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Path-integral Monte Carlo calculation of the kinetic energy of condensed lithium
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We report path-integral Monte Carlo calculations of the kinetic energy of condensed lithium for several
temperatures in both the solid and liquid phases. The excess kinetic energy of lithium decreases from about
10.4% of the classical value at 300 K to 3.2% at 520 K indicating a very slow decay with temperature. A
Wigner-Kirkwood perturbation treatment of quantum effects to offegives a satisfactory agreement with
the path-integral result$S0163-182@8)06201-9

[. INTRODUCTION tainly expected but, so far, they have not been quantified in a
rigorous manner. Most of the theoretical and experimental
The momentum distribution of atoms in condensed matteinvestigations are near the melting temperatiitgs=453 K,
can be directly measured by neutron Compton scattering. Where the thermal wavelength= (27%2/mksT) "2 is sig-
has been determined for a variety of systems, includingnificantly smaller than the average interparticle distance.
quantum solids and liquids formed frofHe and“He (Ref. ~ Theoretical approaches rely on classical simulations and the
1) and condensed noble gagesin particular, neon. Most of quantum effects are believed to be properly accounted for in
the early work has been confined to liquid helium for its@ simple perturbative approach in powersiof’
fundamental importance in connection to the theory of Bose Since the kinetic energy gives a clear signature of the
condensation and Fermi liquids and because, due to the ligislassical-quantum nature of a system, we performed PIMC
mass and weak interactions, it is possible to probe its mocalculations of the kinetic energy diLi modeled as a col-
mentum distribution by thermal neutrons. With epithermallection of atoms interacting through a pairwise potential. We
neutrons, the momentum distribution can now be determinegpanned a range of temperature around the melting point
for a larger number of materials. Recently, atomic Comptorfrom T=300 K to T=520 K. The excess kinetic energy,
profiles of condensed Li, Be, B, C, and Al have also beerdefined as the difference of the kinetic enerdy, and the
measured. classical valuey=3/2T, decreases from 10.42% of the
The momentum distribution for a classical system is ofclassical value at 300 K to 3.19% at 520 K. Therefore, the
the Maxwell-Boltzmann form, an isotropic Gaussia(p) kinetic energy still differs from its classical value at tempera-
=(3/2m)%?p, 2 exp{—3(plpg)?  with  Zpy=(3mkgT)¥2  ture as high as 520 K confirming the slow decaying of the
wherem is the atomic mass ankk Boltzmann's constant. €Xcess kinetic energy with temperat8ran inclusion of the
Quantum effects can give deviations from the Gaussiatgading quantum effects through an expansion of the kinetic
form. The momentum distribution shows distinct features forenergy in powers of gives a satisfactory agreement with the
a system in the classical regime, an anharmonic crystal, BIMC results.
superfluid, or a Fermi liquid. In Sec. Il, we give a brief outline of the PIMC method. In
Condensed helium can show significant quantum behaviopec. lll, we describe the interatomic potential chosen in our
even up to room temperature, particularly at highcalculations. In Sec. IV, we present our results and a com-
pressureé? The transition to a classical behavior progress-parison with the values obtained from a perturbative treat-
ing through the noble gasses has been studied by neutrdRent of quantum effects.
Compton scatterinf® and path-integral Monte Carlo
(PIMC) calculationé® by analyzing the second moment of Il. METHOD
the momentum distribution, the kinetic enerijy Lithium is ) )
the next obvious candidate. It has been recently investigated |he path-integral Monte Carlo method has been described
by neutron Compton scattering up to room temperdtarel I d_eta|l elsewheré’ Therefore, we will only give a.t.)nef
experiments at higher temperatures are now in prodPess.OUt“ne of the mgthod and present the aspects specific to the
There are several theoretical studies of lithium near the melfresent calculation. _ _
ing point within classical molecular dynamtés**and recent Let us consider a system &f particles described by a
experimental investigation through neutron inelasticHamiltonian’. If the system is in thermodynamic equilib-
scattering® and high-resolution x-ray deep inelastic UM at a temperaturd, the thermodynamic average of a
scattering’’ Lithium is representative of the class of simple Physical observabl® can be expressed as
metal$® and is a good test case for different theoretical ap- .
proaches to liquid-state dynamits. ( >:de(R|(9e IR) @
Quantum effects in a system as light as lithium are cer- JdR(R|e”#¥|R)
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wherekgT=1/8 and the configuratiolR indicates the positions of thW particles. If the density matrix is factorized as
e PM=[exp(—7H) ™ with a time stepr=8/M, the expectation valugEq. (1)] can be rewritten as

(0= JdR dRy---dRy 1(R|Oe” " |Ry)p(Ry,Rp,7)  p(Ry —1,R,7)
de de."dRM*lp(R!Rl!T)p(Rl!R21T).'.p(RM*llRyT)

@

where we adopted a position-space representation of the den- ll. SYSTEM

sity matrix: . .
y We study’Li for a range of temperatures around melting.

p(RR',7)=(Rle"™R"). 3) The s_ystem is modeled as a co'llection pf lithium at.oms'in-
teracting through an effective pair potential and confined in a
The evaluation of the integrdEq. (2)] is performed by a box with periodic boundary conditions.
generalization of the Metropolis Monte Carlo method: paths Although liquid lithium can be characterized, under suit-
starting from different configurationfR} are sampled ac- able conditions, by a predominantly two-body central inter-
cording to a probability distribution proportional to the prod- action, it should really be considered as a two-component
uct p(R,R1, 7 p(R1,R,,7) - p(Ry_1,R,7) (if we ignore  mixture of interacting electrons and ions. It is, however, pos-
effects of quantum statisticsA path originates and termi- sible to regard lithium as a quasi-one-component liquid in
nates at the same configuration afiér-1 steps. The quan- which the ions move in an effective potential established by
tity (©) is obtained as the average over the paths of the ratithe electron ga¥ The electron-ion interaction, described by
(R|0Oe”™|R)/p(R,Ry,7). a pseudopotential, is weak and can be considered as perturb-
For small enough time step (larger temperatupeit is  ing the electron gas treated as uniform to zeroth order.
possible to obtain a sufficiently accurate approximation forWithin perturbation theory and linear response theory, it is
the density matrix. However, for the calculation to be effi- possible to calculate the energy of the system of pseudoions
cient, it is desirable to minimize the numblker of slices. A and electrons for a given configuration of the ions. The en-
good compromise between accuracy and number of slices &rgy acts as a potential energy for the ions alone and, to
achieved by using the pair density matrix, second-order perturbation theory, the effective interatomic
potential is a pair potential.
, , , If v,(q) is the Fourier transform of the local electron-ion
p(RR",7)~p°(RR ’T)L[j exg —u(rij,rij,nl, (4) pseudgséotential, the resulting effective pair interaction be-
tween the ionsyY(r), is the Fourier transform o¥(q):

2
], (6)

whereZ, is the valence charge of the pseudoion &(d)
the dielectric function. Although a nonlocal pseudopotential
could be employed, in the present work, we restrict ourselves
to local pseudopotentials.

We consider the simple Ashcroft empty-core

where p°(R,R’,7) is the free-particle density matrix and
u(ry; ,r{;,7) is defined to be exact for a pair of particleg. _ v 1 q

and r; ]are the distances between particleand j in the V=~ q? {1+(e(q) _1>[4wzvvp5(q)
configurationR andR’, respectively. This density matrix is
much more accurate than the commonly used primitive a
proximation, u(r;,ri;,7)=72[V(rj)+V(r{;)], where
V(r) is the interparticle potential. The effect of particle sta-
tistics can be included in the density matrix but, for our

2 2

system at the temperatures of interest, such an effect is neg-S eudopotential:
ligible and is not considered here. '

In addition to the use of an accurate density maftkx. 0 (r<Ry)
(4)], we also use the virial estimator for the kinetic energy vpdr)= (7)
whose variance is four orders of magnitude smaller than the —Z,Ir (r=Ry),
variance of the thermodynamic estimator, yielding a fastyhose Fourier transform is given by
convergence of the calculatih.If we define the pair
density matrix [Eq. (4)] as AnZ

Y mar{Ea. @) pd @)=~ o7 CORy). ®

pO(RiflvRi ,’T)eXH:_U(Ri,l,Ri !T)]
o i We usedZ,=1 andR;=1.44 a.u., which was fitted in Ref.
=p (Ri_1,Ri,n)exp(—U'), 14 to reproduce the height of the main peak of the experi-

mental structure factor.

To completely specify the form of the effective inter-
3N 1 atomic potential, we need to choose the local field factor
v= <m— M(RM“ —-R)(Ri+1—Ry) G(q) entering in the dielectric functios(q):

the virial estimator for the kinetic energy is given by

) | R e(q)=1— (4% xo(a)/[ 1+ (47 G2 G(q) xo(q) ],
+2—TVi(U'l+U')Ai+__V(Ri)>’ ®)

dr
where xo(q) is the Lindhard response function. A compari-

wherex=#2/2m andA;= E}\":_,lMH(Ri— Ri+j)- son of several approximaté(q) with an accurate local field
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FIG. 1. Effective interatomic potentials fdiLi at T=470 K and number density=0.5134 g/cri. The full curve is obtained from the
empty-core potentialR,=1.44 a.u.) and the dashed curve from the NPA potefief. 25.

factor determined by quantum Monte Carlo calculations isstructure factor is better reproduced by simulations using a
given in Ref. 22. The corresponding interatomic potentialgpotential derived from the NPA pseudoion.

constructed for sodium starting from an empty-core pseudo- In Fig. 1, we plot the lithium interatomic potential ob-
potential are shown in Ref. 23. The Ichimaru-Utsumi exprestained from the empty-core and the NPA electron-ion
sion of the local field factdf yields a potential that, in the potentiaf® at a number densityp=0.5134 g/cri (T
repulsive part, is quite close to the one obtained from the=470 K). Note that both potentials are density dependent,
accurateG(q). Since the predominant effect of the potential the empty-core potential through the dielectric function and
on the kinetic energy is given by its repulsive parie de- the NPA potential through the electron-ion pseudopotential.
cided to adopt the Ichimaru-Utsumi expression for the localSince the form of the two interatomic potentials is quite dif-
field factor. This choice also allows us to be consistent withferent (with a change of about 10% in the core radjuse

classical molecular-dynamics simulations of liquid lithium evaluated the kinetic energy of the system using both poten-
already existing in the literaturé. tials within PIMC.

The performance of the interatomic potential obtained
from the empty-core pseudoiofEgs. (6)—(8)] has been
throughly tested within classical molecular dynamics. Struc-
tural and thermodynamic properties of liquid lithium are well  We perform PIMC simulations of Li in the solid and
reproduced by this potential. Comparable results are ob- liquid phases betweeli=300 K andT=520 K. The tem-
tained using potentials derived from the local neutralperatures and densities we considered are listed in Table I.
pseudoatort? (NPA) or a nonlocal pseudopotentidiOn the  For temperatures up to 450 K, we used the equilibrium den-
other hand, recent x-ray high-resolution inelastic-scatteringities of “Li at atmospheric pressufé.For temperatures
experimenty’ seem to indicate that the coherent dynamicalabove 470 K, the densities approximately correspond to the

IV. RESULTS AND CONCLUSIONS

TABLE . Kinetic energy(K) of “Li as a function of temperature for the empty-core pseudopotential. We
list the excess kinetic energy and the percentage excess with respect to the classical kinetick&pergy,
=3/2&gT. Ko is the kinetic energy to second orderfiEq. (10)]. The error oniCp;2) is estimated to be
of the order of 0.5 K. The numbers in parentheses are the statistical errors on the last digit.

T (K) Density (g/cr) K (K) K=Ka (K)  Kowzy=Ka (K)  (K=Ka)/Kqy (%)
300 0.5387 496.88) 46.836) 45.4 10.411)
350 0.5348 562.99) 37.997) 38.6 7.241)
400 0.5308 632.9@) 32.964) 334 5.491)
450 0.5261 705.08) 30.035) 29.2 4.4%1)
470 0.5134 732.68) 27.668) 27.2 3.921)
480 0.5126 747.1(8) 27.1%6) 26.6 3.771)
500 0.5110 775.98) 25.905) 25.4 3.451)

520 0.5093 804.86) 24.856) 24.3 3.191)
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FIG. 2. Excess kinetic energy fdlLi as a function of temperature. PIMC results are compared with the values obtained frqfrOEQ.
The calculations are performed using the potential derived from the empty-core pseudoion. The arrow indicates the experimental melting
temperaturel ,,=453 K.

equilibrium values for natural lithiufi. The experimental Since the quantum effects are not too large, an expansion
melting temperature of Li at atmospheric pressure i, of the kinetic energy in powers df should be rapidly con-
=453 K. vergent. It is indeed possible to account for the leading quan-

Above melting, we use 150 particles in a cubic box withtum mechanical effectgexchange effects being exponen-
periodic boundary conditions. In the solid phase, we arrangéially small) through an expansion of the partition functién
250 particles in a bec lattice and allow them to equilibraten powers of 1% The kinetic energy is obtained ds=
We are therefore neglecting the effect of vacancies or other M Z/dm and, to second order ih, is given by
defect_s i_n th_e solid phase near _melting. By inspecting the 3 o B2 w0 d2V(r) 2 dV(r)
pair-distribution function, we verified that the system wasx= —kgT+ ———pj rzg(r)[ >+ — dr,
liquid for temperatures abovg,,. We used the pair density 2 3 2mkgT" Jo dr rodr
matrix of Eq.(4) and the numbeM of slices[Eg. (2)] was (10
set equal to 10. Convergence with respect to number of sliceghereg(r) is the pair distribution function in the classical
and number of particles was checked. The extrapolated kieanonical ensemble. We use the pair distribution function
netic energy for an infinite number of slices is half of aobtained in our PIMC calculations to evaluate the quantum
degree Kelvin smaller than the value obtained with ten timecorrection of Eq.(10) for the temperatures and densities re-
slices. ported in Table I. The results are shown in Table | and plot-

The interatomic potential was described in the previouged in Fig. 2 together with the kinetic energies obtained
section. As already mentioned, we also tested the depemvithin PIMC.
dence of the results on the form of the interatomic potential. The results are not significantly affected by the use of the
At T=470 K, we calculated the kinetic energy within PIMC PIMC pair distribution function instead of the classical one:
using the potentials derived from the empty-core and thén this temperature and density range, the distribution func-
NPA pseudoion. The kinetic energy is given, respectively, bytion of lithium differs only slightly from the one we obtained
Kempty-coré™ (732.66+0.08) K and Kypa=(730.72:0.08) within PIMC for a system of particles at the same density
K. Despite the large difference between the two potentialand temperature but a 100 times heavier mass.

(Fig. 1), there is little change in the kinetic energy. As ex-  The perturbative results are very close to the PIMC values
pected, the smaller core of the NPA potential yields a lowewith a discrepancy smaller thdl K for temperatures greater
excess kinetic energy. than 300 K. This good agreement is also found when using

In Table I, we list the kinetic energy obtained by PIMC the NPA potential. However, for neon in the solid phase, the
calculations as a function of temperature using the emptyPIMC kinetic energieswere found to be significantly differ-
core potential. The excess of kinetic energy decreases fromnt from the values obtained from a perturbation to ofefer
10.411)% at T=300 K to 3.191)% at T=520 K. Re- (Ref. 28 showing that the series has a slow convergence at
markably, the kinetic energy still differs from its classical low temperatures.
value at temperature as high as 520 K confirming that the We did not attempt the rather complex evaluation of
excess kinetic energy is a slowly decaying function ofhigher-order corrections but we followed Ref. 5 in obtaining
temperaturé. a high-temperature expansion of the kinetic energy. Since, at
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FIG. 3. Debye temperature defined to give the correct first quantum correction to the classical kinetic energy &s0n Bug arrow
indicates the experimental melting temperatlipe=453 K.

the same density, the kinetic energies of the solid and thélowever, the higher-order terms, while being of the correct
liquid are rather simila?,the liquid is also treated as a har- order of magnitude, are not in quantitative agreement with
monic solid and the kinetic energy within the Debye médel the PIMC results.

is expanded in inverse temperature as Therefore, we can conclude that an expansion to second
order in# is sufficient to account for the leading quantum
o= ET 1+ i(%)z_ i(%)“ corrections to the kinetic energy and other static properties
) 200 T 1680\ T and a classical treatment of lithium around the melting point
is justified.

6

| 11

) 1 (0p
151200 T

where, at each temperature and density, we define the Debye This work was supported by the NSBrant No. DMR
temperature aﬁ)%:(SﬁzlgM)(AV(r)) to yield the correct 9422496. C.F. thanks Erik Koch, Ralph Simmons, Massimo
first quantum correction to the classical kinetic energy as irBoninsegni, and Giorgio Pastore for useful discussions. We
Eq. (10). As shown in Fig. 30 varies only a few percent are grateful to Massimo Boninsegni for a careful reading of
over the temperature range we considered. The kinetic enethe manuscript and to David Gorea for providing the
gies from perturbation theory to ordéf [Eq. (10)] are not  NPA potential. The calculations were performed on the IBM
significantly affected by the additional terms in Ed.1). SP2 computer at the Cornell Theory Center.
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