloch wave with wave num-

berk, in the x direction®

plus the integral over the surface of theylinder. Since the
quantity of Eq.(3.12 is just5(r—r"), the volume integral is
trivial. We thus obtain

1 L oexpliglr=r’—x,|) 1
" — iKyXp
G (rr)==-g 2 e T 0=E%r)+ 1+?vv.)|k<x(r) (3.13
d ) , . .
ZJ 2:2e'pz(H [9p.p)+9P(p,p")]. for 1 inside and
1
(3.6 Elfx(r)on(r)Jr(lJrEVV)Ifx(r) (3.19

Herer=(p,2)=(p,0,2),r'=(p",2")=(p',0',2"), andk, is

equal to thex component of the incident wave vector, speci-for r outside ther cylinder. Here

fied below. In the Fourier decomposition of the second line,

the Green's functiorg®) is the contribution frorn=0 of 'f(r):f d4S (G, (r.r' )V E<(r")
the first line. It takes account of the singularityratr’ of X p=a X

the Green’s function. The remainirgf’, the contribution

from n#0, incorporates the effects of the other rods into the —[V'Gy (r,r)IE=(r')} (3.19
Et(:IL:jcStutLZl‘actoF, which we call the scalar structure factor. It defines the surface integral. Once the inside ﬂé@r) is
determined from Eq(3.13, the outside one is given via Eq.
- , i @ il g (3.14). The remaining task is thus to solve the former.
g7 (p.p)=— ZZ Hi7(Ap=)Jdi(Ap<)e" e "7, Let us set
i =(q2 k)™,
(1) N _ o ilo il 6’
g (p.p')=— 72 J(Ap)e" Ty (ke ,p) Iy (Ap")e "',
AT | SRS 3 =(g2-kH)¥?, (3.19
S with
with ,
9z =07,
N=[q’~pZ]"2, (3.9 >
92=0%- (3.17)

wherep-. (p.) is the largesmalley of p andp’. By way of
the structure factoF ., g®*) depends ork, . Note that in the and denote the matric&’ asP{~ andP/~, dependent upon
integral overp,, I, involves p, throughA. which of the (-~ ,q-) and (\ - ,q.) is used in the definition

When thisk, dependent Green’s function is used in Eqg.of Eq. (2.9. In Eq. (3.13 let us resolve the incident field

(3.9), the integral over’ of Eq. (3.1) can be restricted to a g} (r) into theM andN partial waves following Eq(2.18):
single cylinder, which is taken to be the one centeres,at

=0 [we call it ther (referenceg cylinder].

For an incident light of wave number and wave vector E%exp(ik-r)= _EM " Z €' (r;I(N=p)eaf® (3.18

k, we set A=
, with of° given by Eq.(2.19. TheL wave does not appear
EO(r)=E%! (et iyytia? (3.9  pecause of the transversality. The Cartesian component of

with k?=g2. Thex componenk, is none other than the one Eq.(3.18 is
used in definingskX in the above. By symmetry thedepen-
dence of any field is described everywhered}y?. Thus by O(r);= _2 2 P (r;I(N=p) NP Tyraf’.
the integrals over’ in Eq.(3.1) and ovem, in Eq.(3.6), the “MN (3.19

componenip, is eventually replaced everywhere ky. o
To solve Eq.(3.1), we note that the field inside the rods For the unknown inside field, we assume the form
satisfies

< _ . B<
(A+q28<)Ej<(r)=o, (310) E (r)_B:zM,N El EF(r:J()\<P))aI ’ (32@

that is, with theith component written as
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Ef(r)= Z > i (I[P Tyraf ™.
(3.2)

= ‘ ”!
We put Egs.(3.19 and(3.2]) into Eq.(3.15. The angle
integral of it is carried out using

fOZWdoei“*"W:zws”,. (3.22
The gradient operator introduces the factors
A =2<Hi(22)3] (z2) —2-H| (z-) Ji(22),
di=2.3/(z)3((z<)—2-3{(z-)J(z=), (323
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To derive the right-hand side of E.30, we have inserted
the completeness relation E@.12 betweenI’ and D~ on
the left-hand side. The contribution from the matri€gsof
the completeness relation is shown to vanish, leaving behind
only that fromP?(P?)" and hence leading to E¢8.30. The
same situation happened in the case of arrayed spheres. See
Ref. 25 for the proof of the vanishing of tigg contribution.
Equation(3.29 must be handled numerically.z is a
function of the incident wave vectoks, andk,. It is worth
pointing out that the quantitie®~ and D=, or their matrix
elementsd;” and d;", as well as the scalar structure factor
I',» all appear without modification in the electron scatter-
ing. The vector version of the Maxwell fields is hence ob-
tained simply by replacing them by those having the indices
BB, which are obtained by the simple transformations using

with z.=X\.a andz_=\_a. The former appears in the in- PB This is a key point of the conversion from the scalar to

tegral ofg(® and the latter irg*). The operator in front of

the vector treatmerit.Since the indiceg3B’ define the 2

li.(r) may be treated using the completeness relation, ax2 blocks, MM, MN, NM, and NN, Eg. (3.29 may be

done for the quantity of Eq(2.22. In this way, from Eq.
(3.13 we find

> Z {(PPHN(D=+ID”)PF <} <———aﬂ°

B'=M,N

(3.29
wherelI is the matrix formed by, (k, ,k,) and
0
D<= d;- (3.25
0

andD~ with the symbol< changed by> and

aﬁo=[ . ,aﬁ?l,afo,afgfl, .
a#~=[ ... afof % af, ] (3.26

define the column vectora®® and a®~. By solving Eq.
(3.24), we can obtain the unknown coefficiamf< in terms
of the initial dataaf’° of the incident light. To rewrite Eq.
(3 24 more compactly, we introduce the matrldagﬂ, and

BB’ through the transformation

D5 E (PF7)TD=)pF'= (3.27

and

I‘BB,=; (PE)'TPF". (3.289

Their rows and columns are labeled byas in Eq.(3.25.
Then Eq.(3.249 is written as

, 2i
Y (D +ID7)gpef ~=——a® (3.29
B'=M,N ™
with
(I'D”) gy = "2 TpaDgig - (3.30
B'=M,N

treated as a matrix equation of dimension twice as large as
that of electrons. Therefore the good convergence experi-
enced in the electronic case promises the same situation to
arise in the photonic case.

Once Eq.(3.29 is solved, the inside field is given by Eq.
(3.20. The field outside the cylinders is obtained from Eq.
(3.14). Nearly the same calculation as above yields

Ei (N=EQ (1)- —E > el HM =)D Tnraf)
BB’ n’
+el (I p)(FD7)ggr i, ). (3.3D

In terms of this formula, we may approach an arbitrary point
near the cylinder surface to obtain the near-field intensity.

To obtain the reflectivity or transmittivity of incident
light, the expressiof3.31) of the scattered field expressed in
terms of the spherical waves is not convenient. For this pur-
pose, the plane-wave amplitude of the scattered wave is nec-
essary. Also, the plane-wave form of the scattered wave is
important in the layer doubling method. To derive it, we
substitute the following plane-wave form of the Green's
function in Eq.(3.14 [for E<(r’) of Eq. (3.19, we use the
spherical-wave form

—1 . ’ : !
g(o)(p,p')-f—g(l)(p,p’):E — @ikt (x=x")+iyply—y’|
h 2dyy
(3.32

Here, in terms of the reciprocal lattice vectbrin the x
direction,

yh=[a%~ (keth)?—KZ]"2 (333
defines they component of the wave vector of the scattered
lights,y being the direction perpendicular to the plane of the
monolayer. By the diffraction, the scattered waves acquire
the wave vector

Kiy = (Kyt D, % 75, ky) (3.34
of various h with the label+ and — for the propagating
directions+y and —vy, respectively. When the channelis
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open,yy is real, showing that thie;, waves are propagating,
while they are evanescent for imaginayy (Imv,>0).
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[see Eq(2.16)].
This completes the monolayer scattering. Note that the

Now for the purpose of using them in the layer-doubling plane-wave amplitudes of the scattered waves have the form
method, let us compile the scattering data from a monolayefXPressed by the cylindrical waves. This should be so in

in the xz plane. We assume that the incident fi&d(r)
impinges upon the layer from the sige<0, i.e.,k,>0 in
Eqg. (3.9). We express the scattered light of the exterior of th
monolayer as

E7(N=2 2 expliky DTy Ji'Ej, (339
I/
for the wave with the wave vectd, and
E?(r)=§h‘, > expliky D[Ry I EY (336
I/

for the wave backscattered wilfy . The coefficientsT and

R are the amplitude transmission and reflection coefficients: .

The superscript of, e.g.R" ]ii- emphasizes the process of
light in the +y direction being reflected back in they
direction. The subscriphO specifies the reciprocal lattice

vectors of the wave vectors before and after the scattering. In
parallel with the notation for the scattered wave vector, we

use the notatiork, for the incident wave vector in the fol-
lowing formula. Then we find

i1
[TrToJr]ii':( - %)%yt(kﬁ)rn V¥ (Kg )+ 8iir Sno,

i1
[Rho+]ii’:< —;—d)%yt(kh)ni,y*(kg). (3.39

The second term of is the contribution of the incident light.
Herey(k) is the column vector labeled Hy

order to make use of the first convergence. For numerical
purpose there are two key points in programming these for-

gnulas. One is the matrix algebra involving the transforma-

tion matricesP! and P and the other is to find out the
formula guaranteeing the fast convergence of the scalar
structure factod’);,. The latter is provided by the method
used in band calculation of electrons and is described in Ap-
pendix A. In the rest of this section we deal with the former.

Simplifying the above formulae by using E¢42.9) is
straightforward. For an arbitrary matrix=(F,,), it holds
that (U,v=>,<)

{ 2 (PJBU)TFPJB'U}

I’

=3(FiiayatFiog-1)  (BB)=(MM),
K2
E(F|+1,|'+1+ Fioar-1)

uHov

FNNFL | (BB')=(NN),

:2_(;1(_F|+1,I/+1+F|71’|,71) (BB')=(MN),

22_(;0(_F|+1,|'+1+F|—1,|/—1) (BB')=(NM),
(3.43

g- andqg. being given by Eq(3.17. To obtain the block

y(k)=[ ... e0-Do gilek) gid+noto gt matricesDy » Dyu » €tC., defined by Eq:3.27), F is play-
(3.39  ing the role of the diagonal matri®~, D=, etc. From Eq.
and (3.43, we then find
, L (Dum)i =i+ 3(dip 1 +di_y),
[mde =i 2 PEZAPR(PE)T (3.39
,BB, 1’ kZ
o (DMN)||':5||/2q_<(_d|+1+d|—1)7
where
’ 4 kZ
e :T[D>(D<+FD>)_1]BB’- (3.40 (Dnmi =6 2q_>(_d|+1+d|—1),
In addition to the transmission and reflection of the incident K2 Y
wave, we need to consider in the layer-doubling scheme the  (Dyy)yi+= 8ij/| =—— (dy 4 1+ dj 1) + ———d .
20-9< 0-0<

scattering of the waves with wave vechT, . Its scattering
data of T,,, or R,,, are obtained from the above formula
simply changing the wave vector 0 k3. For example,

+- IR * (e~
[thr]ii’: _E %y(kh)fijy (khr)- (3.41
When the vectoky, is evanescent with imaginaky,, y(Kkp)
is real. In this case we must set

y* (ki) =y(kp) (3.42

(3.49

The subscripts< and > must be supplied on both sides to
obtainD< andD~, respectively. By Eq(3.44), they are thus
diagonal with respect tb, 1, with the quantities;” andd;
given by Eq.(3.23.

For the structure factoF 44/, it is shown by Eq.(A13)
that the scalar structure factdy;. is the function ofl —1’.
Using this property irF, we obtain

(T =Ty,
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(Tyn)n =0, phase shifts for ahare not obtained until after diagonalizing
the 2x2 matrix of Eq.(3.49. To put it another way, the
(v =0, eigenphase shifts of the cylindrical case are neither purely of
M nor of N, whenk,#0.
(T =Ty (3.4H Introducing the two phase shifts reduces various formulas,

It is interesting to note that the mixing via the structure factorSUCh as the total cross section of a single-cylinder scattering

between thevl andN waves is absent and that the structuret0 compact fo'fms’ but in using thematrix for the scattering
from a collection of scatterers, the phase shifts are not very
factors forM and N are the same as the scalar structure

factor. The off-diagonal structure factby,, describes how usefgl concepts, because after the diagonglization oit the
much of theN wave is contained when thid-type wave masm_(, the structur_e factoF 44/, diagonal with respect to
scattered out of the rods other than theylinder, is seen BB’ IS nohlong?r q!agonal. f th i the f

from ther cylinder. Since théVl wave has vanishing com- Using the definitior{Eq. (3.47] of the t matrix, the for-

onent[Eq. (2.4)], it continues to be M wave irespective mulas for the monolayer scattering given in Sec. Ill A are
P g. (.2, . o P rewritten into more familiar forms. Equatiaf3.29, for ex-
of the observation point. This is the reason why,y

ample, is transformed to
= FN M= O .

" 2|
B. t matrix and scattering from a single cylinder > (t D (1 +tD) g gra == — ;a’ﬁo- (3.50
. . B,B”
Before going on to the layer-doubling method, we com- . L .
ment on the light scattering from a single cylinffeand ~ Using this, the quantitp,,, e® = of Eq. (3.3) transforms

introduce thet matrix. into
The formulas given in Sec. Il A for the monolayer of - , ,
scatterers cover the light scattering from a single dielectric Dﬁﬁ,wg <=[(I +tF)‘1t]ﬁB,aﬁ 0 (3.5

rod, if we drop the terms involving the structure fackarTo . . . .
P g | being the unit matrix ) gz 1+ = 8 9. In this way all

obtain the field expression outside the cylinder, we solve Eq_ .
P y qthe formulas of the monolayer scattering may be reexpressed

I< . . .
(.3'29) for aﬁ. a.nd substitute It Into Eq(3.3D. '_I'he_.\n W€ " in terms of thet matrix of the one-cylinder scattering and the
find the outside field expressed in terms of the initial ampll—Structure factor. The inverse matrix-4tI)~%, when ex-

0.
tude a”®; panded as a power series with respediltpimplies that the
, monolayer scattering is nothing but the infinite sequence of
EZ(N=E%n -2 X €;HN=p)tgp liral . the scattering by individual cylinders followed by the propa-
BB" 1’ gation between the cylinders.
(3.49
The second term describing the outgoing scattered wave C. Layer-doubling method
has thet matrix defined by It was shown that the iteration method of taking into
account the successive scatterings from the stacking layers
o, = D7 o o[ (D)"Y oo, 3.4 breaks down in the frequency range of the heavy photons.
Fp B":ZM,N porl (D7) lprs (3.49 The layer-doubling method, which treats the scattering be-

. . . : tween the two neighboring layers exactly, remedies this.
the.second matrl'x being tlﬁg blo>ck of the |<nverse of the Since the detailed description of it is found in the articles for
ehtlre ZXZ_ matrix. The matrice$),,, and [_)BB’ are thh low-energy electron diffractionfLEED) of Pendry’ and
diagonal with respect tb[Eqg. (3.44] and so is the matrix.  Tong?® and the works on photonic bands of Perfdgnd of
However, Eq(3.44) also shows that, whel,,#0, the partial - Ohtaka and TanaBewe are giving without derivation a se-
waves M,l) and (N,I) mix due to the presence of the off- rjes of necessary formulas, after giving a brief review of its
diagonal term®y,,, andDy;y . Therefore, in the description content.

of the light scattering from a cylinder we need in general  Now let us consider a plane-wave light incident upon the

four t matricestym , tun, etc. Setting system composed of two parallel layérsandB (the layerA
<)y ~(<) is aboveB). The waves outside the layers, propagating or
[Dggr Tur=dudgg (1), (348  evanescent, may be expressed by the plane waves with wave
we find vectork, . Assume ek;, wave of unit amplitude propagating
upwards between the two layers. When it passes through
um(D - dan(h) layer A, a set of transmitted waves of wave vecthfs, with
[tgp i = ( diu(D dﬁN(')) varioush, come out with amplitudd .’ . At the same time

_ _ . layerA gives rise to the diffracted waves of wave vectors
" mm(D) - dun(h) (349  Dack toB with amplitudesR, ., . At layer B these reflected
dﬁM(U dﬁN(U h ) waves are diffracted, each giving birth to a set of transmitted
BB and reflected waves with the additional factars~ and
In the light scattering from a sphere, th®1(l) and (N,I) R*~, respectively. The infinite repetition of this process oc-
partial waves do not mi&?2° leading to the two phase shifts curs and the transmission coefficient in the upward direction
oM and 8. In the cylindrical case of nonzellg,, the two-  for the combined system @B is obtained by the sum of the
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.contributions. of all tuﬁrns:. Itiis indeed incqrporated by the Dum D I'ym O ov Dmn
inverse matri{| —R* "R~ "]%, where the indexh for the - - - -

wave vector and for the polarization component label the Dum - D 0 Iun/\Dym  Dyn
scattering matrices andis the unit matrixl = ( 8+ Spnr). A M<

minor complication occurs due to the phase difference be- % @ )=O (3.55
tween the two layers, which is incorporated by redefining the aN= ' '

scattering data with a phase factor. Once the scattering data . . .
for the combined two layers are obtained, they are used t§/n€re we have used E(8.49. This equation determines the
construct the data for the combined four layers. Titterun ~ Normal modes of the monolayer of 2D wave vectky k).

gives the transmission and reflection coefficients for the 2 1huS the eigenvalues are given by the zeros of the secular
layers. determinant formed from the coefficierithey are, however,

Setting as subscripta andB for the scattering matrices COMPlex in the monolayer case because of the radiation
of the two layers(we do not need them when the two are damping, as in the Mie resonance of a single-sphere).case

identica), the T and R matrices for the combined system, > >
FMM 0 DMM DMN
de +
0 Iy

calledC, is obtained as
Dim Dy
The eigenvectors®®~ determine the electric field of the
eigenmode through Ed3.20 in the inside region and the
outside field is determined through E&.31), with the inci-

< <
DMM DMN

< <
DNM DNN

T =Tg TA +Ts Ta "Ry Ry TAT

TR R

T 1-R Ry 14T/, dent fieldEEx(r) dropped. Namely,
T =Ta [1-Rg "RL 17175, ESN=23 X 0 I0p)af’= (357
B
Ro =Ry "+Tr RgT(1-Ri Rz ") T, for r inside ther cylinder and
~ o~ o~ ~ ~ A~ _ I7T . > B’<
RS =R, +T, 'R (1-Ry "Ry )5, EX(N==7%] 2 2 (HO-p)[Dgp Jiraf
(3.52 Ap I
with + 2 2 e I0-p)(TD7) gplurefs
BB LI
=+t i it ++ it t (3.58
T =exp *iky > T €x _|kh,-§ ,

for r outside.

) ) So far we have considered a monolayer system. To obtain
SET LE S pEF aF the secular equation for an infinite 3D array of cylinders, we
Ri —exp( *ikp 'Z)th’ ex;{ ilkh"z)' (353 note that, as shown at the end of Sec. Il B, E856) is

equivalent to the equation dlét-tI']=0 with the 2x2

Here the vectort=(t,,ty) is equal torg—ra, ra andrg  block matriced” [Eq.(3.28] andt [Eq. (3.47)] for the struc-
being the 2D vector for the center positions of theylinders  ture factor and thé matrix, respectively. We also mentioned
of the two layers. The cylinder may be chosen to be any that the inverse matrikl+tI'] "%, whose poles are given by
one of the rods of each layer. Note that the phase factors ithe zeros of Eq(3.56), describes a sequence of scattering in
Eq. (3.53 need to be added solely in the first run. In con-the lattice of cylinders. The combination of thenatrix with
structing the data for four layers, for example, the data obthe structure factor is a general form of the scattering, valid
tained in the first run are used as they are on the right-hangbr any collection of (nonoverlappiny scatterers, not re-

side of Eq.(3.52. stricted to the scattering from a monolay2How the scat-
terers are distributed is completely determined by the struc-
D. Secular equation for the band structure ture factor. See, e.g., E(8) of Felbacq and Maystre for the

. light scattering from a group of cylindefsand Eq.(2.13 of
In Sec. Il A we treated a single plane of arrayed rods.qpaka and Inoue for a group of sphefEhus an infinite
Bang calculatlo_n is carried out fc_)r the mﬂmtg array of rods 3p array of cylinders is treated by quite the same equations
but its form_ulatlon d_oes not require any addltlona}l task. .o appeared in the monolayer scattering, if only we take ac-
If there is no incident wave, the right-hand side of EQ.qnt of the change of lattice in the structure factor.
(3.29 is zero: The scalar structure factdr(k), . is now dependent upon
the 3D wave vectok of the Bloch wave. From it, the con-
< > r<_ version to the vector version is carried out through B8
% [D7+TD" Jgs = =0. @59 andwe find, just as in Eq3.45), that Ty (k) and Tyn(k)
are both equal to the scalar structure factor. The conclusion
Explicitly, is thus that the set of Eq63.55—(3.58 are all valid for the
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band calculation of an infinite 3D system, if we use an ap-directions. For the special case of a wave vector of vanishing
propriate scalar structure factor. k,, which we are examining here, the bands are classified
The remaining task is to give the expressionlgf for  into two groups. The one is composed of TE bands, having
the array of the cylindrical rods. For 3D lattices of atoms orthe eigenvectoE, ,(h) of Eq. (4.2) in thexy plane for allh.
spheres, the expressions are given by Kathaed Ham and  The eigenvectoH,, (h) is pointed in thez direction. The

Segalf® and have been widely used in electronic band-gther is the TM group witE, (h) in the z direction and
structure calculations and photonic bafids the present H, .(h) in the xy plane. '

problem the array of the parallel rods introduces a 1D peri- “\yg denote the bands of TE and TM characters by the
.Oqt'c't.y (il;]spgcmdgd 'T thletmon(')AlﬁKer Cﬁstehand ad%.D pt)_erloq- symbols Exy and Ez, respectively, the subscripty or z
ety In the band cajcuiation. ough the modimcation 15 standing for the polarization direction &, ((h). For the

straightforward, still, a lot of calculations are necessary t : o
arrivg at the final results. Thus the list of them seems u:efu Xy bands, th.EE meth_od deals with a2 x 2N matrix in the
and we give it in Appendixes B and C. secular equation, whlle thld method solvgs al X N. For
the Ez bands, the dimension is reversed in the two methods.
Hereafter we examine the band energieskier(0k,,0),
i.e., for the wave vector along tHe-X axis of the Brillouin
In this section we examine the convergence of the planezone. The band energies of the cylindrical-wave expansion
wave method of band calculation. This topic is examinedare obtained by solving Eq3.56), with Eqs.(3.45, (A14),
extensively by Haus and collaborators by seeing how theind(B1) taken into account. The calculation is made for the
plane-wave results change with increasing number of plangyree cases of - =2, ¢ =4, ands _ = 3.22. For the value of
waves’*** As these authors emphasized, a comparison wit3 2 see the comment given in Sec. V. These values are cho-
the exact band energies is essential, because the convergeres, arbitrarily as representatives of small, intermediate, and
was found to be very slow. _ . large dielectric constants. The radiaof the rod is taken to
There are two plane-wave calculation methods widely,e 0 3 times the lattice constahtFor all the cases examined
employed in the literature. Let us call théfrandH methods  pejow, the cylindrical-wave formalism is found to converge
following Haus and co-workers. The method is used t0 \yhen the partial waves df<6 are included. Thus the band
solve Maxwell's equation, energies thereof, referred to as exact band energies in what
2 _ follows, are obtained from the 2626 secular matrices.
VXV XEn (1) = 0%e(N)En (1) =0, 4.1 [Strictly speaking, theM and N blocks of Eq.(3.56 de-
using the plane-wave form of the Bloch wave of band indexcouple in the present case kj=0, so that theExy band

IV. CONVERGENCE OF PLANE-WAVE EXPANSION

n and wave vectok, energies are obtained from the>433 M block and theEz
band energies from the ¥313 N block.]
_ ; The band structure of the cylindrical-wave formalism is
E =2, Enp(h k+h)-r]. 4.2 . oo
nk(F) ; nk(exdik+h)-r] 4.2 given fork=(0k,,0) in Fig. 1 for the three values af. .

The horizontal axis is the wave numbley normalized by

Hefe k:(kx’k.y’kz) Is a 3D wave vector and i.s a .2D 2m/d, with the Brillouin-zone boundary X point) at k,
reciprocal lattice vector in they plane, with thez direction =0.5. The quantity in the vertical axis is the dimensionless

chosen parallel to the axis of rods. The secular equation qirequency normalized by2/d (c=1). In this scale, the dis-
.35 . y
the E method i$ persion relation of photons in free spaceZisk, . In (d) the

det[ (k+ )28 — (K+h): (k+h):18mn — w2ep 8| =0, band structure foe - =3.2° of the regionZ>1 is shown to
f¢ )70~ I )i1Om = @ e 9| give an image of how the band population becomes dense
(4.3)  with increasingZ and e_ . Several frequencies marked in

with ey, the h—h’ Fourier component of(r) andi the  Fig- 1 are the exact values to be cited below.

three Cartesian components=(1,2,3). Since If,i) labels Now let us see how the solutions of Edd.3) and (4.9
the rows and columns of the matrix, the dimension of thethange with increasiny. Figure 2 shows the typical results
secular matrix is 8% 3N, N being the number of the recip- ©f the E andH methods(a) for Exy and(b) for Ez bands of

The second is thed method for the magnetic field Values are marked in Fig(d). The filled (open circles are
H, (r), which satisfies Maxwell's equation the results of th& (H) method with the straight line show-

ing the exact value of Fig.(lh). The arrow marks the fre-
Vx{e Hr)VxH, (r)}—w?H,(r)=0. (44  quency range of- 1% of the exact value.

In Fig. 2@ we see that the values of the two methods
%onverge correctly to the exact value with increasMg
though the convergence is very slow. Two things are to be
noted: one is that the exact band energy is sandwiched by the
E andH methods. This is a feature observed in all the cases

With the Bloch magnetic-field expanded in the same way a:
above, the secular equation is obtainetf as

def(k+h)-(k+h")ep 8;— (k+h)jeq (k+h"),;

— w254y 8| =0, (4.5  examined in the present work. Thus one can conclude that
. . the exact band energies are generally estimated by the com-
with €, ., the Fourier component af(r) L. bined use of andH methods. The other is that the result of

For concreteness we consider the square lattice of rodhe H method is much worse than that of tle This is
with two basis vectors of the unit cell chosen in thandy  already remarked by the works of Haus and co-worRérs.
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FIG. 1. Band structure betwedhandX points[k=(0k,,0)] for three values of dielectric constast ; (a) for e.=2, (b) for e . =4,
and (c) and (d) for e .=10.24. The marked band energleskgtzo 3 are investigated in Figs. 2, 3, and 4 and referred to as exact band

energies.

Therefore, théd method, which treats thExy bands by the Exy bands. Since thE method works already quite well, we
scalar equation, does not profit. This second feature is nateed not rely upon thiel method forEz bands, which solves
always the case, however, as shown by some exceptions ba-secular matrix twice as large. This is why tHemethod
low. calculation is not made in Fig.(B).

In Fig. 2(b), we plot the result of th& method. A remark- We hereafter confine ourselves to tBay bands. Let us
ably good convergence is observed for e band. We next see the dependence on the magnitude_of Figure 3
confirmed that this feature is generally the case. The conclushows the convergence for the casesaf=2, the arrows
sion is thus that, roughly speaking, a comniérassures for marking in this case the range ¢f0.1% of the exact band
Ez bands an accuracy of one more significant figure than foenergy. One of the exact values shown by the straight lines is
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FIG. 2. Band energies of the andH methods va\; the panel

(a) for the Exy band andb) for the Ez bands, ofk,=0.3 ande - 1.500 (cl) T e 22k =0.3 i
=4. In (a) the filled (open circles show the result & method 1.408 L E<x barzd E
method. In (b) only the result of theE method is shown. The ) : H y A 1
straight lines show the exact band energies of Fig), Imarked 1.496 | ]

T

there aExy(a) andEz(b). The arrow shows the range ¢f1% of N b ]
the exact value. 1.494 ¢ ]
1.492 | E :

marked in Fig. {a). We see that in the case of the small ‘ L
dielectric constant of _=2, one can obtain wittN=1000 1'49010 100 1000
very good band energies lying within the error range of N

0.1%, in the whole range of0Z<<1.5. It is remarkable that

taking N= 1(90 already assures band energies_with the eIrorgys fore . =2 andk,=0.3.(a)—(c) treat the bands of relatively high
less than 1%. In parb) the H r.net.hod yields sl'lghtly better frequency. The straight lines show the exact band energies. The
results than theE method. This is an exceptional case aSeyact value ofa) is shown in Fig. a) asExy(a). The arrow shows

stated above. _ _ the range of the relative error of 0.1% above and below the exact
Figure 4 shows the case of the large dielectric constant qfgjye.

e.=3.2. (a) and (b) show the band energies @&<1 and

(c) and(d) those ofZ=1. (f) examines the band energy very = To make a detailed comparison of some data with the
near the zone boundary. The arrows show the error range @fand scheme in the frequency rargfe 1, precision with an
+1% above and below the exact band energy. By comparerror less than 0.1% is sometimes required. One of the ex-
ing with Figs. 2 and 3, we see that the larger the magnitudamples will be found in Sec. V, where we see the transmit-
of e is, the worse becomes the convergence. This feature aivity of light in relation to the band scheme. Generally
course reflects the enhanced localization of heavy photonspeaking, however, an error of 0.1% is too stringent. For
with increasing dielectric constant. We note that in order toexample, numerical searches for the possibility of a complete
obtain the precision with the error less than 1% in the rangéand gap have usually been carried out with respect to the
of 0<Z<1.5, we must seN=1000 for the case_=10. first or second gap’. In these cases, a sufficiently reliable
The number 1000 should be compared with the number 13;onclusion may be deduced from the band calculation with
stated above, of the dimension needed for the convergence tife errors on the order of, or even larger than, 1%. It is,
the cylindrical-wave calculation. We should say that it ishowever, important to note that a finite truncation of the
hardly possible for the plane-wave methods to yield the preplane-wave series fails to reproduce the precise profile of the
cision of three decimal places for the case:0f=10, except dielectric function near the surface of rods. When we speak
for the band energies @< 1. We also note that ife) theH about the field intensity set up near the surface of rods, there-
method behaves much better than thenethod. This case fore, we must be very careful in applying the plane-wave
provides another example, for claiming that in the plane-calculation even if it works satisfactorily as regards the band
wave calculation we had better use both handH meth-  energies.

ods, because they work complementarily (#hwe can con- To summarize, as long as the bands of the wave vector
firm that the zone boundary has no special effect on thevith k,=0 and the dielectric rods with_=2 are concerned,
convergence. the E method assures the band scheme within the error of

FIG. 3. Convergence of the band energies ofEhendH meth-
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FIG. 4. Convergence of the andH methods for the case ef. =10.24. The arrow shows the rangeofL% of each of the exact values
shown by the straight lines. The exact valuesan-(d) are marked in Fig. (t) asExy(a)-Exy(d), respectively(e) examines the state near
the X point.

1% in the range 60Z2<1.5, if we takeN=100. In the case a step change. The Fourier transform in thenethod is thus
of e .=10, we needN=1000 to obtain the same accuracy in more slowly convergent than the method.
the range of 82Z<1.5, i.e., we must treat a 208@000
secular matrix in th&e method. For the case ef_=2, the
numberN=1000 of the plane waves assures very good re-
sults of the relative error of 0.1% throughout the frequency
rangeZ<1.5. Precision with an error of 0.1% is very hard to  We go on to present some of the numerical applications of
obtain in the plane-wave method in the case 010, un-  our formalism. Since the band calculation involving a very
lessZ is much less than 1.0. In the higher-frequency range ofargel and for the wave vectds with k,# 0 is planned to be
Z>1, the bands are more and more densely populated agven in the following papers, we restrict ourselves in this
inferred from Fig. 1d). The precision of three decimal places paper to the case &,=0 and to the modest magnitudes of
of the band energies is crucial to arrive at a correct bandhe value ofl, as examined in Sec. IV. As the band and
ordering, because the magnitude of the error depends aransmittivity calculations fok,=0 are carried out and dis-
bands. cussed by many authot$;*8=*2our results will be given

For the band calculation for the wave vectgr=0, the  without a detailed discussion. But we choose the topic that
dimension of the matrices is three timdsin both E andH needs the precision of data beyond the reach of the plane-
methods, so that the case of a large dielectric constant is veryave method.
time consuming. It is to be noted that even for such general The system we examine here is the same as that of Sec.
k the dimension of the cylindrical-wave secular matrix is still IV. In the band calculation a square lattice of cylinders of
26X 26 for the bands witlz<1.5. e.=3.2 is considered. The value 3.2 is twice the index of

Finally, the general aspect of ti¢ method being worse refraction of a polystyrene sphere in the visible range. The
than theE method results from the derivative involved in the cylinder axis is in thez direction and two basis vectors of
first VX of Eq. (4.4), which operates on &(r), producing a unit cell are in thex andy directions. When applying the
8 function singularity on the surface of rods, whei@) has layer doubling method, thg axis will be chosen to be the

V. EXAMPLES OF BAND AND TRANSMITTIVITY
CALCULATIONS
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thickness direction of the stacking 2D planes of rods. We
take the radiusa of the cylinder to be 08, d being the
square size. We show the results in terms of the dimension-
less frequency and wave numbek introduced in Sec. IV.

If we wish to obtain fore - =3.2° the reliable data within
an error of 0.1%, the practical frequency range of the
method ofN=1000 must be limited to the range<1.0, as
shown in Sec. IV. Also, the transmittivity calculation by su-
perposing the plane waves is limited to a small number
A =10 of the stacking plané$.The cylindrical-wave results
given below are for the frequency range<@<2.0 andA
=32. Actually, we calculated transmittivity for the system
with A =256, but the results do not differ very much from
the result shown below except for the interference fringes. In
the cylindrical-wave calculation the convergence is assured
if we include |I|<7 for 0<Z<2.0. Also, in the layer-
doubling method, about 100 reciprocal lattice points are

enough for the matriceR or T, introduced in Eq(3.50).
Figure 5 shows the transmission coefficient of a plane-
wave light polarized in the direction. The horizontal axis
showsT(32), the transmittivity|[ T4 1,42 for A=32, and
the vertical axis is the frequenc¥. In the region of stop
bands,T(32) is zero and the incident light is totally reflected
at the entrance surface. To see the relation between the trans- (b)
mittivity and the band structure, we superimpose in Fig. 5
the results of Figs. (&) and Xd), as a function ok, shown in
the upper horizontal axiga) is for the region 8<Z<1.0 and
(b) for 1.0<Z<2.0. Due to the translational invariance in the
xz plane, the bands excited inside by the external light of
normal incidence have a wave vectorlgi=k,=0. So that
the relevant bands to consider here in relation to the trans-
mittivity are only those ofk=(0k,,0). The value ok, of
the excited wave may be determined by cutting the disper-
sion curves by the horizontal line at the excitation frequency.
The presence of several stop bands and the clear interfer-
ence fringes between them are the two striking features of
the transmittivity. Although the\ dependence of (A) is
not given here, one of the interference fringes is suppressed
markedly with increasing\ and finally develops to a com-
plete stop band. For the complete formation the lowest stop
band need#\ =16, but mostlyA =4 or 8 is already enough.
The oscillation inZ between two neighboring stop bands
becomes gradually rapid with\, reflecting the phase
exp(Aky), k, being the wave-vector component of the ex-
cited wave. AtA =32, a detailed comparison of the positions
of the stop bands with the band scheme for « becomes
possible. In the range &< 1, where the band population is
relatively sparse, we can observe a clear correspondence be-
tween the stop bands and band edges. The bands sandwiched
between the stop bands are those of heavy photons with
small dispersion relation of the type= a+Bk2. The clear FIG. 5. Transmittivity of az-polarized light of normal incidence
interference fringes oT(32) are obviously a proof for the asa function of frequency. The vertical axis shows the frequ&ncy
good coherence of the heavy photons, in spite of their finit@nd the horizontal axis shows the transmittivity from the system
“mass” « and very slow group velocity attributable to very composed of 32 stacking planes of rods. The solid curve shows the
small 8. In (b), the comparison betwe€f(32) and the band trans_mlttlwty as a function oZ, in (a) for the range of 82Z2<1.0
structure is rather difficult because of the enhanced densit§nd in (b) for 1.0<Z<2.0. The parameters a=0.3d and e
of bands. =3.2. All the calculgted photonic bandgxy as well askEz, Qf
The transmittivity of thex-polarized light presents analo- <= (0Ky,0) are superimposed by the dotted curves as functions of
gous features, though the position of the stop bands has notﬁld(LIIDIDer horizontal axjs They are reproduced from Figsicl and
ing to do with that of thez-polarized light shown in Fig. 5. @.

0 0.5 1
7(32)



2564 KAZUO OHTAKA, TSUYOSHI UETA, AND KATSUKI AMEMIYA 57

To examine the relation betwedr{32) and the band struc- (a) E|| 2
ture in more detail in the frequency region £A<2.0, we

give in Fig. 6 an enlarged figure for the features in the range 0
1.4<Z<1.5, (@ for the z-polarized and(b) for the T
x-polarized incident light. In the present casekgf0, the 1.54 K
M and N waves are decoupled. The bands shown by the |

dotted curves irfa) are those of th& N block of the secular
equation, which are polarized in thedirection and those 1.52
from theMM in (b) (Fig. 5 involves all the bands
One notable feature is that there are optical inactive pho- 15
tonic bands. Within, e.g., the lowest stop bands of both pan-
els, we can see the presence of one band that leaves no trace
in the transmittivity. The origin is discussed group theoreti- 1.48
cally by Stefanou, Karathanos, and ModirffésRobertson
et al,*® and Sakod&! For the group theory of photonic 146 -
bands, see Ref. 10. We also note that the transmittivity pre- )
sents a sharp change, wherever an optical-active band termi- !
nates. This is the case not only at the edge of every stop band 1.44 H
but also within the range af where the transmission coef-
ficient is finite. See in Fig. 6 the good correspondence at the
positions of the band terminations marked by the arrows. 1.42
Besides, the interference fringes reflect the curvature of the
dispersion curve of an excited band in that the flatter it is, the 1.4
shorter becomes the periodicity of the oscillationZinThe
transmission of a light, therefore, monitors faithfully the
band structure. Finally, Fig. 6 shows that the data needed to
have the accuracy of three decimal places to have such a (b)
good correspondence. Also, we have calculated the band en-
ergies of about 80 bands, to be compared to 10 or 15 bands
calculated in the plane-wave method in the literature. .
In summary, cylindrical waves are indeed very powerful 1.54 H
in the numerical calculation. The results presented above are N,
gualitatively quite similar to those of arrayed dielectric '
sphere$11 1.52

VI. SUMMARY L5

In the present paper we give the formulation of the band-
structure and transmittivity calculations for the periodic array N
of dielectric cylinders using the cylindrical waves as basis
functions. We have emphasized the role of the completeness 1.46
relation of the cylindrical waves, which enabled us to arrive
at the electromagnetic version of the band calculation almost
straightforwardly. The fast convergence is assured by the use 1.44
of the t matrix for the cylindrical partial waves and by the
Ewald method in calculating the structure factor. We give 1.42
the detailed expression for them both. Light transmission and '
reflection are treated by the layer-doubling method based
upon the scattering data of the monolayer of dielectric rods. 14 L—
The formulation enables us to obtain very accurate data. 0 0.5
We showed this in two ways: the check of the convergence 1(32)
of the plane-wave band calculations and the demonstration
of a very good correspondence between the transmittivity
curve and band structure, both obtained by the cylindrical- g 6. Transmittivity in the narrow range of k4 <1.55, for
wave calculation. . _ the z-polarized light in(a) andx-polarized light in(b). The trans-
Although we have not examined the eigenvectors obmitivity of the horizontal axis is shown by the solid curve as a
tained by the cylindrical-wave formulation, the experience offunction of Z of the vertical axis. The bands superimposedairby
the arrayed spherical dielectrics show that they will certainlythe dotted curves are ttz bands obtained from thidN block of
be of very high quality. This is one of the essential properties€q. (3.56) and those inb) are theExy bands obtained from the
required for the eigenvectors to yield an accurate field intenMM block. At each position of the arrow, the transmittivity curve
sity near and inside the cylinders. Since the step change ¢fas a clear trace of the band termination.

1.48

T
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the dielectric property at the surface of the rods gives rise td’he parametew is an important one. It divides the integral
an unwieldy Gibbs phenomena in the plane-wave calculasver 0<t<« into two att=w. It may be chosen to be
tion, the cylindrical-wave formulation will be helpful in arbitrary and provides a good numerical check in the sense
many ways other than the convergence of the band calculahat each o8 (k=1,2,3), defined below, depends critically
tion. on w but the sum does not. When the two integrals over 0
<t<w are combined, the integrand of the sum is seen peri-
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thus resolved into a Fourier series. We find
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APPENDIX A: STRUCTURE FACTOR - / |2
FOR THE MONOLAYER OF RODS + > ei<kx+h>><f e1/2( yhzt*TJrl’Zdt
h w
The essence of the Ewald method, which assures the fast 1h2<0

convergence of the lattice sum, is to divide the sum into two
parts, and the difficult sum over the remote lattice points is
carried out in the reciprocal lattice space. The concept igvith
explained in detail in the book by Born and Hudfigrhe
formula listed below for the array of cylindrical rods are R=(xy) (AS)
simply the modifications of those derived by Kambe for the
spherical cas&?

We start from the plane-wave expansion of the Green'’s Xp=nd. (AB)
function of the monolayer case given by E§.32):

(Ad)

andxn;( the center of theath rod on thex axis given by

On the other hand, the original definition of E(R.6)
leads to

©(p,p)+9V(p,p')= E m it (=X )+ iyyly—y'|

g<0>+g<1>:f dp,dp, exdip-(p—p')]

2 |y y| lle(l) (277)2 )\2>_p>2<_p)2/
- 2|d Yh —-1/2

+Z fdpxdpy eX[in (p—p _Xn)]
(2m)? —pi—py

Ky +h)(x=x")

X (ynly=y'De"
(A1) i
=— —H® —_
with p—p’=(x—x',y—y’'). In the second line the definition 40 (A=lp=p')
of the Hankel function of the first kind is used. We take
Imy,>0, when (y,)?<0. £ e f dp,dpy exp[lp (p—p' —Xn)]

Using the integral transform for the Hankel function, we (277)2 —p2-p2
can rewrite Eq(Al) as Y
i i<
LTS ) — — —yp
g(o)(plp')—f—g(l)(p’p’) 4HO ()\>|p p |) 4|=2w JI()\>|p p |)
12 o _ ,
= i Z) 2 ei(kx+h)xi J'W+f ) xellte=p))g, (A7)
2id\ 2 h Tl
7h2>0 ° " The constang of the second term is thus related to Green’s
function via
Xel/Z[’yhztfﬁ)tflﬁdt_’_ D ei(kx+h)xi ) )
2 = 2770
<0 i((\=|p—p'| 2m | 4
JW+ jw el/z(tht‘ﬁ\Jt‘”zdt (A2) —ilo(p—p")
0 w ' X()\>|p_P’|) € e, (A8)

Sinces is independent op— p’, we may derive it by taking
where the limit p—p’'—0. The structure factoF;,(ky,k,) is re-
lated toS,. Comparing Eq(3.7) with the second term of Eq.
X=x—x', Y=y-y'. (A3) (A7), we find
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2 I(nslp—p e e
I

:E E ‘J|()\>p)ei|0(p)r||rJ|r()\>p,)e_i|0(P’)_
[T

(A9)

Here we use the following identity on the left-hand side:

J(\=|p—p'])

=2 Ji(A=p)din(N=p)e! M N s |,

| /I/I
(A10)
We then arrive at

Ly, (ke k) =S i, (A11)

Calculation ofS; is due to Eq(A8) with Eq. (A4) substituted
for the Green’s function. The term of the sum over the re-
ciprocal lattice point yields Sl(l) , that of the real-space sum

with n#0 givesS? and the term=0 leads toS*):

S=sY+s?+g?, (A12)
or
Fll’:S(];)l’+SI(E)|’+ (:i)|r- (A13)
It then holds that
i[2)\12 [172] ko+h\!
V=——f=] i'n .
SI( d(ﬂ' ; |§0 )\>
w(_1)—t[koh 2"(1)"
(=211l 2 8
Ze*ﬂ'i I"—(1/2) 1 T 2 )
v 7h r|Z—1 e h '
2 2 2
(Al14)

where[1/2] is the Gauss symbol and the last function is the

incompletey function, discussed late&? is defined by

i X a2
2)_ _(_1\l_ I a—ikyX >An WAZ /2
§P=-(-1'-3"e ”_ZHO
XU~ (Aixﬁmu)u—kldu
i LX)
—( — 1+1_ ! ikoX, >n
_( 1) 772 e n( 2 ) II
with |, considered below. The remainirgy® is

[ waZ o Z 1 (wai\k
(3): T > = >
S (5|0|: 1 77{ ’)/+|n 2 +k:1 k'( 2 ) ]:|

(A15)

k

(A16)

with the Euler constany=0.5772. ...
The incompletey function
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I'(a,x)= J e 2 1dt (A17)
X
is obtained from the recursion relation
1
I'(a,x)= 5[F(a+ 1x)—x% %] (A18)
with the start
VX 2
\/;—ZJ e “du for x=0,
1 0
F(z,x) = (A19)

Ja+2i f\sixe‘uzdu for x<0,
0
for which we have employed in the numerical application the
formula (7.1.26 of Abramovitz and StegufY.
The functionl, of Eq. (A15) is defined by

IIZijilzeuf(Aixﬁmu)uflfldu_ (A20)
0
It satisfies
A=Xp 2 w)\2> -
> L=l =11+ 5
I D e
X ex f—% (A21)
4l 222
7
Introducing
p=\?x%/4,
q=w\?%2, (A22)
we find
=3, (pk/k!>r(—k,9),
k=0 q
1=, (P k)T —k+1,§ . (A23)
k=0

The incompletey functions therein are obtained through the
recursion formuld Eq. (A18)] with

I'(0.2)=E4(2),

I'1z)=e = (A24)

For E,(z) we have used the formulag.1.53 and
(5.1.56 of the book cited above.

If the parametew is chosen to be large, the real-space
sum overn of S{? [Eq. (A15)] converges slowly. Con-
versely, ifw is small, the sum oveln of S [Eq. (A14)] is
slowly convergent. The value/d>~1 was chosen in our
calculation, after checking that the sum3$t), S?), ands®
remains constant irrespective of the choicevoin the range
0.2<w/d?<10.
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Finally the symmetry relation exists between positive and APPENDIX C: STRUCTURE FACTOR FOR A COMPLEX
negativel . We find LATTICE OF RODS

s =(-1)'s (A25) The formulas for a complex lattice of parallel rods whose
- ' unit cell contain several dielectric rods are given here. In the
This relation, when used in E¢A13), reduces greatly the secular equation given by E(.56), the rows and columns

numerical task. of the matrices are now labelgg] |, ands, with s specifying
the number of the rods in the unit cell. Lef be the 2D
APPENDIX B: STRUCTURE EACTOR EOR THE BAND position of the center of theth rod in thexy plane. Then
CALCULATION

[D=)(s8) Ty =07 (8) 81/ s,

The structure factor of the infinite array of rods is ob-
tained similarly. Let 2D vectoR, be the center of the rod [T'(ss) ]y =Ty(ss). (CY
in the Xy plane, andch be a 2D reciprocal Iat'tice _vegtor for For each pair 5), Eq. (3.45 still holds. The quantity
the lattice ofR,,. The scalar structure factor is still given by d|<(>)(s) is obtained from Eq(3.23 by usinga ands._ of

Eq.(A13). Of S(l)f S(Z)_,_andS(3), S@is given by_ Eq(A16). the sth rod. For the scalar structure factor, H#13) is
The others are simplified greatly. To summarize, changed to '

1

1):4'|+1 o
§-ai 3

Uc

[k, +hl

|
- eW\ % 2g =il ok, +h) I (s8)=S",(s8)+5%,(ss)+5%,(s5). (C2
>

The threeS®)’s are obtained as

1 |

Sl(l)(ss’)=4i'+1; —

Uc

exp{—(kﬁrh)zg}

A2 —(k,+h)?

ko +hl

N2 1211 6(k, +h)
A~

eW

w
ex;{ —(k, +h25

2)_ i</ (A|RqlY! . —il6(Ry,)
S ——;2 5| exlik,-Ry) e n

X1 (x5—|Rl?),

exdi(k, +h)-reg],
Nk e Ok ry]

, [ " )\>|R -r ’| ! .
i wAZZ 1 wad\M SPss)=- % ( P ) eXpUIkL Ry
> >
S¥=5 —1——[7+|n + —( )—H .
0 m 2 =kt 2 ok - xe 1R~ Tss)] (= Ry = Tsg|?),
. 2
In S, the a;gument ofx? of I, [Eq. (A20)] must be S(s8)= 8ex 81 o b y+InW)\>
changed tdR,|*. The two angles in EqB1) are defined by ' ™ 2
e —tan Mk + + Zo1(waZ\k
H(ki h) tan [(ky hy)/(kx hx)]v + 2 il e 1 (C3)
ELkll 2 )k
0(R,)=tan” l[yn IXq]. (B2) .
with
The choice ofw/d?=1.0 was found practical.
The symmetry oS is found to be lsg=Is—Ig (C4
sH=—[s¥]* @3
for k=1,2. > fors=s,

Finally, there occurs a situation in the band calculation, w ) n#0 c5
wherex2 <0. This can happen because, for a band energy of Z N ) (CH
k with a positivex2, Egs.(3.16 and(3.17) yield n;a" fors#s'.

N2=(\2+K2) /e —Kk? (B4)  In S the replacement of the argumentlinmust be made

) . ) in Eqg. (A20). The symmetry between the positive and nega-
and the right-hand side can be negative for a large In e | turns out to be K=1,2

this case\~ in Eq. (B1) must be changed everywhere by

eI\~ [in Egs.(3.23, too, this replacement is necessary SK(sg)=—[SM(s's)]*, (C6)
The logarithm ofS(®, for example, then becomes complex 5

with an imaginary part of-i. The symmetry in this situa- WhenA=>0 and

tionis (k=12 sH(ss)=—(~1)[S(s'9T*, 7
sK=—(-1'[s1*. (B5)  whenr2<0.
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