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Dynamics of Fermi resonance solitary waves propagating along two interfaces
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The dynamics of Fermi resonance solitary waves propagating along two parallel interfaces in a layered
organic semiconductor system is investigated both analytically and numerically. It is shown that the interaction
between solitary waves leads to their attraction or repulsion, depending on their initial phase difference. In the
case of attraction the solitary waves create a bound state, and their centers oscillate in time with respect to their
common mass center. The corresponding period of oscillations is calculated. It is found that the amplitudes and
widths of the solitary waves also oscillate in time.@S0163-1829~98!01604-X#
ho
et
e

r
n
el
h
b
s
o
n

av

ve
m

he
ly
th
m

ee
o

to
o

th
-
e

an

t

n
tua-
tors

ol-
ua-

re-
he
I. INTRODUCTION

The search for organic materials for nonlinear optics, p
tonics, and electronics promoted the development of m
ods for the preparation of a class of organic structur
namely, organic crystalline superlattices~OCS!. The latest
achievements in this field were demonstrated in a numbe
publications.1–5 At present, investigations in this directio
are developing further, therefore the analysis of qualitativ
new properties of OCS is very topical and important. T
interaction of OCS with light is a fundamental physical pro
lem, as well as of importance for future application
Papers6–10 have been devoted to just such an analysis
these properties of OCS. In particular, different kinds of no
linear excitations propagating through the superlattice h
been discussed~Fermi resonance interface modes,7 Fermi
resonance interface solitary waves9,10!. Here we want to con-
sider the dynamics of two Fermi resonance solitary wa
located on two different interfaces of a three-layer syste
For convenience, instead of the term ‘‘solitary waves’’ in t
following we use the shorter term ‘‘solitons,’’ as frequent
done in the literature. These solitons interact with each o
due to the penetration of the vibrational field of one of the
into the location region of the other one. As we shall s
such ‘‘tunnel’’ coupling results in a considerable change
the dynamics of the solitons as compared to a single soli

Let us consider a system consisting of three layers
organic semiconductors with two interfaces. We suppose
a film with N11 b-molecular layers lies between two ‘‘half
infinite’’ crystals made ofc molecules. The molecules ar
labeled as follows: sites (nx ,ny ,nz<21) are occupied byc
molecules, sites (nx ,ny,0<nz<N) are occupied byb mol-
ecules, and sites (nx ,ny ,N11<nz) are occupied byc mol-
ecules again. As in Refs. 7–10, we assume Fermi reson
betweenc and b harmonic vibrations, i.e.,vc.2vb . For
this case the main anharmonic interaction occurs across
interfaces, and has the form

Ĥ int5G@cnx ,ny,21~bnx ,ny ,0
† !21cnx ,ny ,N11~bnx ,ny ,N

† !21H.c.#,

~1!

whereG is the interaction constant, andb†(b) andc†(c) are
the creation~annihilation! operators forb andc excitations.
570163-1829/98/57~4!/2461~7!/$15.00
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In the limit of strong pumping, i.e., at large excitatio
occupation numbers, we can neglect the quantum fluc
tions and use a classical approximation where all opera
are replaced by their mean values^bnxnynz

&5Bnxnynz
and

^cnxnynz
&5Cnxnynz

, whereB andC are classical complex vi-
bration amplitudes. These variables corresponding to m
ecules nearest to the interfaces satisfy the following eq
tions:

i ]Cnx ,ny ,21 /]t2vcCnx ,ny ,212Vc'Cnx ,ny ,22

2Vci~Cnx21,ny ,211Cnx11,ny ,211Cnx ,ny21,21

1Cnx ,ny11,21!2GBnx ,ny,0
2 50, ~2!

i ]Cnx ,ny ,N11 /]t2vcCnx ,ny ,N112Vc'Cnx ,ny ,N12

2Vci~Cnx21,ny ,N111Cnx11,ny ,N111Cnx ,ny21,N11

1Cnx ,ny11,N11!2GBnx ,ny ,N
2 50, ~3!

i ]Bnx ,ny,0 /]t2vbBnx ,ny,02Vb'Bnx ,ny,12Vbi~Bnx11,ny,0

1Bnx21,ny,01Bnx ,ny11,01Bnx ,ny21,0!

22GBnx ,ny,0* Cnx ,ny ,2150, ~4!

i ]Bnx ,ny ,N /]t2vbBnx ,ny ,N2Vb'Bnx ,ny ,N21

2Vbi~Bnx11,ny ,N1Bnx21,ny ,N1Bnx ,ny11,N

1Bnx ,ny21,N!22GBnx ,ny ,N* Cnx ,ny ,N1150, ~5!

where the parametersVb' and Vbi (Vc' and Vci) describe
the intermolecular interactions between theb (c) molecules
in directions perpendicular and parallel to the interface,
spectively. The vibrations in the bulk of the crystals obey t
usual linear equations~see Refs. 9 and 10!. The described
system has the following interface solutions,10 localized near
the interface:
2461 © 1998 The American Physical Society
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2462 57V. M. AGRANOVICH et al.
Cnxnynz
5C1~nx ,ny!ekc~nz11!, nz<21,

Cnxnynz
5C2~nx ,ny!ekc~11N2nz!, nz>N11, ~6!

and

Bnxnynz

5
B1~nx ,ny!sinh@kb~N2nz!#1B2~nx ,ny!sinh~kbnz!

sinh~kbN!

~N>0!, ~7!

wherekb andkc are given by

ekc5
G

Vc'

uBu2

uCu
, ekc5

2G

Vb'

uCu. ~8!

These expressions hold exactly for the plane-wave solut
but we shall assume their validity for sufficiently wide so
ton excitations in the case of strong anisotropy of interm
lecular interactionVb,c'!Vb,ci[Vb,c , too.

We suppose that the variablesBj (nx ,ny) and Cj (nx ,ny)
do not depend onny and have a slow dependence onnx . In
this long wave limit we can replace the finite differences
Eqs.~2!–~5! by derivatives (nx→x) and arrive at the follow-
ing system~the dimensionless variablex is measured in units
of the lattice constant! of partial differential equations:

i
]Bj

]t
2ṽbBj2Vb

]2Bj

]x2
22GBj* Cj5eBl , j ,l 51,2, j Þ l ,

~9!

i
]Cl

]t
2ṽcCl2Vc

]2Cl

]x2
2GBl

250, l 51,2, ~10!

where

ṽb5vb1VbS 41
sinh@~N21!kb#

sinh~Nkb! D ,

ṽc5vc1Vc~41e2kc!, ~11!

e5Vb'

sinh~kb!

sinh~Nkb!
. ~12!

When the parametere, describing the interaction of vibra
tions located in different interfaces, is small, this interact
can be considered as a perturbation. If we neglect it we ar
at the situation of two independent interfaces. In each of
two interfaces the soliton excitations found in Ref. 9 ex
Exact solutions for such solitons can be obtained in so
particular cases. For solitons at rest, we have the express

B5
uaue2 ivt/2

cosh2~kx!
, C5

aubue2 ivt

cosh2~kx!
, ~13!

where
n,

-

e
e
.
e
ns

a5
3AVbVc

2A2G

2ṽb2ṽc

Vc22Vb
, b56A Vb

2Vc
,

v5
2~ṽbVc2ṽcVb!

Vc22Vb
~14!

and

k5
1

2
AU2ṽb2ṽc

Vc22Vb
U. ~15!

If Vb52Vc , one can find the particular solution for a mobi
soliton

B5
uauexp~2 ivt/21 ikx/2!

cosh2@k~x2vt !#
, C5

a exp~2 ivt1 ikx!

cosh2@k~x2vt !#
,

~16!

where now

a5
1

2G
~ṽc22ṽb!, v5 2

3 ~2ṽc2ṽb!2
Vb

2
k2 ~17!

and

k5AUṽc22ṽb

6Vb
U, v52Vbk522Vck. ~18!

~Analogous solutions, including ‘‘dark’’ solitons, have bee
discussed in the case of a ‘‘cascading nonlinearity’’ in Re
11–14.! The system of equations~9! and ~10! has particular
solutions C15C25C and B156B25B, where B and C
satisfy the equations coinciding with those for the one int
face case with shifted value of the frequencyṽb→ṽb1e.
Thus the three-layer system under consideration has par
lar solutions in the form of two solitons with coinciding pa
rameters~up to the sign of the amplitude!, and propagating
side by side with each other. The case of a monomolec
thin film of B molecules is described by a system of thr
equations and needs separate discussion~see Ref. 10!. In this
paper a variational approach will be applied to the investi
tion of solitons propagating along two interfaces with we
interaction between them@i.e., with smalle in Eqs. ~9! and
~10!#.

II. VARIATIONAL EQUATIONS

The variational approach is based on the possibility
represent Eqs.~9! and~10! as Lagrange equations~see, e.g.,
Refs. 15–18! corresponding to the Lagrangian with the de
sity

L5L11L21Lint , ~19!

where

Lj5
i

2
~BjBjt* 2Bj* Bjt !1

i

2
~CjCjt* 2Cj* Cjt !1ṽbuBj u2

1ṽcuCj u22VbuBjxu22VcuCjxu2

1G~CjBj*
21Cj* Bj

2!, j 51,2, ~20!
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Lint5e~B2B1* 1B2* B1!, ~21!

Bjt5]Bj /]t, Bjx5]Bj /]x, etc.

The action

S5E E L dx dt ~22!

has its extremal values at the exact solutions of Eqs.~9! and
~10!. Approximate solutions can be obtained by means
minimizing the action for some trial functions~see analogous
investigation for a single soliton in Refs. 17 and 18!

Bj5
bjexp~ iw j /2!

cosh2@k j~x2z j !#
, Cj5

cjexp~ iw j !

cosh2@k j~x2z j !#
, ~23!

where

w j5kj~x2z j /2!1d j . ~24!

In contrast to the one-interface case, all parametersbj ,
cj , k j , kj , z j , and d j are functions of time due to th
interaction of the solitons. Substitution of Eqs.~23! and~24!
into Eqs.~19!–~21! yields

L5L11L21L int5E L dx, ~25!

where

L j5
4bj

2

3k j
F ṽb2VbS kj

2

4
1

4

5
k j

2D 2
1

2S kjt

2
z j t2d j t D1

1

4
z j kjt G

1
4cj

2

3k j
F ṽc2VcS kj

21
4

5
k j

2D2S kjt

2
z j t2d j t D1

1

2
z j kjt G

1
32

15
G

bj
2cj

k j
, ~26!

L int52eb1b2E
cos

w12w2

2
dx

cosh2@k1~x2z1!#cosh2@k2~x2z2!#

'
8eb1b2

k
cosm f ~r ! ~27!

and

2m[d12d21 1
2 ~k1z22k2z1!,

r[k~z12z2!, ~28!

f ~r !5
r coshr 2sinhr

sinh3r
.

In the last calculation ofL int , we supposedk15k25k and
uk12k2u!2k, ur u<1.

Minimizing action~22!, we obtain the Lagrange equation
for the variablesbj , cj , d j , z j , kj , andk, which after some
transformations give the following system:
f

2ṽb2
Vb

2
kj

22
8

5
Vbk22

1

2
kjz j t1

1

2
kjtz j1d j t1

16G

5
cj

16e cosm f ~r !
bl

bj
50 ~29!

ṽc2Vckj
22

4

5
Vck

22
1

2
kjz j t1

1

2
kjtz j1d j t1

4G

5

bj
2

cj
50,

~30!

k
d

dtS bj
212cj

2

k D 16~21! j 21eb1b2sinm f ~r !50, ~31!

~bj
212cj

2!kjt112eb1b2cosm
] f ~r !

]z j
50, ~32!

~bj
212cj

2!z j t1~bj
2Vb14cj

2Vc!kj50, ~33!

(
j

@4k2~bj
2Vb1cj

2Vc!22Gcjbj
2#215eb1b2k

] f

]k
cosm50.

~34!

For e→0 this system splits into two independent sets
equations corresponding to two isolated interfaces discus
in Ref. 18. Systems~29!–~34! comprises the variationa
equations describing the dynamics of two solitons. This s
tem is rather complicated and can be considered analytic
only under some simplifying assumptions. Here we sh
consider the important particular case of the elastic inter
tion of solitons.

III. ELASTIC INTERACTION OF SOLITONS

Equations~29!–~34! have an obvious integral of motio
I 1 defined by

2kI 15b1
212c1

21b2
212c2

2 . ~35!

The expression (bj
212cj

2)/k characterizes the energy o
the soliton and is conserved in the case of a soliton on
isolated interface. In the case of two interacting solitons o
the sum of these two quantities is conserved, as we see
Eq. ~35!. However, in the particular case sinm50, i.e., when
m5np, the energy of each soliton is conserved separat
which corresponds to their elastic interaction. Let us disc
this case in more detail. For its realization it is necessary
m t50 holds all times. As follows from Eqs.~29!, ~30!, ~32!,
and ~33!, the variablem is time independent only if

c15c25c, b15b25b ~36!

and

~ i! k11k250 or ~ ii ! Vb52Vc . ~37!

Conditions~37! correspond to the two particular cases wh
the exact soliton solutions~13! and ~16! are realized.9

Equation~32! leads, together with Eqs.~36! and ~37!, to
the conservation of the total momentum

k11k252k05const, ~38!
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wherek05k015k02 is the initial value ofkj . Note thatm is
equal to the initial phase difference of theBj –fields accord-
ing to the conditionk015k02.

Equation~33! gives

~z11z2! t522k0Ṽ, ~39!

where

Ṽ5
Vbb214Vcc

2

b212c2
. ~40!

Hence we conclude that in the case~i! of Eq. ~37! the ‘‘cen-
ter of mass’’ does not move, and in case~ii ! of Eq. ~37! it
moves with the constant velocity22k0VB .

Now let us consider the relative motion of the soliton
From Eqs.~32! and ~33!, we obtain the following systems:

I 1~k12k2! t124ec2
cosm

k

] f

]D
50, ~41!

D t1Ṽ~k12k2!50, ~42!

whereD5z12z2. After elimination ofk12k2, we obtain the
equation

D tt2
24e cosm Ṽb2

b212c2

] f

]D
5D t~ lnṼ! t . ~43!

Note that in case~ii ! the right-hand side of this equatio
vanishes sinceṼ5Vb5const, and in case~i! we can also
neglect the right-hand side because, as we shall see, it di
from zero only in higher degrees ofe. If we neglect the time
dependence of the coefficients of this equation, which a
arises only in higher degrees ofe, then the relative motion
can be presented as the motion of the point particle of
mass with coordinateD under the action of force, with the
potential

U~D!.2
24eb2Ṽ cosm

kI 1
f ~D!. ~44!

Thus atm5p there is a repulsion of the solitons from
each other, and atm50 they attract each other. In the la
case the solitons oscillate with respect to their mutual ce
of mass. At small values ofr we obtain, from Eq.~43!,

D tt1cosmṽ2D50, ~45!

where

ṽ25
32eb2~Vbb214Vcc

2!

5I 1
2

. ~46!

The assumption of a time-independentṽ2 corresponds to
the omission of small terms of ordere2 in Eq. ~43!, so that in
the attraction case (cosm51) we obtain harmonic oscillation
of solitons

D5D0cosṽ0t, ~47!

whereD0 and ṽ0 are the initial values ofD and ṽ.
.
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Consider now the dependence of the soliton amplitudeb
andc on time. We have not yet used two equations: Eq.~34!,
which can be expressed in the form

8

I 1
2 ~b212c2!2~Vbb21Vcc

2!24Gcb2.15eb2r f 8cosm;

~48!

and the combination of Eqs.~29! and ~30!,

~2ṽb2ṽc!1
1

4
~k1

21k2
2!~2Vc2Vb!

1
4~Vc22Vb!

5I 1
2 ~b212c2!2

1
4G

5c
~4c22b2!526e cosm f ~r !. ~49!

Note that the soliton widthk is related to the amplitude
through Eq.~35! which was used in the derivation of Eq
~48! and ~49!. We also have

~k12k0!25~k22k0!25k25S D t

2Ṽ
D 2

'
8e

15Vb
~r 0

22r 2!.

Let us represent the amplitudesb andc in the forms

b5b0@11em1~r !#, c5c0@11em2~r !#, ~50!

and substitute Eq.~50! into Eqs. ~48! and ~49!. In zeroth
order of the power expansion with respect toe, we obtain
equations coinciding with those for the solitons on isola
interfaces. In the next order we have a linear system of
equations for functionsm1 and m2 , which can be trans-
formed to the forms

2~522b2!m11~22b221!m25
45 cosm ~112b2!

4Gc0
r f 8

4~115b2!m12~3122b218b4!m2

5
45 cosmb2~112b2!

2Gc0
f 2

~12b2!~112b2!

Gc0
~r 22r 0

2!,

~51!

whereb25Vb/2Vc . Its solutions are

m15
D1

D
, m25

D2

D
,

D522~216b61216b41138b2113!,

~52!

D152
45 cosm ~112b2!

2Gc0
@~8b4122b213!r f 8

12b2~22b221! f #

2
~1222b2!~112b2!~12b2!

Gc0
~r 22r 0

2!,
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D25
45 cosm ~112b2!

Gc0
@b2~522b2! f 2~115b2!r f 8#

2
2~522b2!~112b2!~12b2!

Gc0
~r 22r 0

2!.

In case~ii !, i.e., for b251, it follows, for example, that

b5b01
15e cosm

104G
~14f 111r f 8!

.b01
15e cosm

52G S 7

3
1

12

5
r 2D ,

c5c01
15e cosm

26G
~2r f 82 f !.c02

15e cosm

26G S 1

3
1

2

5
r 2D ,

~53!

and

k.k0S 11
5e cosm

26Gc0
~124r 2! D . ~54!

Thus we see that the amplitudesb and c and the widthk
have different constant shifts and oscillating~for m50)
components.

Note that taking into account the dependence ofb2 andc2

on time in Eq. ~46!, results in a term proportional to
cos(2ṽ0t) in the expression forṽ2 which could lead to para
metric resonance. But with the same order of accuracy
constant part of the frequency shiftṽ2ṽ0.(2/3)eṽ0(2m1
1m2) arises, which is greater than the width of the param
ric resonance region. Hence, in fact, the parametric re
nance does not take place, which justifies taking into acco
only the terms of ordere in Eqs.~45! and ~46!.

IV. NUMERICAL SIMULATION

The dynamics of two solitons propagating along two d
ferent interfaces has been simulated numerically in the c
of the simplest physical system described by Eqs.~9! and
~10!, which consists of four monolayers CBBC. Then w
have ṽc5vc12Vc , ṽb5vb12Vb , and e5Vb' . The ini-
tial conditions and the parameters of the medium are cho
as follows: k50.073 ~this choice corresponds to a solito
with a width of 30 interatomic distances!, Dz56, Vb52Vc
560, andG51. Figure 1 shows the distance between so
tons centers as a function of time for different values a
signs of the interaction constante. Note that a change of th
initial phase difference fromm50 to p is equivalent to a
change of the sign ofe. As we see, the simulation confirm
the results of our analytic calculations concerning the e
tence of a bound state of solitons for cosm51, and the repul-
sion of solitons for cosm521. It is easy to see that the os
cillation frequency is in a good agreement with the formu
v 5kA32eVb/15, which is a consequence of Eq.~46! for
Vb52Vc . The evolution of the fieldsB1 andB2 is shown in
Fig. 2 for the same choice of parameters as in Fig. 1~a!. The
oscillations of the mutual positions and the excellent cons
vation of the initial sech2 shape are clearly seen. The tim
dependences of the amplitudesb1 andc1 and of the widths
e

t-
o-
nt

se

en

-
d

-

r-

sB1
andsC1

are shown in Figs. 3 and 4 respectively, whi
present the shift of the mean values and oscillations w
frequency 2v of all these parameters according to the fo
mulas ~53! and ~54!. But the numerically observed sma
difference~about 3%! between the width of theB field and
the width of theC field lies beyond the presented analytic
theory, which initially assumes the equality of these tw
widths. The small difference in the soliton widths could
taken into account by an extension of the present analyt
approach. However, this would not lead to qualitatively n
results, but merely would complicate the analysis.

Note that for large initial distances between the solit
centers (r .1) the quadratic approximation for potential~44!

FIG. 1. The distanceD between the centers of the two soliton
as a function of timet for the interaction constantse50.1 ~a! 0.2
~b! and20.1 ~c!. Comparison of the result of the anlytical calcul
tion ~solid line! with the results of the numerical simulation, whe
the dashed line shows the distance between the centers of the tB
fields, and the dotted line shows the distance between the cente
the twoC fields.
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is no longer valid and therefore the oscillations become
harmonic. According to Eq.~44!, an increase inD0 causes an
increase in the oscillation period, which was observed
merically.

Numerical calculations also demonstrated that a decre
in the soliton widths induces energy emission by the solit
together with a variation of their shapes. If the soliton wid
approaches;10 interatomic distances, the dynamics of t
system changes qualitatively. Such a behavior is not surp
ing, because in this case the influence of discreteness
comes significant and, as a consequence, the sech2 shape
function is no longer a solution of the governing equatio
Details of the dynamics of localized solutions under the
fluence of discreteness effects represent an extra prob
and lie beyond the scope of this paper.

It is worth mentioning that in the optical context the pro
lem of spatial soliton interaction in bulk media with qu
dratic nonlinearity was considered in Refs. 19–21. In c
trast to the studied case of Fermi resonance solitons,
interaction of optical solitons in bulk media has a nonline
character. Moreover, initially separated optical solito
which attract each other will overlap completely in the su
sequent development, which allows an analytical descrip
only at the initial stage of evolution.21 Nevertheless, the
comparison of numerical results exhibits a qualitative agr

FIG. 2. The evolution of the fieldsB1 ~solid line! and B2

~dashed line! with the same parameters as in Fig. 1~a! as a function
of the timet and of the site indexnx .

FIG. 3. The dependence on timet of the amplitudesb1 ~dashed
line! andc1 ~dotted line! with the same parameters as in Fig. 1~a!.
-

-

se
s

is-
e-

.
-
m,

-
he
r
s
-
n

-

ment in the behavior of both systems. In particular, a stro
dependence of the soliton evolution on the initial phase
ference as well as an energy exchange between soliton
mÞ0,p have been identified in both scenarios.

V. CONCLUSION

We considered the problem of the interaction of Fer
resonance solitons propagating along two interfaces o
three-layer structure. The interaction arises due to tun
penetration of one soliton field in the region of the locati
of the other one. It is shown that the behavior depends on
initial relative phase of the solitons. In the case of zero init
phase differencem050, the solitons attract each other an
create a bound state, and in the opposite case (m05p) they
repel each other. An analogous behavior takes place in
case of optical solitons propagating in coupled fib
waveguides, which can be described by a system of cou
nonlinear Schro¨dinger equations.16 But in the present case o
Fermi resonance solitons the dynamics is much more c
plicated due to the fact that each soliton contains two fie
As a consequence the system exhibits oscillatory beha
not only in the mutual soliton positions but also in the a
plitudes and widths of each excitation field composing
bound state. Note that in the case of weak interaction
dynamics of the solitons does not change qualitatively if
thin film of c molecules is located between semi-infinite la
ers of b molecules. However, it becomes more sensitive
the change of system parameters, and the oscillatory be
ior of soliton interaction becomes less robust. This effect i
consequence of the intrinsic asymmetry of the system w
respect to vibration amplitudesB andC. The results obtained
can be applied for the analysis of propagation of short ex
tation pulses along Fermi resonance interfaces in orga
multilayer structures.
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FIG. 4. The dependence on timet of the width sB1
of the B1

field ~dashed line! and of the widthsC1
of theC1 field ~dotted line!,

with the same parameters as in Fig. 1~a!.
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