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Path-integral Monte Carlo calculation of the kinetic energy of condensed lithium
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We report path-integral Monte Carlo calculations of the kinetic energy of condensed lithium for several
temperatures in both the solid and liquid phases. The excess kinetic energy of lithium decreases from about
10.4% of the classical value at 300 K to 3.2% at 520 K indicating a very slow decay with temperature. A
Wigner-Kirkwood perturbation treatment of quantum effects to order\2 gives a satisfactory agreement with
the path-integral results.@S0163-1829~98!06201-8#
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I. INTRODUCTION

The momentum distribution of atoms in condensed ma
can be directly measured by neutron Compton scatterin
has been determined for a variety of systems, includ
quantum solids and liquids formed from3He and4He ~Ref.
1! and condensed noble gases,2–5 in particular, neon. Most of
the early work has been confined to liquid helium for
fundamental importance in connection to the theory of B
condensation and Fermi liquids and because, due to the
mass and weak interactions, it is possible to probe its m
mentum distribution by thermal neutrons. With epitherm
neutrons, the momentum distribution can now be determi
for a larger number of materials. Recently, atomic Comp
profiles of condensed Li, Be, B, C, and Al have also be
measured.6

The momentum distribution for a classical system is
the Maxwell-Boltzmann form, an isotropic Gaussiann(p)
5(3/2p)3/2p0

23 exp$23
2(p/p0)

2% with \p05(3mkBT)1/2

wherem is the atomic mass andkB Boltzmann’s constant
Quantum effects can give deviations from the Gauss
form. The momentum distribution shows distinct features
a system in the classical regime, an anharmonic crysta
superfluid, or a Fermi liquid.

Condensed helium can show significant quantum beha
even up to room temperature, particularly at hi
pressures.7,8 The transition to a classical behavior progre
ing through the noble gasses has been studied by neu
Compton scattering3–5 and path-integral Monte Carlo
~PIMC! calculations2,5 by analyzing the second moment
the momentum distribution, the kinetic energyK. Lithium is
the next obvious candidate. It has been recently investig
by neutron Compton scattering up to room temperature9 and
experiments at higher temperatures are now in progre10

There are several theoretical studies of lithium near the m
ing point within classical molecular dynamics11–15and recent
experimental investigation through neutron inelas
scattering16 and high-resolution x-ray deep inelast
scattering.17 Lithium is representative of the class of simp
metals18 and is a good test case for different theoretical
proaches to liquid-state dynamics.15

Quantum effects in a system as light as lithium are c
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tainly expected but, so far, they have not been quantified
rigorous manner. Most of the theoretical and experimen
investigations are near the melting temperature,Tm5453 K,
where the thermal wavelengthL5(2p\2/mkBT)1/2 is sig-
nificantly smaller than the average interparticle distan
Theoretical approaches rely on classical simulations and
quantum effects are believed to be properly accounted fo
a simple perturbative approach in powers of\.19

Since the kinetic energy gives a clear signature of
classical-quantum nature of a system, we performed PI
calculations of the kinetic energy of7Li modeled as a col-
lection of atoms interacting through a pairwise potential. W
spanned a range of temperature around the melting p
from T5300 K to T5520 K. The excess kinetic energy
defined as the difference of the kinetic energy,K, and the
classical value,Kcl53/2T, decreases from 10.42% of th
classical value at 300 K to 3.19% at 520 K. Therefore,
kinetic energy still differs from its classical value at tempe
ture as high as 520 K confirming the slow decaying of t
excess kinetic energy with temperature.8 An inclusion of the
leading quantum effects through an expansion of the kin
energy in powers of\ gives a satisfactory agreement with th
PIMC results.

In Sec. II, we give a brief outline of the PIMC method. I
Sec. III, we describe the interatomic potential chosen in
calculations. In Sec. IV, we present our results and a co
parison with the values obtained from a perturbative tre
ment of quantum effects.

II. METHOD

The path-integral Monte Carlo method has been descri
in detail elsewhere.20 Therefore, we will only give a brief
outline of the method and present the aspects specific to
present calculation.

Let us consider a system ofN particles described by a
HamiltonianH. If the system is in thermodynamic equilib
rium at a temperatureT, the thermodynamic average of
physical observableO can be expressed as

^O&5
*dR^RuOe2bHuR&
*dR^Rue2bHuR&

, ~1!
252 © 1998 The American Physical Society
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where kBT51/b and the configurationR indicates the positions of theN particles. If the density matrix is factorized a
e2bH5@exp(2tH)#M with a time stept5b/M , the expectation value@Eq. ~1!# can be rewritten as

^O&5
*dR dR1•••dRM21^RuOe2tHuR1&r~R1 ,R2 ,t!•••r~RM21 ,R,t!

*dR dR1•••dRM21r~R,R1 ,t!r~R1 ,R2 ,t!•••r~RM21 ,R,t!
, ~2!
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where we adopted a position-space representation of the
sity matrix:

r~R,R8,t!5^Rue2tHuR8&. ~3!

The evaluation of the integral@Eq. ~2!# is performed by a
generalization of the Metropolis Monte Carlo method: pa
starting from different configurations$R% are sampled ac
cording to a probability distribution proportional to the pro
uct r(R,R1 ,t)r(R1 ,R2 ,t)•••r(RM21 ,R,t) ~if we ignore
effects of quantum statistics!. A path originates and termi
nates at the same configuration afterM21 steps. The quan
tity ^O& is obtained as the average over the paths of the r
^RuOe2tHuR1&/r(R,R1 ,t).

For small enough time stept ~larger temperature!, it is
possible to obtain a sufficiently accurate approximation
the density matrix. However, for the calculation to be e
cient, it is desirable to minimize the numberM of slices. A
good compromise between accuracy and number of slice
achieved by using the pair density matrix,

r~R,R8,t!'r0~R,R8,t!)
i , j

exp@2u~r i j ,r i j8 ,t!#, ~4!

where r0(R,R8,t) is the free-particle density matrix an
u(r i j ,r i j8 ,t) is defined to be exact for a pair of particles.r i j

and r i j8 are the distances between particlesi and j in the
configurationsR andR8, respectively. This density matrix i
much more accurate than the commonly used primitive
proximation, u(r i j ,r i j8 ,t)5t/2@V(r i j )1V(r i j8 )#, where
V(r ) is the interparticle potential. The effect of particle st
tistics can be included in the density matrix but, for o
system at the temperatures of interest, such an effect is
ligible and is not considered here.

In addition to the use of an accurate density matrix@Eq.
~4!#, we also use the virial estimator for the kinetic ener
whose variance is four orders of magnitude smaller than
variance of the thermodynamic estimator, yielding a f
convergence of the calculation.20 If we define the pair
density matrix@Eq. ~4!# as

r0~Ri 21 ,Ri ,t!exp@2U~Ri 21 ,Ri ,t!#

[r0~Ri 21 ,Ri ,t!exp~2Ui !,

the virial estimator for the kinetic energy is given by

KV5 K 3N

2Mt
2

1

4Mt2l
~RM1 i2Ri !~Ri 112Ri !

1
1

2t
¹ i~Ui 211Ui !D i1

dUi

dt
2V~Ri !L , ~5!

wherel5\2/2m andD i5( j 52M11
M21 (Ri2Ri 1 j ).
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III. SYSTEM

We study7Li for a range of temperatures around meltin
The system is modeled as a collection of lithium atoms
teracting through an effective pair potential and confined i
box with periodic boundary conditions.

Although liquid lithium can be characterized, under su
able conditions, by a predominantly two-body central int
action, it should really be considered as a two-compon
mixture of interacting electrons and ions. It is, however, p
sible to regard lithium as a quasi-one-component liquid
which the ions move in an effective potential established
the electron gas.18 The electron-ion interaction, described b
a pseudopotential, is weak and can be considered as per
ing the electron gas treated as uniform to zeroth ord
Within perturbation theory and linear response theory, it
possible to calculate the energy of the system of pseudo
and electrons for a given configuration of the ions. The
ergy acts as a potential energy for the ions alone and
second-order perturbation theory, the effective interatom
potential is a pair potential.

If vps(q) is the Fourier transform of the local electron-io
pseudopotential, the resulting effective pair interaction
tween the ions,V(r ), is the Fourier transform ofV(q):

V~q!52
4pZv

2

q2 H 11S 1

e~q!
21D F q2

4pZv
vps~q!G2J , ~6!

whereZv is the valence charge of the pseudoion ande(q)
the dielectric function. Although a nonlocal pseudopoten
could be employed, in the present work, we restrict oursel
to local pseudopotentials.

We consider the simple Ashcroft empty-co
pseudopotential:21

vps~r !5H 0 ~r ,Rc!

2Zv /r ~r>Rc!,
~7!

whose Fourier transform is given by

vps~q!52
4pZv

q2 cos~qRc!. ~8!

We usedZv51 andRc51.44 a.u., which was fitted in Ref
14 to reproduce the height of the main peak of the exp
mental structure factor.

To completely specify the form of the effective inte
atomic potential, we need to choose the local field fac
G(q) entering in the dielectric functione(q):

e~q!512~4p/q2!x0~q!/@11~4p/q2!G~q!x0~q!#,
~9!

wherex0(q) is the Lindhard response function. A compa
son of several approximateG(q) with an accurate local field
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FIG. 1. Effective interatomic potentials for7Li at T5470 K and number densityr50.5134 g/cm3. The full curve is obtained from the
empty-core potential (Rc51.44 a.u.) and the dashed curve from the NPA potential~Ref. 25!.
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factor determined by quantum Monte Carlo calculations
given in Ref. 22. The corresponding interatomic potenti
constructed for sodium starting from an empty-core pseu
potential are shown in Ref. 23. The Ichimaru-Utsumi expr
sion of the local field factor24 yields a potential that, in the
repulsive part, is quite close to the one obtained from
accurateG(q). Since the predominant effect of the potent
on the kinetic energy is given by its repulsive part,7 we de-
cided to adopt the Ichimaru-Utsumi expression for the lo
field factor. This choice also allows us to be consistent w
classical molecular-dynamics simulations of liquid lithiu
already existing in the literature.14

The performance of the interatomic potential obtain
from the empty-core pseudoion@Eqs. ~6!–~8!# has been
throughly tested within classical molecular dynamics. Str
tural and thermodynamic properties of liquid lithium are w
reproduced by this potential.13 Comparable results are ob
tained using potentials derived from the local neut
pseudoatom13 ~NPA! or a nonlocal pseudopotential.11 On the
other hand, recent x-ray high-resolution inelastic-scatter
experiments17 seem to indicate that the coherent dynami
s
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structure factor is better reproduced by simulations usin
potential derived from the NPA pseudoion.

In Fig. 1, we plot the lithium interatomic potential ob
tained from the empty-core and the NPA electron-i
potential25 at a number densityr50.5134 g/cm3 (T
5470 K). Note that both potentials are density depende
the empty-core potential through the dielectric function a
the NPA potential through the electron-ion pseudopotent
Since the form of the two interatomic potentials is quite d
ferent ~with a change of about 10% in the core radius!, we
evaluated the kinetic energy of the system using both po
tials within PIMC.

IV. RESULTS AND CONCLUSIONS

We perform PIMC simulations of7Li in the solid and
liquid phases betweenT5300 K andT5520 K. The tem-
peratures and densities we considered are listed in Tab
For temperatures up to 450 K, we used the equilibrium d
sities of 7Li at atmospheric pressure.26 For temperatures
above 470 K, the densities approximately correspond to
We
rgy,
TABLE I. Kinetic energy~K! of 7Li as a function of temperature for the empty-core pseudopotential.
list the excess kinetic energy and the percentage excess with respect to the classical kinetic eneKcl

53/2kBT. KO(\2) is the kinetic energy to second order in\ @Eq. ~10!#. The error onKO(\2) is estimated to be
of the order of 0.5 K. The numbers in parentheses are the statistical errors on the last digit.

T ~K! Density (g/cm3) K ~K! K2Kcl ~K! KO(\2)2Kcl ~K! (K2Kcl)/Kcl ~%!

300 0.5387 496.83~6! 46.83~6! 45.4 10.41~1!

350 0.5348 562.99~7! 37.99~7! 38.6 7.24~1!

400 0.5308 632.96~4! 32.96~4! 33.4 5.49~1!

450 0.5261 705.03~5! 30.03~5! 29.2 4.45~1!

470 0.5134 732.66~8! 27.66~8! 27.2 3.92~1!

480 0.5126 747.11~6! 27.11~6! 26.6 3.77~1!

500 0.5110 775.90~5! 25.90~5! 25.4 3.45~1!

520 0.5093 804.85~6! 24.85~6! 24.3 3.19~1!
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FIG. 2. Excess kinetic energy for7Li as a function of temperature. PIMC results are compared with the values obtained from Eq~10!.
The calculations are performed using the potential derived from the empty-core pseudoion. The arrow indicates the experimenta
temperatureTm5453 K.
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equilibrium values for natural lithium.27 The experimental
melting temperature of7Li at atmospheric pressure isTm
5453 K.

Above melting, we use 150 particles in a cubic box w
periodic boundary conditions. In the solid phase, we arra
250 particles in a bcc lattice and allow them to equilibra
We are therefore neglecting the effect of vacancies or o
defects in the solid phase near melting. By inspecting
pair-distribution function, we verified that the system w
liquid for temperatures aboveTm. We used the pair densit
matrix of Eq.~4! and the numberM of slices@Eq. ~2!# was
set equal to 10. Convergence with respect to number of sl
and number of particles was checked. The extrapolated
netic energy for an infinite number of slices is half of
degree Kelvin smaller than the value obtained with ten ti
slices.

The interatomic potential was described in the previo
section. As already mentioned, we also tested the de
dence of the results on the form of the interatomic potent
At T5470 K, we calculated the kinetic energy within PIM
using the potentials derived from the empty-core and
NPA pseudoion. The kinetic energy is given, respectively,
Kempty-core5(732.6660.08) K and KNPA5(730.7260.08)
K. Despite the large difference between the two potent
~Fig. 1!, there is little change in the kinetic energy. As e
pected, the smaller core of the NPA potential yields a low
excess kinetic energy.

In Table I, we list the kinetic energy obtained by PIM
calculations as a function of temperature using the em
core potential. The excess of kinetic energy decreases f
10.41(1)% at T5300 K to 3.19(1)% at T5520 K. Re-
markably, the kinetic energy still differs from its classic
value at temperature as high as 520 K confirming that
excess kinetic energy is a slowly decaying function
temperature.8
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Since the quantum effects are not too large, an expan
of the kinetic energy in powers of\ should be rapidly con-
vergent. It is indeed possible to account for the leading qu
tum mechanical effects~exchange effects being expone
tially small! through an expansion of the partition functionZ
in powers of \.19 The kinetic energy is obtained asK5
2m ]Z/]m and, to second order in\, is given by

K5
3

2
kBT1

p

3

\2

2m

1

kBT
rE

0

`

r 2g~r !Fd2V~r !

dr2 1
2

r

dV~r !

dr Gdr,

~10!

whereg(r ) is the pair distribution function in the classica
canonical ensemble. We use the pair distribution funct
obtained in our PIMC calculations to evaluate the quant
correction of Eq.~10! for the temperatures and densities r
ported in Table I. The results are shown in Table I and pl
ted in Fig. 2 together with the kinetic energies obtain
within PIMC.

The results are not significantly affected by the use of
PIMC pair distribution function instead of the classical on
in this temperature and density range, the distribution fu
tion of lithium differs only slightly from the one we obtaine
within PIMC for a system of particles at the same dens
and temperature but a 100 times heavier mass.

The perturbative results are very close to the PIMC val
with a discrepancy smaller than 1 K for temperatures greate
than 300 K. This good agreement is also found when us
the NPA potential. However, for neon in the solid phase,
PIMC kinetic energies2 were found to be significantly differ-
ent from the values obtained from a perturbation to order\6

~Ref. 28! showing that the series has a slow convergenc
low temperatures.

We did not attempt the rather complex evaluation
higher-order corrections but we followed Ref. 5 in obtaini
a high-temperature expansion of the kinetic energy. Since
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FIG. 3. Debye temperature defined to give the correct first quantum correction to the classical kinetic energy as in Eq.~10!. The arrow
indicates the experimental melting temperatureTm5453 K.
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the same density, the kinetic energies of the solid and
liquid are rather similar,8 the liquid is also treated as a ha
monic solid and the kinetic energy within the Debye mode29

is expanded in inverse temperature as

K5
3

2
TF11

1

20S QD

T D 2

2
1

1680S QD

T D 4

1
1

151200S QD

T D 6

1••• G , ~11!

where, at each temperature and density, we define the D
temperature asQD

2 5(5\2/9M )^DV(r )& to yield the correct
first quantum correction to the classical kinetic energy as
Eq. ~10!. As shown in Fig. 3,QD varies only a few percen
over the temperature range we considered. The kinetic e
gies from perturbation theory to order\2 @Eq. ~10!# are not
significantly affected by the additional terms in Eq.~11!.
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However, the higher-order terms, while being of the corr
order of magnitude, are not in quantitative agreement w
the PIMC results.

Therefore, we can conclude that an expansion to sec
order in \ is sufficient to account for the leading quantu
corrections to the kinetic energy and other static proper
and a classical treatment of lithium around the melting po
is justified.
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3656 ~1994!.
15A. Torcini, U. Balucani, P. H. K. de Jong, and P. Verkerk, Phy

Rev. E51, 3126~1995!.
16P. H. K. de Jong, P. Verkerk, and L. A. de Graaf, J. Phy

Condens. Matter6, 8391~1994!.
17H. Sinn, F. Sette, U. Bergmann, Ch. Halcoussis, M. Krisch,



lid

ali

a,
n

57 257PATH-INTEGRAL MONTE CARLO CALCULATION OF . . .
Verbeni, and E. Burkel, Phys. Rev. Lett.78, 1715~1997!.
18N. W. Aschcroft and D. Stroud, inSolid State Physics, edited by

H. Ehrenreich, F. Seitz, and D. Turnbull~Academic, New York,
1978!.

19E. Wigner, Phys. Rev.40, 749 ~1932!; J. G. Kirkwood,ibid. 44,
31 ~1933!.

20D. M. Ceperley, Rev. Mod. Phys.67, 279 ~1995!.
21N. W. Ashcroft, Phys. Lett.23, 48 ~1966!.
22S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett.75,

689 ~1995!.
23G. Senatore, S. Moroni, and D. M. Ceperley, J. Non-Cryst. So

207, 851 ~1996!.

s

24S. Ichimaru and K. Utsumi, Phys. Rev. B24, 7385~1981!.
25D. J. Gonzalez~private communications!.
26T. N. Mel’nikova and A. G. Mozgovoi, High Temp.26, 6848

~1988!.
27Handbook of Thermodynamic and Transport Properties of Alk

Metals, edited by R. W. Ohse~Blackwell Scientific Publications,
Oxford, 1985!.

28M. Asger and Q. N. Usmani, Phys. Rev. B49, 12 262~1994!.
29A. A. Maradudin, E. W. Montroll, G. W. Weiss, and I. P. Ipatov

Theory of Lattice Dynamics in the Harmonic Approximatio,
Solid State Supplement3 ~Academic Press, New York, 1963!.


