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Dynamics of Fermi resonance solitary waves propagating along two interfaces
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The dynamics of Fermi resonance solitary waves propagating along two parallel interfaces in a layered
organic semiconductor system is investigated both analytically and numerically. It is shown that the interaction
between solitary waves leads to their attraction or repulsion, depending on their initial phase difference. In the
case of attraction the solitary waves create a bound state, and their centers oscillate in time with respect to their
common mass center. The corresponding period of oscillations is calculated. It is found that the amplitudes and
widths of the solitary waves also oscillate in tinj80163-18288)01604-X

I. INTRODUCTION In the limit of strong pumping, i.e., at large excitation
occupation numbers, we can neglect the quantum fluctua-
The search for organic materials for nonlinear optics, photions and use a classical approximation where all operators
tonics, and electronics promoted the development of methare replaced by their mean vaIu(—élsunx,W):annynz and

ods for the p(eparation. of a class. of organic structures<Cn w0 )=Cn nn, WwhereB andC are classical complex vi-
namely, organic crystalline superlattic€@CS. The latest Xy 'z X'y 'z

achievements in this field were demonstrated in a number di"ation amplitudes. These variables corresponding to mol-
publicationsi=® At present, investigations in this direction €Cules nearest to the interfaces satisfy the following equa-

are developing further, therefore the analysis of qualitatively#ONs:
new properties of OCS is very topical and important. The

interaction of OCS with light is a fundamental physical prob- ~ 19Cq . ~1/0t=0cCh 0 ,~1= Ve Chyny -2

lem, as well as of importance for future applications.

Paper§ % have been devoted to just such an analysis of ~Ve)(Cry-1ny -1+ Crvany -1+ Con 11
these properties of OCS. In particular, different kinds of non- )

linear excitations propagating through the superlattice have +Cnonyr1-1) By o 0=0, 2

been discussedFermi resonance interface mode&ermi
resonance interface solitary wavé%. Here we want to con-
sider the dynamics of two Fermi resonance solitary waves
located on two different interfaces of a three-layer system.
For convenience, instead of the term “solitary waves” in the
following we use the shorter term “solitons,” as frequently
done in the literature. These solitons interact with each other
due to the penetration of the vibrational field of one of them
into the location region of the other one. As we shall see, ié’BnX,ny,O/é’t_binX,ny,O_vm an,ny,l_vb||(BnX+l,ny,0
such “tunnel” coupling results in a considerable change of

|&Cn>< ny ,N+1/¢9t_ wccnx ny ,N+1_VCLCFIX Ny N+2
~Ve|(Cn-1n, N+1F Crran, N+1F Crn - 11

+Cnx,ny+1,N+1)_FBﬁx,ny,N=0, 3

the dynamics of the solitons as compared to a single soliton. +Bn 10,01 B n+1,0t B n-10
Let us consider a system consisting of three layers of
organic semiconductors with two interfaces. We suppose that —2r B:X ,ny,ocnx ny.~1= 0, (4)

a film with N+ 1 b-molecular layers lies between two “half-
infinite” crystals made ofc molecules. The molecules are
labeled as follows: sitesn(,n, ,n,<—1) are occupied by
molecules, sitesr(,,n,,0<n,<N) are occupied by mol-
ecules, and sitesn(,n,,N+1<n,) are occupied by mol-
ecules again. As in Refs.. 7—;0, we assume Fermi resonance +Bn n1n)—2BE o \Cnnone1=0, (5
betweenc and b harmonic vibrations, i.e.w.=2w,. For Xy xryrn oxny

fthis case the main anharmonic interaction occurs across the, o re the parametedd,, and Vy (Vo, and V) describe
interfaces, and has the form the intermolecular interactions between th¢c) molecules
N t 2 + 2 in directions perpendicular and parallel to the interface, re-
Hin=T1Cn, ny,-1(0n, 1, 0"+ Cn,ny nea(Pn, i W7 HH-C, spectively. Thpe v?brations in the l?ulk of the crystals obey the

1) usual linear equationtsee Refs. 9 and 10The described
whereT is the interaction constant, abd(b) andc'(c) are  system has the following interface solutiofidpcalized near
the creation(annihilation operators foib andc excitations. the interface:

i‘9an,ny,N/at_binX,ny,N_VbJ_ Bnx,ny|N71

- VbH( an+ 1,ny ,N+ an—l,ny ,N+ an ,ny+ 1N
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Chynyn, = Ca(ny,ny)ere s n,<—1, o 3WpVe 20p—w; A
2\2r V¢—2Vy' RAA
Cnxnynz: CZ(nX lny)eKC(l+N7nZ)1 I"|Z>|\I_|— 11 (6)
2(wpVe— 0 V)
and —_—~b'c c'b
) V=2V, (14
annynz and
_ By(ny,ny)sint kp(N—n,)]+By(ny,ny)sinh xpn,) 1 2wp—wd| 15
- Sinf kpN) 2N |V —2v, | (19
(N=0), (7) If Vp=2V,, one can find the particular solution for a mobile
soliton
where ky, and x; are given by . . . .
B_|a|exp(—|wt/2+|kx/2) @ exp—iot+ikx)
eKCZLE K =£|C| ®) cost[ k(x—vt)] ’ cosh[ k(x—vt)] ’
Ve [C[” Vp, ' (16)
These expressions hold exactly for the plane-wave solutior‘Y,"here now

but we shall assume their validity for sufficiently wide soli- 1 v
ton exc'itations.in the case of strong anisotropy of intermo- a= ﬁ('J)C—ZFJ)b), w=2(2w;— wp)— ?ka 17
lecular interactionVy, o, <V, (| =Vy ¢, t00.
We suppose that the variabl&s(n,,n,) and C;(n,,n,) and
do not depend on, and have a slow dependencemn In

this long wave limit we can replace the finite differences in ’J)C_Zzb'

Egs.(2)—(5) by derivatives (,—x) and arrive at the follow- K= v, | U~ —Vpk=—2V_ k. (18

ing systemthe dimensionless variableis measured in units b

of the lattice constapntof partial differential equations: (Analogous solutions, including “dark” solitons, have been
discussed in the case of a “cascading nonlinearity” in Refs.

9B~ aZBj . _ _ 11-14) The system of equation®) and (10) has particular

I—— — wpB; —Vb? —2I'BfCj=e€B,, j,1=12, j#I,  solutionsC,=C,=C and B,=+B,=B, whereB and C

satisfy the equations coinciding with those for the one inter-

face case with shifted value of the frequenoy— wy+ e.
JC F2C Thus the_ thre_e-layer system under_ Consid_eratiqn hqs particu-
i—l—acCer—zl—FB?:O, I=1,2, (100 larsolutions in the form of two solitons with coinciding pa-
rameters(up to the sign of the amplitudleand propagating
side by side with each other. The case of a monomolecular
where thin film of B molecules is described by a system of three
, equations and needs separate discudsiea Ref. 10 In this
SINAL(N—1)xp] paper a variational approach will be applied to the investiga-

9

Z)b=wb+Vb 4

sin(N«y) ' tion of solitons propagating along two interfaces with weak
interaction between thefi.e., with smalle in Egs.(9) and
W= wet+V(4+e ), 1y (0]
y sinf xy) w2 Il. VARIATIONAL EQUATIONS
€= VIV
°L sinh(N k) The variational approach is based on the possibility to

represent Eq99) and(10) as Lagrange equatiorisee, e.g.,

When the parametet, describing the interaction of vibra- Refs. 15—18 corresponding to the Lagrangian with the den-
tions located in different interfaces, is small, this interactionsity
can be considered as a perturbation. If we neglect it we arrive
at the situation of two independent interfaces. In each of the L=L1+ Lo+ Lints (19
two interfaces the soliton excitations found in Ref. 9 exist. h
Exact solutions for such solitons can be obtained in som&"€"®
particular cases. For solitons at rest, we have the expressions i _
_ _ Lj=5 (BB}~ B Bj) + E(cjc;—c;‘cjt)+wb|8j|2
|a|eflwt/2 a|B|eflwt

cost(kx) cost(kx)’

where +I'(C;Bf?+CrB?), j=1.2, (20

(13 ~
+ w¢|Cjl 2= Vp|Bjx |2~ V¢|Cix|?
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Lint=€(B,BT +B3By), (21)
Bj:=0B;/dt, Bj=dB;lox, etc.
The action
Szf fﬁ dx dt (22

has its extremal values at the exact solutions of Egjsand
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~ Vp, 8 , 1 1 160

2575 5 Ci

b
+6e cosu f(r)#=0 (29)

]
- L4 11 I b
we=Vekj— gVer™= Sk fjit SKjdj+ 6+ = =0,

(10). Approximate solutions can be obtained by means of

minimizing the action for some trial functiorisee analogous
investigation for a single soliton in Refs. 17 and) 18

_ bJeX[Z(IgoJ/Z) B Cjequ(,D]) (23)
P cosRIk;(x—¢)1 ' cosRkj(x—¢)]
where

In contrast to the one-interface case, all paramelters
Cj, ki, ki, ¢, and §; are functions of time due to the
interaction of the solitons. Substitution of E423) and(24)
into Egs.(19)—(21) yields

L=L1+L2+Lim=fcdx, (25)
where
4b?l - K 4 ) 1k 1
4cf] ~ . 4 L) (K 1
+3_Kj wC—VC kJ+§Kj - ?gjt_éjt +§£jkjt
32F bfc; -
B (26)
P1— ¢2
cosde

Lin=2€b.b
int— <€01 2] cosH[ ky(X— ¢1)]cost[ kp(X—&5)]

6b1b2

~———cosu f(r) (27)
and
2u=208,— 38+ 3(ki{r—Kol1),
r=x({1- o), 8

r coshr —sinhr

f(r)=

sinkPr

In the last calculation of ;,;, we supposed;= «,= « and
|k1_k2|<2K, |r|$1

5
(30)
d(b?+2c? _ .
K Gt +6(—1) "tebsb,sinu f(r)=0, (31)
5 ) af(r)
(b; +2Cj)kjt+126b1b2C0$.L(9_§j:O, (32
(bf+2¢7) £jo+ (b2V, +4c7V )k =0, (33

of
; [4K3(b2Vy+CV,) — 2T'c;b?] - 15€b;b, - cosu=0.
(349

For e—0 this system splits into two independent sets of
equations corresponding to two isolated interfaces discussed
in Ref. 18. Systemg29)—(34) comprises the variational
equations describing the dynamics of two solitons. This sys-
tem is rather complicated and can be considered analytically
only under some simplifying assumptions. Here we shall
consider the important particular case of the elastic interac-
tion of solitons.

Ill. ELASTIC INTERACTION OF SOLITONS

Equations(29)—(34) have an obvious integral of motion

I, defined by
2kl;=b3+2c5+ b5+ 2c3. (35)

The expressiont(jz+ chz)/:c characterizes the energy of
the soliton and is conserved in the case of a soliton on the
isolated interface. In the case of two interacting solitons only
the sum of these two quantities is conserved, as we see from
Eq. (35). However, in the particular case gir0, i.e., when
pm=n1, the energy of each soliton is conserved separately,
which corresponds to their elastic interaction. Let us discuss
this case in more detail. For its realization it is necessary that
#:=0 holds all times. As follows from Eq$29), (30), (32),
and(393), the variableu is time independent only if

C1=Cp=C, (36)

and
(M (ii) (37

Conditions(37) correspond to the two particular cases when
the exact soliton solutiond 3) and (16) are realized.
Equation(32) leads, together with Eq$36) and (37), to

k1+k2:0 or VbZZVC.

Minimizing action(22), we obtain the Lagrange equations the conservation of the total momentum

for the variabled; , c;, §;, {j, k;, andk, which after some
transformations give the following system:

k; +k,=2ky= const, (38
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whereko=Kg; =Ko, is the initial value ofk; . Note thatu is
equal to the initial phase difference of tBe—fields accord-
ing to the conditiorky;=kKg,.

Equation(33) gives

(L1+ L= —2KkoV, (39
where
v Vb?+ 4V c? 40
b2+ 2¢2

Hence we conclude that in the caseof Eq. (37) the “cen-
ter of mass” does not move, and in cage of Eq. (37) it
moves with the constant velocity 2k, V5.

Now let us consider the relative motion of the solitons.
From Egs.(32) and(33), we obtain the following systems:

cosu of

_ 2
11(K; — Ko)+ 24ec A

0, 41

A+V(k;—ky)=0, (42)

whereA =, — {,. After elimination ofk, —k,, we obtain the
equation

24e cosu Vb? of

(43

tt JA

Note that in caseii) the right-hand side of this equation

vanishes sincé7=Vb=const, and in casé) we can also
neglect the right-hand side because, as we shall see, it diffe
from zero only in higher degrees ef If we neglect the time
dependence of the coefficients of this equation, which als
arises only in higher degrees ef then the relative motion
can be presented as the motion of the point particle of uni
mass with coordinatd under the action of force, with the
potential

24eb?V cosu

U(a)=- Kl

f(A). (44)

Thus atu= 7 there is a repulsion of the solitons from
each other, and at=0 they attract each other. In the last

case the solitons oscillate with respect to their mutual center

of mass. At small values af we obtain, from Eq(43),

Ay+cosum?A=0, (45)
where
~, 32eb?(Vyb%+4V.c?
2= ( *;IZ ). (46)

1

The assumption of a time-independestt corresponds to
the omission of small terms of ordef in Eq. (43), so that in
the attraction case (cpas=1) we obtain harmonic oscillations
of solitons

A = AOCOS(T)OI,

(47

whereA, and w, are the initial values ofA and w.
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Consider now the dependence of the soliton amplitides
andc on time. We have not yet used two equations: ¢),
which can be expressed in the form

8
I_z(b2+ 2¢?)?(Vyb?+Vc?) — 4T cb?=15eb?rf ' cosu;
1

(48
and the combination of Eq$29) and(30),
20,— o : k2+Kk3)(2V,—V
(2wy wc)+4( 11Kk3)(2V—Vy)
4(V,—2V
AV 2Ve) > b)(b2+202)2
512
ar
+§(4C2—b2)=—66C05u f(r). (49

Note that the soliton width is related to the amplitudes
through Eq.(35) which was used in the derivation of Egs.
(48) and(49). We also have

2 8¢

~ 2_ 2
15Vb(r0 re).

t

ky— ko) 2= (Ky— ko) 2=k2=
(ky—ko)“=(ka—Ko) Py

Let us represent the amplitudbsandc in the forms

b=bg[1+emy(r)], c=cg[l+emy(r)], (50

fag]d substitute Eq(50) into Eqgs. (48) and (49). In zeroth
order of the power expansion with respecteowe obtain

gquations coinciding with those for the solitons on isolated

interfaces. In the next order we have a linear system of two
quations for functionsn; and m,, which can be trans-
ormed to the forms

45 cogu (1+282)
4T°c,

!

2(5-2B%)m;+(22B%—1)m,=

4(1+58%)m;—(3+2282+88%m,

_45couBA(1+2B2) (1 BA)(1+242)
B 2lc, B I'c,

2
0

(r2=rf),
(51)

where 82=V,/2V,. Its solutions are

D,
EY

D>

mEg Mg

D=—2(—168%+2168%+ 13882+ 13),
(52
45 cogu (1+28%)
B 2l'cy
+2B%(228%—1)f]

(1-228%)(1+2B%)(1- %)
- FCO

D,= [(88%+22B2+3)rf’

2

2
(re=rg

),
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_45cowu (1+2p%)
B I'cy

2(5-2p%)(1+2p%)(1-p%)
B FCO

[B%(5—2B%)f—(1+5B%)rf']

2

(r2—rj).

In case(ii), i.e., for B2=1, it follows, for example, that

15€¢ co
b:b0+ al/

W(l4f+llrf )

15¢ cosu[7 12 )
0*?(5*? )

_ cosu , 15¢ cosu/1l 2 )
C—CQ+T(2H€ —f)—CO—T(g'Fgr ,
(53
and
5€ cosu 5
K=K 1+TCO(1—4F ). (54

Thus we see that the amplitudbsand ¢ and the widthx
have different constant shifts and oscillatiripr w=0)
components.

Note that taking into account the dependencb?éndc?
on time in Eg. (46), results in a term proportional to

cos(2ugt) in the expression fow? which could lead to para-
metric resonance. But with the same order of accuracy the

constant part of the frequency shift— wo=(2/3)ewq(2M;
+m,) arises, which is greater than the width of the paramet-
ric resonance region. Hence, in fact, the parametric reso-
nance does not take place, which justifies taking into account
only the terms of ordee in Egs.(45) and(46).

IV. NUMERICAL SIMULATION

]

The dynamics of two solitons propagating along two dif- 0 2 4 6 " 8
ferent interfaces has been simulated numerically in the case
of the simplest physical system described by E&.and FIG. 1. The distancé between the centers of the two solitons
(10), which consists of four monolayers CBBC. Then we as a function of time for the interaction constanis=0.1 (a) 0.2
have?;)c= wet2Ve, Z’b: wp+2Vy, ande=V,, . The ini- (b) and — 0.1 (c). Comparison of the result of the anlytical calcula-

tial conditions and the parameters of the medium are chose'f-?n (solid line) with the results of the numerical simulation, where
as follows: x=0.073 (this choice corresponds to a soliton the dashed line shows the distance between the centers of th& two

with a width of 30 interatomic distances\ /=6, V=2V, fields, and the dotted line shows the distance between the centers of

=60, andl'=1. Figure 1 shows the distance between soli-the twoC fields.

tons centers as a function of time for different values and

signs of the interaction constaat Note that a change of the s, andoc, are shown in Figs. 3 and 4 respectively, which
initial phase difference fromu=0 to 7 is equivalent to a present the shift of the mean values and oscillations with
change of the sign oé. As we see, the simulation confirms frequency 2 of all these parameters according to the for-
the results of our analytic calculations concerning the exismulas (53) and (54). But the numerically observed small
tence of a bound state of solitons for ges1, and the repul-  difference(about 3% between the width of th® field and
sion of solitons for cog=—1. It is easy to see that the os- the width of theC field lies beyond the presented analytical
cillation frequency is in a good agreement with the formulatheory, which initially assumes the equality of these two
o =k+32¢V/15, which is a consequence of E@6) for  widths. The small difference in the soliton widths could be
Vp=2V.. The evolution of the field8,; andB, is shown in  taken into account by an extension of the present analytical
Fig. 2 for the same choice of parameters as in Fig). The  approach. However, this would not lead to qualitatively new
oscillations of the mutual positions and the excellent conserresults, but merely would complicate the analysis.

vation of the initial sech shape are clearly seen. The time  Note that for large initial distances between the soliton
dependences of the amplitudes andc; and of the widths centers (>1) the quadratic approximation for potent{d¥)
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o, 327
3144

t 30 1

29 4

28

27 . . .
0 15 30 45 60

FIG. 4. The dependence on tinieof the width op, of the B,
field (dashed lingand of the widthzrc1 of the C, field (dotted ling,
with the same parameters as in Figa)l

FIG. 2. The evolution of the field8; (solid line) and B,

(dashed lingwith the same parameters as in Figa)las a function ) ) )
of the timet and of the site index, . ment in the behavior of both systems. In particular, a strong

dependence of the soliton evolution on the initial phase dif-
is no longer valid and therefore the oscillations become anfeérence as well as an energy exchange between solitons for
harmonic. According to Eq44), an increase i, causes an 4 # 0,7 have been identified in both scenarios.
increase in the oscillation period, which was observed nu-
merically.

Numerical calculations also demonstrated that a decrease
in the soliton widths induces energy emission by the solitons We considered the problem of the interaction of Fermi
together with a variation of their shapes. If the soliton widthresonance solitons propagating along two interfaces of a
approaches- 10 interatomic distances, the dynamics of thethree-layer structure. The interaction arises due to tunnel
system changes qualitatively. Such a behavior is not surprigsenetration of one soliton field in the region of the location
ing, because in this case the influence of discreteness bef the other one. It is shown that the behavior depends on the
comes significant and, as a consequence, the’ssitpe initial relative phase of the solitons. In the case of zero initial
function is no longer a solution of the governing equationsphase difference.y=0, the solitons attract each other and
Details of the dynamics of localized solutions under the in-create a bound state, and in the opposite case=(r) they
fluence of discreteness effects represent an extra problemepel each other. An analogous behavior takes place in the
and lie beyond the scope of this paper. case of optical solitons propagating in coupled fiber

It is worth mentioning that in the optical context the prob- waveguides, which can be described by a system of coupled
lem of spatial soliton interaction in bulk media with qua- nonlinear Schrdinger equation$® But in the present case of
dratic nonlinearity was considered in Refs. 19-21. In conFermi resonance solitons the dynamics is much more com-
trast to the studied case of Fermi resonance solitons, thglicated due to the fact that each soliton contains two fields.
interaction of optical solitons in bulk media has a nonlinearAs a consequence the system exhibits oscillatory behavior
character. Moreover, initially separated optical solitonsnot only in the mutual soliton positions but also in the am-
which attract each other will overlap completely in the sub-plitudes and widths of each excitation field composing the
sequent development, which allows an analytical descriptiobound state. Note that in the case of weak interaction the
only at the initial stage of evolutiofl. Nevertheless, the dynamics of the solitons does not change qualitatively if the
comparison of numerical results exhibits a qualitative agreethin film of ¢ molecules is located between semi-infinite lay-

ers ofb molecules. However, it becomes more sensitive to

V. CONCLUSION

1.05 the change of system parameters, and the oscillatory behav-
by, ¢ ior of soliton interaction becomes less robust. This effect is a
AN consequence of the intrinsic asymmetry of the system with
R I ANl VY respect to vibration amplitudésandC. The results obtained
3’ can be applied for the analysis of propagation of short exci-
0.95 4 tation pulses along Fermi resonance interfaces in organic

multilayer structures.
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