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ESR of Co21 in NH4NiPO4–6H2O
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Experiments of electron-spin resonance~ESR! were performed on Co21 in single-crystal and powder
samples of NH4NiPO4•6H2O. The angular variation of the resonance field of the crystalline sample can be
interpreted in terms of two magnetically nonequivalent sites related by a symmetry operation. From the fitting
of the ESR data, the spin-Hamiltonian parameters are determined. A theoretical analysis of these results is
presented.@S0163-1829~98!00701-2#
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I. INTRODUCTION

Ni~II ! hydrated phosphates are very interesting becaus
their physicochemical properties,1 generated by the great d
versity of their crystal structures. The structural model
these phases changes as a function of the ratio Ni:PO4 in
their composition. It is observed that when there are sev
water molecules per Ni atom in the formula, most of t
positions in the coordination sphere of the metal are oc
pied by those molecules. This gives place to thr
dimensional ~3D! structures, connected through hydrog
bridges,2,3 as it is the case with the compound discussed h

NH 4NiPO4•6H2O presents a 3D structure formed by
complicated scheme of hydrogen bonds, established by
water molecules and the ammonia groups.4 The Ni@OH2# 6
octahedra are fairly regular, with Ni-O mean distan
2.055~3! Å, and a O-Ni-O mean angle of 91.8~5!°. The PO4
tetrahedra show a high local symmetry, with a P-O me
distance of 1.535~5! Å, and O-P-O mean angles of 109.6
The NH4

1 tetrahedra are quite regular, too. They pres
mean distances of 0.88 Å and mean H-N-H angles
109~3!°. There are two crystallographically equivale
Ni@OH2# 6 sites related by the symmetry operation~1/22 x,
2y, 1/21 z) ~see Fig. 1!. However, under the application o
a magnetic field, these two sites are not equivalent, and
magnetic group of the crystal has less symmetry operat
than the space group.

The local symmetry of the nickel~II ! ions is near cubic as
stated above, and the electron-spin resonance~ESR! of reso-
nant impurity ions that substitute the Ni in the lattice is
powerful technique to analyze the environment of this io
The Co21 ~3d7) is very convenient for this purpose, becau
it has a very strong spin-orbit interaction, its ground state
cubic symmetry is an isotropic Kramers doublet, and it b
comes very anisotropic with small changes in the local e
tric crystal field. The ESR experiments make evident
difference between the two magnetically nonequivalent
sites that are present in the structure of NH4NiPO4•6H2O.

The main objective of this work, is thus to present ES
measurements in single crystals and powder sample
NH 4NiPO4•6H2O, doped with a low concentration~0.1%!
of Co21. The experimental data are empirically analyz
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with a spin Hamiltonian. A theoretical analysis with a simp
model shows that a fairly good agreement with this empiri
spin Hamiltonian is obtained by employing a perturbati
calculation that includes the crystal field up to first ord
only.

II. EXPERIMENTAL DETAILS

A. Materials

NH 4NiPO4•6H2O:0.1% Co21 samples were synthesize
by mixing NiCl2•6H2O and H3PO4 in a water solution in a
proportion of 1:40, at room temperature.4 The Co21 doping
was obtained substituting 0.1 mol of NiCl2•6H2O by
CoCl2•6H2O. The pH of the solution obtained was in
creased up to 12 by addition of NH4OH as needed. The
product was slowly evaporated during one week, and
slow evaporation of the ammonia favored the formation

FIG. 1. Geometrical representation of the two Co12 sites in
NH4NiPO4•6H2O. The experimental coordinate system is rep
sented with respect to the orthorhombic crystal axes. The princ
crystal directions are drawn within a polyhedron that is shaped
the growing crystal habit.
246 © 1998 The American Physical Society
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57 247ESR OF Co21 IN NH 4NiPO4•6H2O
the desired compound. Recrystallization was necessar
obtain single crystals that are adequate for the ESR meas
ments. Thermogravimetric measurements and x-ray diffr
tion were carried on the samples and, within the experim
tal errors, no impurities were observed. Oscillation a
Weissenberg photographs were carried out to determine
relationships between the crystallographic axes and the
ternal morphology of the crystals. The crystals are elonga
along thea axis, as can be seen in the drawing of the crys
habit in Fig. 1.

B. ESR

The ESR spectra were recorded at theX band on a Bruker
ESP300 spectrometer equipped with a standard OXFO
helium continuous-flow cryostat. The magnetic field w
measured with a Bruker ER035M NMR Gaussmeter. T
frequency inside the cavity was measured with a Hewl
Packard 5352B microwave frequency counter. Powder
single-crystal spectra were recorded at 4.2 K. A sin
crystal of NH4NiPO4•6H2O:0.1% Co21, with a size of
0.2330.1130.14 mm3, was oriented through Weissenbe
photographs and glued to a cleaved KCl sample holder w
the a, b, and c crystal directions along itsx, y, and z or-
thogonal axes, respectively~see Fig. 1!. The sample holder
was connected to an L-shaped quartz rod and rotated
respect to the applied magnetic field using a one axis Bru
goniometer with 1/8° resolution. ESR spectra were recor
rotating the crystal around thex, y, and z axes, with 5°
intervals along 180° in each plane. The orientation of
magnetic field within thezx and zy planes was determine
from the ESR data considering the known crystal symme
The orientation of the magnetic field in thexy plane was
accurately defined by matching the angular variation of
spectra in this plane to those obtained in the other
planes.

III. RESULTS AND ANALYSIS

Figure 2 shows the ESR spectra of the single-cry
sample measured at 4.2 K, for three selected directions o
magnetic field. The spectra consist of two octets of resona
lines; those octets are due to the allowed transitions
DSz561, DI z50 corresponding to the hyperfine interactio
between the effective spinSW 51/2 of the cobalt and the rea
nuclear spin (I 5 7/2! of 59Co ~100% abundant!.

Figure 3 shows the angular variation of the resona
field of the ESR lines in the~100!, ~010!, and~001! planes.
Both the angular variation and its symmetry clearly sh
two magnetically nonequivalent sites related by a C2 opera-
tion about thec crystal axis, which is the point operation th
relates the two centers. The actual spectra show eight w
resolved hyperfine lines along some directions for each s
but the reduction of the hyperfine interaction causes the
lapse of them in other directions~see Fig. 2!. The point-
group symmetry for the Ni21 ion ~and the Co21 substituting
them! is Cs, and the appropriate spin Hamiltonian forSW

51/2 andIW57/2 is therefore6

Ĥ5mBH–g1–S11mBH–g2–S21S1–A1–I11S2–A2–I2 ,
~1!
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whereg1andg2 are the gyromagnetic tensors andA1 andA2
the hyperfine tensors for each site.H is the applied magnetic
field, andmB is the Bohr magneton. As a first approximatio
the ESR data were used to calculate theg andA tensors by
Schonland’s method,5 and the obtained parameters were us
as preliminary information for the subsequent calculatio
The resonant field for each transition was obtained exac
within the machine error, by diagonalizing numerically th
16316 matrix corresponding to each of the sites in Eq.~1!,
and obtaining the field self-consistently. These fields w
the input to a least-squares fitting program, treating theg’ s
andA’ s values as adjusting parameters. All the experimen
data of the three planes were fed in the program, and
solid lines in Fig. 3 are the best fitting of the data using E
~1!. Figure 1 shows the relative orientation of the principag

FIG. 2. Three Co12 ESR spectra selected for directions of th
magnetic field that show the spectra properties as described in
text.

FIG. 3. Angular variation of Co12 in NH4NiPO4•6H2O spec-
tra, in the three experimental planes. The principal directions
these planes are indicated in the figure. The solid lines are the
fit to Eq. ~1!, and the fitting parameters are given in Table I.
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248 57A. GOÑI et al.
values for both Co21 sites. Table I gives the spin
Hamiltonian parameters obtained by this procedure.

Figure 4 shows the ESR spectra of a powdered sam
The simulated spectra in it were obtained with the fitted
rameters in Table I, considering the powder as a great n
ber of crystallites oriented at random.

IV. THEORETICAL DISCUSSION

In this compound the Co21 ions are coordinated by si
O(w) in fairly regular octahedra.4 Assuming that the position
of the six oxygen nearest to the Co21 are in the same posi
tions as those of the nickel compound,4 and taking the aver-
age of their positions as the center of the octahedron,
choose two of the O and use them to determine an ortho
nal system of axis. In the new system thex axis goes through
the position of one of those two O, and thez axis is perpen-
dicular to the plane determined by the two O and the ce
of the octahedron. The direction cosines of these axes
respect to the orthorhombic axis of the crystal are given
Table II. The average distance of the six O with respec
the new axes origin isR̄52.0531Ā, and we can define a
regular octahedron with the six vertices placed along

TABLE I. Spin-Hamiltonian parameters for Co21 in
NH4NiPO4•6H2O at 4.2 K.

cos(u1) cos(u2) cos(u3)

g1 4.9091 20.26072 20.55762 0.78809
g2 5.1389 0.96461 20.11704 0.23630
g3 2.6680 20.03953 0.82180 0.56840

31024 cm21 cos(u1) cos(u2) cos(u3)

A1 160.17 20.20229 20.58951 0.78202

A2 178.76 0.97741 20.07163 0.19884

A3 44.37 20.06120 0.80458 0.59068

FIG. 4. Experimental~a! and simulated~b! powder spectra of
Co12 in NH4NiPO4•6H2O. This last was obtained using the p
rameters in Table I, and a powder program. The slight differen
are due to the fact that we did not consider the angular variatio
the linewidths in the simulation.
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axes at a distance6R̄ from the origin. From any displace
ment of the six O with respect to the vertices of this regu
octahedron we can find9,10 the corresponding normal coord
natesQj of the seven ion-complex, formed by the Co and t
six nearest O, that are invariant against inversion. These
separated in the three sets$Q1%, $Q2 ,Q3%, and
$Q4 ,Q5 ,Q6%, and the correspondingQj transform, respec-
tively, like the basis of the irreducible representationsA1, E,
and T2 of the cubic group, as given in Table II of Ref. 11
These coordinates will be employed below to model
crystal field that gives the experimentalg tensor, and the
normal coordinates obtained from the position of the O cr
tallographically determined4 in the Ni compound are shown
in the first row of Table III.

The 4F ground state of isolated Co21 (3d7) in a purely
octahedral crystal field splits into two orbital triplets4T1,4T2
and one orbital singlet4A2. Spin-orbit effects partially lift
the degeneracy of the4T1 triplet into oneG6, two G8, and
oneG7 subspaces, and the resonance for the lowest dou
(G6) is isotropic withg54.33.8 The addition of lower sym-
metry crystal fields produces further splitting of the4T1 trip-
let, giving six Kramer’s doublets, and in most cases it
found that the trace of theg tensor is close to the cubi
isotropic value7; in the present case the averageg is 4.2387.
To understand this value we first consider the Co21 in a
cubic symmetry, showing later that crystal fields of low
symmetry do not change this value in our approximation

In the lowest order one obtainsg from the matrix ele-
ments of the Zeeman term in theG6 subspace of the4T1
ground triplet. The matrix elements of the orbital angu
momentumL within a T1 subspace are proportional to tho
of a P term, but one should note that the excited term4P is
also of the 4T1 symmetry, and is mixed by the cubic fiel

s
of

TABLE II. The cosines between the orthorhombic axes of t
crystalb$a,b,c% and the new axesj 5x,y,z fixed to the octahedron
as discussed in the text.

Axes a b c

j 5x 0.7328 2 0.3099 2 0.6058

j 5y 20.00048 0.8900 2 0.4559

j 5z 0.6804 0.3344 0.6521

TABLE III. The symmetrical normal coordinates of the com
plex formed by the Co and the six O with respect to the regu
octahedron defined in the text. Row 1 gives the values calcula
from the O positions determined crystallographically. Row 2 giv
the values that would reproduce the experimentalg tensor for the
point charge model. Row 3 gives a number proportional to the r
of the normal coordinates obtained from theg tensor divided into
those obtained from the A tensor.

Q2 Q3 Q4 Q5 Q6

1 20.03840 0.02497 0.01417 0.06542 20.01275

2 0.01092 0.00305 0.16028 20.22616 20.14710

3 1.60 845 2.04 1.77 1.99
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57 249ESR OF Co21 IN NH 4NiPO4•6H2O
with the 4T1 of the ground4F term. If we indicate two states
of 4F and 4P with f i andf i8 , respectively, such that the
transform in the same way under the cubic group, the st
of the ground4T1 will be of the formaf i1bf i8 . The values
of the constantsa andb can be obtained12,13 from the Racah
parameterB and the crystal-field parameterDq, that take the
values 918 and 840 cm21, respectively in the Ni compound:4

with these values one obtainsa50.9853 andb520.1707,
and the proportionality constant of the angular momentum

a521.5a21b2521.4271.

Two further effects should be considered in the calcu
tion of the isotropicg tensor. One is the second-order co
tribution of the 4T2 states, that are separated
D85215B26Dq57302 cm21 from the ground4T1 states,
and the other is the covalency between the Co and the ne
boring O, described by several covalence factors,7,12 that re-
duce the matrix elements of the orbital angular moment
and of the spin-orbit interaction. Using a singlek0 for all
these factors one obtains the expression for theg factor in a
cubic field:

g5
5

3
ge2

2

3
ak012SA15

2
a1bD 2

~k0!2
ulu

D8
, ~2!

where l52180 cm21 is the Co21 spin-orbit interaction.
With the parameters employed, this isotropicg tensor coin-
cides with the trace of the experimental one whenk050.84.
When one employs the parameters of Co:MgO, viz.B5815
cm21 and Dq5905 cm21, the following values are ob
tained: a50.9811, b520.1933, a521.4063, D857953
cm21, and k050.86. These values are not very differe
from those obtained with the Ni parametersB andDq.

To analyze further the experimentalg tensor, one could
try and find crystal-field values that would reproduce t
measured results, and a study of this type was presente
Abragam and Pryce for the cobalt Tutton salts.14 To simplify
the study we present a model that describes all the cry
fields acting on Co as originating in the crystal field of t
six nearest O located at the vertices of a deformed octa
dron, obtained by displacement of the vertices of the reg
octahedron introduced at the beginning of this section. If o
neglects the mixing of other configurations into the grou
configuration (3d)7, it is sufficient to keep only the part o
the crystal fieldV that is even against inversion. We cou
then writeV5( i 51

7 V(r i) , whereV(r ) would be the sum of
products of only two or four components of the electron
coordinatesr . Within our model, one could then write9

V~r !5(
j

QjVj~r !, ~3!

where theQj andVj (r ) transform like the same partners
irreducible representations of the octahedral group.11 As the
Vj (r ) must be even against inversion, theQj must have the
same property, and only the sixQj with j 51,6 discussed a
the beginning of this section would appear in Eq.~3!. In the
following we shall not consider the identical representat
A1 because it does not modify theg tensor. The usefulVj (r )
are then
es
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V2~r !5A~x22y2!1B~x42y4!,

A3V3~r !5A~3z22r 2!1B~2z42x42y4!, ~4!

and

V4~r !5Czy1E~z3y2y3z!,

V5~r !5Cxz1E~x3z2z3x!,

V6~r !5Cxy1E~x3y2y3x!. ~5!

For a point-charge model,9 the constants are given by

A5
1

4
eeeff~18R24275R26r 2!, B5175eeeff/8R6,

C5eeeff~26R24115R26r 2!, E5235eeeff/2R6, ~6!

whereeeff is an effective charge associated with the O.
To study the effect on theg tensor of theV(r ) given in

Eq. ~3!, we shall employ second-order perturbation theo
using bothV(r ) and the Zeeman termHZ5(geS1L )•H as
perturbation. The change in theg tensor is then given by

dg5
2

3
~ge1a!

mB

D
$2CE@A3Q2~SxHx2SyHy!1Q3~3SzHz

2S•H!#1CT@Q4~SzHy1SyHz!1Q5~SxHz1SzHx!

1Q6~SxHy1SyHx!#%, ~7!

wheremB is the Bohr magneton andD is the splitting be-
tween theG6 doublet and the lowestG8 quadruplet in the
octahedral symmetry, given by12

D51.5~21.5a21b2!k0l2
33

20SA15

2
a1bD 2

k0
2 l2

D8
. ~8!

The constantsCE and CT can be obtained by calculating
single matrix element in each case:

CE52
1

2
^T1zu(

j
V3~r j !uT1z& ~9!

and

CT5^T1xu(
j

V3~r j !uT1y&, ~10!

where the$uT1x&,uT1y&,uT1z&% are a basis of the ground4T1
that transforms like the coordinates$x,y,z% under the octa-
hedral group.

The expression in Eq.~7! corresponds to deformation
from a cubic environment, and one should then compare
formula with the experimentalg tensor in the axis of the
regular octahedron defined in Table II, which is given
Table IV, but it is first necessary to determineCE andCT .
One obtains with Eqs.~3!–~6!
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250 57A. GOÑI et al.
CE5
eeeff

R̄2 H ~1.484621.7815a211.7815ab20.4454b2!
^r 2&

R̄2

1~20.171810.6873a220.6873ab10.1718b2!
^r 4&

R̄4 J
~11!

and

CT5
eeeff

R̄2 H ~0.0857a221.3714ab11.2b2!
^r 2&

R̄2
1

~20.7143a220.2381ab!
^r 4&

R̄4 J . ~12!

The averageŝ r 2&51.251 and^r 4&53.655 ~atomic units!
have been calculated with Hartree-Fock functions,13 but we
can obtaineeff^r

4& from the cubic field parameterDq em-
ploying the relation

Dq52
1

6

eeeff

R̄

^r 4&

R̄4
~13!

valid for the point-charge model. To findeeff^r
2& we shall

assume that̂ r 2&/A^r 4&5 0.6544, i.e., equal to the corre
sponding ratio obtained from the calculated values. Tak
theB andDq of the Ni compound and using for the remai
ing parameters those discussed in the text, one fi
CE56508 cm21/Å and CT523414 cm21/Å, while for the
Co:MgO values one finds CE56821 cm21/Å and
CT523932 cm21/Å. The difference is not critical, and w
shall use the Ni values in the remaining of the discussio

It is now possible to compare Eq.~7! with Table IV, and
one immediately obtains values of the normal coordina
that would reproduce the experimentalg tensor when substi
tuted in that equation. These values are given in the sec
line of Table III, and it is clear that they are rather differe
from the values calculated from the crystallographic posit
of the O in the Ni compound. There are two alternative e
planations for this result: either the O around the Co impu
are in different positions than in the Ni compound, or t
model is not adequate. In the absence of experimental
dence to check the first alternative, we shall discuss poss
modification to the model employed above. Instead of
point-charge model we could use a model with dipoles,
‘‘directed away from the central ion.’’9 This model gives the
same potential of Eqs.~3!–~5! but with different expression
for the constantsA,B,C,E. Within each irreducible represen

TABLE IV. The components of the experimentalg tensor, re-
ferred to the octahedron axesj 5x,y,z, after subtraction of the iso
tropic tensorg54.2387.

Axes gj ,x gj ,y gj ,z

j 5x 20.1306 0.6354 0.9769

j 5y 0.6354 0.1809 20.6923

j 5z 0.9769 20.6923 20.0503
g

ds

s

nd
t
n
-
y

vi-
le
e
ll

tationsE andT2, the normal coordinates necessary to rep
duce theg tensor would then be proportional to those o
tained with the point-charge model, as only the values ofCE

andCT would change in this model, so that both the char
and dipole models would give essentially the same results
more complicated model, either involving the change in
direction of the dipoles, or even considering the extend
charges of the ligands, would increase very much the d
culty of the calculation. We should then remain with th
point-charge model, but only as a means to obtain a fa
simple crystal field that would be sufficient to explain th
experimentalg tensor. This crystal field is theV(r ) of Eq.
~3! given in the axes of the regular octahedron defined
Table II with theQj given in the second row of Table III
The agreement is perfect because there are as many
normal coordinates asdg components, but the point-charg
model employed should not be taken too seriously.

Although we have not analyzed the hyperfine tensor
detail, we can extract some information from its experime
tal value. As seen from Table I, the principal axes of the t
tensorsg andA do not exactly coincide, but are fairly clos
together. As with theg tensor, we have expressed thedA
tensor in the axes of the regular octahedron discussed ab
and the corresponding values are given in Table V. One
show15 that thedA is described by an expression similar
that of thedg @cf. Eq.~7!# with the component ofI taking the
place of the components ofH, but we have not explicitly
calculated the coefficients equivalent to theCE and CT .
Nevertheless, by the same method employed with theg ten-
sor one can obtain quantitiesQj8 proportional to theQj , and
then calculate the ratio of theQj given in the second row o
Table III to the correspondingQj8 obtained from theA ten-
sor. These ratios are given in the third row of Table III, a
those corresponding toQj of the same irreducible represen
tation should be equal if the theory were strictly true. T
enormous value of the ratio corresponding toQ3 is not sig-
nificant, because the value derived from theA tensor is zero
within the experimental error, and one can therefore not d
any conclusions from the pair$Q2 ,Q3%. On the other hand
the three ratios corresponding to$Q4 ,Q5 ,Q6% are fairly
close to the same value, and they show that the crystal fi
that result from the present treatment are fairly consist
with the available experimental results.

In the present calculation we have neglected the effec
the 4T2 triplet, that contributes todg in third-order pertur-
bation ~our calculation would be of the second-order!. This
effect was calculated by Tucker13 who obtained contribu-
tions that are about 6% of the second-order contribution
the T2 deformation and about 13% for theE deformation,
and would therefore not alter substantially our conclusion

TABLE V. The components of the experimentalA tensor~given
in cm21), referred to the octahedron axesj 5x,y,z, after subtrac-
tion of the isotropic tensorA512 780 cm21.

Axes Aj ,x Aj ,y Aj ,z

j 5x 2970 3200 5510
j 5y 3200 970 23390
j 5z 5510 23390 0
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